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1 Introduction

Let {Y;; ¢ > 1} be a sequence of successive claim sizes that consists of independent and identically
distributed (i.i.d.) random variables generated by the distribution Fy of a generic nonnegative random
variable Y. Let N be a nonnegative integer-valued random variable, independent of the Y;’s, representing
the number of claims occurring in some fixed time interval. We denote by (Y{*,Y5,... ,YR) the order
statistics, arranged in increasing order, of the random vector (Y7,Ya,...,Yy) of successive claim sizes in
the time interval.

Reinsurance can be considered as one way of risk sharing. The reinsurance forms all have in common the
intention to diminish an excessive number of claims and/or the impact of the large claims. Of course,
reinsurance diminishes the volatility in the portfolio as the risk is shared between the first line insurance
and the reinsurance. The decision to involve other partners in the risk sharing depends on many factors,
some of them have only marginal relation with reinsurance.

A first line insurance will always try to safeguard its position by subscribing itself to a variety of insurance
contracts with an equally varied set of (re)insurance companies. As such, the first line insurance itself
becomes an insured client by paying a specific premium to a reinsurance company in exchange for a policy
covering the reinsured quantity. For the first line insurance company, it obviously does not make sense
to sell the entire portfolio to a reinsurance company because it will then lose all premium income from
that portfolio. The first line company has to ponder how it wants the portfolio to be split between itself
and the reinsurer.

It is common to distinguish between two types of reinsurance: proportional and nonproportional. Within
the area of proportional reinsurance treaties, we have two traditional forms. Quota-share or proportional
reinsurance where the reinsurer accepts a proportion a € ]0,1] of the total portfolio. Further, surplus
reinsurance where the reinsured amount is also determined by the value of the insured object as long as it
exceeds a retention L. Within the framework of nonproportional reinsurance treaties, we cite four forms.
An excess-of-loss reinsurance is determined by a retention M indicating that the reinsurer covers the
part of the claims that overshoots M. In a stop-loss reinsurance contract the reinsured amount is equal
to the part of the entire portfolio that overshoots a retention C'. Note that excess-of-loss and stop-loss
reinsurance treaties are equivalent when a single risk comes into play. Furthermore, there are reinsurance
treaties classified as large claims reinsurance since they are defined in terms of the order statistics of the
claims. A first form is largest claims reinsurance where the reinsured amount combines the values of the r
largest claims in the portfolio. A second and slightly more popular form is ECOMOR reinsurance which
is defined as an excess-of-loss treaty with the (r + 1)th largest claim as random retention. We refer to
Embrechts et al. [4], Ladoucette and Teugels [5] and Teugels [10] for asymptotic problems pertaining to
ECOMOR as well as to the largest claims reinsurance treaty. For an overview of most of the currently
employed reinsurance forms with some of their properties, see Rolski et al. [7] and Teugels [11].

In accordance with current practice, quota-share and stop-loss treaties are popular if the number of
claims is large. Also, excess-of-loss and surplus reinsurance are more traditional if the claim sizes are
large. Furthermore, reinsurance based on the largest claims is almost never used. This fact is rather
surprising if reinsurance is meant to protect the insurer against large claims. It looks almost necessary
to use a reinsurance treaty that is based on these largest claims.

Combinations of different forms of treaties are easily constructed. Schmitter [8] combines quota-share
and stop-loss treaties, where the reinsured amount is defined by:

N
R := max <O,aZYi —C) .
i=1

Quota-share and excess-of-loss treaties are combined in Centeno [3]. The reinsured amount then has the



following expression:

N
R::Zmax(o,aY;—M).
i=1

Benktander and Ohlin [2] combine a surplus treaty with an excess-of-loss treaty. Then the reinsured
amount is:

N Vi— L
R = Zmax{o, <V> X[V; > L] — M}
i=1 @

where V; is the value insured for the ith claim policy. Here and throughout the paper, I|.] stands for the
indicator function.

Such combinations are referred to as partial reinsurance. For example, see Steenackers and Goovaerts
[9]. Even more popular is the combination of a stop-loss treaty on top of an excess-of-loss treaty. In this
case, one has:

i=1

N
R:= maX{O,ZmaX(O,YiM)C}.

A further generalization is called drop down excess-of-loss reinsurance. In this type of setting, the claim
is curtailed at both ends, both of them possibly depending on the order of the claim. The reinsured
amount has a form of the kind:

N
R = Z min {Li, max (0, Yy ip1 — Ml)}

i=1

where the M;’s stand for the lower retentions while the L;’s determine the drop down upper retentions
M; + L;.

