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Abstract
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priority rules.
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1 Introduction

Consider a single server queueing system shared by N customer classes, numbered 1, . . . , N .

The arrival process of class i is Poisson with rate λi. The service times of class i customers are

exponentially distributed with rate µi. The class index i indicates the priority rank; class 1 has

lowest priority and class N has highest priority. The priority rule is preemptive, i.e., service

may be interrupted by higher priority customers.

In this paper we present an exact method, based on matrix-analytic techniques, for finding

the steady state joint queue length distribution. This distribution is required in many applica-

tions in the area of spare parts logistics and production.

Priority queueing systems have a long history (cf. Cobham [3], Davis [4], Jaiswal [9]) and

single and multi server priority queues received much attention. Most of the earlier studies, how-

ever, concentrate on the transforms of marginal system characteristics (e.g., class i queue length

and waiting time). Our interest in the problem arose from a spare parts logistics problem, see

Subsection 4.2, where the joint queue length distribution is necessary for an exact performance

analysis.

The first results for the joint queue length distribution of priority queueing systems are

derived by Miller [10], who analyzes the M2/M2/1 priority queueing system by the matrix-

geometric method. Later Alfa [1, 2], Isotupa [8] and Wagner [18, 19] observe that the matrix-

geometric method is a natural choice for studying priority queueing systems with a Quasi-

Birth-and-Death (QBD) structure. In these papers Miller’s method is generalized to systems

with a Markovian Arrival Process and phase type service time distributions, which require a

more detailed registration of the arrival and service process. Also in [2, 8] the authors apply the

matrix-geometric method to an N -class system. However they do not observe that lower priority

customers see the queueing system as an M/G/1-type system, i.e., an M/M/1 system with an

unreliable server (where the down times correspond to high priority service interruptions). This

suggests to use the matrix-analytic method for M/G/1-type systems, and indeed, in the present

paper it appears that this method leads to an elegant recursive analysis of priority queueing

systems with N ≥ 2 classes of customers.

There is also a number of papers studying the joint queue length distribution using different

approaches. Gail et al. [5, 6] and Mitrani and King [11] use generating functions for the analysis

of M2/M2/k priority queueing systems. Later Sleptchenko et al. [17] and Sleptchenko [16] use

a mixture of matrix-geometric and generating function approaches to analyze preemptive and

non-preemptive priority MN/MN/k queueing systems, where each class of customers has either

2



high or low priority.

In this paper we apply the matrix-analytic method (see Neuts [13], Ramaswami [14]), and

in doing so, we exploit the M/G/1 structure of the Markov process describing the preemp-

tive priority system with N customer classes. This yields an efficient algorithm for the exact

computation of the steady state queue length distribution.

To this aim, in Section 2, we first present the formal description of the single server priority

system, and formulate the steady state equations. In Section 3, we apply the matrix-analytic

method. The proposed method is based on the matrix formulation of the steady state equa-

tions, using matrices with a complex nested structure. To ease the understanding of the nested

structure and of the method in general, we first show in Section 3.1 how the 2-class model can

be formulated and solved using the matrix-analytic method for M/G/1-type systems. Next,

in Section 3.2, we show how the analysis can be extended to a 3-class system and highlight

the recursive nature of the approach. Finally, in Section 3.3, we present the main steps of the

algorithm for the general N -class case. After that, in Section 4, we discuss some implemen-

tation issues and present computational results for a spare parts problem. In the final section

we describe how the proposed method can be applied to other queueing systems such as the

multi-server MN/MN/k preemptive and non-preemptive priority system.

2 Model and steady state equations

Throughout the paper we assume that the queueing system is stable, i.e. the traffic intensity ρ

is less than 1 (see for example [7]):

ρ =
N∑

i=1

λi/µi < 1.

The states of the MN/MN/1 preemptive priority system can be described by N -dimensional

vectors q = (qN , . . . , q1), where qi is the number of class i customers in the system.

The state transitions are caused by an arrival or a service completion. From the preemptive

priority rule it follows that, when a class i customer is in service, there are no higher priority

customers in the system, i.e., qN = · · · = qi+1 = 0 whenever qi > 0. Formally, the state

transitions can be written as follows:

(qN , . . . , q1)
λi−→ (qN , . . . , qi + 1, . . . , q1), qj ≥ 0, j = 1, . . . , N

(0, . . . , 0, qi, . . . , q1)
µi−→ (0, . . . , 0, qi − 1, . . . , q1), qN = · · · = qi+1 = 0, qi > 0.

Given these transitions, the balance equations for the steady state probabilities pq can be easily
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obtained:

pq




N∑

j=1

λj + µN


 =




N∑

j=1

pq−ejλj


 + pq+eN µN , q s.t. qN > 0 (1)

...

pq




N∑

j=1

λj + µi


 =




N∑

j=i

pq−ejλj




+




N∑

j=i

pq+ejµj


, q s.t. qN = · · · = qi+1 = 0, qi > 0 (2)

...

pq




N∑

j=1

λj


 =




N∑

j=1

pq+ejµj


, q = 0 (3)

where ei is the vector with all components equal to 0 except for the i-th component being 1,

and by convention, pq = 0 if qj < 0 for some j.

