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1 Introduction

In a recent paper [8] it was discovered that a stochastic spin-flip time-evolution of a
low-temperature Ising Gibbs-measure µt=0 on {−1, 1}Zd

at time t = 0 can lead to a
non-Gibbsian measure µt on {−1, 1}Zd

at time t > 0. The authors of [8] investigated
a high-temperature Glauber dynamics applied to an initial low-temperature measure.
They proved that for small times the time-evolved measure is always Gibbsian. For
vanishing external magnetic field the time-evolved measure µt is non-Gibbsian for large
enough t. For a non-vanishing external magnetic field there can be even an in- and out
of Gibbsianness. This means that, either for small enough times or for large enough
times the time-evolved measure µt is always Gibbsian, while for intermediate times the
time-evolved measure is not a Gibbsian measure. See also [13] for a proof of propagation
of Gibbsianness under more general stochastic dynamics for sufficiently small times.

In a different line of research going back to Deuschel [6] and put forward by Roelly,
Zessin and coauthors [1, 14], the connection between interacting diffusions, indexed by
the sites on the lattice Zd and Gibbs measures is investigated.

In this context one asks whether the resulting measure on the path space of contin-
uous functions from time to the infinite volume spin configurations can be interpreted
as a Gibbs measure in a suitable sense. Moreover, also the Gibbsian character of the
fixed-time projections µt is studied when the initial law is a continuous-spin Gibbs mea-
sure on RZd

. Since it is generally known that projections of Gibbs measures need not
be Gibbs this question needs an independent investigation. For the latter question [4]
announced a proof (full proof to be given in [5]) of the following ‘propagation of Gibb-
sianness for continuous spins under continuous time dynamics’: Suppose that the initial
measure obeys a ‘strong Dobrushin uniqueness condition’. Then, either for small times t
or weak interactions of the dynamics the time-evolved measure µt is again a continuous-
spin Gibbs measure for an absolutely summable interaction. Let us point out however
that their definition of Dobrushin uniqueness using the sup-norm is very restrictive in
the case of unbounded variables. In particular it does not incorporate Gaussian fields
that are not independent over the sites since these clearly have unbounded (quadratic)
interactions.

The purpose of this paper is the study of the time evolution of a continuous-spin
initial measure which is a Gibbs measure for a Hamiltonian with a quadratic nearest
neighbor interaction and an a priori single-site double-well potential that has a specific
form. This Hamiltonian has two phases of a ferromagnetic type at low temperatures.
The specific choice of the Hamiltonian is made in order to obtain an elegant analysis of
the problem. In particular we do not have to rely on cluster expansion techniques since
we can use a precise correspondence between the continuous-spin model and a discrete-
spin model which can be analyzed by monotonicity arguments. From our analysis it will
be clear however that the phenomena which are present in this model are generic and not
dependent on the specific choice of the single-site double-well potential. In particular
with expansion techniques (cf. [11]) one could consider a cut-off version of this potential
in order to deal with compact continuous spins. More precisely, the unboundedness
of the spins is not essential for the transition Gibbs-non-Gibbs, but we believe it is
responsible for the fact that there is no reentrance in the Gibbsian class.

In order to state our main result let us introduce the model.
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1.1 The Gibbs distribution at time t = 0

Our model is given in terms of the formal infinite-volume Hamiltonian

Hq,ρ2,h (σ) =
q

2

∑
{x,y}

d(x,y)=1

(σx − σy)
2 +

∑
x

Vρ2(σx)− qh
∑

x

σx (1)

where we choose the single-site potential to be of the specific form

Vρ2(σ1) =
σ2

1

2ρ2
− log cosh

(σ1

ρ2

)
= − log

( ∑
τ1=±1

e
− (σx−τx)2

2ρ2

)
+ Const (2)

The specifications in finite volume Λ are given in the standard way by restricting
this Hamiltonian to terms that depend on Λ and writing the corresponding exponential
factors w.r.t. to the Lebesgue-measure.

It is the specific choice of the potential that will simplify the analysis a lot. Note
first of all, it is a simple exercise to verify that this potential has two different quadratic
symmetric absolute minima if ρ2 < 1. For ρ2 ≥ 1 the potential does not have a double
well structure and hence it is not surprising that in that case the Gibbs measure is in
fact unique, for all q.

The regime for which one could hope for ferromagnetic order is then for small ρ2

and large couplings q. Indeed, we have the following result.

Theorem 1.1 Let h = 0.

(i) Suppose that

q−1 < β−1
d − 2dρ2 (3)

Then there exist different translation-invariant Gibbs measures µ+ and µ−. Moreover
we have µ+ > µ− stochastically.

Here βd denotes the inverse critical temperature of the usual ferromagnetic near-
est neighbor Ising model in dimension d with Hamiltonian β

∑
{x,y}

d(x,y)=1

τxτy and Ising

variables τx = ±1.

(ii) Suppose that

q−1 > 2d(1− ρ2) (4)

Then the Gibbs measure is unique in the class of measures µ with supx∈Zd µ(eε|σx|) <
∞ for some ε > 0.

In the case (i) the state µ+ (resp. µ− ) concentrates on configurations that live
around the positive (resp. negative) wells of the potential. We will give a more detailed
description below. For a brief reminder on stochastic domination, see the beginning of
Section 2.2.
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1.2 The dynamics

For the sake of concreteness let us just give our result on the time-evolution in the
introduction only for the Ornstein-Uhlenbeck semigroup, applied sitewise independently
to the spins of the lattice.

We use the following notation for the single-site transition kernels from a spin-value
σx at time t = 0 to a spin value ηx at time t > 0.

pt(σx, ηx)dηx =
e
− 1

2ρ2
t
(ηx−rtσx)2

√
2πρt

dηx
(5)

with

rt = e−
t
2

ρ2
t = ρ2

∞(1− e−t)
(6)

This dynamics just depends on one parameter ρ2
∞ which is the variance of the stationary

distribution.
Keeping track of the parameters from the initial distribution and of the dynamics

we use the following notation for the time-evolved measure at time t

µ+,OU
q,ρ2,h;t,ρ2

∞
(dη) =

∫
µ+

q,ρ2,h
(dσ)

∏
x

pt(σx, ηx)dηx (7)

It is immediate to see that this measure converges weakly to an infinite product over the
lattice sites of centered Gaussians with variance ρ2

∞, when the time t tends to infinity.
It is the purpose of this paper to understand what happens for t < ∞, in particular
the properties of the conditional probabilities of the time-evolved measure, even if it is
close to a product measure.

1.3 The notion of Gibbsianness for unbounded continuous-spin models

Since we are dealing with unbounded spins we need to be careful to give a reasonable
definition of Gibbsianness. We will make the following definition.

Definition 1.2 We call ξ ∈ RZd
a good configuration for µ if and only if, for all

fixed M <∞,

sup
Λ:Λ⊃V

sup
ω+,ω−:

ω+,ω−∈[−M,M ]Zd

∣∣∣∫ f(σx)µ
(
dσx

∣∣ξV \xω+
Λ\V

)
−
∫
f(σx)µ

(
dσx

∣∣ξV \xω−Λ\V )∣∣∣→ 0 (8)

with V ↑ Zd, for any site x ∈ Zd, all any bounded continuous function f : R 7→ R.
We call µ Gibbs iff every configuration is good.

Note: In our definition we demand only continuity w.r.t. uniformly bounded pertur-
bations. A measure whose finite-volume conditional probabilities correspond to a nice
Hamiltonian of the form H(σ) =

∑
x,y Jx,yσxσy, where the Jx,y’s are rapidly decaying

but not finite range, would never be Gibbs if arbitrary growing perturbations were al-
lowed. This definition of Gibbsianness is less restrictive than the definition in terms of
a uniformly summable potential given in [4] which is formulated in terms of a sup-norm
of a potential. It is also less restrictive than the notion of a quasilocal specification,
formulated without regard to a potential in terms as found in Georgii [9]. Both notions
would imply that the convergence in (8) is uniform in M .
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1.4 Main result

Now we are able to present our main result about the Gibbsian nature of the time-
evolved measure.

Theorem 1.3 Assume that d ≥ 2, h ∈ R.