In the present paper, we investigate a nonproportional reinsurance form defined as a combination of quota-
share and drop down excess-of-loss treaties in the following way. Consider a nonnegative random variable
X, called risk, with distribution function Fx. As examples, the risk X may represent an individual claim
Y;, the ith largest claim Y3 _,, ; or even the total claim amount va:l Y;, where N is the number of claims
occurred over a given period of time. Choose drop down excess-of-loss lower and upper retentions which
we respectively denote by u and u + v. The range for which the treaty is used is then indicated by v.
Secondly, choose a quota-share retention a € ]0, 1], so that the reinsured amount X, ,, , of the risk X is
given by:

Xoup =amin{v,max (0,X —u)}. (1)

For what follows, we assume that v and v are such that 0 < u < oo and 0 < v < oo.

It is easy to see that X, , , may be rewritten in the more explicit form:

0, X <u
Xa,u,v: GJ(X*U)7 u< X <u4w
av, X >u+w.

From its definition, it immediately follows that 0 < X ., < av, i.e. that X, , . is a nonnegative random
variable which is bounded when v # co. Moreover, the distribution function F of X, 4,0 is simply
given by:

a,u,v

0, <0
FXa,u,v(x) = ]P[Xa,u,v < x] = FX(U + x/a), 0<z<av (2)
1, T > av.



In its most general setting, (1) defines a combination of quota-share and drop down excess-of-loss reinsur-
ance treaties. In the particular case v = oo, one arrives at a quota-share treaty when v = 0, a combination
of quota-share and excess-of-loss treaties for an individual claim or the i¢th largest claim when u # 0, or
a combination of quota-share and stop-loss treaties when X is used as the total claim amount and u # 0.
The reinsurance form defined in (1) makes the classical treaties a bit more flexible by also allowing an
upper retention. This seems worthwhile in view of the different situations between first and second line
insurance. For a first line insurer, u = 0 while v = M < oco. For the first reinsurer however, u = M while
v may take any nonnegative value. If the first line reinsurer does not shift part of the risk to a second
reinsurer, then v = co. Otherwise v < 0o and so on. By not specifying v and v, our results apply to any
company in a reinsurance chain of this type. Of course, any reinsurer can apply the type of reinsurance
of his choice, irrespective of what a former insurer has been doing.

In the following, we are interested in the behavior of some risk measures that are frequently used in
practical situations, in particular in reinsurance. Risk measures are useful in evaluating or estimating
the risk associated with a random quantity. In the context of (re)insurance, such measures also permit
to illustrate and quantify the effect of a premium scheme. Look in Venter [12] where it is advocated to
use a variety of risk measures.

In Section 2, we investigate a couple of risk measures for the quantity X, . .. We successively deal with
the Value-at-Risk (Subsection 2.1), the variance (Subsection 2.2) and the coefficient of variation (Sub-
section 2.3). Section 3 is devoted to the computation of risk measures over a portfolio with N claims,
each of them reinsured under (1). We successively deal with the variance (Subsection 3.1), the dispersion
(Subsection 3.2), the coefficient of variation (Subsection 3.3) and the reduction effect (Subsection 3.4).
We conclude in Section 4.

For theoretical and practical results pertaining to the coefficient of variation within the context of
(re)insurance, see Mack [6]. For the asymptotic behavior of the sample coefficient of variation as well as
for the sample dispersion, see the paper by Albrecher and Teugels [1].

2 Risk Measures for a Single Amount Reinsured

In this section, we investigate some usual risk measures (Value-at-Risk, variance and coefficient of varia-
tion) for the reinsured amount X, ,, , defined by (1).

We start with some relations that will prove useful later on. As the random variable X, ,, ,, is nonnegative,
we can define for any integral k > 0:

fir =EXF, = k-/ "1 (1 Fx, .. (z) da.
0
Recalling (2), it easily follows that:

fix = k;/ 51 (1 = Fx(u+2/a)) da. 3)
0
This quickly leads to the obvious inequalities:
(av)*(1 — Fx(u+v)) < fir < (av)*(1 — Fx(u)).
On the other hand, we also have EX* < avEX*~1 so that:

a,u,v a,u,v
i < avfip—1. 4)
Using (3), we calculate the partial derivative of iy, with respect to v to be:
O
v
We also deduce the following relation between the partial derivatives of two successive moments:
aﬂlﬁ»l k+1 (’9/?%

o k on (6)

= ak(av)* 1 (1 — Fx(u+v)). (5)




2.1 Value-at-Risk

We define and denote the Value-at-Risk of a random variable Z with the help of the tail quantile function
Uz by:

VaRy(Z) :=Uz(q), ¢>1
recalling that Uz (y) := inf{z : Fz(z) > 1 — 1/y}, where Fy is the distribution function of Z.

If Z represents a claim size, it is rather clear that when ¢ is large, this is only defined for the reinsurer
that carries the ultimate tail of the claim size.