3 Matrix-analytic approach

Miller [10] has shown that a two-class M2/M2/1 queue with preemptive priority behaves as a

QBD process, where level i ≥ 0 is the set of all states with i high priority customers in the

system. Although the levels have infinitely many states, the standard matrix-geometric method

(see e.g. [12]) can be used to analyze the two-class priority system.

However, the N -class priority system has a much more complicated structure, for which the

matrix-analytic method for M/G/1-type queueing systems appears to be more appropriate, as

will be shown later. We will show first how the 2-class and 3-class system can be solved by the

matrix-analytic method.

3.1 Matrix-analytic approach for 2-class systems

The transition rate diagram of the M2/M2/1 preemptive priority queue is shown in Figure 1.

This queueing system behaves as a QBD process, where level q2 ≥ 0 is the set of all states

with q2 high priority customers in the system. In this process the arrival and departure of a

high priority customer corresponds to a birth and death event, respectively. The generator Q
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Figure 1: Transition rate diagram of the 2-class M2/M2/1 preemptive priority queue.

has the following form:

Q =




Ã0 λ2I

µ2I A0 λ2I

µ2I A0 λ2I

µ2I A0
. . .

. . . . . .




The (infinite) block A0 corresponding to transitions within a level has an upper triangular,

two-diagonal structure:

A0 =




− (λ1 + λ2 + µ2) λ1

− (λ1 + λ2 + µ2) λ1

− (λ1 + λ2 + µ2)
. . .
. . .




.

Transition rates corresponding to service completions of low priority customers only appear in

the boundary block Ã0, which has a three-diagonal structure:

Ã0 =




− (λ1 + λ2) λ1

µ1 − (λ1 + λ2 + µ1) λ1

µ1 − (λ1 + λ2 + µ1)
. . .

. . . . . .




.

As mentioned before, we will apply the standard method for M/G/1-type queues. That is, we

first derive the fundamental matrix G for the QBD with generator Q. The matrix G contains

the first passage probabilities from level q2 to level q2 − 1; i.e., [G]i,j is the probability to arrive
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at state (q2−1, q1 +j), when level q2−1 is reached for the first time, starting in state (q2, q1 + i).

These probabilities do not depend on q2 since the transitions are the same at each level q2 > 0.

Note that ∞∑

j=0

[G]i,j = 1,

since in a stable system we will move sooner or later from a state at level q2 to level q2 − 1.

Since low priority customers are not served while there are high priority customers, we cannot

move from a state (q2, q1 + i), q2 > 0, to a state (q2 − 1, q1 + j) with j < i. Also, the number of

low priority customers arriving during an excursion from state (q2, q1) to level q2 − 1 does not

depend on the value of q1. Hence, the fundamental matrix G has an upper triangular structure

with the same elements along diagonals:

G =




g0 g1 g2
. . .

g0 g1
. . .

g0
. . .
. . .




.

Element gi represents the probability that the number of customers in the low priority queue

has increased by i at the first passage to level q2 − 1 when starting in state (q2, q1). These

probabilities can be found recursively. First, g0 is the probability that no low priority customer

arrived when we return to level q2 − 1 after starting at level q2. Conditioning on the first event

in state (q2, q1) we obtain:

g0 =
µ2

(λ1 + λ2 + µ2)
· 1 +

λ1

(λ1 + λ2 + µ2)
· 0 +

λ2

(λ1 + λ2 + µ2)
· (g0)2.

In the same way we find the other probabilities gi:

gi =
µ2

(λ1 + λ2 + µ2)
· 0 +

λ1

(λ1 + λ2 + µ2)
· gi−1 +

λ2

(λ1 + λ2 + µ2)
·

i∑

j=0

gjgi−j , i > 0.

Thus, the elements gi can be obtained from the following recursive equations:

µ2 − (λ1 + λ2 + µ2) g0 + λ2(g0)2 = 0, i = 0, (4)

− (λ1 + λ2 + µ2) gi + λ1gi−1 + λ2

i∑

j=0

gjgi−j = 0, i > 0, (5)

where g0 is the minimal non-negative solution of (4). These expressions also immediately follow

from the standard matrix equation for the fundamental matrix (cf. [13]):

µ2I + A0G + λ2G2 = 0
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The matrix G can be used to solve the balance equations (1)-(3), in matrix form written as:

λ2pq2−1 + pq2A0 + µ2pq2+1 = 0, q2 > 0, (6)

p0Ã0 + µ2p1 = 0, q2 = 0, (7)

where pq2 = (pq2,0, pq2,1, pq2,2, . . .) is the vector of steady state probabilities at level q2. Further,

the balance equations at level q2 of the Markov process embedded on the levels 0, 1, . . . , q2 are

given by (see [14]):

λ2pq2−1 + pq2 (A0 + λ2G) = 0, q2 > 0, (8)

p0

(
Ã0 + λ2G

)
= 0, q2 = 0. (9)