High-temperature regime. Assume that q−1 > 2d(1− ρ2). Then:

(0) Then µ+,OU
q,ρ2,h;t,ρ2

∞
is a Gibbs measure for all t ≥ 0

Low-temperature regime. Assume that q−1 < β−1
d − 2dρ2. Then there exist

t0 ≡ t0(q, ρ2; ρ2
∞) and t1 ≡ t1(q, ρ2; ρ2

∞), independent of h, such that

(i) µ+,OU
q,ρ2,h;t,ρ2

∞
is a Gibbs measure for all 0 ≤ t ≤ t0(q, ρ2; ρ2

∞).

(ii) µ+,OU
q,ρ2,h;t,ρ2

∞
is not a Gibbs measure for all t ≥ t1(q, ρ2; ρ2

∞).

Note that part (ii) of the theorem is different in an important aspect from the
result of [8] for discrete spins. In their case, for h different from zero, one encounters
Gibbsianness again for sufficiently large times which is not the case here. Thus, for
continuous unbounded spins there is no out-and in of Gibbsianness, but only an out-of
Gibbsianness. Also, their proof of non-Gibbsianness for intermediate times in a non-
vanishing external magnetic field requires that d ≥ 3, while in our case we can do with
d ≥ 2.

Our proof of the failure of Gibbsianness consists in showing that the homogeneous
configuration given by ηx = −qhr−1

t ρ2
t = −2qhρ2

∞ sinh t
2 for all lattice sites x ∈ Zd is

a bad configuration (i.e. not good in the sense of Definition 1.2) for the time-evolved
measure. As in [8] one needs to look at a quenched model which is obtained by con-
ditioning the measure governing the initial spins on spin-values observed at time t. In
this quenched model the continuous-spin configuration η = (ηx)Zd that appears as a
conditioning of the time-evolved measure acquires the role of quenched magnetic fields.
Non-Gibbsianness of the time-evolved model then arises as a sensitive dependence of
the quenched model under variation of the quenched magnetic field outside of arbitrary
large volumes. This sensitivity will occur precisely for certain ‘balancing configurations’
η for which the quenched model has a phase transition.

Note at this point already that for continuous-spin models it should be easier to
to find balancing configurations than for discrete models, since there are homogenous
configurations available at any possible constant spin value. The explicit analysis of our
model one needs to perform is greatly simplified by the specific choice of the double-well
potential in its definition. This relies on the fact that it can be written as a logarithm
of two Gaussian densities centered at different values. By means of this property one
discovers an underlying ‘hidden’ auxiliary discrete-spin model which can be used to
control the low-temperature behavior of the continuous model without involved expan-
sion techniques for continuous spins. In fact, potentials of this sort (or perturbations
thereof) were already used in [11] to reduce the analysis of disordered continuous-spin
models to discrete models.

Let us also point out that in the case of non-vanishing h the height of the balancing
configuration diverges to infinity exponentially fast in t. In this sense ‘non-Gibbsianness
is non-uniform in t’. This phenomenon could not happen for a compact spin-space which
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is in accordance with the large-t Gibbsianness in the corresponding Ising model that
was proved in [8].

Note the scaling-property of the Ornstein-Uhlenbeck processXt to Brownian motion.
It says that the rescaled path r−1

t Xt is the path of a Brownian motion at the rescaled
time s = r−2

t ρ2
t = ρ2

∞(et − 1). So the measure µOU
t with Ornstein-Uhlenbeck time-

evolution is related to a measure µBM
t obtained for independent Brownian motions by

the formula ∫
µOU

t (dη)ϕ(r−1
t η) =

∫
µBM

s (dη)ϕ(η) (9)

when both are started in the same measure. So, all properties of the finite-time Gibbs-
measure µt can be studied for a measure that is evolved according to independent
Brownian motions. This implies in particular that the dependence of the (bounds on
the) threshold times t0 and t1 on the variance of the limiting distribution is trivially
given by the rescaling formula for the time-change to Brownian motion. Obviously
then, we could have formulated our theorem for Brownian motions. However we chose
the present Ornstein-Uhlenbeck formulation to make obvious that, although there is a
simple limiting distribution which is approached rapidly, non-Gibbsian behavior persists
for any finite time.

It can be seen that the time at which some homogeneous configuration becomes a
point of discontinuity for the conditional expectations of µt appears is sharp. Since this
configuration should be ”the first point of discontinuity to appear” we conjecture that
t1 = t2.

Note however that a sharp transition of an in- and out of Gibbsianness can be shown
in the corresponding mean-field models [12]. Here a complete analysis can be given in
terms of a bifurcation analysis of the rate function of the magnetisation of the quenched
model conditioned on the empirical average of the spins. Let us just mention that, even
for h = 0, also bad configurations are appearing that are not spin-flip symmetric. This
phenomenon is not expected to occur here (but possibly in long-range lattice models).

The rest of the paper is organized as follows: In Section 2 we discuss the phase
structure of the Hamiltonian of the initial measure and the relation to an underlying
discrete Ising model, making use of the specific choice of the single-site potential. In
Section 3 we study the conditional probabilities of the time-evolved measure and their
relation to expectations in a discrete Ising model in a quenched random field. In Section
4 we prove our main result by showing presence or absence of phase transition in the
quenched discrete Ising model of Section 3.

2 The initial measure -
Gibbs measures of the log-double Gaussian model

The main purpose of this chapter is to give a proof of the phase transition result about
the log-double Gaussian model Theorem 1.1.

To do so we discuss the precise relationship between the continuous model in the
infinite volume, and an underlying Ising model whose couplings are given by the matrix
elements of the resolvent of the lattice Laplacian. The brief message is that the reduction
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from continuous to discrete works fine at this point, and there are no worrysome infinite-
volume pathologies arising at this step. The precise result is given in the ‘construction
theorem’, Theorem 2.1, and in Theorem 2.2. Similar arguments will be used in the
analysis of the time-evolved measure below.

Then, by simple stochastic domination arguments (Theorem 2.3), and comparison
of the underlying Ising model with the nearest-neighbor Ising model, we get a sufficient
condition for ferromagnetic order, as promised in Theorem 1.1. On the other hand, the
unicity conditions follow from carrying over unicity for the discrete model, for which we
just utilise Dobrushin uniqueness arguments.

Now, let us start with some definitions. We are interested in the analysis of the
Gibbs measures on the state space Ω = RZd

of the continuous-spin model given by the
Hamiltonians in finite-volume Λ by

H σ̃∂Λ
Λ (σΛ)

=
q

2

∑
{x,y}⊂Λ
d(x,y)=1

(σx − σy)
2 +

q

2

∑
x∈Λ;y∈∂Λ
d(x,y)=1

(σx − σ̃y)
2 − qh

∑
x∈Λ

σx +
∑
x∈Λ

Vρ2(σx) (10)

for a configuration σΛ ∈ ΩΛ = RΛ with boundary condition σ̃∂Λ. Here we write ∂Λ =
{x ∈ Λc;∃y ∈ Λ : d(x, y) = 1} for the outer boundary of a set Λ where d(x, y) = ‖x−y‖1

is the 1-norm on Rd.
The log-double Gaussian potential Vρ2 has two different quadratic symmetric abso-

lute minima if and only if ρ2 < 1. We note that the positions of the minimizers are given
by m = ±mCW(β = ρ−2). Here mCW(β) denotes the largest solution of the well known
equation m = tanh(βm). It happens to describe the magnetisation of the ordinary Ising
mean field model, although this has no particular relevance in our model.

The Gibbs-specification (or ‘finite-volume Gibbs measures’) corresponding to this
double-well model γdw

Λ (dσΛ|σ̃∂Λ) is then defined as usual through the expressions

γdw
Λ (f |σ̃∂Λ) =

1

Z σ̃∂Λ
Λ

∫
RΛ

dσΛf (σΛ, σ̃Λc) e−H
σ̃∂Λ
Λ (σΛ) (11)

for any bounded continuous f on Ω with the partition function

Z σ̃∂Λ
Λ =

∫
RΛ

dσΛe
−H

σ̃∂Λ
Λ (σΛ) (12)

A different way of looking at this model is the following. Remember that

e−Vρ2 (σx) = C1(ρ)
∑

τ1=±1

e
− (σx−τx)2

2ρ2 (13)

Let us introduce new, auxiliary variables τx = ±1 at each lattice site x. Then we
introduce the so-called joint Hamiltonian

H σ̃∂Λ
Λ (σΛ, τΛ) =

q

2

∑
{x,y}⊂Λ
d(x,y)=1

(σx − σy)
2 +

q

2

∑
x∈Λ;y∈∂Λ
d(x,y)=1

(σx − σ̃y)
2 − qh

∑
x∈Λ

σx

+
ρ−2

2

∑
x∈Λ

σ2
x − ρ−2

∑
x∈Λ

σxτx

(14)
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This Hamiltonian thus corresponds to keeping only the Gaussians corresponding to τx
in (13) at each lattice site x in the partition sum. We note that we have by definition
of the potential the identity

exp
(
−H σ̃∂Λ

Λ (σΛ)
)

= C2(ρ)|Λ|
∑
τΛ

exp
(
−H σ̃∂Λ

Λ (σΛ, τΛ)
)

(15)

In this way one can view the model defined in terms of the Gibbs specification corre-
sponding to the joint Hamiltonian (14) for the joint variables (σx, τx)x∈Zd . Here the
interaction is only through the σ-part of the model. We also note that, conditional on
a configuration of the τ -variables, the σ-variables have a Gaussian distribution. These
facts will be the reason for the simplicity of the model.

