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Abstract

For the discrete D/G/1 queue, the stationary waiting time can be expressed in terms

of infinite series that follow from Spitzer’s identity. These series involve convolutions of

the probability distribution of a discrete random variable, which makes them suitable for

computation. For practical purposes, though, the infinite series should be truncated. We

therefore seek for some means to characterize the speed at which these series converge. Such

a characterization is related to the notion of relaxation time in queueing theory, a generic

term for the time required for a transient system to reach its stationary regime.

We derive relaxation time asymptotics for the discrete D/G/1 queue in a purely analytical

way, mostly relying on the saddle point method. We present a simple and useful approximate

upper bound which may serve as a stopping criterium for the number of convolutions to

calculate in case the load on the system is not very high. A sharpening of this upper bound,

which involves the complementary error function, is then developed and this covers both the

cases of low and high loads.
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1 Introduction and motivation

The discrete D/G/1 queue refers to a single server queue at which customers arrive with discrete

and deterministic interarrival times. We assume that customers are served on a first-come-first-

served basis and that their service requirements are i.i.d. according to a discrete random variable

A. The waiting time of the nth customer, denoted by Wn, then satisfies (see e.g. [17])

Wn+1 = (Wn + An − s)+, n = 0, 1, . . . . (1)

Here, x+ = max{0, x}, An denotes the service time of customer n and the integer s denotes the

fixed interarrival time between two consecutive customers. When EA < s, the stationary waiting

time denoted by W , W = limn→∞ Wn, exists.

To derive the probability generating function (pgf) of W , denoted by W (z), it is common

practice to apply an explicit factorization that requires the s roots of a characteristic equation on

and inside the unit circle (see e.g [6, 17]). We denote by A(z) the pgf of A, which is assumed to

be an analytic function in a disk |z| ≤ 1 + ε with ε > 0. We further assume throughout (without

loss of generality) that A(0) = P(A = 0) > 0. The stationary waiting time in the discrete D/G/1

queue as defined by (1) is then fully specified by its pgf

W (z) =
s − EA

zs − A(z)
(z − 1)

s−1
∏

k=1

z − zk

1 − zk
, (2)

where z0 = 1, z1, . . . , zs−1 are the s roots of zs = A(z) in |z| ≤ 1.

For the continuous G/G/1 queue, such an explicit factorization is often not available. Obtaining

waiting time characteristics then involves the evaluation of either a contour integral or an infinite

series of convolutions of the probability distributions of continuous random variables, the latter

approach being based on Spitzer’s identity (see [18]). Several authors [14, 16, 19] have suggested

to approximate the G/G/1 queue by its discrete D/G/1 counterpart. This can be done as follows.

Denote by Bn the service time of customer n and by Cn the interarrival time between customer n

and n + 1. Choose Bn and Cn i.i.d. according to discrete random variable B and C, respectively.

Moreover, assume C ≤ s. Then Wn satisfies

Wn+1 = (Wn + Bn − Cn)+ = (Wn + An − s)+, n = 0, 1, . . . , (3)

where An assumed i.i.d. as A = B − C + s, and (2) gives the pgf of the stationary waiting time.
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This solution still requires the determination of the roots, which in most cases should not give

problems (see [7]). Evidently, (2) provides no information on the transient waiting time.

We now show that Spitzer’s identity, for the continuous G/G/1 queue often leading to unwieldy

expressions, results for the discrete D/G/1 queue in manageable expressions for both transient

and stationary waiting time characteristics.

Using (3), the distribution of Wn+1 follows from the convolution of the distribution of Wn and

that of A − s, corrected for the maximum operator. Again, it is favorable to work with discrete

random variables, since discrete convolutions are easy to compute (see e.g. [3]). The idea of

iterating (3) to obtain transient waiting time characteristics can be made more rigorous using

random walk theory. When we assume that the first customer (referred to by subscript 0) arrives

at an empty queue (W0 = 0), the joint probability generating function of all Wn is given by

Spitzer’s identity. That is, for 0 ≤ t < 1, |z| ≤ 1,

∞
∑

n=0

tnEzWn = exp
{

∞
∑

l=1

tll−1
EzS+

l

}

, (4)

with Sl the lth partial sum of random variables i.i.d. as A − s. It follows from manipulating (4)

that the mean of Wn is given by

EWn =

n
∑

l=1

l−1
ES+

l

=
n

∑

l=1

l−1
∞
∑

i=ls

(i − ls)P(A∗l = i), (5)

where A∗l denotes the l-fold convolution of A, i.e. A∗l =
∑l

i=1 Ai with Ai i.i.d. as A.

From (4) the stationary waiting time distribution can be obtained as well. When we write (4)

as

(1 − t)

∞
∑

n=0

tnEzWn = exp
{

∞
∑

l=1

tll−1(EzS+

l − 1)
}

, (6)

it follows from Abel’s theorem (see [18], p. 207, [8], p. 650), that W (z) is given by

W (z) = lim
t↑1

(1 − t)

∞
∑

n=0

tnEzWn = exp
{

∞
∑

l=1

l−1(EzS+

l − 1)
}

= exp
{

−
∞
∑

l=1

l−1
P(Sl > 0)

}

exp
{

∞
∑

l=1

l−1
E(zSl1{Sl > 0})

}

, (7)

where 1{x} equals 1 if x true and 0 otherwise. Introducing the short-hand notation Czj [f(z)] for
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the coefficient of zj in f(z), and wj for P(W = j), it is readily seen that the stationary waiting

time distribution is given by

wj

w0
= Czj

[

exp
{

∞
∑

l=1

l−1
∞
∑

i=ls

P(A∗l = i)zi−ls
}]

, j = 0, 1, . . . , (8)

where

w0 = exp
{

−
∞
∑

l=1

l−1
∞
∑

i=ls

P(A∗l = i)
}

, (9)

and A∗l denotes the l-fold convolution of A.

Expressions (5), (8) and (9) provide explicit representations of waiting time characteristics

solely in terms of infinite series of convolutions of A. Calculating these characteristics is a matter

of brute force and the applicability indisputably depends on the ability of computing the discrete

convolutions involved. An easy way would be to determine the distribution of A∗l from the

distribution of A∗(l−1). As suggested in [3], it is better, though, to apply a fast Fourier transform

algorithm. In that way, given the pgf A(z), the probability distribution of the l-fold convolution

can be obtained directly from its pgf Al(z). In [3] it is shown that the computational speed gained

is considerable. For a description of the fast Fourier transform approach to invert a pgf we refer

to [2].