Combining the equations (6)-(9) immediately yields a simple relation between pq2+1 and pq2 :

pq2+1 =
λ2

µ2
pq2G, q2 ≥ 0, (10)

which can be written in scalar form as:

pq2+1,q1 =
λ2

µ2

q1∑

i1=0

pq2,q1−i1 gi1 , q2 ≥ 0, q1 ≥ 0. (11)

Hence the vectors p1,p2, . . . can be recursively computed, once p0 is known. The vector p0

satisfies (9), i.e., the balance equations of the Markov process embedded on the q1-axis with

generator Q̃ = Ã0 + λ2G:

Q̃ =




− (λ1 + λ2) + λ2g0 λ1 + λ2g1 λ2g2

µ1 − (λ1 + λ2 + µ1) + λ2g0 λ1 + λ2g1

µ1 − (λ1 + λ2 + µ1) + λ2g0
. . .

. . . . . .




.

Note that Q̃ is an M/G/1-type generator. The balance equation in (0, q1) can be rewritten as:

p0,q1+1 = − 1
µ1

[
− (λ1 + λ2 + µ1) p0,q1 + λ1p0,q1−1 + λ2

q1∑

i1=0

gi1p0,q1−i1

]
, q1 > 0. (12)

From (12) the probabilities p0,1, p0,2, . . . can be recursively computed starting with p0,0 = 1− ρ.

However, equation (12) includes negative terms and therefore might be numerically unstable.

This can be avoided by further embedding the Markov process on the states (0, 0), . . . , (0, q1+1);

then the balance equation in (0, q1 + 1) is given by:

p0,q1+1 =
1
µ1


λ1p0,q1 + λ2

q1∑

i1=0

p0,q1−i1

∞∑

l=i1+1

gl


 , q1 ≥ 0.
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Using that
∑∞

l=0 gl = 1, the above equation can be simplified to:

p0,q1+1 =
1
µ1

[
λ1p0,q1 + λ2

q1∑

i1=0

p0,q1−i1

(
1−

i1∑

l=0

gl

)]
, q1 ≥ 0. (13)

Equation (13) provides a numerically stable recursion to compute p0.

3.2 Matrix-analytic approach for 3-class systems

The transition rate diagram of the M3/M3/1 preemptive priority queue is shown in Figure 2.
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Figure 2: Transition rate diagram of the 3-class M3/M3/1 preemptive priority queue.

This queueing system behaves again as a QBD process, where level q3 ≥ 0 is the set of all

states with q3 high priority class-3 customers in the system. According to this partitioning the

generator Q(3) (the index indicates the number of customers classes) has the following form:

Q(3) =




Ã0 λ3I

µ3I A0 λ3I

µ3I A0 λ3I

µ3I A0
. . .

. . . . . .




However, block A0 now has a more complicated structure than in the 2-class case; we further

partition level q3 into sublevels, where sublevel q2 is the set of all states with q2 class-2 customers

(and q3 class-3 customers) in the system. Then A0 has an upper triangular block structure with
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blocks of infinite size:

A0 =




A0,0 λ2I

A0,0 λ2I

A0,0
. . .
. . .




where block A0,0 contains the transition rates within sublevel q2, i.e.,

A0,0 =




− (λ1 + λ2 + λ3 + µ3) λ1

− (λ1 + λ2 + λ3 + µ3) λ1

− (λ1 + λ2 + λ3 + µ3)
. . .
. . .




.

As before, the boundary block Ã0 contains the transition rates within level 0, i.e., the set of

states with no high priority class-3 customers in the system:

Ã0 =




˜̃A0,0 λ2I

µ2I Ã0,0 λ2I

µ2I Ã0,0 λ2I

µ2I Ã0,0
. . .

. . . . . .




,

where

Ã0,0 =




− (λ1 + λ2 + λ3 + µ2) λ1

− (λ1 + λ2 + λ3 + µ2) λ1

− (λ1 + λ2 + λ3 + µ2)
. . .
. . .




,

and

˜̃A0,0 =




− (λ1 + λ2 + λ3) λ1

µ1 − (λ1 + λ2 + λ3 + µ1) λ1

µ1 − (λ1 + λ2 + λ3 + µ1)
. . .
. . .




.

The fundamental matrix G(3) for the QBD with generator Q(3) has the following upper
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triangular block structure:

G(3) =




G(3)
0 G(3)

1 G(3)
2

. . .

G(3)
0 G(3)

1

. . .

G(3)
0

. . .

. . .




,

where the blocks G(3)
i2

also have an upper triangular structure:

G(3)
i2

=




g
(3)
i2,0 g

(3)
i2,1 g

(3)
i2,2

. . .

g
(3)
i2,0 g

(3)
i2,1

. . .

g
(3)
i2,0

. . .

. . .




, i2 = 0, 1, 2, . . .