A complementary view on the introduction of the τ -variables is by the introduction
of a stochastic map from the σ-variables to the τ -variables. So, let us now introduce
the following stochastic kernels T mapping any continuous-spin configuration σ to a
discrete configuration τ . We define

T (τx|σx) :=
e

σxτx
ρ2

2 cosh(σx
ρ2 )

=
1
2

(
1 + τx tanh(ρ−2σx)

)
(16)

so that the conditional expectation becomes
∑

τx=±1 τxν(τx|σx) = tanh(σx
ρ2 ). So, T

corresponds to a smeared out sign-map from the continuous spins to their sign.
We will then also write T for the stochastic kernel obtained by sitewise independent

application of (16). We note that we have by definition of the potential the identity

exp
(
−H σ̃∂Λ

Λ (σΛ, τΛ)
)

= 2|Λ| exp
(
−H σ̃∂Λ

Λ (σΛ)
)∏

x∈Λ

T (τx|σx) (17)

2.1 Relation to Ising model with resolvent-interaction

We will now state the precise relation between the Gibbs measure in infinite volume
of the measure on the continuous variables and the measure on the discrete variables.
We remind the reader of the fact that, in general, taking projections of Gibbs-measures
does not necessarily preserve the Gibbsian nature of the measure. So, e.g. it is not
immediate a priori that the infinite-volume marginal distribution on the τ -variables
should be described by a Gibbs measure. We will however prove that this is the case.
Loosely speaking, the measure T (µ) projected on the τ ’s is Gibbs, because the measure
on the σ’s conditional on the τ ’s does not show a phase transition when we vary the τ ’s.
This will be clear because, as we will see, it is a massive Gaussian with τ -dependent
expectation, and this dependence is effectively local because of the exponential decay
of the matrix elements of the resolvent.

In some sense T (µ) contains the relevant information of µ. Since T (µ) shows a phase
transition, as we will see, this carries over also to µ.

For finite volumes the corresponding results are direct consequences of simple Gaus-
sian computations. To carry over these relations to the infinite volume is not too difficult
but needs care.

Define the Ising Hamiltonian with resolvent interaction by the expression

HIsing (τ) = −ρ
−4

2

∑
x,y

(
ρ−2 − q∆Zd

)−1

x,y
τxτy − qh

∑
x

τx (18)

7



where ∆Zd is the lattice Laplacian in the infinite volume, i.e. ∆Zd;x,y = 1 iff x, y ∈ V
are nearest neighbors, ∆Zd;x,y = −2d iff x = y and ∆Zd;x,y = 0 else.

Note that the couplings ρ−4
∑

x,y

(
ρ−2 − q∆Zd

)−1

x,y
are decaying exponentially fast in

the distance between x and y and so the interaction potential is in particular absolutely
summable.

For every infinite-volume discrete-spin configuration τZd define an ‘interpolating’
continuous configuration by

σZd(τZd) = (1− qρ2∆Zd)−1τZd + ρ2qh1Zd (19)

Then we have the following statements.

Theorem 2.1 Suppose that ν is a Gibbs measure for the Ising Hamiltonian (18).
Then the measure

µ(dσ) =
∫
ν(dτZd)N

[
σZd(τZd);

(
ρ−2 − q∆Zd

)−1
]
(dσ) (20)

is a Gibbs measure for the continuous specification γdw.

The symbolN
[
a;
(
ρ−2 − q∆Zd

)−1
]

denotes the massive Gaussian field on the infinite

lattice Zd, centered at a ∈ RZd
with covariance matrix given by the second argument

(i.e.
∫
N
[
a;
(
ρ−2 − q∆Zd

)−1
]
(dσ)(σx − ax)(σy − ay) =

[(
ρ−2 − q∆Zd

)−1
]
x,y

).

We see that, when the strength q of the continuous model tends to zero, the massive
Gaussian field will converge to a collection of independent Gaussians with variance ρ2.

Note that Theorem 2.1 allows us to construct continuous-spin Gibbs measures from
discrete-spin Gibbs measures.

Theorem 2.2 Suppose that µ is a continuous-spin Gibbs-measure in the sense of the
DLR equation for the specification γdw corresponding to the Hamiltonian (18), such that
supx∈Zd µ(eε|σx|) <∞ for some ε > 0.

(i) Then, the infinite-volume image measure T (µ) on {−1, 1}Zd
is a Gibbs measure for

the absolutely summable Ising-Hamiltonian (18).

(ii) The continuous-spin measure obtained by conditioning on the discrete variables in
infinite volume is Gaussian. Moreover, for all τZd we have the limit

lim
Λ↑Zd

µ( · |τΛ) = N
[
σZd(τZd);

(
ρ−2 − q∆Zd

)−1
]

(21)

Before we give the proofs of the theorems let us compute the distribution of the σΛ

conditional on the τΛ in a finite volume Λ. Using an obvious vector notation let us first
rewrite

Hσ∂Λ
Λ (σΛ, τΛ) =

1
2
〈σΛ, (ρ−2 − q∆Λ)σΛ〉 − 〈σΛ, qh1Λ + ρ−2τΛ + q∂Λ,Λcσ∂Λ〉 (22)

Here ∆Λ is the lattice Laplacian with Dirichlet boundary conditions in Λ, i.e. ∆Λ;x,y =
∆Zd;x,y for x, y ∈ Λ, and zero otherwise. Furthermore we have put ∂Λ,Λc;x,y = 1, if x ∈ Λ,
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y ∈ Λc and x, y are nearest neighbors. Now, plugging in the value at the minimizer for
given τ ,

σσ∂Λ
Λ (τΛ) := (ρ−2 − q∆Λ)−1(qh1Λ + ρ−2τΛ + q∂Λ,Λcσ∂Λ) (23)

gives us in (22)

− 1
2
〈(qh1Λ + ρ−2τΛ + q∂Λ,Λcσ∂Λ), (ρ−2 − q∆Λ)−1(qh1Λ + ρ−2τΛ + q∂Λ,Λcσ∂Λ)〉 (24)

Collecting τ -dependent terms we get the ‘finite-volume Ising-Hamiltonian’

HIsing,σ∂Λ
Λ (τΛ)

:= −ρ
−4

2
〈τΛ, (ρ−2 − q∆Λ)−1τΛ〉 − ρ−2〈τΛ, (ρ−2 − q∆Λ)−1(qh1Λ + q∂Λ,Λcσ∂Λ)〉

(25)

This is the finite-volume version of (18), still including the dependence on the continuous-
spin boundary condition σ∂Λ.

With this notation, it is clear that the measure on the σΛ conditional on the τΛ can
be written as

exp
(
−Hσ∂Λ

Λ (σΛ, τΛ)
)
dσΛ

= C exp
(
−HIsing,σ∂Λ

Λ (τΛ)
)
N
[
σσ∂Λ

Λ (τΛ);
(
ρ−2 − q∆Λ

)−1
]
(dσΛ)

(26)

This follows by centering the quadratic form in the exponent on the l.h.s. at its mini-
mizer. Of course the τ -independent constant C is just the usual Gaussian normalization
constant that is provided by the determinant of the covariance operator.

Now, the proofs of the Theorems 2.1 and 2.2 both use at some step (26). One then
takes the infinite-volume limit in a suitable way, making use of good approximation
properties of the infinite-volume resolvent by the finite-volume resolvent.