1.1 Relaxation time

Irrespective of the method used to compute the convolutions, the issue of truncating the infinite

series should be addressed. It is therefore that we seek for some means to characterize the speed

at which these series converge. Such a characterization is known in the queueing literature as

relaxation time, a generic term for time required for transient system characteristics to tend to

their steady-state values. When the relaxation time would be defined in terms of the mean waiting

time, it could be expressed as the speed at which the difference

EW − EWL−1 =

∞
∑

l=L

l−1
ES+

l

=

∞
∑

l=L

l−1
∞
∑

i=ls

(i − ls)P(A∗l = i) (10)

tends to zero for increasing values of L.

Another common way to define the relaxation time is in terms of the probability that a customer

has zero waiting time (see e.g. [5]), since determining w0 is often the bottleneck. For the discrete
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D/G/1 queue this can be seen as follows. Denote by wj(L) the estimated value of wj that results

from truncating the series over l at l = L− 1 in (8) and (9), respectively. The relative error made

in estimating w0 then equals

w0(L) − w0

w0
= exp

{

∞
∑

l=L

l−1
∞
∑

i=ls

P(A∗l = i)
}

− 1

≈
∞
∑

l=L

l−1
∞
∑

i=ls

P(A∗l = i), (11)

where the far right-hand side of (11) sums all truncation errors
∑∞

l=L l−1
P(A∗l = i) that appear

in (8) when estimating wj by wj(L). Hence, when the left-hand side of (11) is small enough, the

accuracy of the estimated values of all wj seems guaranteed.

A third way to define the relaxation time is in terms of the variance of the waiting time, whose

stationary value σ2
W follows from (7) by σ2

W = W ′′(1) + W ′(1) − W ′(1)2 yielding

σ2
W =

∞
∑

l=1

l−1
∞
∑

i=ls

(i − ls)2P(A∗l = i). (12)

When we denote by σ2
W (L) the series (12) over l truncated at l = L − 1, the relaxation time can

be expressed as the speed at which the difference

σ2
W − σ2

W (L) =

∞
∑

l=L

l−1
∞
∑

i=ls

(i − ls)2P(A∗l = i), (13)

tends to zero.

In order to extract information from the above measures on the relaxation time, we need insight

in the behavior as L → ∞ of the tail series

Rm(L) :=
∞
∑

l=L

Sm(l), m = 0, 1, 2, (14)

where

Sm(l) = l−1
∞
∑

i=ls

(i − ls)m
P(A∗l = i). (15)

Formally, the relaxation time T (Rm; ε) for Rm at level ε > 0 can be defined as

T (Rm; ε) = min{L | Rm(L) < ε}, (16)
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although this definition is not very practical since it requires computation of all terms in the series

defining Rm(L). In this paper we present easily computable asymptotic approximations of Rm(L)

and sharp upper bounds on these. A possibility is then to replace the Rm(L) in the definition of

T (Rm; ε) in (16) by these upper bounds.

For the continuous G/G/1 queue, the relaxation time in terms of the virtual waiting time

has been studied extensively by Cohen [8], p. 600, based on analytic continuation of a Laplace

transform and the saddle point method. An overview and continuation of this work is given in

[5]. In terms of moments of the actual waiting time, expressions for the relaxation time using a

change of measure or large deviations technique are obtained in [11, 12] (also see [4], p. 355).

The main contribution in this paper is that we derive relaxation time asymptotics for the

discrete D/G/1 queue in a concise and purely analytical way. We start from a simple asymptotic

approximation of the P(A∗l = i) that appear in (15) using the saddle point method. From this

result, we derive asymptotic expressions for Sm(l) and Rm(L), where the latter will allow us to

calculate a good approximation of T (Rm; ε) in (16). As a first result, we present an asymptotic

expression for Rm(L) based on this asymptotic approximation. This expression admits a simple

and useful upper bound which may serve as a stopping criterium for the number of convolutions

L to calculate in case the load on the system is not too high. A sharpening of this upper bound,

which involves the complementary error function, is then developed and this covers both the cases

of low and high loads.

In Sec. 2 we present the main results, that are proved in Secs. 3, 4 and 5. Examples are

provided in Sec. 6.

2 Results

Denote P(A = n) by an. Let z∞ be the radius of convergence of the series
∑∞

n=0 anzn, and let

LA = lim
z↑z∞

zA′(z)

A(z)
. (17)

In Appendix A we show that the limit in (17) always exists as a finite or infinite number, and that

A′(1) < LA unless A is a monomial. In Sec. 3 we obtain an asymptotic approximation of

P(A∗l = i) =
1

2πι

∮

C

Al(z)

zi+1
dz, (18)
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where ι =
√
−1 and C is any contour around 0 within the analyticity region of A(z). Using the

saddle point method, see De Bruijn [9], we find the following result:

Theorem 2.1. Assume that |A(eιθ)| is strictly maximal at θ = 0 as a function of θ ∈ [−π, π]. Let

i, l ≥ 0 be integers such that A′(1) ≤ i/l < LA, and denote h(z) = l ln A(z) − i ln z. Then there is

a unique z = z0 ∈ [1, z∞) of the equation h′(z) = 0, we have h′′(z0) > 0 and

P(A∗l = i) ≈ 1

z0

√

2πh′′(z0)

Al(z0)

zi
0

. (19)

We shall be more precise about the ≈ in Sec. 3.

The assumption A′(1) ≤ i/l < LA in Thm. 2.1 ensures the existence of a saddle point on the

positive real axis for the integral in (18). The fact that we have to consider integers i, l ≥ 0 such

that A′(1) ≤ i/l < LA does not pose a strong restriction in the present context. To see this,

first note that the series defining Sm(l) in (15) involve i ≥ ls while we have made the assumption

A′(1) < s. Secondly, we have in many cases that LA = ∞, see the examples in Sec. 6. Finally, the

cases where the load ρ = A′(1)/s is not far away from the maximum sustainable value 1 are the

more interesting ones. We shall see in Sec. 4 that, for an accurate approximation of Sm(l) in (15),

it is sufficient to consider i for which i/l is not much larger than s. Hence, even in the case of finite

LA, the more interesting cases allow one to restrict to s and i, l satisfying A′(1) < s ≤ i/l < LA.

The assumption that |A(eιθ)|, θ ∈ [−π, π], is strictly maximal at θ = 0 allows us to restrict

attention to the immediate vicinity of the saddle point on the positive real axis when the contour

C in (18) is taken to be the circle around zero passing through the saddle point. This condition is

not restrictive either. Due to the non-negativity of the an and the fact that a0 > 0, the condition

is contravened only for A(z) of the form B(zp) =
∑∞

l=0 blz
lp, where

p = min{|n1 − n2| | n1, n2 = 0, 1, . . . , n1 6= n2, an1
6= 0 6= an2

} > 1. (20)

This B is a pgf, just like A, and it does satisfy the condition that |B(eιθ)|, θ ∈ [−π, π], is strictly

maximal at θ = 0. If s is a multiple of p, it suffices to consider B and s/p instead of A and s.