Element g
(3)
i2,i1

is the probability that the number of class-2 and class-1 customers in the queue

has increased by i2 and i1, respectively, at the first passage to level q3− 1 when starting in state

(q3, q2, q1). From this interpretation we can derive recursive equations for the elements g
(3)
i2,i1

:

µ3 −
(

3∑

l=1

λl + µ3

)
g
(3)
0,0 + λ3(g

(3)
0,0)

2 = 0, i2, i1 = 0, (14)

−
(

3∑

l=1

λl + µ3

)
g
(3)
i2,i1

+ λ2g
(3)
i2−1,i1

+ λ1g
(3)
i2,i1−1 (15)

+λ3

i2∑

j2=0

i1∑

j1=0

g
(3)
j2,j1

g
(3)
i2−j2,i1−j1

= 0, i2 + i1 > 0,

where, by convention, g
(3)
i2,i1

= 0 if i2 < 0 or i1 < 0. Just as for the 2-class system, we can use

the fundamental matrix G(3) to derive a relation between pq3+1 and pq3 :

pq3+1 =
λ3

µ3
pq3G

(3), q3 ≥ 0, (16)

where pq3 is the vector of steady-state probabilities at level q3. The above equation can be

written in scalar form as:

pq3+1,q2,q1 =
λ3

µ3

q2∑

i2=0

q1∑

i1=0

pq3,q2−i2,q1−i1 g
(3)
i2,i1

, q3, q2, q1 ≥ 0. (17)

Hence the vectors p1,p2, . . . can be recursively computed, once p0 is known. The vector p0 sat-

isfies the balance equations of the Markov process embedded on the (q2, q1)-plain with generator
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Q(2) = Ã0 + λ3G(3):

Q(2) =




˜̃A0,0 + λ3G
(3)
0 λ2I + λ3G

(3)
1 λ3G

(3)
2

. . .

µ2I Ã0,0 + λ3G
(3)
0 λ2I + λ3G

(3)
1

. . .

µ2I Ã0,0 + λ3G
(3)
0

. . .
. . . . . .




.

Clearly the embedded Markov process is an M/G/1-type process with two priority classes: in

states (0, q2, q1) with q2 > 0 only class-2 customers receive service. Hence, to determine p0, we

can follow the same approach as for the 2-class system. First we have to find the fundamental

matrix G(2), which satisfies the following matrix equation (cf. [13]):

µ2I + Ã0,0G(2) + λ2

(
G(2)

)2
+ λ3

∞∑

m=1

G(3)
m−1

(
G(2)

)m
= 0,

which can be written in scalar form as:

µ2 −
(

3∑

l=1

λl + µ2

)
g
(2)
0 + λ2

(
g
(2)
0

)2
+ λ3

∞∑

m=1

g
(3)
m−1,0

(
g
(2)
0

)m
= 0, i1 = 0, (18)

−
(

3∑

l=1

λl + µ2

)
g
(2)
i1

+ λ1g
(2)
i1−1 + λ2

i1∑

j1=0

g
(2)
i1−j1

g
(2)
j1

(19)

+λ3

∞∑

m=1

∑

j0,...,jm≥0
j0+···+jm=i1

g
(3)
m−1,j0

g
(2)
j1
· · · g(2)

jm
= 0, i1 > 0.

The matrix G(2) can now be used to express the probability vector p(2)
0,q2+1 = (p0,q2+1,0, p0,q2+1,1, . . .)

in terms of p(2)
0,q2

, . . . ,p(2)
0,0 as follows (see [14]):

p(2)
0,q2+1 =

1
µ2

(
λ2p

(2)
0,q2

G(2) + λ3

q2∑

i2=0

p(2)
0,q2−i2

∞∑

m=0

G(3)
i2+m+1(G

(2))m

)
, (20)

which reads in scalar form as (cf. (17)):

p0,q2+1,q1 =
1
µ2

(
λ2

q1∑

i1=0

p0,q2,q1−i1 g
(2)
i1

(21)

+λ3

q2∑

i2=0

q1∑

i1=0

p0,q2−i2,q1−i1

∞∑

m=0

∑

l0,...,lm≥0
l0+···+lm=i1

g
(3)
i2+m+1,l0

g
(2)
l1
· · · g

(2)
lm


 , q2, q1 ≥ 0.

Thus we can recursively compute p(2)
0,1,p

(2)
0,2, . . . starting from p(2)

0,0. Finally the vector p(2)
0,0 follows

from the balance equations of the Markov process embedded on q1-axis with generator Q(1):

Q(1) = ˜̃A0,0 + λ2G(2) + λ3

∞∑

m=0

G(3)
m

(
G(2)

)m
.
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Note that Q(1) is an M/G/1-type generator, with the following components:

[
Q(1)

]
i,j≥0

=





µ1, i− 1 = j > 0

−(λ1 + λ2 + λ3) + λ2g
(2)
0 + λ3

∞∑
l=0

g
(3)
l,0 (g(2)

0 )l, i = j = 0

−(λ1 + λ2 + λ3 + µ1) + λ2g
(2)
0 + λ3

∞∑
m=0

g
(3)
m,0(g

(2)
0 )m, i = j > 0

λ1 + λ2g
(2)
1 + λ3

∞∑
m=0

∑
l0,...,lm≥0

l0+···+lm=1

g
(3)
m,l0

g
(2)
l1
· · · g(2)

lm
, i + 1 = j ≥ 0

...