Proof of Theorem 2.1: We need to verify the DLR equation for the continuous-
spin measure µ, defined by the r.h.s. of (20), assuming that ν satisfies the discrete-spin
DLR equation for the Ising Hamiltonian (18). It suffices to look at single-site sets {x}
and so we must check that∫

ν(dτZd)N
[
σZd(τZd);

(
ρ−2 − q∆Zd

)−1
]
(dσxc)γdw

x (dσx|σ∂x)

=
∫
ν(dτZd)N

[
σZd(τZd);

(
ρ−2 − q∆Zd

)−1
]
(dσxcdσx)

(27)

The above continuous-spin DLR-equation (27) follows for any discrete-spin Gibbs mea-
sure ν by means of the discrete DLR-property for ν if we can check that∑

τx

ν(τx|τxc)∫
N
[
σZd(τx, τxc);

(
ρ−2 − q∆Zd

)−1
]
(dσxc)

∫
γdw

x (dσx|σ∂x)ϕ(σx, σV )

=
∑
τx

ν(τx|τxc)∫
N
[
σZd(τx, τxc);

(
ρ−2 − q∆Zd

)−1
]
(dσxcdσx)ϕ(σx, σV )

(28)

9



holds for all τxc , and for all local observables ϕ, i.e. V finite. Indeed, integrating (28)
in the measure ν(dτxc) implies (27).

We will verify the latter equation (28) by a finite-volume approximation of the ob-
jects appearing. From the exponential convergence limΛ↑Zd

(
ρ−2 − q∆Λ

)−1

x,y
=
(
ρ−2 − q∆

)−1

x,y

we have for any boundary condition σ̄ with supx |σ̄x| <∞ that

lim
Λ↑Zd

νIsing,σ̄∂Λ
Λ (τx|τΛ\x) = ν(τx|τxc),

lim
Λ↑Zd

∫
N
[
σσ̄∂Λ

Λ (τΛ);
(
ρ−2 − q∆Λ

)−1
]
(dσW )ψ(σW )

=
∫
N
[
σZd(τZd);

(
ρ−2 − q∆Zd

)−1
]
(dσW )ψ(σW )

(29)

for any bounded local function ψ(σW ).
Therefore, it suffices to show the following finite-volume identity∑

τx

∫
νIsing,σ∂Λ
Λ (τx|τΛ\x)

N
[
σσ∂Λ

Λ (τx, τΛ\x);
(
ρ−2 − q∆Λ

)−1
]
(dσΛ\x)γdw

x (dσx|σ∂x)

=
∑
τx

∫
νIsing,σ∂Λ
Λ (τx|τΛ\x)

N
[
σσ∂Λ

Λ (τx, τΛ\x);
(
ρ−2 − q∆Λ

)−1
]
(dσΛ\xdσx)

(30)

for all σ∂Λ and all Λ.
Indeed, then the desired consistency equation (28) follows by taking Λ going to Zd

in (30) and choosing one particular bounded σ, e.g. σ ≡ 0, ensuring that (29) holds.
In order to prove (30) first we add τx-independent terms to the Ising-Hamiltonian

appearing in the explicit expression for νIsing,σ∂Λ
Λ (τx|τΛ\x) to rewrite (30) in the form∑

τx

exp
(
−HIsing,σ∂Λ

Λ (τx, τΛ\x)
)

N
[
σσ∂Λ

Λ (τx, τΛ\x);
(
ρ−2 − q∆Λ

)−1
]
(dσΛ\x)γdw

x (dσx|σ∂x)

=
∑
τx

exp
(
−HIsing,σ∂Λ

Λ (τx, τΛ\x)
)

N
[
σσ∂Λ

Λ (τx, τΛ\x);
(
ρ−2 − q∆Λ

)−1
]
(dσΛ\xdσx)

(31)

Reading (26) from the right to the left we see that (31) is equivalent to the simple
equation ∑

τx

∫
dσ̃x exp

(
−Hσ∂Λ

Λ (σ̃xσΛ\x, τx, τΛ\x)
)
dσΛ\xγ

dw
x (dσx|σ∂x)

=
∑
τx

exp
(
−Hσ∂Λ

Λ (σxσΛ\x, τx, τΛ\x)
)
dσΛ\xdσx

(32)

But substituting the definition of the double-well specification

γdw
x (dσx|σ∂x) =

∑
τ̃x

exp
(
−Hσ∂x

x (σ̃x, τx)
)

∫
dσ̄x

∑
τ̄x

exp
(
−Hσ∂x

x (σ̄x, τ̄x)
) (33)

10



we see that (32) is in fact an identity. �

Proof of Theorem 2.2: Let us prove (i). To show the Gibbs-property of T (µ) we
will show that, for any infinite-volume spin configuration τ , we have

lim
Λ↑Zd

T (µ) (τx|τΛ\x) =
exp
(
τx
(∑

y∈Λ\x ρ
−4(ρ−2 − q∆)−1

x,yτy + qh
))

∑
τ̃x=±1 exp

(
τ̃x
(∑

y∈Λ\x ρ
−4(ρ−2 − q∆)−1

x,yτy + qh
)) (34)

where we take the limit along growing cubes.
Writing the finite-volume conditional probability in the form

T (µ) (τx|τΛ\x) =

∫
µ(dσ∂Λ)

∫
γdw,σ∂Λ

Λ (dσΛ)TΛ(τxτΛ\x|σΛ)∑
τ̃x=±1

∫
µ(dσ∂Λ)

∫
γdw,σ∂Λ

Λ (dσΛ)TΛ(τ̃xτΛ\x|σΛ)
(35)

we get

T (µ) (τx|τΛ\x) =
exp
(
τx
(∑

y∈Λ\x J
Λ
x,yτy + hΛ

x

))
RΛ

x (τx)∑
τ̃x=±1 exp

(
τ̃x
(∑

y∈Λ\x J
Λ
x,yτy + hΛ

x

))
RΛ

x (τ̃x)
(36)

with

JΛ
x,y = ρ−4(ρ−2 − q∆Λ)−1

x,y

hΛ
x = ρ−2qh

∑
y∈Λ

(ρ−2 − q∆Λ)−1
x,y

RΛ
x (τx) =

∫
µ(dσ∂Λ) exp

(
ρ−2τx

∑
y∈Λ,z∈∂Λ

(ρ−2 − q∆Λ)−1
x,yq∂y,zσz)

) (37)

But note that RΛ
x (τx) → 1, as Λ goes to Zd, is implied by the existence of exponential

moments of µ, uniformly in x. This can be seen using Hölder’s inquality to estimate
the r.h.s. in terms of µ(eεσz), where ε can be made arbitrarily small for large Λ, by the
exponential decay of (ρ−2 − q∆Λ)−1

x,y in |x− y|.
But from the properties of the resolvent it is clear that JΛ

x,y and hΛ
x converge to

their infinite-volume counterparts. So we have the convergence (34), and moreover this
convergence is uniform in τ .

To prove (ii) let us rewrite

µ(dσΛ|τΛ) =
∫
µ(dσ∂Λ)N

[
σσ∂Λ

Λ (τΛ);
(
ρ−2 − q∆Λ

)−1
]
(dσΛ) (38)

But from here follows the expression for the limit from the convergence of the resolvent
and the existence of exponential moments of µ, uniformly in x. �
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2.2 Phase transitions in the log-double Gaussian model

Note first that for both continuous-spin and discrete-spin measures we have the notion
of stochastic domination between measures. (Recall that for two measures one says that
ρ1 ≥ ρ2 stochastically iff ρ1(f) ≥ ρ2(f) for all monotone functions f , the latter meaning
that f(σ) ≤ f(σ′) if σx ≤ σ′x for all x ∈ Zd.)

But then the representation formula of Theorem 2.2 tells us that stochastic dom-
ination carries over from the discrete-spin measures to the continuous-spin measures.
More precisely we have the following.

Theorem 2.3 Suppose that ν1 and ν2 are Gibbs measures for the Ising-Hamiltonian
(18), and assume that ν1 ≤ ν2 stochastically.
Define corresponding continuous-spin measures µ1, µ2 in terms of (20).

Then we have µ1 ≤ µ2 stochastically.

Proof: This is clear since the interpolating continuous-spin configuration (19) is a
monotone function of the discrete-spin configuration τ , by the positivity of the matrix
elements of

(
ρ−2 − q∆

)−1. Since the massive Gaussian field behaves monotone under
monotone change of the centering this proves the claim. �

We note that there is monotonicity of the Gibbs measures also in the external mag-
netic field h, that is µh1 ≤ µh2 for h1 ≤ h2 when both measures are constructed from
discrete-spin measures obtained with the same boundary condition. This is clear for
the same type of reasoning.

