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1 Introduction and main results

Let {X(t), t ≥ 0} be a Lévy process drifting to ∞ and let Z be its associated exponen-
tial functional, i.e. Z =

∫∞
0 e−X(t)dt. Random variables of this form have recently been

analyzed in great detail; the reason being that such random variables appear in several
applications, like mathematical finance (Z as the present value of a perpetuity [11], Asian
options and COGARCH process [23]), Additive Increase Multiplicative Decrease (AIMD)
algorithms [12, 20], order picking strategies in carousel systems [25], mathematical physics,
and more. A recent monograph devoted to such exponential functionals is [30].
In this paper we analyze the behavior of P {Z > x} as x becomes large, complementing
the above-mentioned works, which largely focus on exact expressions for the distribution
of Z. We analyze several classes of Lévy processes which give rise to qualitatively different
tail behavior of Z, ranging from extremely heavy (of the form (log x)−α) to light tails
(exp{−xp}, p ≥ 1).
Several results in this paper are derived using the following identity. Let τ be a stopping
time with respect to the filtration generated by X(t). Then the following distributional
identity (which is easily verified using the strong Markov property) holds:

Z
d=
∫ τ

0
e−X(u)du+ e−X(τ)Z, (1.1)

with Z on the right hand side independent of
∫ τ
0 e−X(u)du and e−X(τ). Thus we have an

equation of the form R
d= Q + MR. Such equations have been studied extensively. A

classical result due to Kesten [21] and Goldie [17] states that, if there exists a solution
κ > 0 to the equation E {Mκ} = 1, then under some further regularity conditions,

P {R > x} ∼ Cx−κ. (1.2)

The constant C is usually very hard to obtain, unless κ is integer-valued, see [17]. Recently,
Rivero [26] applied these results to the setting of the present paper, in which E {Mκ} = 1 is
equivalent to the Cramér condition E

{
e−κX(1)

}
= 1. In Section 3 we give an extension of

this result, by providing more explicit expressions for the prefactor C. These expressions
partly rely on new expressions for the fractional moments (i.e. the Mellin transform) of
Z, which are presented in Section 2 and could be of independent interest.
The main results of the paper are those concerning cases in which Cramér’s condition,
and hence the assumptions in [17, 26], are not satisfied. In Section 4, we consider the
case in which X(1) does not have exponential moments. This yields a completely different
tail behavior for Z: under the assumption that Ḡ(x) := min

{
1,
∫∞
x P {−X(1) > u}du

}
is

subexponential, and µ := E {X(1)} ∈ (0,∞), we derive that

P
{

log
∫ ∞

0
e−X(u)du > x

}
∼ P

{
sup
t>0

(−X(t)) > x

}
∼ 1
µ
Ḡ(x). (1.3)

We again use the embedding (1.1) but now choose a non-trivial stopping time. This
choice is motivated by a recent study of Zachary [31]. Since we could not find the second
equivalence in (1.3) in the literature, we present a short proof.
The third case we consider (apart from the Cramér case and the subexponential case) is
when X(t) is a subordinator. Here we need to distinguish between a number of additional
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cases. We assume first that X(t) is a compound Poisson process with rate λ and non-
negative i.i.d. jumps Bi, i ≥ 1. In this case we obtain light-tailed behavior. The following
result is proven in Section 5:

P {Z > x} ∼ E
{

eλe−B1Z
}

e−λx, (1.4)

if and only if E {1/B1} < ∞. The proof of (1.4) is based on another variant of (1.1),
namely the distributional identity Z

d= e−B1Z + 1
λE1, where E1 is a unit exponential

random variable. Multiplying by λ and taking exponents on both sides of this identity
gives eλZ d= eλe−B1ZeE1 . Breiman’s [8] theorem (which deals with the product of heavy-
tailed random variables) now suggests the result of Theorem 1. We make this reasoning
precise exploiting that eE1 has a Pareto tail.
Section 6 considers the case in which the condition E {1/B1} <∞ does not hold. In this
case, the tail asymptotics are of the form Cxµe−λx, if P {B1 < y} ∼ µy as y ↓ 0. When
the compound Poisson assumption is violated (i.e. the Lévy measure associated with the
subordinator has infinite mass) then the asymptotics of Z are considerably lighter. We
illustrate this with a certain class of subordinators, which includes completely right-skewed
α-stable processes, 0 < α < 1. The results in Section 6 are obtained with techniques that
differ from the rest of the paper: We use explicit expressions for the moments E {Zs}
to obtain the behavior of E

{
esZ
}

around its abscissus of convergence (which may be at
∞). We then relate this to the tail behavior of P {Z > x} using Abelian and Tauberian
theorems.
Before we present all these results in Sections 3–6, we introduce some notation and state
some preliminary results in Section 2. In particular, we give some new explicit expressions
for the fractional moments (i.e. the Mellin transform) of Z.
We would like to conclude this introduction by mentioning some related work. More results
on the equation R d= Q+MR leading to light-tail (exponential and Poissonian) behavior
of R can be found in Goldie and Grübel [18]. Other recent results on this equation leading
to Pareto tails can be found in Konstantinides and Mikosch [24] and references therein.
When B1 ≡ 1, equation (1.4) becomes a special case of a result of Rootzén [27]. The result
(1.3) we obtain in the subexponential case is related to recent work on the tail behavior of
various subadditive functionals of random walks and Lévy processes, see Braverman et al.
[7] and Foss et al. [16]. An interesting problem, which is not discussed here, is the lower
tail of Z. This tail is analyzed in [25] in the case that X(t) is a Poisson process. Finally,
we would like to mention recent work of Blanchet and Glynn [6] who consider various
asymptotic estimates for the distribution of Z, under an asymptotic regime which lets the
drift of X(t) become small.

2 Finiteness and moments

In this section we develop some preliminary results. In particular, we give a criterion for
a.s. boundedness of Z, and extend expressions for various integer and non-integer moments
of Z. We first introduce some notation. Let X(t), t ≥ 0, be a Lévy process with Laplace
exponent φ(s) determined by

E
{

e−sX(t)
}

= e−tφ(s). (2.1)
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Using Hölder’s inequality, it is easily checked that the function φ(s) is concave. Moreover,
φ(s) is finite for s ≥ 0 when X(t) has no negative jumps, and for s ≤ 0 when X(t) has no
positive jumps.
In several cases it is useful to consider the integrated tail distribution associated with
−X(1), which is given by Ḡ(x) = min

{
1,
∫∞
x P {−X(1) > u}du

}
. We often use the fol-

lowing infinite product representation of the Gamma function, which is due to Weierstrass:

Γ(s+ 1) = e−γs
∞∏

k=1

e
s
k

k

s+ k
. (2.2)

In this expression, γ is Euler’s constant.

2.1 Finiteness

The following result, which is not used in the sequel but included for completeness, gives
a criterion for a.s. boundedness of Z.

Proposition 2.1. Z <∞ a.s. if and only if X(t) →∞ a.s.

Proof. As in (1.1), write Z d=
∫ 1
0 e−X(s)ds+e−X(1)Z. According to Theorem 2.1 of Goldie

and Maller [19] (in particular Condition (2.3) of that result), Z is finite a.s. if

e−X(n)

∫ n+1

n
e−(X(u)−X(n))du =

∫ n+1

n
e−X(u)du→ 0 a.s.