λ2g
(2)
h + λ3

∞∑
m=0

∑
l0,...,lm≥0

l0+···+lm=h

g
(3)
m,l0

g
(2)
l1
· · · g(2)

lm
, i + h = j ≥ 0, h > 1

Starting with p0,0,0 = 1− ρ the probabilities p0,0,1, p0,0,2, . . . can be determined recursively from

the balance equations (cf. (13)):

p0,0,q1+1 =
1
µ1


λ1p0,0,q1 + λ2

q1∑

i1=0

p0,0,q1−i1




∞∑

l=i1+1

g
(2)
l


 (22)

+λ3

q1∑

i1=0

p0,0,q1−i1

∞∑

m=0

∑

l0,...,lm
l0+···+lm=i1+1

g
(3)
m,l0

g
(2)
l1
· · · g(2)

lm


 , q1 ≥ 0.

Summarizing, to find the joint queue length distribution of the 3-class M3/M3/1 priority

system we first have to determine the fundamental matrices G(3) and G(2) from (14,15) and

(18,19) and then we can compute the state probabilities using (22), (21) and (17). Let us now

show how this approach can be generalized to N -classes of customers.

3.3 Matrix-analytic approach for N-class systems

As demonstrated in the previous sections, the method to compute the steady state probabilities

of the N -class preemptive priority system includes the following steps. First, for n = N, . . . , 2,

we determine iteratively (from a matrix equation) the fundamental matrix G(n) of the Markov

process embedded on the (qn, . . . , q1)-plane with generator Q(n). Note that Q(N) is the generator

of the original Markov process. After the fundamental matrices G(n) (n = N, . . . , 2) have been

determined, we can compute the steady state probabilities using a forward recursion on the

number of dimensions. That is, starting from p0,...,0 = 1 − ρ, we compute the probabilities

p0,...,0,q1+1, q1 ≥ 0, then p0,...,0,q2+1,q1 , q2, q1 ≥ 0, and so forth until all the probabilities have

been computed. Clearly the main operations are:

• Computation of the generatorQ(n) and the fundamental matrix G(n) of the Markov process

process embedded on the (qn, . . . , q1)-plane, for n = N, . . . , 1;
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• Computation of the probabilities p0,...,0,qn+1,qn−1,...,q1 , for n = 1, . . . , N .

In the remainder of this section we will describe these operations in more detail. Let us first

explain the structure of the generator Q(n).

Structure of the generator Q(n)

The Markov process embedded on the (qn, . . . , q1)-plane is of the M/G/1-type, where level qn ≥ 0

is defined as the set of states with qn class-n customers (and no higher priority customers) in

the system. According to this partitioning the generator Q(n) has an upper-triangular block

structure with one subdiagonal under the main diagonal:

Q(n) =




B̃(n)
0 B(n)

1 B(n)
2 B(n)

3

. . .

B(n)
−1 B(n)

0 B(n)
1 B(n)

2

. . .

B(n)
−1 B(n)

0 B(n)
1

. . .

B(n)
−1 B(n)

0

. . .
. . . . . .




Here the infinite blocks B(n)
in

contain the transition rates from level qn to level qn + in, where

in runs from −1 (service completion) to ∞ (arrivals). So B(n)
−1 = µnI. As long as qn > 0 the

number of low priority customers in the system can only increase. This implies that, if we

further partition level qn into sublevels, where sublevel qn−1 is the set of all states with qn−1

class-(n− 1) customers in the system, then block B(n)
in

has an upper-triangular structure:

B(n)
in

=




B(n)
in,0 B(n)

in,1 B(n)
in,2

. . .

B(n)
in,0 B(n)

in,1

. . .

B(n)
in,0

. . .

. . .




,

where block B(n)
in,in−1

contains the transition rates from sublevel qn−1 at level qn to sublevel

qn−1 + in−1 at level qn + in. In the same way we can further partition the sublevels, so that

block B(n)
in,in−1

is of the form:

B(n)
in,in−1

=




B(n)
in,in−1,0 B(n)

in,in−1,1 B(n)
in,in−1,2

. . .

B(n)
in,in−1,0 B(n)

in,in−1,1

. . .

B(n)
in,in−1,0

. . .

. . .




.
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When we continue to partition the sublevels, we finally arrive at the blocks B(n)
in,...,i2

:

B(n)
in,...,i2

=




b
(n)
in,...,i2,0 b

(n)
in,...,i2,1 b

(n)
in,...,i2,2

. . .

b
(n)
in,...,i2,0 b

(n)
in,...,i2,1

. . .

b
(n)
in,...,i2,0

. . .

. . .




.

where the scalar b
(n)
in,...,i1

denotes the transition rate from state (qn, . . . , q1) to (qn+in, . . . , q1+i1).