Much of the analysis given in this paper applies when A(z) = B(zp) where s is not a multiple of p,

but the administration required for the series over i in (8), (9), (10) and (12) becomes somewhat

complicated due to the fact that P(A∗l = i) 6= 0 only when i is a multiple of p; we shall exclude

such A’s.

In all cases, irrespective whether the conditions in Thm. 2.1 on A and i/l are satisfied or not,
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we have the following bound. For i, l = 0, 1, . . . there holds

P(A∗l = i) ≤ inf
1≤z<z∞

Al(z)

zi
. (21)

In case that the conditions in Thm. 2.1 on A and i/l are satisfied, the number at the right-hand

side of (21) equals Al(z0)/z
i
0 with z0 as in Thm. 2.1. We note that the right-hand sides of (19) and

(21) basically differ by the factor 1/
√

2πz2
0h′′(z0). Normally, this factor is quite innocent, the key

features of the bounds and approximations being determined by the crucial quantity Al(z0)/z
i
0.

For simplicity we shall assume now that LA = ∞, and we denote

Ŝm(l) =

∞
∑

i=ls

1

l
(i − ls)m 1

z0

√

2πh′′(z0)

Al(z0)

zi
0

. (22)

Theorem 2.2. We have

Sm(l) ≈ Ŝm(l) ≈ l−3/2

√

2πẑφ′(ẑ)

(

A(ẑ)

ẑs

)l ∞
∑

i=0

imẑ−i, (23)

where φ(z) = zA′(z)/A(z) and ẑ is the unique z ≥ 1 such that φ(z) = s.

This result is proved in Sec. 4 where we will be more precise about the ≈ in (23). In fact, in

many cases, the second ≈ in (23) holds as an upper bound on Ŝm(l). Moreover, we briefly consider

the issue of how to modify Thm. 2.2 for the case that LA is finite.

The φ of Thm. 2.2 is considered in some detail in Appendix A and is related to z0 of Thm.

2.1 as follows. When A′(1) ≤ t < LA and z0(t) denotes the unique z ∈ [1, z∞) of φ(z) = t, then

z0 = z0(i/l) for integer i, l ≥ 0 such that A′(1) ≤ i/l < LA.

The series Km(v) =
∑∞

i=0 imvi, m = 0, 1, 2, . . . , have been studied in some detail, see [15, 20].

We only need the first few Km’s. We have

K0(v) =
1

1 − v
, K1(v) =

v

(1 − v)2
, K2(v) =

v2

(1 − v)3
+

v

(1 − v)2
. (24)

Theorem 2.3. Let 0 < δ < 1. When A′(1) ≤ (1 − δ)s and L → ∞, there holds for the Rm(L) in

(14) that

Rm(L) ≈ R̂m(L) :=

∞
∑

l=L

Ŝm(l) ≈ Km(ẑ−1)
√

2πẑφ′(ẑ)

xL

L3/2(1 − x)
, (25)

where x = A(ẑ)/ẑs.

For the case that A′(1) is close to s (so that both ẑ and x are close to 1) , there is the more
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precise result

R̂m(L) ≈ Km(ẑ−1)
√

2πẑφ′(ẑ)

[2xL−1

√
L

− xL−3/2
√

(1 − x)πeβ2

erfc(β)
]

, (26)

where β =
√

(1 − x)L/x, and

erfc(β) =
2√
π

∫ ∞

β

e−t2dt, β ≥ 0, (27)

denotes the complementary error function.

In Sec. 5 we present the proof of this result, and we pay more attention to the ≈ in (25) and

(26). The sharpening in (26) requires a detailed study of the function
∑∞

l=L l−3/2xl in which

L → ∞ and x is allowed vary through all values of [0, 1].

3 Details for Theorem 2.1

In this section we use the saddle point method to prove Thm. 2.1, and we discuss the conditions

on A and i, l that appear in the formulation of Thm. 2.1.

A(z) is assumed to be an analytic function in a disk |z| < z∞, where the radius of convergence

z∞ of
∑∞

n=0 anzn exceeds 1. Hence

P(A∗l = i) =
1

2πι

∮

Cr

Al(z)

zi+1
dz, (28)

where ι =
√
−1 and Cr is any contour around 0 with radius r ∈ [1, z∞). On such a circle we have

by non-negativity of all an that |Al(z)/zi| is maximal at z = r. Hence we get at once that for all

i, l = 0, 1, . . .

P(A∗l = i) ≤ 1

2π
· 2πr · 1

r
· Al(r)

ri
=

Al(r)

ri
(29)

for any r ∈ [1, z∞).

We consider now i, l such that i/l ≥ A′(1). Under this assumption we have that d
dz [Al(z)/zi] ≤ 0

at z = 1. The information on P(A∗l = i) can now be made more precise when the infimum over

r ∈ [1, z∞) of the numbers at the right-hand side of (29) is actually assumed as a minimum at a

point r = z0 ∈ [1, z∞). In that case the point z0 is a saddle point of

h(z) := l ln A(z) − i ln z , (30)
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and it is tempting to apply the saddle point method, see De Bruijn [9], Ch. 5, as to obtain an

approximation of P(A∗l = i) of the form

P(A∗l = i) ≈ eh(z0)

z0

√

2πh′′(z0)
. (31)

In order that this saddle point approach is valid, we must make some assumptions. First of all,

we need to bother about the existence of the saddle point z0. Thus, with φ(z) = zA′(z)/A(z) we

want

h′(z) =
l

z

(

φ(z) − i

l

)

(32)

to have one zero z = z0(i/l) ∈ [1, z∞) at which we have h′′(z) > 0. In Appendix A it will be shown

that (unless A is monomial) φ(z) is strictly increasing in z ∈ [1, z∞). Hence h′(z) has exactly one

zero in [1, z∞), provided that

i

l
∈ [φ(1), lim

z↑z∞

φ(z)) = [A′(1), LA) (33)

with LA as in (17). Furthermore, since

h′′(z) =
l

z
φ′(z) − 1

z2

(

φ(z) − i

l

)

, (34)

we have that

h′′(z0(i/l)) =
l

z0(i/l)
φ′(z0(i/l)) > 0. (35)

The second issue in validating the saddle point approach as embodied by (31) is the fact that we

should be allowed to restrict attention to a only a small portion of the integration contour Cz0
in

(28) around the saddle point z0. To that end we make the assumption that |A(eιθ)|, θ ∈ [−π, π], is

strictly maximal at θ = 0. Due to the non-negativity of an, this assumption is not really restrictive.