The condition X(u) → ∞ a.s. is equivalent to the a.s. existence of some uε such that
e−X(u) < ε for u > uε, ε > 0. Thus

∫ n+1
n e−X(u)du ≤ ε if n > uε, implying that X(t) →∞

a.s. is a sufficient condition for a.s. finiteness of Z.
To check the necessity of the condition, suppose that X(t) →∞ a.s. is false. Hence there
exists ε > 0 and a real number A such that

P
{

lim inf
t→∞

X(t) < A
}
> ε.

Let us define the stopping times τ0 = 0, and τn+1 = inf{t > τn + 1 : X(t) < A}. Then, on
{lim inft→∞X(t) < A}, we must have, for all n, τn <∞. Further, on that set, we have,

Z =
∞∑

n=0

∫ τn+1

τn

e−X(t)dt ≥ e−A
∞∑

n=0

∫ 1

0
e−(X(t+τn)−X(τn))dt.

The sum on the right hand side has i.i.d. positive summands and hence the right hand
side is infinite a.s. on {lim inft→∞X(t) < A}. So,

P {Z = ∞} ≥ P
{
Z = ∞; lim inf

t→∞
X(t) < A

}
≥ P

{ ∞∑
n=0

∫ 1

0
e−(X(t+τn)−X(τn))dt = ∞; lim inf

t→∞
X(t) < A

}
= P

{
lim inf
t→∞

X(t) < A
}
> ε.
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2.2 Explicit expressions for moments

We now turn to some expressions for moments; these expressions will be useful later on.
The following recursion, valid as long as s > 0 and φ(s) > 0, can be found in, for example,
Proposition 3.1 of Carmona et al. [9].

E
{
Zs−1

}
=
φ(s)
s

E {Zs} .

However, they require a further condition of E {Zs} to be finite when 0 < s < 1, which
is unnecessary and restrictive in our discussion. So we give a new proof of the result
removing this condition in the following lemma.

Lemma 2.1. If s > 0 and φ(s) > 0, we have

E
{
Zs−1

}
=
φ(s)
s

E {Zs} . (2.3)

The equality is interpreted to mean that both sides can be ∞. If we further assume that
µ = E {X(1)} ∈ (0,∞), then E {Zs} < ∞ for all s ∈ [−1, 0] and all s > 0 for which
φ(s) > 0.

Proof. Define ζ(t) =
∫ t
0 e−X(u)du. Then

ζ(t)s = s

∫ t

0
(ζ(t)− ζ(u))s−1e−X(u)du

= s

∫ t

0
e−sX(u)

(∫ t−u

0
e−(X(v+u)−X(u))dv

)s−1

du.

Note that the two factors in the last integrand are independent and the second factor has
the same distribution as ζ(t−u)s−1 by the strong Markov property. So taking expectations
of both sides we have,

E {ζ(t)s} = s

∫ t

0
e−uφ(s)E

{
ζ(t− u)s−1

}
du = s

∫ t
0 euφ(s)E

{
ζ(u)s−1

}
du

etφ(s)
.

Since φ(s) > 0, both the numerator and denominator on the right hand side go to ∞. So
we use L’Hôpital’s rule to take the limit as t→∞ and obtain

E {Zs} = s lim
t→∞

etφ(s)E
{
ζ(t)s−1

}
φ(s)etφ(s)

=
s

φ(s)
E
{
Zs−1

}
.

Note that in L’Hôpital’s rule, ∞ is allowed as possible limit.
If µ ∈ (0,∞), Proposition 2 of [4] implies that E

{
Z−1

}
is finite, and hence E {Zs} is finite

for −1 ≤ s ≤ 0. Using (2.3), we then have E {Zs} <∞ for all s > 0 with φ(s) > 0.

The recursion (2.3) above can be solved explicitly for integer values of s, yielding

E {Zn} =
n!∏n

k=1 φ(k)
. (2.4)

For non-integer values of s, it is much harder to obtain explicit results. In the remaining
part of the present section, we analyze two classes of Lévy processes for which it is possible
to obtain such expressions. In particular, we focus on subordinators and Lévy processes
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with no positive jumps.

Subordinators
First we consider the class of subordinators as possible choice of X(t). In this case, the
Laplace exponent can be written as

φ(s) = η + ds+
∫ ∞

0
(1− e−st)ν(dt) (2.5)

= η + ds+ s

∫ ∞
0

e−stν(t,∞)dt, (2.6)

with ν a measure satisfying
∫∞
0 min{1, x}ν(dx) < ∞ (cf. chapter III of [2]). d ≥ 0 is the

drift of the subordinator and we allow the killing rate η to be strictly positive as well.

Proposition 2.2. Suppose that X(t) is a subordinator with Laplace exponent φ(s) given
as in (2.5). Suppose further that there exists an α ∈ [0, 1] such that the function φα(s) =
φ(s)/sα is eventually monotone and converges to a limit cα ∈ (0,∞) as s→∞. Then for
any s > −1,

E {Zs} = Γ(s+ 1)1−αc−s
α

∞∏
k=1

φ(s+ k)
φ(k)

(
k

k + s

)α

.

The assumptions of the above proposition seem restrictive, but are satisfied in a large
number of cases. Examples are:

• Any subordinator with positive drift d in which case always φ(s)/s→ d, cf. Theorem
I.2.(ii) in [2]. Monotonicity of the function φ(s)/s follows easily from (2.6).

• A (possibly terminating) compound Poisson process with rate λ and i.i.d. jumps
Bi ≥ 0 with LST β(s). In this case φ(s) = η + λ(1 − β(s)) and the assumption of
the proposition is satisfied with α = 0, since φ(s) is increasing. The case η = 0 and
Bi ≡ 1 has been treated before in [3] and was extended in [20] assuming a certain
lower tail condition on Bi.

• An α-stable subordinator, 0 < α < 1, in which case φ(s) = sα, and hence E {Zs} =
Γ(s+1)1−α. Also sums of independent stable subordinators (yielding φ(s) = sα+sβ)
are admissible.

Proof of Proposition 2.2. Since X is a subordinator, φ(s) > 0 for s > 0 and hence the
product

∏∞
k=1

φα(s+k)
φα(k) is well-defined for s > −1. We now show that it is strictly positive

and finite.
For this, let m be such that φα(s) is monotone for s ≥ m and set Ms =

∏m
k=1

φα(s+k)
φα(k) .