All indices ik should be nonnegative, except for in, which can be −1 (service completion). Also

note that for the initial generator Q(N) we have:

b
(N)
iN ,...,i1

=





µN , iN = −1, iN−1 = · · · = i1 = 0

−
(∑N

j=1 λj + µN

)
iN = · · · = i1 = 0

λj ij = 1, ik = 0, for all k 6= j, j = 1, . . . , N

0, otherwise

(23)

The structure of B̃(n)
0 is slightly different from the structure of B(n)

0 , since it includes transition

rates corresponding to service completions of lower priority customers.

Computation of the fundamental matrix G(n)

The matrix G(n) is the minimal non-negative solution of the matrix equation (cf. [13, 14]):

B(n)
−1 + B(n)

0 G(n) + B(n)
1 (G(n))2 + · · · = 0. (24)

Hence G(n) inherits the nested structure of the matrices B(n)
in

:

G(n) =




G(n)
0 G(n)

1 G(n)
2

. . .

G(n)
0 G(n)

1

. . .

G(n)
0

. . .

. . .




, where G(n)
in−1

=




G(n)
in−1,0 G(n)

in−1,1 G(n)
in−1,2

. . .

G(n)
in−1,0 G(n)

in−1,1

. . .

G(n)
in−1,0

. . .

. . .




,

. . . ,G(n)
in−1,...,i2

=




g
(n)
in−1,...,i2,0 g

(n)
in−1,...,i2,1 g

(n)
in−1,...,i2,2

. . .

g
(n)
in−1,...,i2,0 g

(n)
in−1,...,i2,1

. . .

g
(n)
in−1,...,i2,0

. . .

. . .




.

Let us introduce the vector-index i(n) = (in, . . . , i1) to simplify notations; so g
(n)

i(n−1) = g
(n)
in−1,...,i1

.

Element g
(n)

i(n−1) is the probability that the lengths of the lower priority queues have increased

by in−1, . . . , i1 at the first passage to level qn when starting in state (qn, . . . , q1). From (24) it
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follows that the scalars g
(n)

i(n−1) are the minimal non-negative solution to the following recursive

equations (cf.(4,5)):

b
(n)

−1,0(n−1) + b
(n)

0,0(n−1) g
(n)

0(n−1) + b
(n)

1,0(n−1) (g(n)

0(n−1))
2 + b

(n)

2,0(n−1) (g(n)

0(n−1))
3 + · · · = 0 (25)

b
(n)

−1,e
(n−1)
j

+
(

b
(n)

0,0(n−1) g
(n)

e
(n−1)
j

+ b
(n)

0,e
(n−1)
j

g
(n)

0(n−1)

)
+ (26)

+
(

b
(n)

1,e
(n−1)
j

(g(n)

0(n−1))
2 + 2b

(n)

1,0(n−1) g
(n)

0(n−1) g
(n)

e
(n−1)
j

)
+ · · · = 0

...

b
(n)

−1,i(n−1) +
∞∑

l=1

∑

j
(n−1)
0 ,...,j

(n−1)
l ≥0, s.t.

j
(n−1)
0 +···+j

(n−1)
l =i(n−1)

b
(n)

l−1,j
(n−1)
0

g
(n)

j
(n−1)
1

· · · g(n)

j
(n−1)
l

= 0. (27)

Note that the elements of G(N) can be written in a slightly simpler form due to (23):

µN −



N∑

j=1

λj + µN


 g

(N)

0(N−1) + λN (g(N)

0(N−1))
2 = 0,

−



N∑

j=1

λj + µN


 g

(N)

e
(N−1)
j

+ λN−1g
(N)

0(N−1) + 2λNg
(N)

0(N−1)g
(N)

e
(N−1)
j

= 0,

...

−



N∑

j=1

λj + µN


 g

(N)

i(N−1) +
N−1∑

j=1

λjg
(N)

i(N−1)−e
(N−1)
j

+ λN

i(N−1)∑

j(N−1)=0(N−1)

g
(N)

j(N−1)g
(N)

i(N−1)−j(N−1) = 0.

Computation of the generator Q(n−1)

Once the fundamental matrix G(n) is known, the generator Q(n−1) of the Markov process em-

bedded on the (qn−1, . . . , q1)-plane can be computed as:

Q(n−1) = B̃(n)
0 + B(n)

1 G(n) + B(n)
2

(
G(n)

)2
+ B(n)

3

(
G(n)

)3
+ · · · .

Hence Q(n−1) has the same structure as Q(n), and its components b
(n−1)

i(n−1) follow from:

b
(n−1)

i(n−1) = b̃
(n)

0,i(n−1) +
∞∑

l=1

∑

j
(n−1)
0 ,...,j

(n−1)
l ≥0, s.t.

j
(n−1)
0 +···+j

(n−1)
l =i(n−1)

b
(n)

l,j
(n−1)
0

g
(n)

j
(n−1)
1

· · · g(n)

j
(n−1)
l

(28)

Computation of the steady state probabilities

GivenQ(n) and G(n) for n = N, . . . , 1, we can determine the steady state probabilities recursively.