Indeed, assuming that for some θ 6= 0, θ ∈ [−π, π]

|A(eιθ)| =
∣

∣

∣

∞
∑

n=0

aneιnθ
∣

∣

∣
=

∞
∑

n=0

an = A(1), (36)

we see that there is a γ ∈ [−π, π] such that eιnθ = eιγ for all n = 0, 1, . . . such that an 6= 0.

It is easily seen that this strict maximality of |A(eιθ)|, θ ∈ [−π, π], at θ = 0 is equivalent with

strict maximality of|A(reιθ)|, θ ∈ [−π, π], at θ = 0 for any r ∈ [1, z∞). As a consequence we can

replace the integral along Cz0
by an integral along small circle segments {z0e

ιθ||θ| ≤ δ} at the
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expense of exponentially small errors of order

max
δ≤|θ|≤π

∣

∣

∣

A(z0)e
ιθ

A(z0)

∣

∣

∣

l

. (37)

The term ”exponentially small” used here can be somewhat deceptive as the following example

shows. Choose

A(z) =
cosh λz + εz

coshλ + ε
, (38)

where λ > 0 is large and ε > 0 is small. The ratio A(−z0)/A(z0) is extremely close to 1, and it is

only for very large l that one can ignore the contribution to the integral of z’s near −z0.

The further details of applying the saddle point method for the present case follow to a large

extent the discussion in [9], p. 92 on the range of the saddle point. Here, it is important to note

that considerations in Sec. 4 show that we can restrict attention to integers i, l ≥ 0 such that i/l

is not much larger than s. Thus we can write

h(z) = lgt(z); gt(z) = ln A(z) − t ln z, (39)

where t ∈ [s, (1 + δ)s] with δ > 0 not large and certainly such that (1 + δ)s < LA. This implies

that the z0 are in a compact interval in [1, z∞), whence the g′′t (z0) are uniformly bounded away

from 0 while higher derivatives, such as g′′′
t (z0) and g′′′′t (z0), are uniformly bounded away from ∞.

Following the discussion in [9], p.92, we then replace the integral along Cz0
by an integral along

the line segment between z0 − ιl−γ and z0 + ιl−γ , where γ is a real number between 1/3 and 1/2,

at the expense of an exponentially small error like exp(− 1
2 l1−2γg′′t (z0)). On this line segment the

remainder of lgt(z), after splitting off the constant and quadratic term −lgt(z0)+
1
2 lg′′t (z0)(z−z0)

2,

l( 1
6g′′′t (z0)(z − z0)

3 + 1
24g′′′′t (z0)(z − z0)

4 + . . .) (40)

tends to zero as l → ∞. Hence, at the expense of smaller errors, we can linearize exp(h(z)) on the

line segment z0 + ιu, |u| ≤ l−γ , as

eh(z) = eh(z0)− 1
2
u2h′′(z0)(1 − 1

6 ιlg′′′t (z0)u
3 + 1

24 lg′′′′t (z0)u
4). (41)

Now note that the term involving g′′′
t (z0) cancels upon integration over u ∈ [−l−γ , l−γ ] since u3

11



is odd. The integral of the term involving g′′′′
t (z0) can be estimated at

eh(z0) l
24 |g

′′′′
t (z0)|

∫ ∞

−∞
e−

1
2
u2h′′(z0)u4du = Γ(5/2) l

24 |g
′′′′
t (z0)|eh(z0)

( 2

h′′(z0)

)5/2

. (42)

It follows that the relative error due to this latter term has the order

l
( 2

h′′(z0)

)2

=
4

l(g′′t (z0))2
= O(1/l) (43)

uniformly in t ∈ [s, (1+ δ)s]. Similarly, the lowest order deleted quadratic term − 1
36 l2(g′′′t (z0))

2u6

at the right-hand side of (41) produces a relative error O(1/l) as well, and higher order terms

produce smaller errors, etc. In all this, the additional factor 1/z that appears in the integral in

(28) according to

Al(z)

zi+1
=

1

z
eh(z) (44)

has been considered as a constant 1/z0. As in the above, this can be shown to be allowed, at the

expense of a relative error of order O(1/l). We conclude that when we restrict i/l to a range in

[s, (1 + δ)s] ⊂ [A′(1), LA), the relative error for the approximation in (31) is O(1/l) uniformly in

i.

We conclude this section by a consideration of A for which LA is finite (in many cases LA = ∞

so that the assumption i/l < LA in Thm. 2.1 presents no restriction). First assume that z∞ = ∞,

so that A(z) is an entire function. From LA < ∞ and the fact that an ≥ 0 it then follows that

A(z) is a polynomial of degree LA. Hence in this case P(A∗l = i) = 0 when i > lLA. Next consider

the case that z∞ < ∞ and LA < ∞. It is easy to see that then

A(z∞) := lim
z↑z∞

A(z), A′(z∞) := lim
z↑z∞

A′(z) (45)

exist as finite numbers. When now i/l > LA, a precise approximation is feasible only when

additional information about the nature of the singular point z0 is available. However, the bound

in (29) remains valid, and this is normally enough for our purposes where we may restrict to

integers i/l such that i/l is not much larger than s while s < LA.

12



4 Details for Theorem 2.2

In this section we present the proof of Thm. 2.2 and detail some of its claims. We exclude the case

that A is a polynomial (only for the sake of a smoother presentation with z∞ below). Hence, when

LA < ∞, we assume that z∞ < ∞ so that A(z∞), A′(z∞) are given by (45) as finite numbers,

while

LA =
z∞A′(z∞)

A(z∞)
= φ(z∞). (46)

Here, with LA finite or not,

φ(z) = zA′(z)/A(z), |z| < z∞, (47)

as in (32). We show in Appendix A that φ is strictly increasing in z ∈ [0, z∞), unless A is a

monomial.

We let for t > A′(1)

z0(t) =











unique z ≥ 1 such that φ(z) = t, A′(1) ≤ t < LA,

z∞, t ≥ LA.
(48)

Thus z0(t) is strictly increasing in t ∈ [A′(1), LA) and constant z∞ for t ≥ LA.