Write
∞∏

k=1

φα(s+ k)
φα(k)

= Ms lim
N→∞

N∏
k=m+1

φα(s+ k)
φα(k)

Assume now that φα(s) is increasing for s ≥ m. Let n be the smallest integer larger than
s. Then

∏N
k=m+1

φα(s+k)
φα(k) increases in N and is bounded above by

N∏
k=m+1

φα(n+ k)
φα(k)

=
n∏

l=1

φα(N + l)
φα(m+ l)

,
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cancelling the common factors when n +m < N , and the right hand side converges to a
finite limit as N →∞. The case in which φα(s) is decreasing for s ≥ m is similar.
After these preliminaries, we now turn to (2.3). That recursion is indeed valid since
φ(s) > 0 for all s > 0. Moreover Proposition 3.3 of [9] states that Z has some exponential
moments; hence all moments are finite.
Thus, we are allowed to apply (2.3) and write, for s > 0,

Γ(s+ 1)αE {Zs} =
s

φα(s)
Γ(s)αE

{
Zs−1

}
. (2.7)

Define now the function, for s > 0,

ψ(s) := Γ(s)αcs−1
α E

{
Zs−1

} ∞∏
k=1

φα(k)
φα(s+ k − 1)

(2.8)

= E
{
Zs−1

}
cs−1
α e−γα(s−1)

∞∏
k=1

e
α(s−1)

k
φ(k)

φ(s+ k − 1)
(2.9)

using Weierstrass’ representation (2.2) of the Gamma function. According to (2.7), ψ
satisfies

ψ(s+ 1) = Γ(s+ 1)αE {Zs} csα lim
N→∞

N∏
k=1

φα(k)
φα(s+ k)

= sΓ(s)αE
{
Zs−1

}
csα lim

N→∞

N∏
k=1

φα(k)
φα(s+ k − 1)

lim
N→∞

1
φα(s+N)

= sΓ(s)αE
{
Zs−1

}
cs−1
α lim

N→∞

N∏
k=1

φα(k)
φα(s+ k − 1)

= sψ(s),

for any s > 0, and ψ(1) = 1. It suffices to prove that ψ(s) = Γ(s). Bohr-Mollerup’s
theorem implies that it is sufficient to prove that log(ψ(s)) is convex. From (2.9) we have
that

logψ(s) = (s−1)(log cα−γα)+log E
{
Zs−1

}
+
∞∑

k=1

(α
k

(s− 1) + log φ(k)− log φ(s+ k − 1)
)
.

The first term is linear and always convex. As in [20] we can conclude that log E
{
Zs−1

}
is convex: Since Z has some exponential moments, the second derivative of log E

{
Zs−1

}
exists and is equal to

E
{
Zs−1

}
E
{
Zs−1(logZ)2

}
− (E

{
Zs−1(logZ)

}
)2

E {Zs−1}2 ,

which is nonnegative by Cauchy-Schwarz’s inequality.
Further, note that φ(s) is concave since from (2.5) its derivative is d+

∫∞
0 te−stν(dt), which

is decreasing. This implies that − log φ(s+k−1) is convex for any k and hence each term
in the infinite sum is convex. Since sums of convex functions are convex as well, we can
conclude that logψ(s) is indeed convex.

Lévy processes with no positive jumps
The second case which allows an explicit moment analysis arises when X(t) has no positive
jumps. We exploit a certain identity for the distribution of Z in terms of the exponential
functional of a certain subordinator, which satisfies the assumptions of Proposition 2.2.
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Proposition 2.3. Suppose that X(t) has no positive jumps with drift d > 0 and diffusion
coefficient σ. Suppose further that µ = E {X(1)} ∈ (0,∞) is finite. Define s̄ = sup{s :
φ(s) > 0} and define α = 1 if X(t) has a Brownian component and 0 otherwise. Then,
for all s < s̄, except the non-negative integers,

E {Zs} = µc−(s+1)
α eγα(s+1)

∞∏
k=1

e−
(s+1)α

k
φ(−k)

φ(s+ 1− k)
k − s− 1

k
, (2.10)

with cα specified by c0 = d, and c1 = σ2/2.

The above formula fails for the non-negative integers as 0
0 appears as a factor. However,

in that case, (2.4) gives the required formula.

Proof of Proposition 2.3. Let H(t) be the ladder height process associated with −X(t).
Then H(t) is a subordinator with Laplace exponent θ(s) = φ(−s)/(−s). Let ZH be the
exponential functional associated with H(t). Let finally M = supt>0(−X(t)) and E1 an
exponentially distributed random variable with mean 1. Note that M is a finite random
variable since X drifts off to ∞. Then the following remarkable identity, due to Bertoin
& Yor [4] holds:

Z/ZH
d= eM/E1, (2.11)

where the random variables on both sides are independent pairs.
Let s > 0. Then we have

E
{
Z−s

}
=

E
{
e−sM

}
Γ(s+ 1)

E
{
Zs

H

} =
µΓ(s+ 1)
θ(s)E

{
Zs

H

} ,
since E

{
esM

}
= µ/θ(s), cf. Equation (VII.3) and Theorem VII.8 in [2]. So it suffices

to compute E {Zs
H} only. For this we use Proposition 2.2. We first check whether the

assumptions are satisfied. Since X(t) has no positive jumps, its exponent defined as in
(2.1) satisfies

φ(s) = ds− σ2

2
s2 −

∫ ∞
0

(esx − 1)ν(dx) = ds− σ2

2
s2 − s

∫ ∞
0

esxν(x,∞)dx (2.12)

with the measure ν satisfying
∫∞
0 (1∧ x)ν(dx) <∞. Moreover, since X(t) →∞ and X(t)

has no positive jumps, we also have
∫∞
0 xν(dx) < d. Then we can write

θ(s) = d̄+
1
2
σ2s+

∫ ∞
0

(1− e−sx)ν(x,∞)dx

with d̄ = d−
∫∞
0 xν(dx) > 0. Thus H is a subordinator killed at rate d̄ with drift σ2/2 and

Lévy measure with density ν(x,∞). So the assumptions of Proposition 2.2 hold (where
φ is replaced by θ) with α and cα as defined. We then obtain from Proposition 2.2, for
s > 0,

E {Zs
H} = Γ(s+ 1)1−αc−s

α

∞∏
k=1

θ(s+ k)
θ(k)

(
k

s+ k

)α

.

Consequently, we get for s > 0,

E
{
Z−s

}
=

µ

θ(s)
Γ(s+ 1)αcsα

∞∏
k=1

θ(k)
θ(s+ k)

(
s+ k

k

)α
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= µΓ(s)αcsα

∞∏
k=1

θ(k)
θ(s+ k − 1)

(
s+ k − 1

k

)α

= µcs−1
α e−γα(s−1)

∞∏
k=1

e
(s−1)α

k
θ(k)

θ(k + s− 1)

using Weierstrass’ representation (2.2) for the Gamma function. This proves Proposi-
tion 2.3 for s < 0, and it is extended to all s < s̄ using the recursion Lemma 2.1.

We can also recover the formula for negative moments from (2.10), also obtained by Bertoin
and Yor [4] in Proposition 2:

E
{
Z−n

}
= µ

∏n−1
k=1(−φ(−k))

(n− 1)!
.

Assume first that the diffusion component of X is absent. Then α = 0 and

E
{
Z−n

}
= µdn−1 lim

N→∞

N∏
k=1

θ(k)
θ(n+ k − 1)

= µ

dn−1
n−1∏
k=1

θ(k)

n−1∏
k=1

lim
N→∞

θ(N + k)
= µ

n−1∏
k=1

(−φ(−k))

(n− 1)!
,

since θ(N) → c0 = d as N → ∞ in absence of diffusion component. Next assume
the diffusion component is present with diffusion coefficient σ. Then, using Weierstrass’
representation (2.2), we have,

E
{
Z−n

}
= µ

(
σ2

2

)n−1

(n− 1)! lim
N→∞

N∏
k=1

φ2(−k)
φ2(−(n+ k − 1))

= µ(n− 1)!
n−1∏
k=1

φ2(−k)
n−1∏
k=1

σ2

2

lim
N→∞

φ2(−N − k)

= µ(n− 1)!
n−1∏
k=1

(−φ2(−k)),

since from (2.12), we have, as s→∞,

φ2(−s) =
φ(−s)
s2

= −d
s
− σ2

2
− 1
s

∫ ∞
0

e−sxν(x,∞)dx→ −σ
2

2
,

and then

E
{
Z−n

}
= µ

∏n−1
k=1(−φ(−k))

(n− 1)!
.