Let p(n)
qn denote the vector of steady state probabilities pq with q = (0, . . . , 0, qn, . . . , q1) and
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fixed qn. Then for n = 0, . . . , N we can compute the vectors p(n)
qn from the balance equations

(cf. (16, 20, 22)):

p(n)
qn+1 =

1
µn

qn∑

in=0

(
p(n)

qn−in

∞∑

m=1

B(n)
in+m

(
G(n)

)m
)

, qn ≥ 0, (29)

with initially p(0)
0 = 1− ρ.

4 Computational issues and numerical results

In Section 4.1 we present the algorithm and discuss some computational issues. After that, in

Section 4.2 we present results of an application in spare parts logistics.

4.1 Algorithm and computational issues

The method works with the infinite matrices Q(n) and G(n). Hence, for numerical computations,

we need to truncate both matrices, i.e., the elements b
(n)
in,...,i1

and g
(n)
in,...,i1

are set to zero if one of

the indices ij is greater than some threshold. Note that, if we set b
(n)
in,...,i1

= 0 for in > K, then

equation (24) for G(n) immediately reduces to a polynomial matrix equation of finite degree K.

The algorithm to compute the joint queue length distribution is now as follows:

Algorithm

1. Construct the matrix Q(N) using (23);

2. For n = N − 1 downto 1 do

(a) Compute the probabilities g
(n+1)
in,...,i1

from (25-27) for all 0 ≤ in, . . . , i1 ≤ Kn, where the

threshold Kn is determined (during runtime) such that:

∑

0≤in,...,i1≤Kn

g
(n+1)
in,...,i1

≥ 1− ε,

where ε is a small positive number;

(b) Compute the transition rates b
(n)
in,...,i1

from (28) for all 0 ≤ in, . . . , i1 ≤ Kn;

3. Set p0,...,0 = 1− ρ and g(1)=1;

4. For n = 1 to N do

(a) Compute the probabilities p0,...,0,qn+1,qn−1,...,q1 from (29) by using (the previously com-

puted) b
(n)
in,...,i1

, g
(n)
in−1,...,i1

and the probabilities p0,...,0,qn−1,...,q1 .
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4.2 Application in spare parts logistics

Our interest in the joint queue length distribution arose from a spare parts supply problem for

repairable parts sharing the same repair shop. Below we apply the matrix-analytic approach to

a simple spare parts supply problem (see Figure 3) to demonstrate the influence of assigning

repair priorities on the performance of the system.

M a c h i n e  1

M a c h i n e  M

S t o c k
R e p a i r

Figure 3: Example of a simple spare parts supply system

There are M machines and each machine contains three types of parts, subject to failure

and replacement. A machine is working only when all three parts are working. To improve the

reliability each machine is equipped with Zi type i parts, so that, when one part fails, another

one can immediately take over the necessary functions. Thus we have a system with redundancy.

There are many examples of systems with this structure; typical ones can be found in [15].

When one of the parts fails, a service engineer takes a new part from a stock of parts and

replaces the failed one. The failed part is then sent to a single-server repair facility. The repair

time of a type i part is exponentially distributed with mean Ri; the delivery and replacement

times are neglected. After repair the broken parts are assumed to be as good as new and they

are put back to stock. The stock level of type i parts is denoted by Si.

The system availability is defined as the average number of working machines:

Avail(S1, S2, S3) =
1
M

M∑

m=1

P (Machine m is working).

The number of backorders of type i parts is given by max(0, qi − Si), where qi is the number of

type i parts in repair. Hence the probability that, for an arbitrary machine, all type i parts are

broken is equal to

max(0, qi − Si)
ZiM

· max(0, qi − 1− Si)
ZiM − 1

· · · max(0, qi − Zi + 1− Si)
ZiM − Zi + 1

;

the first term in the above product is the probability that the first part is broken, the second

one that the second part is broken given that the first one is broken, and so on. In terms of the

joint queue length probabilities the system availability can now be written as:

Avail(S1, S2, S3) =
∑

q3,q2,q1

[
3∏

i=1

(
1−

Zi−1∏

n=0

max(0, qi − n− Si)
ZiM − n

)]
pq3,q2,q1 . (30)
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To compute the queue length probabilities pq3,q2,q1 we assume that failures of type i parts occur

according to a Poisson process with rate λi. This approximation, which is the only one needed, is

valid when M , the total number of machines in the system, is large. Expression (30) much better

estimates the system availability than other approximations proposed in the literature; e.g., the

system availability defined in [15] only uses information on the mean number of backorders. But

the matrix-analytic approach makes it possible to use the detailed distribution of the number

of parts in repair. To demonstrate the approach we executed a set of experiments with the

following parameters:

M = 50,

Zi = 2, i = 1, 2, 3,

λi = i/100,

Ri = c/(3− i + 1), where c is chosen such that
3∑

i=1

λiRi = ρ = 0.9 or 0.95.

In Table 1 we list the system availability according to (30) for different utilization rates of the

repair shop and different priority assignments. The stock levels in these experiments depend on

the mean queue lengths, i.e., we set Si = bE[qi]/3c for i = 1, 2, 3. The algorithm for the 3-class

system was executed on a PC with a Pentium IV-2000 processor and 512MB operative memory.