In terms of φ and z0 we can express the saddle point approximation of P(A∗l = i) in Thm. 2.1

as

P(A∗l = i) ≈ 1
√

2πlz0(i/l)φ′(z0(i/l))

(

A(z0(i/l))

z0(i/l)i/l

)l

(49)

when A′(1) ≤ i/l < LA. Also, the bound (29) can be expressed in terms of z0 as

P(A∗l = i) ≤
(

A(z0(i/l))

z0(i/l)i/l

)l

, i/l ≥ A′(1). (50)

For the analysis that follows we introduce the function

G(t) := ln
[A(z0(t))

z0(t)t

]

, t ≥ A′(1). (51)

Note that G(t) = gt(z0(t)), see (39). The function G is considered in some detail in Appendix A.

It is shown that G is a non-positive, strictly decreasing, concave function of t ≥ A′(1) for which

the t-axis is a tangent of the graph (t, G(t)), t ≥ A′(1) at the point (t = A′(1), G(A′(1)) = 0).

Moreover, it is shown that

G′(t) = − ln z0(t), t ≥ A′(1). (52)

13



In particular, G is strictly concave on [A′(1), LA) with

G′′(t) =
−1

z0(t)φ′(z0(t))
, t ∈ [A′(1), LA), (53)

and G is linear on [LA,∞) with G′(t) = − ln z∞ (when LA < ∞). Also see Fig. 1.

We restrict for the moment to LA = ∞, and we consider

Ŝm(l) =
1

l
√

2πl

∞
∑

i=ls

(i − ls)m

√

z0(i/l)φ′(z0(i/l))

(

A(z0(i/l))

(z0(i/l))i/l

)l

=
1

l
√

2πl

∞
∑

i=ls

(i − ls)m
√

−G′′(i/l)elG(i/l) (54)

as an approximation of Sm(l), see (15). In the first line of (54) we have inserted the saddle point

approximation (49) of P(A∗l = i) into the series (15) at the expense of a relative error O(1/l).

Next, the concave function G in the exponential is replaced by its linearization around (s,G(s)),

and −G′′(i/l) is replaced by −G′′(s). We thus obtain the approximation

Ŝm(l) ≈
√

−G′′(s)

l
√

2πl

∞
∑

i=ls

(i − ls)mel[G(s)+(i/l−s)G′(s)]

=

√

−G′′(s)

l
√

2πl
elG(s)

∞
∑

i=ls

(i − ls)me(i−ls)G′(s). (55)

When we now use (51), (52), (53), we get (23) in Thm. 2.2. The crucial step in getting the

approximation (55) is the linearization of the function G(t) around t = s. In Fig. 1 we display

this linearization for the case that A(z) = exp(λ(z − 1)) with λ = 9 and s = 9, 15, 20.

We note that in many cases the approximation (55) holds as an upper bound on Ŝm(l). This is

certainly so when zφ′(z) is an increasing function of z (as often happens, see the examples in Sec.

6). For then both replacing −G′′(i/l) by −G′′(s) and G by its linearization in (54) comes with a

≤-sign. The condition (zφ′(z))′ = φ′(z) + zφ′′(z) ≥ 0 is not very restrictive; it excludes functions

A that grow slower than za+b ln z with some a > 0, b > 0.

We next make a brief error assessment for the approximation in (55). We note that by Taylor’s

formula

l[G(i/l) − G(s) − (i/l − s)G′(s)] =
1

2l
(i − ls)2G′′(ζ) < 0, (56)

where ζ is a number ∈ [s, i/l]. Also, G′′(i/l) − G′′(s) = O(i/l − s). Then, due to exponential

decay, one can show that relative errors of order 1/l occur.
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Figure 1: Linearization of ln A(z0(t))
(z0(t))t at t = s for A(z) = eλ(z−1) (Poisson distribution), λ = 9,

s = 9 (t-axis), 15 and 20.

Finally, in the case of finite LA and s < LA, the above argument to approximate and bound

Sm(l) remains basically the same (due to the bound in (50) and concavity of G) at the expense of

exponentially small relative errors.

5 Proof of Theorem 2.3

We shall now approximate and bound the quantity

R̂m(L) =
Km(ẑ−1)

√

2πẑφ′(ẑ)

∞
∑

l=L

l−3/2
(A(ẑ)

ẑs

)l

, L → ∞, (57)

as it occurs as an upper bound of the approximation
∑∞

l=L Ŝm(l) on Rm(L) =
∑∞

l=L Sm(l). It

suffices to study the quantity

FL(x) :=
∞
∑

l=L

l−3/2xl, (58)

for large L and x ∈ [0, 1]. It is interesting to note that FL(x) = xLΦ(z = x, s = 3/2, v = L), where

Φ(z, s, v) is Lerch’s transcendent as occurs in [10], §1.11 on pp. 27-31. Of the many formulas and

representations developed in [10], §1.11 for Φ, the one in §1.11 (3) is particularly convenient for
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getting a simple and accurate approximation of FL(x) when L gets large and x ∈ [0, 1]. When x

is away from 1, one simply has

FL(x) =
xL

L3/2

∞
∑

l=0

1

(1 + l/L)3/2
xl,

≈ xL

L3/2

∞
∑

l=0

xl =
xL

L3/2(1 − x)
, (59)

with a relative error that is of the order −3x/(2L(1 − x)). The right-hand side of (59) is in fact

an upper bound for FL(x). This gives the result in (25).

When x may get close to 1 while L → ∞, we have to proceed more carefully: While FL(x) is

evidently bounded for x ∈ [0, 1], the last member of (59) tends to infinity as x tends to 1. From

y−3/2 =
2√
π

∫ ∞

0

u1/2e−yudu, (60)

we obtain [10], §1.11(3),

FL(x) =
2xL

√
π

∫ ∞

0

u1/2e−Lu

1 − xe−u
du. (61)

With L → ∞, we may restrict attention in the integral in (61) to small u ≥ 0, and we expand

1

1 − xe−u
=

1

1 − x + xu − x(e−u − 1 + u)

=
1

1 − x + xu

(

1 +
x(e−u − 1 + u)

1 − x + xu
+

(x(e−u − 1 + u)

1 − x + xu

)2

+ . . .
)

. (62)

Since

0 ≤ x(e−u − 1 + u)

1 − x + xu
≤

1
2xu2

1 − x + xu
≤ 1

2
u, (63)

we see that the leading term of FL(x) is given as

2xL

√
π

∫ ∞

0

u1/2e−Lu

1 − x + xu
du, (64)

while the error is accurately estimated at

2xL

√
π

∫ ∞

0

1
2xu5/2e−Lu

(1 − x + xu)2
du. (65)

The analysis given above can be made more precise as follows. We restrict the integration range

in (61) to u ∈ [0, L−1/2] at the expense of exponentially small errors O(exp(−L−1/2)). On the
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relevant integration range we have from (62) and (63)

1

1 − xe−u
=

1

1 − x + xu
+

1
2xu2

(1 − x + xu)2
(1 + O(L−1/2)), (66)

where the O holds uniformly in x ∈ [0, 1], u ∈ [0, L−1/2]. Then the integration range for the

two functions of u at the right-hand side of (66) is restored to [0,∞), again at the expense of

exponentially small errors O(exp(−L−1/2)).