3 The Cramér case and related results

As mentioned in Section 1, tail asymptotics for Z under Cramér’s condition have been
studied by Rivero [26]. The focus of this section is to obtain more appealing expressions
for the prefactor in the tail asymptotics, which are of Pareto type. We first relate the
prefactor to a possibly fractional moment of Z and then, using results from the previous
section, give explicit expressions in terms of φ(·) in the case that X(t) has no negative
jumps.
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Theorem 3.1. Suppose that the distribution of X(1) is non-arithmetic and suppose there
exists a solution κ > 0 to the equation φ(s) = 0, such that φ′(κ) ∈ (−∞, 0). Also assume
that E {X(1)} is positive and finite. Then

P {Z > x} ∼
E
{
Zκ−1

}
−φ′(κ)

x−κ.

The form of the prefactor was also given in [26] under the assumption 0 < κ < 1. Our
proof below allows for all values of κ.

Proof. For completeness we give the full argument. By Hölder’s inequality, φ is concave
and κ > 0 is unique.
As in [26], we apply Theorem 4.1 of [17]. According to that result, it suffices to show that
E {ζ(ε)κ} <∞, where ζ(ε) =

∫ ε
0 e−X(u)du.

Since φ′(κ) is negative and φ(κ) = 0, choose c > 1 such that φ(κ/c) > 0. Hence

E {ζ(ε)κ} ≤ εκE
{

sup
0≤u≤ε

e−κX(u)

}
= εκE

{(
sup

0≤u≤ε
e−

κ
c
X(u)

)c}
≤ εκE

{(
sup

0≤u≤ε
e−(

κ
c
X(u)−uφ(κ

c ))
)c}

≤ εκ
(

c

c− 1

)c

E
{

e−κX(ε)
}

ecεφ(κ
c
) = εκ

(
c

c− 1

)c

ecεφ(κ
c
) <∞.

The last inequality holds by virtue of Doob’s Lp inequality, as {e−
κ
c
X(u)+uφ(κ

c
)} is a mar-

tingale.
Then, using Theorem 4.1 of [17], it easily follows that

P {Z > x} ∼ Cx−κ, (3.1)

where
C =

E {Zκ − (Z − ζ(ε))κ}
−κE

{
e−κX(ε)X(ε)

} =
E {Zκ − (Z − ζ(ε))κ}

−κεφ′(κ)

is independent of ε.
We now continue by simplifying the constant C. Since ζ ′(t) = e−X(t), we can write

−Cφ′(κ) =
1
κε

E {(Z − ζ(0))κ − (Z − ζ(ε))κ}

=
1
ε
E
{∫ ε

0
e−X(u)(Z − ζ(u))κ−1du

}
=

1
ε

∫ ε

0
E
{

e−X(u)(Z − ζ(u))κ−1
}

du. (3.2)

Now observe that

Z − ζ(u) = e−X(u)

∫ ∞
u

e−(X(s)−X(u))ds =: e−X(u)Z̄,

where Z̄ is a copy of Z, which is also independent of e−X(u). Since also E
{
e−κX(u)

}
=

e−uφ(κ) = 1, we have from (3.2),

−Cφ′(κ) =
1
ε

∫ ε

0
E
{

e−κX(u)Z̄κ−1
}

du = E
{
Zκ−1

}
.

9



Observe that, using (3.1), Z has (κ − 1)-st moment finite, if κ ≥ 1. If 0 < κ < 1, since
X(1) has finite and positive mean, we use Proposition 2 of [4] which states that E

{
Z−1

}
is finite and hence E

{
(1/Z)1−κ

}
must be finite, as 0 < 1− κ < 1.

Using the moment formulae from the previous section, the prefactor C in the above the-
orem can be simplified further by using Proposition 2.3 to express E

{
Zκ−1

}
in terms of

the Laplace exponent φ when X(t) has no negative jumps.

Corollary 3.1. Suppose X(t) has no negative jumps with drift d and diffusion coefficient
σ. Let α be 1 if X has a Brownian part and 0 otherwise. Define c0 = d, and c1 = σ2/2.
Assume furthermore that there exists a solution κ > 0 to the equation φ(s) = 0 with
φ′(κ) ∈ (−∞, 0). Then

P {Z > x} ∼ Cx−κ,

with

C =
µc−κ

α eγακ

−φ′(κ)

∞∏
k=1

e−
κα
k
k − κ

k

φ(−k)
φ(κ− k)

,

if κ is not a positive integer, and

C =
1

−φ′(κ)
(κ− 1)!∏κ−1
k=1 φ(k)

otherwise.

4 Subexponential jumps

Throughout this section we set X̄(t) = −X(t). We assume that E
{
X̄(t)

}
= −µt, µ ∈

(0,∞) and that Ḡ(x) = min
{
1,
∫∞
x P

{
X̄(1) > u

}
du
}

is subexponential. The latter con-
dition is equivalent to the requirement that min

{
1,
∫∞
x ν̄(u,∞)du

}
is subexponential, with

ν̄ the Lévy measure of X̄, cf. [13]. For further background on heavy-tailed distributions
we refer to Embrechts et al. [14].
The main result of this section is the following theorem:

Theorem 4.1. If Ḡ(x) is subexponential and if E
{
X̄(1)

}
= −µ, µ ∈ (0,∞), then

P
{

log
∫ ∞

0
eX̄(u)du > x

}
∼ P

{
sup
t>0

X̄(t) > x

}
∼ 1
µ
Ḡ(x). (4.1)

This theorem is proven in a number of steps. We first derive an asymptotic upper bound
for the tail behavior of

logZ = log
∫ ∞

0
eX̄(u)du.

Our proof is inspired by a recent study of Zachary [31], who gave a proof of Veraverbeke’s
[28] theorem without the use of Wiener-Hopf factorization identities. Like in [31], we
define a sequence of stopping times {σn, n ≥ 1} as follows. Choose ε ∈ (0, µ) and let A be
some large constant. Let furthermore σ0 = 0 and

σn = inf{t > σn−1 : X̄(t)− X̄(σn−1) ≥ −(µ− ε)(t− σn−1) +A},

10



with σn = ∞ if σn−1 = ∞. Define further N = max{n : σn < ∞} and let for n ≥ 1,
Yn have the same distribution as the conditional distribution of X̄(σn) − X̄(σn−1) given
the event {σn < ∞}. Finally C = log eA

µ−ε . We can now present the following important
distributional inequality.

Lemma 4.1.

logZ
d
≤ C +

N∑
i=1

[C + Y +
i ].

Proof. Write, as in (1.1),

Z
d=
∫ σ1

0
eX̄(u)du+ eX̄(σ1)Z,

and observe that the first term on the right hand side is less than eA/(µ − ε). Since
eX̄(σ1) = 0 if σ1 = ∞ we obtain the upper bound

Z
d
≤ eC + eX̄(σ1)ZeC + eX̄(σ1)ZI(σ1 <∞).