Let us now focus on the resolvent-coupling Ising model. To make things more
transparent let us rewrite its formal infinite-volume Hamiltonian (18) in the form

HIsing
a0,λ (τ) = −a0

∑
x,y
x6=y

∞∑
n=1

λn(∂n)x,yτxτy − qh
∑

x

τx (39)

where we have written ∂ for the non-diagonal part of the lattice Laplacian, i.e. ∂x,y = 1
iff x, y ∈ V are nearest neighbors, ∂x,y = 0 else. So we have ∆Zd = ∂ − 2dI.

In (39) we have introduced the ‘natural parameters’

a0 =
1

ρ2(1 + 2dqρ2)
, λ =

qρ2

1 + 2dqρ2
∈ [0,

1
2d

) (40)

This representation is obtained from the series expansion of ρ−4
(
ρ−2 − q∆Zd

)−1 =
a0 (I − λ∂)−1. Note that we have dropped the n = 0-term since it contributes just a
constant w.r.t. the spin configurations τ to the Ising Hamiltonian.

We may now formulate the following result about the Gibbs measures.

Theorem 2.4 Consider the Ising model with Hamiltonian given (39), parametrized by
the natural parameters a0 > 0 and λ > 0, with zero external magnetic field h = 0. Then
the following is true.

(i) There is a non-increasing function λ 7→ a∗0(λ) from the interval (0, 1
2d) to the positive

real numbers such that, for all λ ∈ (0, 1
2d):

12



• For a0 < a∗0(λ) the Gibbs measure is unique.
• For a0 > a∗0(λ) the infinite-volume plus state ν+ (constructed with plus-boundary
conditions) is different from the corresponding minus state ν−.

(ii) We have the bounds

1
2dλ

− 1 ≤ a∗0(λ) ≤ βd

λ
(41)

Proof: Note that all coupling constants a0λ
n(∂n)x,y are non-negative, and mono-

tone functions of the parameters a0 and λ, for any n. So, by monotonicity there exists
an infinite-volume measure µ+

a0,λ, obtained as a finite-volume limit with plus boundary
conditions.

To prove (i) use Holley’s inequality to see that the expectation µ+
a0,λ(τx = 1) is a

monotone function of a0 and λ, by the positivity of all the couplings in the Hamiltonian
(39).

Let’s prove the r.h.s. of (ii). By monotonicity we can estimate the transition tem-
perature of the model by keeping just the nearest neighbor term obtained from n = 1
with the coupling a0λ = β. Denoting the corresponding measures by the superscript nn
we have µ+

a0,λ ≥ µnn,+
β ≥ µnn,−

β ≥ µ−a0,λ. So a0λ greater or equal than the critical inverse
temperature βd implies µ+

a0,λ > µ−a0,λ. This proves the upper estimate on the critical
value a∗0(λ).

Let’s prove the l.h.s. of (ii). This is based on Dobrushin uniqueness. Introduce the
Dobrushin interaction matrix

Cx,y := sup
ξ=ξ′ on yc

‖µ( ·
∣∣ξxc)− µ( ·

∣∣ξ′xc)‖x (42)

and put for the Dobrushin constant

c ≡ sup
x∈Γ

∑
y∈Γ

Cx,y (43)

If c < 1 one says that the specification obeys the Dobrushin-uniqueness condition, and
this implies unicity of the Gibbs measure.

It is a standard estimate in the context of Dobrushin-uniqueness that we have for
the Dobrushin-interaction matrix associated to any interaction potential Φ the bound
Cx,y ≤ 1

2

∑
A⊃{x,y} δ(ΦA). Here δ(ΦA) = supσ,σ′ |ΦA(σ)−ΦA(σ′)| denotes the variation

of ΦA.
In our case (39) we have Φ{x,y}(τx, τy) = −a0

∑∞
n=1 λ

n(∂n)x,yτxτy which implies the
simple estimate

Cx,y ≤ a0

∞∑
n=1

λn(∂n)x,y (44)

But this gives the upper bound on the Dobrushin constant

c ≤ a0

∞∑
n=1

λn
∑

y

(∂n)0,y ≤ a0

∞∑
n=1

λn(2d)n = a0
2dλ

1− 2dλ (45)

and this gives the estimate on the l.h.s. of (41). �
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Proof of Theorem 1.1: The proof follows in an obvious way from the results of
this chapter. We define µ+ by

µ+
q,ρ2,h

(dσ) :=
∫
ν+

q,ρ2,h
(dτ)N

[
σZd(τZd);

(
ρ−2 − q∆Zd

)−1
]

(46)

µ− is defined similarly via ν−. The conditions given in Theorem 1.1 on q−1 are a
reformulation of the conditions from Theorem 2.4 (ii) in terms of the original parameters.
The stochastic domination µ+ > µ− for h = 0 in the continuous model follows from the
stochastic domination ν+ > ν− in the Ising model (which holds by non-negativity of
the couplings) and Theorem 2.3. �

3 Time evolution-quenched model

Let us now come back to the time evolution involving independent diffusions with tran-
sition kernels given by the Ornstein-Uhlenbeck semigroup (5). Using the scaling of the
Ornstein-Uhlenbeck paths to Brownian motions (9) it suffices to consider the Brownian
semigroup at the rescaled time s, given by

pBM
s (σx, ηx) =

e−
1
2s

(ηx−σx)2

√
2πs

(47)

We start the time evolution from the continuous-spin plus state µ+
q,ρ2,h

(dσ), see (46).
Let us write for the resulting time-evolved measure

µ+,BM
q,ρ2,h;s

(dη) =
∫
µ+

q,ρ2,h
(dσ)

∏
x

pBM
s (σx, ηx)dηx (48)

So, a density for the finite-volume single-site conditional probabilities is given by

µ+,BM
q,ρ2,h;s

(dη0|ηV \0) =

∫
µ+

q,ρ2,h
(dσ)

∏
x∈V \0

e−
1
2s (σx−ηx)2

√
2πs

× e−
1
2s (σ0−η0)2

√
2πs

dη0∫
µ+

q,ρ2,h
(dσ)

∏
x∈V \0

e−
1
2s (σx−ηx)2

√
2πs

(49)

Spelling out the µ+-Gibbs expectation over σ we obtain an expectation of a function
of σ0 in a quenched random field model. Here the ‘random fields’ η are present only
in the finite set V \0. In the sequel it is necessary that we will keep finite this volume
W ≡ V \0 where the conditioning η is fixed.

Let us summarize how we will proceed now in the investigation of the continuity
properties of the conditional probabilities of the time-evolved measure µ+,BM

q,ρ2,h;s
(dη).

(49) is a σ-expectation in a quenched random field model where η is acting as a
random field. To this quenched random field model in σ there corresponds a quenched
random field model in the discrete τ -variables. This is very much analogous to the
translation-invariant case.

To show the presence (resp. absence) of discontinuous behavior of the conditional
probabilities of the time-evolved measure we study presence (resp. absence) of a phase
transition in the quenched τ -model, as a function of η, when we let V tend to Zd. More
precisely, a discontinuity will occur if there is an η for which there is a phase transition
in the quenched τ -model.
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3.1 Relation to quenched Ising model with resolvent-interaction -
Reducing Gibbs versus non-Gibbs to a discrete-spin question

To analyse the model we will use the same continuous-to-discrete reduction strategy as
in Chapter 2. The difference is, obviously, the presence of the fixed random fields.

Let us present a formal computation in the infinite volume in order to motivate the
definitions to follow. This computation is the formal infinite-volume version of the steps
given in (22) ff. in the present η-dependent context. We do the same transformation to
discrete variables τ as we did before. In matrix notation this gives us (in the infinite
volume) the quadratic expression

σ 7→ 1
2
〈σ, (ρ−2 + s−1IW − q∆)σ〉 − 〈qh1 + ρ−2τ + s−1ηW , σ〉 (50)

for the conditional expectation of σ’s given the τ -variables.
The ‘minimizer’ of this functional is obtained by taking the gradient w.r.t. σ. This

minimizer is the generalization of the ‘interpolating’ τ -dependent infinite-volume con-
tinuous configuration (19). It will now depend on the random field ηW in the finite
volume W , and we will use the following notation:

σW,s
Zd [ηW ](τZd) := (ρ−2 + s−1IW − q∆)−1(qh1 + ρ−2τZd + s−1ηW ) (51)

For s ↑ ∞ this becomes identical to (19).
Subtituting formally (51) into the infinite-volume functional (50) gives us a quadratic

expression in τ that depends also on η. So, collecting τ -dependent terms, let us first
define the absolutely summable quenched random field Ising-Hamiltonian

HIsing,W,s[ηW ] (τ) := −ρ
−4

2

∑
x,y

(ρ−2 + s−1IW − q∆)−1
x,yτxτy

− ρ−2
∑

x

τx
∑

y

(ρ−2 + s−1IW − q∆)−1
x,y(qh+ s−1IW ηy)

(52)

Here we have dropped the parameters of the time zero measure q, ρ2, h in order not to
overburden the notation, however we have kept the time s in the notation.