We shall now express the integrals in (64), (65) in terms of the complementary error function,

[1], p. 297,

erfc(x) :=
2√
π

∫ ∞

x

e−y2

dy, x ≥ 0. (67)

There holds
∫ ∞

0

u1/2e−Lu

1 − x + xu
du =

1

xL1/2

∫ ∞

0

t1/2e−t

β2 + t
dt, (68)

where we have set

β =
(1 − x

x
L

)1/2

. (69)

Then, by [1], p. 302

∫ ∞

0

t1/2e−t

β2 + t
dt =

∫ ∞

0

t−1/2e−tdt − β2

∫ ∞

0

e−t

√
t(β2 + t)

dt

=
√

π(1 −
√

πβeβ2

erfc(β)). (70)

Therefore, with β given in (69), we have

∫ ∞

0

u1/2e−Lu

1 − x + xu
du =

√
π

xL1/2
(1 −

√
π β eβ2

erfc(β)). (71)

Similarly, we have by partial integration

∫ ∞

0

1
2xu5/2e−Lu

(1 − x + xu)2
du =

1

2

∫ ∞

0

1

1 − x + xu

(5

2
u3/2 − u5/2L

)

e−Ludu

= −1

2

{5

2

( d

dL

)

+ L
( d

dL

)2}
∫ ∞

0

u1/2e−Lu

1 − x + xu
du. (72)

Then, using (71) and the definition of β in (69), we see that the integral in (65) can be expressed
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in terms of elementary functions and the erfc, but the resulting expression is rather unwieldy, i.e.

∫ ∞

0

1
2xu5/2e−Lu

(1 − x + xu)2
du =

√
π

8xL3/2

{

(5 + 2β2)(1 − 2β2(1 −
√

πβeβ2

erfc(β))) − 3
}

. (73)

The function exp(β2)erfc(β) is known as Mills’ ratio, see [1], 7.1.13 on p.298. Using the asymp-

totic series, [1], p. 298,

√
πβeβ2

erfc(β) ∼ 1 − 1

2β2
+

3

4β4
− 15

8β6
+

105

16β8
− . . . , β → ∞, (74)

we get from (71)

∫ ∞

0

u1/2e−Lu

1 − x + xu
du ∼

√
π

x

( 1

2 1−x
x L3/2

− 3

4( 1−x
x )2L5/2

+
15

8( 1−x
x )3L7/2

− . . .
)

, (75)

as (1 − x)L/x → ∞. Furthermore, from (72) and (75) (repeated differentiation of the asymptotic

series is allowed)

∫ ∞

0

1
2xu5/2e−Lu

(1 − x + xu)2
du ∼

√
π

x

( 15

16( 1−x
x )2L7/2

− 105

16( 1−x
x )3L9/2

+ . . .
)

, (76)

as (1 − x)L/x → ∞. Note that the first term at the right-hand side of (75) agrees with the

approximation given in (59). Also note that the leading term in (76) is a factor 8
15

1−x
x L2 smaller

than the leading term in the right-hand side of (75).

The asymptotics in (75), (76) are valid when (1 − x)L/x → ∞. We complement this info by

presenting lower and upper bounds for the integrals in (64), (65) that show that the second integral

is roughly a factor L(1 + 1
2β2) smaller than the first integral for all values β =

√

(1 − x)L/x ≥ 0.

As to the first integral we have

∫ ∞

0

u1/2e−Lu

1 − x + xu
du =

1

xL1/2

∫ ∞

0

t1/2e−t

β2 + t
dt

=

√
π

2xL1/2

∫ ∞

0

e−β2v

(1 + v)3/2
dv. (77)

Here we have inserted

Γ(α)
( 1

t + β2

)α

=

∫ ∞

0

vα−1e−v(t+β2)dv (78)

with α = 1 into the second integral in (77), interchanged the order of integration and used
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√
π/2 = Γ(3/2) =

∫ ∞
0

t1/2e−tdt. Then by the inequality

e−(β2+3/2)v ≤ e−β2v

(1 + v)3/2
≤

( 1

1 + v

)3/2+β2

, (79)

we immediately get

√
π

2xL1/2

1

3/2 + β2
≤

∫ ∞

0

u1/2e−Lu

1 − x + xu
du ≤

√
π

2xL1/2

1

1/2 + β2
. (80)

In an entirely similar way, using (78) with α = 2, we get

∫ ∞

0

1
2xu5/2e−Lu

(1 − x + xu)2
du =

15
√

π

16xL3/2

∫ ∞

0

ve−β2v

(1 + v)7/2
dv, (81)

from which it follows that

15
√

π

16xL3/2

1

(7/2 + β2)2
≤

∫ ∞

0

1
2xu5/2e−Lu

(1 − x + xu)2
du ≤ 15

√
π

16xL3/2

1

(3/2 + β2)(5/2 + β2)
. (82)

We may, finally, note that continued fraction expansions for the integrals in (64) and (65) can

be obtained from [23], pp. 352-355; also see [21], Sec. 11.2 where asymptotics of integrals of type

(64) and (65) are considered in connection with the incomplete Gamma function.

6 Examples

In this section we consider several examples for which we determine characteristics of the relaxation

time. For each example, the load on the system is defined as ρ = A′(1)/s and assumed to be less

than one.

Example 6.1. Poisson case. A(z) = eλ(z−1), A′(1) = λ, φ(z) = λz, z∞ = ∞, LA = ∞,

zφ′(z) = λz increasing and

z0 =
i

lλ
, ẑ = z0(s) =

s

λ
, x =

A(z0(s))

(z0(s))s
=

(λ

s
e1−λ/s

)s

. (83)

From Thm. 2.1 we thus have

P(A∗l = i) ≈ 1

i/(lλ)
· 1
√

2π 1
i (lλ)2

· exp(lλ( i
lλ ) − 1)

( i
lλ )i

=
1√
2πi

( lλ

i
· e1− lλ

i

)i

. (84)
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Observe that te1−t ∈ [0, 1) when t ∈ [0, 1). In the present case we have, explicitly,

P(A∗l = i) =
e−lλ

i!
(lλ)i ≈ e−lλ(ine−i

√
2πi)−1(lλ)i =

1√
2πi

( lλ

i
· e1− lλ

i

)i

, (85)

where Stirling’s formula i! ≈ ii+1/2e−i
√

2π has been used. It is thus seen that the approximation

as obtained per Thm. 2.1 amounts to replacing i! in the exact expression (85) by its Stirling ap-

proximation. Accordingly, the approximation given by (84) has relative error O(1/i) independent

of λ.