This implies,

logZ
d
≤ C + [X̄(σ1)+ + log+ Z]I(σ1 <∞)

and since the right hand side is positive, we have

log+ Z
d
≤ C + [X̄(σ1)+ + log+ Z]I(σ1 <∞),

where log+ x = max(0, log x). Iterating this inequality then yields

logZ ≤ log+ Z ≤ C +
∞∑

n=1

[
(X̄(σn)− X̄(σn−1))+ + C

]
I(σn <∞)

implying the assertion of the lemma.

The second step of our analysis is to investigate the tail behavior of Y1. Define q =
P {σ1 <∞}. Note that P {N = n} = qn(1− q), for n ≥ 0. Recall that Y1 depends on ε.

Lemma 4.2. If Ḡ is long-tailed, then

lim sup
x→∞

P {Y1 > x}
Ḡ(x)

≤ 1
q(µ− ε)

.

Proof. Write

P {Y1 > x} =
1
q

∞∑
n=0

P
{
X̄(σ1) > x;n < σ1 ≤ n+ 1

}
≤ 1

q

∞∑
n=0

P
{

sup
n<u≤n+1

X̄(u) > x; X̄(n) < −(µ− ε)n+A

}

≤ 1
q

∞∑
n=0

P
{

sup
0<u≤1

X̄(u) > x+ (µ− ε)n−A

}
.

11



We now invoke the following result which is stated as Lemma 1 in Willekens [29]. For
u > 0 and any u0 ∈ (0, u),

P
{

sup
0<s≤1

X̄(s) > u

}
P
{

inf
0<s≤1

X̄(s) ≥ −u0

}
≤ P

{
X̄(1) > u− u0

}
. (4.2)

Thus, setting H(u0) = 1/P
{
inf0<s<1 X̄(s) ≥ −u0

}
we obtain, for 0 < u0 < x−B,

P {Y1 > x} ≤ H(u0)
q

∞∑
n=0

P
{
X̄(1) > x+ (µ− ε)n−A− u0

}
∼ H(u0)

q(µ− ε)
Ḡ(x).

Since this holds for any u0 as x→∞, and H(u0) → 1 as u0 →∞, we are done.

We are now ready to prove the desired upper bound.

Proposition 4.1. If Ḡ(x) is subexponential, then

lim sup
x→∞

P {logZ > x}
Ḡ(x)

≤ 1
µ
.

Proof. By Lemma 4.2 and long-tailedness of Ḡ(x), Y +
i +C is stochastically dominated by a

subexponential random variable which has tail Ḡ(x)/q(µ−ε). Combining Lemmas 4.1 and
4.2 with a well-known result for geometric random sums with subexponential summands
(see e.g. Corollary A3.21 in [14]), we obtain

lim sup
x→∞

P {logZ > x}
Ḡ(x)

≤ lim sup
x→∞

P
{
C +

∑N
i=1(C + Y +

i ) > x
}

Ḡ(x)

≤ 1
q(µ− ε)

E {N} =
1

µ− ε

1
1− q

.

Now first let A→∞ (so that q → 0) and then ε→ 0.

This concludes the proof of the asymptotic upper bound. We now continue with a lower
bound. The proof of the lower bound relies on the following result, which seems to be new
in the present setting.

Lemma 4.3. Define τd(x) = inf{n ∈ N : X̄(n) ≥ x}. For every y ∈ R,

lim
x→∞

P
{
X̄(τd(x))− x > y | τd(x) <∞

}
= 1

if P {τd(x) <∞} is long-tailed (as function of x).

Proof. The result is obvious for y ≤ 0. So assume y > 0. Observe that

P {τd(x+ y) <∞ | τd(x) <∞} = P {τd(x+ y) = τd(x) | τd(x) <∞}+

P {τd(x) < τd(x+ y) <∞ | τd(x) <∞} .

Since

P {τd(x+ y) = τd(x) | τd(x) <∞} = P
{
X̄(τd(x))− x > y | τd(x) <∞

}
12



and P {τd(x) <∞} is long-tailed, it suffices to show that the second term converges to 0
as x→∞. Thus, write

P {τd(x) < τd(x+ y) <∞ | τd(x) <∞}
= P

{
τd(x+ y) <∞; X̄(τd(x)) < x+ y | τd(x) <∞

}
=

∫ y−

0
P{τd(x+ y) <∞ | X̄(τd(x))− x = u;

τd(x) <∞}P
{
X̄(τd(x))− x ∈ du | τd(x) <∞

}
=

∫ y−

0
P {τd(y − u) <∞}P

{
X̄(τd(x))− x ∈ du | τd(x) <∞

}
≤

∫ y−

0
P {τd(0) <∞}P

{
X̄(τd(x))− x ∈ du | τd(x) <∞

}
= P {τd(0) <∞}P

{
X̄(τd(x))− x < y | τd(x) <∞

}
= P {τd(0) <∞}P {τd(x) < τd(x+ y) <∞ | τd(x) <∞}+

P {τd(0) <∞}P {τd(x+ y) = ∞ | τd(x) <∞} .

Hence,

P {τd(x) < τd(x+ y) <∞ | τd(x) <∞} ≤ P {τd(0) <∞}
P {τd(0) = ∞}

P {τd(x+ y) = ∞ | τd(x) <∞} .

Observe now that P {τd(0) <∞} ∈ (0, 1) and that P {τd(x+ y) = ∞ | τd(x) <∞} → 0
since P {τd(x) <∞} is long-tailed, which completes the proof.

The above Lemma states that the overshoot X̄(τd(x))−x converges to ∞ as x→∞. This
is exactly what is needed in the proof of the lower bound:

Proposition 4.2. Let Ḡ(x) and P {τd(x) <∞} be long-tailed. Then

lim inf
x→∞

P {logZ > x}
Ḡ(x)

≥ 1
µ
.

It is not known to us whether long-tailedness of Ḡ(x) implies long-tailedness of P {τd(x) <∞},
but both conditions are satisfied if Ḡ(x) is subexponential, cf. Veraverbeke’s [28] theorem.

Proof. Let Ẑ be an independent copy of Z, independent of X̄(t), t ≥ 0. Write

P {logZ > x} ≥ P {logZ > x; τd(x) <∞}

≥ P

{
log
∫ ∞

τd(x)
eX̄(t)dt > x; τd(x) <∞

}
.