The negative exponential of this Hamiltonian should give us the weight for the
τ -configuration. Of course this expression is infinite because we just used a formal ma-
nipulation with infinite quantities. Let us make sense out of this by going through finite
volumes in a suitable way, like we described in detail in Section 2 for the translation-
invariant model.

Note that definition (52) is a generalization of the translation-invariant definition for
the Ising Hamiltonian with resolvent interaction given by (18). With this notation we
have in particular that HIsing,W=∅,s(τ) = HIsing(τ), and also lims↑∞HIsing,W,s[ηW ](τ) =
HIsing(τ).

Denote the specification corresponding to the Hamiltonian (52) by γIsing,W,s
Λ [ηW ](τΛ|τΛc).

The first theorem says that putting random fields in a finite volume introduces only
a finite energy change and so the construction of the infinite-volume Gibbs measures is
reduced to the case without random fields. More precisely, it says the following.
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Theorem 3.1 Fix any finite subset W⊂Zd, and configuration ηW ∈ RW .
Then the limit weak limit (w.r.t. product topology)

νW,s,+[ηW ] := lim
Λ↑Zd

γIsing,W,s
Λ [ηW ]( · |+Λc) (53)

exists and is absolutely continuous w.r.t. ν+ = limΛ↑Zd γ
Ising
Λ ( · |+Λc). More precisely we

have that∫
νW,s,+[η](dτ)ϕ(τ) =

∫
ν+(dτ)ϕ(τ) exp

(
−HIsing,W,s[ηW ](τ) +HIsing(τ)

)∫
ν+(dτ) exp (−HIsing,W,s[ηW ](τ) +HIsing(τ))

(54)

where

τ 7→ HIsing,W [ηW ](τ)−HIsing(τ) (55)

is a bounded continuous function (w.r.t product topology).

The measure (53) gives the relevant expectation over the τ -variables to control the
conditional probabilities (49).

Proof: To see the continuity w.r.t. product topology of the difference Hamiltonian
(55) we use the exponential decay of the resolvents appearing. E.g. for the terms that
are quadratic in τ we write

− ρ−4

2

∑
x,y

(
(ρ−2 + s−1IW − q∆)−1

x,y − (ρ−2 − q∆)−1
x,y

)
τxτy

=
ρ−4

2

∑
x,y

[
(ρ−2 + s−1IW − q∆)−1s−1IW (ρ−2 − q∆)−1

]
x,y

τxτy

(56)

It is clear now that the matrix elements [. . . ]x,y decay exponentially in the distance
of x and y from W . This shows the continuity of the quadratic part of the difference
Hamiltonian in τ w.r.t. product topology because any variation w.r.t. τ outside of a
large volume has a vanishing effect when this volume tends to the whole lattice. For
the part of the Hamiltonian that is linear in τ the same argument applies.

The existence of (53) is clear by the continuitiy of (55). Indeed, it follows by reex-
pressing the expectation

∫
γIsing,W,s

Λ [ηW ](dτ |+Λc)(dτ)ϕ(τ) for a local function ϕ(τ) in
terms of an expectation w.r.t.

∫
γIsing

Λ (dτ |+Λc)(dτ)ϕ̃(τ, ηW ) with a modified local func-
tion containing the difference Hamiltonian (55). So the existence of the limit Λ ↑ Zd of
the first quantity follows by the existence of the latter, for all continuous ϕ̃. (Of course,
in our case the existence of the limit is also granted by monotonicity.)

From this argument also the absolute continuity of the infinite-volume Gibbs mea-
sures (54) follows. �

Let us now give a reformulation for the single-site conditional probabilites (49), using
the η-dependent discrete-spin states from the last theorem. The precise result is given
in the next theorem. Remember the interpolating σ-configuration given by (51).
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Theorem 3.2 The finite-volume conditional expectations of the continuous time-evolved
model can be written as an expectation w.r.t. a quenched discrete-spin Gibbs measure
of a weakly discrete-spin dependent Gaussian in the form

µ+,BM
q,ρ2,h;s

(dη0|ηV \0) =
∫
ν

V \0,s,+
q,ρ2,h

[ηV \0](dτZd)

N

[[
σW,s

Zd [ηW ](τZd)
]
0
;
[
(ρ−2 + s−1IV \0 − q∆)−1

]
0,0

+ s

]
(dη0)

(57)

Proof: To show the equality we show that (remember (46))∫
ν+

q,ρ2,h
(dτ)

∫
N
[
σZd(τZd);

(
ρ−2 − q∆Zd

)−1
]
(dσ)

∏
x∈V \0

e−
1
2s (σx−ηx)2

√
2πs

× ϕ(σ0)∫
ν+

q,ρ2,h
(dτ)

∫
N
[
σZd(τZd); (ρ−2 − q∆Zd)−1

]
(dσ)

∏
x∈V \0

e−
1
2s (σx−ηx)2

√
2πs

=
∫
νV \0,s,+[ηV \0](dτZd)∫

N

[[
σW,s

Zd [ηW ](τZd)
]
0
;
[
(ρ−2 + s−1IV \0 − q∆)−1

]
0,0

]
(dσ0)× ϕ(σ0)

(58)

for all local bounded continuous ϕ(σ0).
Using Theorem 3.1 we replace the η-dependent discrete-spin measure on the r.h.s.

and rewrite this equation as∫
ν+

q,ρ2,h
(dτ)

∫
N
[
σZd(τZd);

(
ρ−2 − q∆Zd

)−1
]
(dσ)

∏
x∈V \0

e−
1
2s (σx−ηx)2

√
2πs

× ϕ(σ0)∫
ν+

q,ρ2,h
(dτ)

∫
N
[
σZd(τZd); (ρ−2 − q∆Zd)−1

]
(dσ)

∏
x∈V \0

e−
1
2s (σx−ηx)2

√
2πs

=

∫
ν+

q,ρ2,h
(dτ) exp

(
−HIsing,W,s[ηW ](τ) +HIsing(τ)

)∫
ν+

q,ρ2,h
(dτ ′) exp (−HIsing,W,s[ηW ](τ ′) +HIsing(τ ′))∫

N

[[
σW,s

Zd [ηW ](τZd)
]
0
;
[
(ρ−2 + s−1IV \0 − q∆)−1

]
0,0

]
(dσ0)× ϕ(σ0)

(59)

Since the l.h.s. and the r.h.s. describe probability averages over the local observable
ϕ(σ0), the denominators providing the correct normalization constants, it suffices to
show that∫

ν+
q,ρ2,h

(dτ)

(∫
N
[
σZd(τZd);

(
ρ−2 − q∆Zd

)−1
]
(dσ)

∏
x∈V \0

e−
1
2s

(σx−ηx)2

√
2πs

× ϕ(σ0)

)

=
∫
ν+

q,ρ2,h
(dτ)

(
Const exp

(
−HIsing,W,s[ηW ](τ) +HIsing(τ)

)
∫
N

[[
(ρ−2 + s−1IV \0 − q∆)−1(qh1 + ρ−2τZd + s−1ηV \0)

]
0

;
[
(ρ−2 + s−1IV \0 − q∆)−1

]
0,0

]
(dσ0)× ϕ(σ0)

)
(60)
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with some ϕ-independent and τ -independent constant.
To see this is essentially a computation with quadratic forms. Indeed, (60) follows

from the equation

1
2
〈σ − σ(τ),

(
ρ−2 − q∆Zd

)
(σ − σ(τ))〉+

1
2s
σ2

V \0 − 〈σ, IV \0η〉

−

(
1
2
〈σ − σV \0[ηV \0](τ),

(
ρ−2 − q∆Zd + s−1IV \0

)
(σ − σV \0[ηV \0](τ))〉

−HIsing,W,s[ηW ](τ) +HIsing(τ)

)
= Const

(61)

and a finite-volume approximation for the massive Gaussian fields under the τ -integral
in (60), like we were using in Chapter 2. �

The nice representation given in (57) gives us control over the conditional probabili-
ties of the time-evolved measure in terms of a model for discrete spins with ferromagnetic
interaction. Moreover, the normal distribution appearing under the discrete integral in
(57) has τ -independent variance. Its expectation is a strictly increasing function in τ .
Therefore the problem of continuity the conditional probabilities of the time-evolved
measure is boiled down to the investigation of the measure νV \0,s,+

q,ρ2,h
[ηV \0] as a function

of η in growing volumes V . We immediately have the following result.