Example 6.2. Geometric case. A(z) = (1 − p)/(1 − pz), A′(1) = p/(1 − p), φ(z) = pz/(1 − pz),

z∞ = 1/p, LA = ∞, zφ′(z) = pz/(1 − pz)2 increasing for z ≤ 1 and decreasing for z ≥ 1, and

z0 =
i

p(i + l)
, ẑ = z0(s) =

1

p

s

s + 1
, x =

A(z0(s))

(z0(s))s
= (1 − p)ps (s + 1)s+1

ss
. (86)

From Thm. 2.1 it follows that

P(A∗l = i) ≈ 1√
2π

(1 − p)lpi(i + l)i+l−1/2i−i−1/2l−l+1/2. (87)

From the explicit representation

P(A∗l = i) = (1 − p)lpi (i + l)!

i! l!

l

i + l
, (88)

we obtain by Stirling’s formula exactly (87). Accordingly, as in Example 6.1, the approximation

given by (87) has relative error O(1/i) independent of p.

Example 6.3. Binomial case. A(z) = (p + qz)n, p + q = 1, A′(1) = nq, φ(z) = nqz/(p + qz),

z∞ = ∞, LA = n, zφ′(z) = npqz/(p + qz)2 increasing for z ≤ q/p and decreasing for z ≥ q/p, and

z0 =
1

q

pi

nl − i
, ẑ = z0(s) =

1

q

ps

n − s
, x =

A(z0(s))

(z0(s))s
= qspn−snns−s(n − s)−(n−s). (89)

From Thm. 2.1 it follows that

P(A∗l = i) ≈ 1√
2π

(nl)nl+1/2

(nl − i)nl−i+1/2ii+1/2
pnl−iqi. (90)
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Figure 2: Relaxation time for the Poisson
case with s = 10, λ = 8.
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From the explicit representation

P(A∗l = i) =
(nl)!

(nl − i)!i!
pnl−iqi, (91)

we obtain by Stirling’s formula exactly (90). For the remainder of this section we set n = 4s.

Thm. 2.3 gives asymptotic expressions for R̂m(L) from which we can extract information on

the relaxation time. Expression (25) yields an upper bound on R̂m(L), which is expected to be

sharp for loads well below one. Expression (26) sharpens (25) and should be useful when ρ tends

to 1. The complementary error function erfc(β) needed to calculate (26) is a standard function

available in most software packages.

For the Poisson case, Figs. 2 and 3 depict characteristics of these asymptotic approximations

for m = 1 (corresponding to the mean waiting time), for s = 10 and ρ = 0.8, 0.9, respectively.

The true value of R1(L) results from EW − EWL, where we approximate EW using extremely

high truncation levels (something we want to avoid). For ρ = 0.8, the relaxation time decreases

rapidly, indicating that the transient behavior of the waiting time converges rapidly to its steady-

state. (26) improves upon (25), although the improvement is marginal relative to the true value

EW − EWL.

For ρ = 0.9, the relaxation time again decreases rapidly, although we need a much higher value

of L in order to achieve the same accuracy as for ρ = 0.8. Again, (26) improves upon (25), where

now the absolute improvement is much larger.
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For each of the three examples, we calculate

T (R̂m; ε) = min{L | R̂m(L) < ε}, (92)

where we replace R̂m(L) in (92) by either (25) or (26). Remember that (25) is an upper bound

on R̂m(L), where (26) is, although asymptotically sharp, an asymptotic approximation of R̂m(L).

We set ε equal to 0.001. When we want, for example, to determine the mean waiting time, we

could approximate EW using (5) with n = T (R̂1; 0.001), knowing that EW − EWn is of order

0.001. Of course, (5) still contains an infinite series over i, but truncating this series at ls + M for

some large value M gives a truly negligible error, for reasons addressed in Sec. 3.

Results are displayed in Table 1, 2 and 3. We first make some general observations. For

low values of ρ, a small value of T (R̂m; ε) is sufficient. For high values of ρ, though, the T (R̂m; ε)

required increases enormously. Using (26) instead of (25) leads to moderate reductions in T (R̂m; ε),

mostly for high values of ρ. Further, T (R̂0; ε) ≤ T (R̂1; ε) ≤ T (R̂2; ε), which is obvious from the

Km functions given in (24).

Table 1: T (R̂m; ε) for m = 0, ε = 0.001, using either (25) or (26), for the binomial, Poisson and
geometric case.

s = 10 s = 30

binomial Poisson geometric binomial Poisson geometric

ρ (25) (26) (25) (26) (25) (26) (25) (26) (25) (26) (25) (26)

0.5 2 2 3 3 14 14 1 1 1 1 13 12
0.6 4 4 4 4 27 26 2 2 2 2 25 23
0.7 6 6 7 7 58 54 3 3 3 3 53 50
0.8 14 13 17 16 152 143 5 5 6 6 141 133
0.9 54 51 70 66 707 664 19 18 24 23 660 621

Table 2: T (R̂m; ε) for m = 1, ε = 0.001, using either (25) or (26), for the binomial, Poisson and
geometric case.

s = 10 s = 30

binomial Poisson geometric binomial Poisson geometric

ρ (25) (26) (25) (26) (25) (26) (25) (26) (25) (26) (25) (26)

0.5 2 2 3 3 21 21 1 1 1 1 22 21
0.6 4 4 5 4 43 41 2 2 2 2 45 44
0.7 7 7 9 8 96 94 3 3 3 3 101 99
0.8 16 16 21 21 273 267 6 6 8 8 287 281
0.9 75 72 101 98 1395 1367 25 25 34 33 1460 1436
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Table 3: T (R̂m; ε) for m = 2, ε = 0.001, using either (25) or (26), for the binomial, Poisson and
geometric case.

s = 10 s = 30

binomial Poisson geometric binomial Poisson geometric

ρ (25) (26) (25) (26) (25) (26) (25) (26) (25) (26) (25) (26)

0.5 3 3 3 3 29 28 1 1 1 1 32 32
0.6 4 4 5 5 60 59 2 2 2 2 67 66
0.7 8 8 10 10 139 137 3 3 4 4 154 153
0.8 20 20 27 26 406 402 7 7 10 9 448 444
0.9 98 96 135 133 2156 2136 33 33 46 45 2347 2330

6.1 On the impact of the distribution of A

The geometric distribution results in much higher values of T (R̂m; ε) than does the binomial and

Poisson distribution. The reason for this is that the geometric distribution has a much heavier

tail. To be more precise, the crucial quantity (as it appears in (21))

A(z0(t))

(z0(t))t
= exp

(

min
z≥1

[ln A(z) − t ln z]
)

, (93)

is far larger for the geometric distribution. To give a comparison with a relatively light-tailed

distribution, we introduce a fourth distribution of A.