Using the strong Markov property, this is equal to

P
{
X̄(τd(x)) + log Ẑ > x; τd(x) <∞

}
∼ P {τd(x) <∞} ,

using the previous Lemma, since P {τd(x) <∞} is long-tailed. Finally, since P {τd(x) <∞} =
P
{
supn∈N X̄(n) ≥ x

}
. We conclude, using Veraverbeke’s Theorem (see e.g. Theorem 1(i)

of [31]),

lim inf
x→∞

P {logZ > x}
Ḡ(x)

≥ lim inf
x→∞

P
{
supn≥1 X̄(n) > x

}
Ḡ(x)

=
1
µ
.

proving our assertion.
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The above results imply that P {logZ > x} ∼ (1/µ)Ḡ(x). To conclude the proof of Theo-
rem 4.1, we need to show the appealing asymptotic form P {logZ > x} ∼ P{supt>0 X̄(t) >
x}. For this, it suffices to show that

P
{

sup
t>0

X̄(t) > x

}
∼ P

{
sup
n≥1

X̄(n) > x

}
, (4.3)

since, due to Veraverbeke’s theorem, the latter supremum is tail-equivalent to (1/µ)Ḡ(x).
Surprisingly enough, we could not find this result in the literature. Asmussen [1, Corol-
lary 2.5] only proves a version of Veraverbeke’s theorem for continuous time under the
assumption that the jump process associated to the Lévy process has bounded variation.
A recent paper [22] relates the tail of the supremum to that of the ladder height process.
The following result settles the issue in complete generality, since subexponentiality of Ḡ
implies subexponentiality of supn≥1 X̄(n), using Veraverbeke’s [28] theorem. For a more
general discussion, see the forthcoming paper [15].

Proposition 4.3. The following are equivalent:

1. supt>0 X̄(t) is long-tailed,

2. supn≥1 X̄(n) is long-tailed.

Moreover, both imply (4.3).

Proof. We use an argument similar to that in Willekens [29]. Set τ(x) = inf{t : X̄(t) ≥ x}.
Note that, for any x0 > 0,

P
{

sup
t>0

X̄(t) > x

}
≤ P

{
sup
n≥1

X̄(n) > x− x0

}
+P

{
sup
t>0

X̄(t) > x; sup
n≥1

X̄(n) ≤ x− x0

}
.

The second term on the right hand side is clearly smaller than

P
{
τ(x) <∞; inf

s∈[τ(x),τ(x)+1]
X̄(s)− X̄(τ(x)) ≤ −x0

}
= P {τ(x) <∞}P

{
inf

0<s<1
X̄(s) ≤ −x0

}
,

where we used the strong Markov property in the last step. Combining the two formulas
and noting that supt>0 X̄(t) ≥ supn≥1 X̄(n) we obtain for any x0 > 0,

P
{

sup
t>0

X̄(t) > x− x0

}
≥ P

{
sup
n≥1

X̄(n) > x− x0

}
≥ P

{
sup
t>0

X̄(t) > x

}
P
{

inf
0<s<1

X̄(s) > −x0

}
.

With this result, it is easy to see that both 1. and 2. imply (4.3) and hence 1. and 2.
imply each other.

We would like to remark that the equivalence (4.3) does not require that the mean of X̄(1)
exists. Thus the explicit results of [10] can be combined with Proposition 4.3 to obtain
tail asymptotics for supt>0 X̄(t) when E

{
X̄(1)

}
is not finite.
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5 A compound Poisson process

In this section we assume that X(t) is a type of subordinator, in particular, a compound
Poisson process with positive jumps, and prove the following result:

Theorem 5.1. Assume that X(t) =
∑N(t)

i=1 Bi, where N(t) is a Poisson process with rate
λ and {Bi, i ≥ 1} is an i.i.d. sequence of non-negative random variables. Then

P {Z > x} ∼ E
{

eλe−B1Z
}

e−λx (5.1)

if and only if E
{

eλe−B1Z
}
<∞, which is the case if and only if E {1/B1} <∞.

Various cases in which the assumptions of this theorem fail are treated in the next sec-
tion. Under certain additional assumptions, the prefactor in the above theorem may be
expressed in terms of q-hypergeometric functions using techniques as in [20]; we omit the
details.
To prove Theorem 5.1, we consider the following set-up: we use the random equation
R

d= Q+MR. If we use the stopping time τ̄ , which is the first jump time of the compound
Poisson process X(t), then the above random equation becomes

λZ
d= λτ̄ + e−B1(λZ), (5.2)

where Z on the right hand side is independent of τ̄ and B1. Thus we may assume that
P {0 < M < 1} = 1 and that Q has an exponential distribution such that the tail of eQ

has unit Pareto distribution.
We aim to find conditions under which the following analogue of Breiman’s Theorem holds:

P {R > x} ∼ E
{
eMR

}
P {Q > x} . (5.3)

Breiman’s [8] theorem states that, if U is regularly varying of index −ν, ν > 0, and V

is independent of U such that E
{
V ν+δ

}
< ∞ for some δ > 0, then P {UV > x} ∼

E {V ν}P {U > x}. As mentioned in Section 1, this result becomes relevant after writing
eR d= eQeMR. Fortunately, the ‘extra’ δ is not necessary when U has a Pareto distribu-
tion. We can even get a necessary and sufficient condition for the equivalence. This is
summarized in the next Lemma:

Lemma 5.1. Let U be independent of the non-negative random variable V with P {U > x} =
x−α, x ≥ 1, where α > 0. Then P {UV > x} = O(x−α) if and only if E {V α} < ∞, in
which case

P {UV > x} ∼ E {V α}x−α.

Proof. Clearly, we have,

P {UV > x} =
∫ ∞

0
P
{
U >

x

y

}
dP {V ≤ y} =

1
xα

∫ x

0
yαdP {V ≤ y}+ P {V > x} .

Since, the first term on the right side is increasing and positive, xαP {UV > x} is bounded
if and only if E {V α} is finite and xαP {V > x} is bounded. This proves the “only if” part.
Now if E {V α} is finite, then xαP {V ≥ x} → 0 and hence P {UV > x} ∼ E {V α}x−α.
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We apply this to our random equation (5.2). The first step is to derive a criterion for
E
{
eMR

}
to be finite. This is provided by the following proposition.

Proposition 5.1. Assume P {M = 1} = 0. The following are equivalent:

1. E
{
eMR

}
<∞,

2. E
{
eMQ

}
<∞.

Proof. That 1. implies 2. is trivial. Assume now that E
{
eMQ

}
<∞. Let Mn, n ≥ 0 and

Qn, n ≥ 0 be mutually independent i.i.d. copies of M and Q respectively. Then we can
write

MR
d=
∞∑

k=1

Qk

k∏
i=1

Mi.

Further, since P {M = 1} < 1, there exists an η ∈ (0, 1) such that P {M > η} ∈ (0, 1) and
E
{
eMQ;M > η

}
< 1. Define the sequence of random times τ̄k, k ≥ 0, as follows. Let

τ̄0 = 0, and, for k ≥ 1,

τ̄k = inf{n > τ̄k−1 : Mn ≤ η}.

Then, write

MR
d=
∞∑

k=1

Qk

k∏
i=1

Mi =
∞∑

k=1

τ̄k∑
n=τ̄k−1+1

Qn

n∏
i=1

Mi ≤
∞∑

k=1

ηk−1
τ̄k∑

n=τ̄k−1+1

QnMn.

Set Ck =
∑τ̄k

n=τ̄k−1+1QnMn. The sequence {Ck, k ≥ 1} is i.i.d. Note that

E
{
eCk
}

=
∞∑

m=1

E
{
eMQ;M > η

}m−1 E
{
eMQ;M ≤ η

}
=

E
{
eMQ;M ≤ η

}
1− E {eMQ;M > η}

<∞.

Since E
{
eC1
}
< ∞, there exists a finite constant K such that P {C1 > x} ≤ Ke−x.