Theorem 3.3 The time-evolved measure µ+,BM
q,ρ2,h;s

(dη) is Gibbs in the sense of Definition
1.2 (see the Introduction) if and only if the following is true:

For all sites x ∈ Zd and for all continuous-spin (‘random field’-) configurations η,
for all 0 < M < ∞, and for all ε > 0 there exists a volume V0 3 x such that we have
that

sup
V :V⊃V0

sup
ω,ω′:

ω,ω′∈[−M,M ]Zd

∣∣∣∣∣νV \0,s,+
q,ρ2,h

[ηV0\0ωV \V0
](τx = +)− ν

V \0,s,+
q,ρ2,h

[ηV0\0ω̄V \V0
](τx = +)

∣∣∣∣∣ < ε

(62)

4 Proof of main result

4.0.1 Proof of Theorem 1.3 (0)

We need to ensure the hypothesis of Theorem 3.3 on the random field-dependence of
the local magnetization in the discrete-spin measures. For these we will prove the
following precise and surprisingly simple estimate. It shows that a bounded variation
of the random field configuration only has an influence on a local observable that is
exponentially small in the distance between the support of this observable and the set
where this variation takes place. The estimate is uniform in the time, and holds as long
as the initial measure satisfies the criterion ensuring Dobrushin uniqueness, stated in
the hypothesis of Theorem 1.3 (0).

We have the following theorem.
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Theorem 4.1 Consider the model (52), in any external magnetic field h. Recall the
definition of the natural parameters a0 > 0 and λ > 0 and suppose that a0 < a∗0(λ).

Then the model (52) is in the Dobrushin-uniqueness regime, with a bound on the
Dobrushin constant that is uniform for any time s and any subset V .

Moreover we have the exponential bound∣∣∣∣∣νV \0,s,+
q,ρ2,h

[ηV \0](τx = +)− ν
V \0,s,+
q,ρ2,h

[η′V \0](τx = +)

∣∣∣∣∣
≤ ρ2a0

2s

∑
z∈V \0

(
I − λ(1 + a0)∂

)−1

x,z
|ηz − η′z|

(63)

Remark 1: The condition a0 < a∗0(λ) is equivalent to λ(1+a0)2d < 1 which implies

exponential decay of the matrix elements of
(
I − λ(1 + a0)∂

)−1
in their distance.

Remark 2: Note that the bound diverges with s ↓ 0. This is an artefact of the
estimate. To improve on in for the case of small s we may apply the somewhat more
complicated estimate given in the next subsection.

Proof: The proof is based on Dobrushin-uniqueness. We have for the single-site
local specification of the quenched model

γIsing,W,s
x [ηW ] (τx|τxc)

=
exp
(
τx
∑

y(ρ
−2 + s−1IW − q∆)−1

x,y

(
ρ−4τy + ρ−2(qh+ s−1Iy∈W ηy)

))
Norm

(64)

Let us denote the corresponding Dobrushin interaction matrix by CW,s
x,y . Recall (44,45).

Using the fact that (ρ−2 + s−1IW − q∆)−1
x,y ≤ (ρ−2 − q∆)−1

x,y we get, along with the
estimates for the Dobrushin interaction matrix from the translation-invariant case the
same estimate

CW,s
x,y ≤ a0

∞∑
n=1

λn(∂n)x,y = a0

(
λ∂

1− λ∂

)
x,y

(65)

where a0, λ were defined in (40).
To estimate the influence of the ‘random fields’ on the quenched measure we apply

a general estimate on the change of the measure under change of the specification in
the Dobrushin regime.

This estimate relies on the following piece of information (see [Geo88], Theorem
8.20).

Fact about Dobrushin uniqueness: Suppose that the random variables (Xx)x∈Zd

are distributed according to a Gibbs measure ρ for a specification γ that obeys the Do-
brushin uniqueness condition. Put D =

∑∞
n=0C

n where C is the interdependence ma-
trix of γ. Suppose that we are given another Gibbs measure ρ̃ such that the variational
distance of the single-site conditional probabilities is uniformly bounded by

sup
ξ
‖ρ( · |ξ)− ρ̃( · |ξ)‖x ≤ bx (66)
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with constants bx for x ∈ Γ. Then the expectations of any function f(ξ) on the infinite-
volume configurations ξ don’t differ more than

|ρ(f)− ρ̃(f)| ≤
∑

y,x∈Zd

δy(f)Dy,xbx (67)

To apply this we note that in the course of the proof of Proposition 8.8 of [?] the
following is shown. Suppose that λ(i)

x (dωx) = eu
(i)(ωx)λ(dωx)/

∫
λ(dω̃x)eu

(i)(ω̃x), i = 1, 2
are two measures on the single-site space E, given in terms of the functions u(i). Then
their variational distance can be bounded in terms of the variation of the function u(1)−
u(2) so that one has ‖λ(1)

x −λ(2)
x ‖x ≤ 1

4 supωx,ω′x
|u(1)(ωx)−u(2)(ωx)−u(1)(ω′x)+u(2)(ω′x)|.

Applying this to the above local specification γIsing,W,s
x [ηx|ηxc ] with random field

configuration ηxc resp. η′xc we thus get

bx ≤
1
2
ρ−2s−1

∑
z∈W

(ρ−2 + s−1IW − q∆)−1
x,z|ηz − η′z|

≤ 1
2
ρ−2s−1

∑
z∈W

(ρ−2 − q∆)−1
x,z|ηz − η′z|

≤ ρ2a0

2s

∑
z∈W

(
I

I − λ∂

)
x,z

|ηz − η′z|

(68)

Then we note that we can bound the positive matrix D = (I−C)−1 by the element-
wise estimate

D ≤
(
I − a0

λ∂

1− λ∂

)−1
=

I − λ∂

I − λ(1 + a0)∂ (69)

The combination of (67),(68),(69) gives the desired estimate (63). Note that a
cancellation in the matrix multiplication makes the structure of the bound particularly
nice. �

4.0.2 Proof of Theorem 1.3 (i)

Next we focus on the case of small s, but arbitrary initial measure. Of course we have
in mind also the case of phase transitions in the initial model.

There is now a subtlety in the argument because the measures corresponding to the
infinite-volume random field Hamiltonian (52) will not be in the Dobrushin regime any
more. This is because the suppression of the couplings for small s acts only in the finite
set W instead of in all of Zd. Let us therefore introduce the following artificial model
that will be used as a comparison model in the ‘Fact’.

γ̄Ising,W,s
x [ηW ] (τx|τxc)

=
exp
(
τx
∑

y

[
(ρ−2 + s−1 − q∆)−1

x,yρ
−4τy + (ρ−2 + s−1IW − q∆)−1

x,yρ
−2(qh+ s−1Iy∈W ηy)

])
Norm

(70)
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Here we have simply changed the interaction-part by definition, replacing the term
s−1IW by s−1 everywhere. The advantage of the above specification is that, for small
enough s (depending on q, ρ2) we are again in the Dobrushin-uniqueness regime. Indead,
note that in (70) the coupling between the τ -variables in the whole lattice disappears
when s tends to zero.

On the other hand, the reason why this replacement is fruitful is that for x sufficiently
far away from W c, the interaction to the other τy is practically unchanged.