Example 6.4. Subexponential case.

P(A = n) =
θ2n

(2n)! cosh θ
, n = 0, 1, . . . , (94)

and

A(z) =
cosh θ

√
z

cosh θ
, A′(1) =

1

2
θ tanh θ, φ(z) =

1

2
θ
√

z tanh(θ
√

z), (95)

z∞ = ∞, LA = ∞ and zφ′(z) increasing. Also, let z
(1)
0 (t) ≡ z0(t) denote the solution of

θ
√

z tanh(θ
√

z) = 2t.

We denote by z
(2)
0 (t) and z

(3)
0 (t) the z0(t) for the Poisson and geometric case, respectively, i.e.

z
(2)
0 (t) = t/λ and z

(3)
0 (t) = t/(p(1 + t)). Fig. 4 displays z

(i)
0 (t), i = 1, 2, 3, for a common value

A′(1) of unity (i.e. θ = 2.065, λ = 1, p = 1/2) and t = 3. The three heavy line segments above

z
(i)
0 (t) indicate the difference between ln A(z) and t ln z at the minimizing z = z0(t), see (93). It is

thus seen that the magnitude of the quantity in (93) strongly depends on the type of distribution.

This effect becomes even more manifest when we increase s and keep ρ fixed, as we discuss in the

next subsection.
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√
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[
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Figure 4: Picture of z
(i)
0 (t), i = 1, 2, 3, values of z0(t) for the subexponential, Poisson and

geometric case, respectively, for a common value A′(1) = 1 and t = 3. The three heavy line

segments above z
(i)
0 (t) indicate the difference between lnA(z) and t ln z at the minimizing z = z0(t),

see (93).
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6.2 On the effect of increasing s at fixed load ρ

We now compare the values of T (R̂m; ε) in Table 1, 2 and 3 for s = 10 and s = 30. Observe that by

increasing s from 10 to 30, the values T (R̂m; ε) decrease for the binomial and Poisson distribution

(and the geometric distribution for m = 0), while for the geometric distribution the opposite is

true (for m = 1, 2). Again this has to do with the heavier tail of the geometric distribution. In

this case there holds, for α ≥ 1 and a fixed value of ρ = A′(1)/s,

A(z0(αs))

(z0(αs))αs
=

1

1 + ρs

(

1 +
1

ρs

)−αs(

1 +
1

αs

)αs

(1 + αs)

→ α

ρ
e1−α/ρ, s → ∞. (96)

As a consequence, we see that it does not help to increase s to substantially decrease the value of

the crucial quantity (93). In the Poisson case we find, for α ≥ 1 and a fixed value of ρ = A′(1)/s,

A(z0(αs))

(z0(αs))αs
=

( ρ

α
e1−ρ/α

)αs

, (97)

and this decays exponentially in s since te1−t < 1 for t ∈ (0, 1). Thus in the Poisson case it does

pay to increase s. This observation continues to be valid for distributions with lighter tails, such

as the binomial distribution or the distribution in Example 6.4.

A Appendix

A.1 The function φ

We consider the function φ(z) = zA′(z)/A(z), and we show that φ strictly increases on [0, z∞)

unless A is a monomial

Let z > 0 and set

t := φ(z) = zA′(z)/A(z). (98)

Using A′(z)/A(z) = t/z we compute

φ′(z) =
A′(z)

A(z)
+ z

A′′(z)

A(z)
− z

(A′(z)

A(z)

)2

=
z2A′′(z) − t(t − 1)A(z)

zA(z)
(99)
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With A(z) =
∑∞

j=0 ajz
j we can write

z2A′′(z) − t(t − 1)A(z) =

∞
∑

j=0

(j(j − 1) − t(t − 1))ajz
j

=

∞
∑

j=0

(j − t)(j + t − 1)ajz
j . (100)

Subtracting

0 = (2t − 1)(zA′(z) − tA(z)) = (2t − 1)
∞
∑

j=0

(j − t)ajz
j (101)

from either side of (100) we obtain

z2A′′(z) − t(t − 1)A(z) =
∞
∑

j=0

(j − t)2ajz
j . (102)

Hence

φ′(z) =
1

zA(z)

∞
∑

j=0

(j − t)2ajz
j ≥ 0. (103)

There is equality in (103) only when t is a non-negative integer and A(z) = zt.

As a consequence we have that (excluding the monomial case)

A′(1) = φ(1) < lim
z↑z∞

φ(z) = LA. (104)

We observe furthermore from (103) that φ′(1) = σ2
A since t = A′(1) = EA when z = 1.

Interestingly, one computes in a similar fashion as above that

(zφ′(z))′ =
1

zA(z)

∞
∑

j=0

(j − t)3ajz
j , (105)

with t as in (98). This is of some relevance to the approximation made going from (54) to (55):

one cannot assert monotonicity of zφ′(z) in general.

A.2 The function G

We consider the function

G(t) = ln[A(z0(t))/(z0(t))
t], t ≥ A′(1), (106)
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where z0(t) is given by (48) for which we assume that A is not a polynomial. In terms of gt in

(39) we have G(t) = gt(z0(t)).

We compute for t ∈ [A′(1), LA) from

φ(z0(t)) = z0(t)
A′(z0(t))

A(z0(t))
= t, φ′(z0(t))z

′
0(t) = 1 (107)

that

G′(t) =
A′(z0(t))

A(z0(t))
z′0(t) − t

z′0(t)

z0(t)
− ln z0(t) = − ln z0(t). (108)

Note that the identity G′(t) = − ln z0(t) continues to hold for t ≥ LA by the definition of G, z0

on [LA,∞), and there holds G′(t) = − ln z∞ for t ≥ LA.

When t ∈ [A′(1), LA) it furthermore follows from (107) and (108) that

G′′(t) = −z′0(t)

z0(t)
=

−1

z0(t)φ′(z0(t))
< 0. (109)

Observe that φ(1) = A′(1), whence z0(A
′(1)) = 1, and that φ′(1) = σ2

A. It then follows that

G(A′(1)) = 1, G′(A′(1)) = 0, G′′(A′(1)) = −1/σ2
A. (110)

From (109) and (110) all further claims made about G in the main text follow.
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