Now, define a random variable C ′ such that P {C ′ > x} = min{1,Ke−x}. Note that, for
s ∈ (0, 1), E

{
esC′

}
= Ks

1−s . Since we have the stochastic ordening C1 ≤ C ′, and x → esx

is a convex function for any s > 0, we have E
{
esC1

}
≤ Ks

1−s . Thus, it follows that

E
{
eMR

}
≤ E

{
e
P∞

k=1 ηk−1Ck

}
=
∞∏

k=1

E
{

eηk−1Ck

}
.

Since E
{

eηk−1Ck

}
≤ Kηk−1

1−ηk−1 , we obtain for k ≥ 2,

log E
{
eMR

}
≤ log E

{
eC1
}

+
∞∑

k=1

log

(
Kηk

1− ηk

)

= log E
{
eC1
}

+
∞∑

k=1

[ηk logK − log(1− ηk)].

This sum clearly converges.

If Q has an exponential distribution with rate 1, we have
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Lemma 5.2. Assume P {Q > x} = e−x and independent of M . Then E
{
eMQ

}
< ∞ if

and only if E {1/(1−M)} <∞ if and only if E {1/(− logM)} <∞.

Proof. Write

E
{
eMQ

}
=
∫ 1

0

1
1−m

dP {M ≤ m} .

The second equivalence is plain from the asymptotic equivalence − log x ∼ 1 − x as x →
1.

Theorem 5.1 now follows by combining the results in this section:

Proof of Theorem 5.1. We use the above results with R = λZ, Q = λτ̄ and M = e−B1 .
Exponentiating both sides of (5.2), we have

eλZ d= eλτ̄eλe−B1Z .

Since τ̄ is exponential with rate λ, eλτ̄ has a unit Pareto tail. So, using Lemma 5.1, we
have the required result if and only if E

{
eλe−B1Z

}
<∞. And, finally, since τ̄ and B1 are

independent, using Proposition 5.1 and Lemma 5.2, E
{

eλe−B1Z
}
< ∞ holds if and only

if E {1/B1} <∞.

6 Other subordinators

The previous section showed that the tail behavior of Z is exponential if X(t) is a com-
pound Poisson process with positive jumps Bi such that E {1/B1} <∞. The goal of the
present section is to consider what may happen when these assumptions do not hold.
Consider the case E {1/B1} = ∞. This is not an unreasonable assumption, since it is
satisfied when B1 is exponentially distributed with rate b. This is the same as Example B
of Carmona et al. [9] with a = λ, b = b and c = 0. Hence Z has Gamma distribution with
scale parameter λ and shape parameter b+ 1 and we have

P {Z > x} ∼ λb

Γ(b+ 1)
xbe−λx. (6.1)

This example and the result in the previous section lead us to conjecture that the tail
behavior of Z may be influenced by the left tail behavior of B1. The following Theorem
confirms this.

Theorem 6.1. Let X(t) be a compound Poisson process with rate λ and positive jumps
{Bi, i ≥ 1} with Laplace-Stieltjes transform β. Suppose that P {B1 < x} ∼ bx as x ↓ 0.
Suppose furthermore that

K =
∞∏

k=1

(1− β(k))eb/k ∈ (0,∞).

Then

P {Z > x} ∼ 1
Ke−bγ

(λx)be−λx

as x→∞, where γ is Eulers constant.
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A sufficient condition for K ∈ (0,∞) is that P {B < x} − bx = o(x1+δ) for some δ > 0.
As expected from (6.1), the prefactor Ke−bγ indeed reduces to Γ(b+1) by (2.2), if β(s) =
b/(b+ s).
The proof of the above proposition is based on an Abelian-Tauberian approach. In par-
ticular, we first determine the rate of growth of E {Zn} /n! as n → ∞, then apply an
Abelian theorem to obtain the behavior of the moment generating function around s = λ

and finally relate this to the tail behavior of Z using a Tauberian argument.
This type of argument seems perfectly fit for the present problem, since explicit expressions
for all moments are available, cf. Section 2. Furthermore, a probabilistic technique based
on, for example, a change of measure argument seems far from obvious.

Proof of Theorem 6.1. Note that φ(s) = λ(1 − β(s)). Using the Abelian theorem for
Laplace-Stieltjes transforms, we get β(s) ∼ b/s as s→∞. Consequently, we have log(1−
β(s)) ∼ −b/s as s→∞. Using (2.4), we also have

E {Zn} =
n!

λn
∏n

k=1
φ(k)

λ

=
n!

λn
∏n

k=1(1− β(k))
=:

n!
λnp(n)

.

Now observe

log p(n) =
n∑

k=1

log(1− β(k))

= −b log n+
n∑

k=1

[log(1− β(k)) + b/k]− bγ + o(1)

= −b log n+ logK − bγ + o(1)

as n→∞. This implies

p(n) ∼ Ke−bγn−b(1 + o(1)).

Consequently, using the direct half of Karamata’s theorem (Proposition 1.5.8 in [5], which
also applies to sums),

n∑
k=1

1
p(k)

∼ 1
b+ 1

1
Ke−bγ

nb+1.

Now use Corollary 1.7.3 of [5] to conclude that

E
{
esZ
}

=
∞∑

n=0

( s
λ)n

p(n)
∼ Γ(b+ 1)

Ke−bγ

(
1− s

λ

)−(b+1)
, as s ↑ λ. (6.2)

Define ψ(x) = eλxP {Z > x}. From (6.2), the Laplace transform of ψ is given by

1
λ− s

E
{

e(λ−s)Z − 1
}
∼ λb Γ(b+ 1)

Ke−bγ
s−(b+1), as s ↓ 0.

Hence, the Laplace-Stieltjes transform of ψ(x) behaves like λb Γ(b+1)
Ke−bγ s

−b as s ↓ 0. Again,
from Carmona et al. [9], the density k of Z exists everywhere and satisfies the differential
equation

k(x) = λ

∫ ∞
x

k(u)P {B1 > log(u/x)}du.
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This implies that k(x) ≤ λP {Z > x}. Thus, ψ′(x) = eλx(λP {Z > x}−k(x)) ≥ 0, implying
that ψ(x) is a monotone function. This implies, by Karamata’s Tauberian theorem (see
e.g. [5], Theorem 1.7.1),

ψ(x) ∼ (λx)b

Ke−bγ
as x→∞.

We finally treat a class of subordinators which are not compound Poisson processes. In
particular, we consider subordinators which have Laplace exponents which are regularly
varying at infinity: φ(s) = sαL(s), where 0 < α < 1 and L is a slowly varying function. A
special case of this class are the completely right-skewed stable Lévy processes. Since in
particular φ(s) →∞, the Levy measure of X(t) has infinite mass, and thus X(t) leaves 0
immediately. Thus, one can expect tail asymptotics for P {Z > x} which are considerably
lighter than exponential. This is confirmed by the following Theorem, which provides
logarithmic (rather than precise) asymptotics.

Theorem 6.2. Suppose X(t) is a subordinator with Laplace exponent φ(s) = sαL(s), 0 <
α < 1, with L(·) slowly varying at infinity. Then, as x→∞,

− log P {Z > x} ∼ (1− α)g←(x), (6.3)

with g←(x) the right-inverse of g(x) = x/φ(x).