Let us introduce the natural s-dependent parameters

a0(s) =
1

ρ2(1 + 2dqρ2 + s−1ρ2)
, λ(s) =

qρ2

1 + 2dqρ2 + s−1ρ2
∈ [0,

1
2d

) (71)

Let us denote the Dobrushin interaction matrix corresponding to this specification
by C̄x,y(s). We get with the usual arguments from the geometric series expansion for
the interaction term the bound

C̄x,y(s) ≤ a0(s)
∞∑

n=1

λ(s)n(∂n)x,y = a0(s)
(

λ(s)∂
1− λ(s)∂

)
x,y

(72)

The corresponding Dobrushin constant c̄(s) then has a bound

c̄(s) ≤ a0(s)
λ(s)2d

1− λ(s)2d
(73)

Indeed, for s sufficiently small, meaning that a0(s) ≤ a∗0(λ(s)), there is Dobrushin
uniqueness for the auxiliary model and we will denote its unique Gibbs measure by
ν̄W,s[ηW ]. Assuming Dobrushin-uniqueness for the auxiliary measure ν̄W,s[ηW ] it is
then completely analogous to what was just done in the previous subsection to estimate
the influence of the measure under the change of random fields.

So, let us focus on the estimation of the difference between the true measure νV \0,s,+[ηW ]
and the auxiliary measure ν̄W,s[ηW ]. Then the continuity property for the true measure
follows by an obvious ε/3-argument.

To do the former, we must estimate the variational distance between the specifi-
cations γ̄Ising,W,s

x [ηW ] (τx|τxc) and γIsing,W,s
x [ηW ] (τx|τxc). The difference is due to the

change in the couplings, and not the random fields, and we get for the corresponding
quantity

b̄x(W ) ≤ 1
2
ρ−4

∑
z∈Zd\x

∣∣∣(ρ−2 + s−1IW − q∆)−1
x,z − (ρ−2 + s−1 − q∆)−1

x,z

∣∣∣
=

1
2
ρ−4s−1

∑
z∈Zd\x

(
(ρ−2 + s−1IW − q∆)−1IW c(ρ−2 + s−1 − q∆)−1

)
x,z

≤ 1
2
ρ−4s−1

∑
z∈W c

(ρ−2 + s−1IW − q∆)−1
x,z(ρ

−2 + s−1)−1

≤ 1
2ρ2(s+ ρ2)

∑
z∈W c

(ρ−2 − q∆)−1
x,z

≤ ρ−4
∑

z∈W c

(ρ−2 − q∆)−1
x,z

(74)
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The point is that for x very far away from W c the quantity b̄x(W ) becomes very small.
Note also that this bound is uniform in s.

Now the ‘Fact about Dobrushin uniqueness’ gives us the following. For the auxiliary
measure ν̄ we have for D̄(s) = (I − C̄(s))−1 the element-wise estimate

D̄(s) ≤ I − λ(s)∂
I − λ(s)(1 + a0(s))∂ (75)

Recall that by a0 and λ we denote the natural parameters of the model at time zero
(not assuming Dobrushin uniqueness). Then we have

∑
y

D̄x,y(s)b̄y(W ) ≤ a0

∑
y∈W c

(
I − λ(s)∂(

I − λ(s)(1 + a0(s))∂
)
(I − λ∂)

)
x,y

≤ Const e−const dist(x,W c)

(76)

as soon as a0(s) < a∗0
(
λ(s)

)
.

So we also have∣∣∣∣∣νV \0,s,+
q,ρ2,h

[ηV \0](τx = +)− ν̄
V \0,s
q,ρ2,h

[ηV \0](τx = +)

∣∣∣∣∣ ≤ Const e−const dist(x,W c) (77)

Note that it is simple to get from (75) and (67) [confer (68)] the estimate∣∣∣∣∣ν̄V \0,s
q,ρ2,h

[ηV \0](τx = +)− ν̄
V \0,s
q,ρ2,h

[η′V \0](τx = +)

∣∣∣∣∣
≤ ρ2a0(s)

2s

∑
z∈V \0

(
I − λ(s)(1 + a0(s))∂

)−1

x,z
|ηz − η′z|

(78)

This is completely identical to the proof given in the previous subsection. But from
here the proof of the statement of the theorem follows by the said ε/3-argument.

Referring to Remark 2 after Theorem 4.1 we now note that lims↓0
a0(s)

s = ρ−4 which
gives uniformity as s goes to zero, instead of the simpler bound given in Theorem 4.1 .
�

4.0.3 Proof of Theorem 1.3 (ii)

Return to the Hamiltonian (52). We fix an obvious candidate for a bad configuration,
putting ηspec

x ≡ −qhs. Next we consider bounded perturbations, chosen to be ω±x ≡
ρ2(±K − qhs), with some positive constant K.

Rewriting the Hamiltonian for these specific magnetic fields we have

HIsing,V \0,s[ηspec
V0\0ω

±
V \V0

] (τ) = −ρ
−4

2

∑
x,y

(ρ−2 + s−1IV \0 − q∆)−1
x,yτxτy

+
∑

x

τx

( ∑
y∈Zd\V0

(ρ−2 + s−1IV \0 − q∆)−1
x,y

(
∓K1y∈V \V0

+ qh1y∈Zd\V

)) (79)
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It will be convenient to be a little more general even and consider Hamiltonians of the
form where we allow for a different set V in the definition of the coupling-terms and for
the annulus where the magnetic field term is ±K. Let us consider

− ρ−4

2

∑
x,y

(ρ−2 + s−1IV \0 − q∆)−1
x,yτxτy

+
∑

x

τx

( ∑
y∈Zd\V0

(ρ−2 + s−1IV \0 − q∆)−1
x,y

(
∓K1y∈V1\V0

+ qh1y∈Zd\V1

)) (80)

Let us comment on the structure of this Hamiltonian. For sites within V0, there is
essentially no magnetic field and so the measure on such spins should be close to a
(convex combination of) Gibbs measure(s) of a zero-field Ising model. The spins in the
annulus V1\V0 feel a positive or negative magnetic field that can be made arbitrarily
large by choosing K large. The spins even further outside in the region V c

1 won’t be
relevant any more when the annulus V1\V0 is chosen to be very large.

So it is intuitively clear that the distribution within the set V0 will look like a plus
state, for large V0 and even larger V1, in the case of −K1y∈V1\V0

. It will look like a
minus state for +K1y∈V1\V0

.
We will perform now a number of weak limits for the corresponding infinite-volume

Gibbs measures.
Do be definite, (also in the case h = 0), define ν1[±K, qh, V0, V, V1] to be the limit of

the local specification with plus boundary conditions) corresponding to (80). We note
that this limit exists, by monotonicity, and is a Gibbs measure for the above Hamiltonian
(80).

Let us next assume that K 6= qh. Let us keep V fixed in (80) where it appears only
in the coupling-term. Then we put ν2[±K,V0, V ] = limV1↑Zd ν1[±K, qh, V0, V, V1]. By
monotonicity of the Hamiltonian in V1, also this limit exists and is a Gibbs measure for
the Hamiltonian

− ρ−4

2

∑
x,y

(ρ−2 + s−1IV \0 − q∆)−1
x,yτxτy

∓
∑

x

Kτx
∑

y∈Zd\V0

(ρ−2 + s−1IV \0 − q∆)−1
x,y

(81)

Let us denote by ν+
2,Λ[±K,V0, V ] the finite-volume Gibbs measure corresponding to the

Hamiltonian (81) in finite volume Λ, with plus boundary condition. We use a similar
notation for minus boundary conditions with the same Hamiltonian.

For K > 0 sufficiently large (large field region) it is a simple exercise to see that
Hamiltonian (81) obeys the Dobrushin uniqueness condition and so the resulting Gibbs
measure is unique.

It now suffices to show (cf. Theorem 3.3) that in that regime of values of K we have

ν2[+K,V0, V ](τx = 1)− ν2[−K,V0, V ](τx = 1) > δ (82)

for some δ > 0, uniformly in V0.
For any finite Λ we have the inequalities

ν+
2,Λ[+K,V0, V ] ≥ ν+

2,Λ[0, V0, V ] ≥ ν−2,Λ[0, V0, V ] ≥ ν−2,Λ[−K,V0, V ] (83)

23



From Theorem 2.4 it now follows easily that

lim
Λ↑Zd

ν+
2,Λ[0, V0, V ](τx = 1)− lim

Λ↑Zd
ν−2,Λ[0, V0, V ](τx = 1) > δ (84)

uniformly in V0, V . Indeed, there is no dependence on V0, for K = 0. Next we have the
inequality

(ρ−2 + s−1IV \0 − q∆)−1
x,y ≥ (ρ̄−2 − q∆)−1

x,y (85)

where ρ̄ on ρ are arbitrary close for s sufficiently large, uniformly in V . �
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