The computation times mentioned in Table 1 depend on the number of states with significant

probability mass, i.e., on the load of the system and on the priority assignment.

Util. Priorities Queue length Avail. Comp.

ρ r1 r2 r3 E[q1] E[q2] E[q3] time

0.9 M M M 1.627 3.323 5.296 1.000 2.5 sec.

0.9 H M L 7.325 0.301 0.074 1.000 0.14 sec.

0.9 L H M 4.164 0.262 9.614 0.998 6.4 sec.

0.9 M L H 1.653 10.800 1.341 0.999 89.3 sec.

0.95 M M M 3.542 7.157 11.064 0.999 2.12 sec.

0.95 H M L 15.644 0.326 0.079 0.998 0.22 sec.

0.95 L H M 6.094 0.281 28.797 0.956 12.73 sec.

0.95 M L H 1.921 26.600 1.836 0.971 103.46 sec.

Table 1: System availability for different combinations of repair shop utilizations and priority

assignments; the assignment M M M refers to the FCFS discipline.

From Table 1 it is clear repair priorities have a strong effect on the performance of the
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system. The system availability is similar for all priority assignments, but the stock levels Si

are different. This implies that, in the presence of cheap and expensive parts, repair priorities

may lead to substantial cost savings.

5 Extensions

The matrix-analytic approach can be easily extended to systems with other priority rules and

service disciplines. Below we discuss the extension for multi-class, multi-server systems with

preemptive and non-preemptive priorities.

MN/MN/k system with preemptive priorities

Consider a priority system with k parallel and identical servers. As before, the states of this

preemptive priority system can be described by N -dimensional vectors q = (qN , . . . , q1). The

balance equations for the steady state probabilities can be written as:

pq




N∑

j=1

λj +
n∑

j=1

sjµj


 =

n∑

j=1

λjpq−ej +
N∑

j=1

(sj + 1)µjpq+ej , qN , . . . , qn+1 = 0,

...

p0




N∑

j=1

λj


 =

N∑

j=1

pejµj ,

where sj is defined as the number of class-j customers in service in state q, so

sj = min


max


k −

n∑

i=j+1

qi


 , qj


 .

Clearly, when qN > k, all server are busy with class-N customers and the Markov process

behaves the same as in the single server case (except that the service process is k times faster).

In the single-server case we determined p(N)
0 by considering the Markov process embedded on

level 0; now we have to determine p(N)
0 , . . . ,p(N)

k−1 by embedding the Markov process on the levels

0, . . . , k − 1. Thus the embedded Markov process gets an extra (but finite) dimension, and this

repeats in the following steps of the algorithm. Essentially, the result is that, in the algorithm,

the scalars b
(n)

i(n) and g
(n)

i(n−1) are replaced by finite dimensional matrices; i.e., the dimension is

equal to
(
N−n+k

k

)
(so in each step of the algorithm the dimension grows).

MN/MN/k system with non-preemptive priorities

Now consider a single-server priority system with non-preemptive priorities, i.e., service of a

low priority customer may not be interrupted by a higher priority customer. Then the system
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can be described by the N -dimensional vector q = (qN , . . . , q1) plus another N -dimensional

vector s = (sN , . . . , s1) that contains information about the customers in service, i.e., we have

to work directly with matrices of finite dimension instead of the scalars b(n)

i(n) and g(n)

i(n−1) . The

dimension of these matrices is the same on all steps of the algorithm, namely
(
N−1+k

k

)
. The

balance equations for the steady state probabilities can now be written as:

pq,s




N∑

j=1

λj +
N∑

j=1

sjµj


 =

n∑

j=1

λjpq−ej ,s +
N∑

j=n

N∑

i=1

(si + 1)µjpq+ej ,s−ej+ei , qN , . . . , qn+1 = 0,

...

p0,0




N∑

j=1

λj


 =

N∑

j=1

p0,ejµj .

If we join the steady state probabilities with the same queue composition into vectors pq =

(pq,N , . . . , pq,1), then the above equations can be rewritten as:

pq




N∑

j=1

λj + D


 =

N∑

j=1

λjpq−ej +
N∑

j=n

pq+ejBj , qN , . . . , qn+1 = 0,

where D and Bj are appropriately defined matrices. So, the algorithm in Section 3 can again

be applied if we replace the scalars b
(n)

i(n) and g
(n)

i(n−1) by finite matrices b(n)

i(n) and g(n)

i(n−1) , where

the initial elements b(N)

i(N) are computed as:

b(N)

i(N) =





BN , iN = −1, iN−1 = · · · = i2 = 0

−
(∑N

j=1 λj + D
)

iN = · · · = i1 = 0

λjI ij = 1, ik = 0, ∀k 6= j, j = 1, . . . , N

0, otherwise

Similarly, other priority systems can be analyzed, e.g., multi-server systems with multiple cus-

tomer classes within each priority group (cf. [16, 17] for such systems with two priority groups).
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