Proof. The first step is again to obtain the asymptotic behavior of E {Zn} /n!. Using the
representation of φ(s) and (2.4) we can write

E {Zn} = (n!)1−α/
n∏

k=1

L(k).

Using Karamata’s representation theorem for slowly varying functions, we can write
L(x) = c(x) exp{

∫ x
1 (h(u)/u)du} with c(x) → c > 0, and h(u) → 0. Hence, we obtain,

n∏
k=1

L(k) =

(
n∏

k=1

c(k)

)
e
Pn

k=1

R k
1

h(u)
u

du =

(
n∏

k=1

c(k)

)
e
R n
1

Pn
k=1

h(u)
u

I(u<k)du

=

(
n∏

k=1

c(k)

)
en
R n
1

h(u)
u

due−
R n
1

h(u)[u]
u

du

= (L(n))n

(
n∏

k=1

c(k)
c(n)

)
e−
R n
1

h(u)[u]
u

du

with [u] the integer part of u. Using Stirling’s formula, we have,

E {Zn}
n!

=
(2π)−

α
2 enαn−α(n+ 1

2
)

(L(n))n
∏n

k=1

(
c(k)
c(n)

)
e−
R n
1 h(u)

[u]
u

du
(1 + o(1)),

and, since h(u) → 0, we can conclude that

log
E {Zn}
n!

= −n(α log n+ logL(n)− α) + o(n) = −n(log φ(n)− α) + o(n). (6.4)
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We are now ready to obtain the behavior of log E
{
esZ
}

as s→∞. For, any m ≥ 0,

E
{
esZ
}

=
∞∑

n=0

snE {Zn} /n! ≥ smE {Zm} /m!

Now take m = [φ←(s)]. Then it follows from (6.4), using a straightforward computation,
that

lim inf
s→∞

log E
{
esZ
}

φ←(s)
≥ α+ lim

s→∞
log

s

φ([φ←(s)])
= α.

We need to prove a corresponding upper bound to be able to conclude that

log E
{
esZ
}
∼ αφ←(s). (6.5)

For this, write

E
{
esZ
}

=
k−1∑
n=0

snE {Zn} /n! +
∞∑

n=k

snE {Zn} /n!, (6.6)

for k = [es]. Note first that, from (6.4), given ε > 0, for all large enough n, we have

E {Zn}
n!

≤ φ(n)−ne(α+ε)n. (6.7)

Then, given ε > 0, for all large enough s, and hence all large enough k, the second term
on the right hand side of (6.6) is bounded above by

∞∑
n=k

snφ(n)−ne(α+ε)n =
e(α+ε)ksk

φ(k)k

∞∑
n=k

φ(k)k

φ(n)n
e(α+ε)(n−k)s(n−k)

≤

(
e(α+ε)s

φ(k)

)k ∞∑
n=0

(
eα+εs

φ(k)

)n

,

since, X(t) being subordinator, φ is increasing. Since φ is regularly varying of index α > 0,
we have s

φ(k) ≤
log(k+1)

φ(k) → 0. Hence the second term on the right hand side of (6.6) is
bounded in s.
Next we consider the first term on the right hand side of (6.6). We split this term into two
further terms with the first having finitely many terms. Fix an arbitrary ε > 0. Choose,
using (6.4), kε such that for all n ≥ kε, we have

E {Zn}
n!

≤ φ(n)−ne(α+ε)n.

Then, we have, for any fixed K > kε, (K may depend on ε, but not on s)

k−1∑
n=0

snE {Zn}
n!

≤
K−1∑
n=0

snE {Zn}
n!

+
k−1∑
n=K

(
seα+ε

φ(n)

)n

≤ sup
n<K

E {Zn}
n!

sK + es sup
x≥K

(
seα+ε

φ(x)

)x
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and hence, as φ← is regularly varying of index 1/α > 1,

log
k−1∑
n=0

snE {Zn}
n!

≤ o(φ←(s)) + sup
x≥K

x(log s+ α+ ε− log φ(x)). (6.8)

Define the functions Fs(x) = x(log s + α + ε − log φ(x)) for each s > 0. Observe that
F ′s(x) = log s + α + ε −

(
log φ(x) + xφ′(x)

φ(x)

)
and F ′′s (x) = −

[
2φ′(x)

φ(x) + x
(

φ′′(x)
φ(x) −

φ′(x)2

φ(x)2

)]
.

Since φ is regularly varying with index α, 0 < α < 1, it must be of the form (up to a
constant term) ∫ ∞

0
(1− e−st)ν(dt)

and hence φ′(s) =
∫∞
0 te−stν(dt) is monotone decreasing in s and thus, using the monotone

density theorem, we have xφ′(x)/φ(x) → α as x → ∞. Furthermore, since φ′′(s) =
−
∫∞
0 t2e−stν(dt) is increasing, we also have xφ′′(x)/φ′(x) → α−1 and hence F ′′s (x) ∼ −α

x .
So F ′′s is eventually negative and hence Fs is eventually concave. For the above given ε > 0,
choose K > kε, such that

1. Fs is concave on [K,∞),

2. for x > K, we have
∣∣∣xφ′(x)

φ(x) − α
∣∣∣ < ε

2 .

Since F ′′s is independent of s for all x, we can choose the above K independent of s (but
depending on ε). Observe that F ′s(x) goes to −∞ as x→∞. Also, for large enough s, we
have F ′s(K) = log s + α + ε −

(
log φ(K) + Kφ′(K)

φ(K)

)
> 0. So there exists x(s) > K, such

that F ′s(x(s)) = 0. Since Fs is concave on [K,∞), x(s) will be the unique maximizer on
that interval. Then, from (6.8), and since F ′s(x(s)) = 0, we have

log
k−1∑
n=0

snE {Zn}
n!

≤ o(φ←(s)) + x(s)
x(s)φ′(x(s))
φ(x(s))

≤ o(φ←(s)) + x(s)(α+ ε/2)

since x(s) > K. Furthermore, we have, from the defining equation of x(s), that

log φ(x(s)) = log s+ α+ ε− x(s)φ′(x(s))
φ(x(s))

< log s+
3
2
ε

and hence x(s) ≤ φ←(se1.5ε). So

log
k−1∑
n=0

snE {Zn}
n!

≤ o(φ←(s)) + φ←(se1.5ε)(α+ ε/2)

and hence

lim sup
s→∞

1
φ←(s)

log
k−1∑
n=0

snE {Zn}
n!

≤ e1.5ε/α(α+ ε/2).

Letting ε→ 0, we have,

lim sup
s→∞

1
φ←(s)

log
k−1∑
n=0

snE {Zn}
n!

≤ α.

Combining with the fact that the second term of (6.6) is bounded, we have (6.5).
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We are now in a position to apply Kasahara’s Tauberian theorem, cf. Theorem 4.7.12 in
[5]. Set g(s) = s/φ(s). Then (6.5) implies

log P {Z > x} ∼ (1− α)g←(x)

which completes the proof.
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als of Lévy processes. Ann. Appl. Probab., 12(1):69–100, 2002. ISSN 1050-5164.

[8] L. Breiman. On some limit theorems similar to the arc-sin law. Teor. Verojatnost. i Primenen.,
10:351–360, 1965.

[9] P. Carmona, F. Petit, and M. Yor. On the distribution and asymptotic results for exponen-
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