For the random variable X, ,, ,,, we are naturally led to the following Value-at-Risk:

0, 1 <q<Ux(u)
VaR¢(Xauw) = a(Ux(q) —u), Ux(u) <qg<Ux(u+0v)
av, q>Ux(u+v)

where Ux is the tail quantile function of Fx and Uy is its left-continuous inverse function defined by
Ui (z) :=1inf{y : Ux(y) > z}.
Moreover, we note that:

VaRy(Xquw) < VaRg(aX) < VaRy(X), ¢g>1.

2.2 Variance

Now, we deal with the variance VX, , , of the reinsured amount X, , ,. From (3), it is immediate that:

2

VXoun :2/Oavx(1—FX(u+x/a)) da — (/0 (1— Fx(u+z/a)) da:) . (7)

By (5), we therefore get:

OVXauo  Ofiz . Of
Ov Ov M50 w
= 2d%v(1 - Fx(u+v)) —2a (1 — Fx(u+0v)) (1-Fx(u+zx/a)) dx

= 2a(1 FX(u+v))/0avFX(u+x/a) dx > 0.

The partial derivative with respect to v being nonnegative, the variance is nondecreasing in v so that:
2

VXaguw < 2/00099(1Fx(u+x/a)) dx — (/Ooo(lFX(qux/a)) dm)
= 2 [ -0 ) dy - o (/m (1 - Fx(y)) dy)2=: galu).

Now, we compute:

0ga(u)
ou

= 20 [T 0= Fa) dy+ 20 0= Fx) [ 0= Fx) dy

— —2Fx() [ (- Fx(y) dy <o

u

Thus, the function g,(u) is nonincreasing in u and therefore smaller that the same expression where we
put u = 0, that is g,(0). However, that quantity is equal to a®?VX. Hence, we get the following result for
the variance of the reinsured amount X, ,, .-

VXauw < a?VX,

Since a € ]0,1], we also remark that VX, ., < VX as it should be.



2.3 Coeflicient of Variation

Another risk measure that is popular among actuaries is the coefficient of variation of a positive random
variable Z, defined and denoted by:

vVZ

COVGT(Z) = ﬁ

Note that the dimensionless coefficient of variation is a parameter of any distribution with finite variance
and that it is a relative measure of dispersion around the mean.

For the reinsured amount X, , ., we get:

CoVar(Xquw) = /f—g -1

M1

and hence, the coefficient will depend monotonically on the ratio under the square root. Incorporating
both retentions into the notation, we write CoVar(u,v) := CoVar(Xg ) for arbitrary v and v.

Inequality (4) together with (6) leads to the following:

O pa i)~ (i Ofiz Oy
31}[@ M1 H1

The above then shows that CoVar(u,v) is nondecreasing in v. Hence, we get:
CoVar(u,v) < CoVar(u,o0). (8)
The dependence on u is more intricate. Let us introduce the retention distribution:

Fx (utxz/a)—Fx (u)

Gano(z) = { Fx (utv)—Fx (u) * 0<z<av

1, T > av

with moments v, := kfooo Pl (1 - Gauv(2)) do.

If we abbreviate Ay := Fx(u+ v) — Fx(u), then we get:

Axn = K(Fxuto) = Fe(w) [ ot (1o U

N Fx(u+v) — Fx(u)
_ —k/ {1 = Fy(u+0) — (1— Fx(u+z/a))} do
0 av
= f(av)k(l—FX(u+v))+k/O 271 (1 = Fx(u+2/a)) do
= ik — (av)* (1 = Fx(u+v)). (9)

The latter relation is handy in rewriting the partial derivative of CoVar(u,v) with respect to u. Indeed,
it follows that:

aﬂl B aw g B .
s (™D py(uafe) de = —a(Pelu-+ o)~ Py(u) = —olx
and:
Opia _ _2a/avxd$FX(u+x/a)
8u 0

— [~ 20aFx(uto/a)] +20 /O Fx(u+x/a) do



av
= —2a2vFX(u+U)+2a/ Fx(u+z/a) dx
0
= —2a/ (1— Fx(u+x/a)) dr+2a*v — 2a*vFx (u + v)
0

= 2a2v(1—FX(u+v))72a/ (1-Fx(u+x/a)) de = —2aAxv;.
0

But then, we have:

3 0 fiz _ _ Opo dfin

Y
18'U/ILLI = H1 M2 ——

o o *Q(ZAX (ﬂg 7/]1V1).

Replacing in the last expression the moments fi;, by their analogues vy from (9), we get:

~38M2

18u = 2aAx {Axvs+ (av)? (1 — Fx(u+v)) —vi (Axvi +av (1 — Fx(u+v)))}

= 2aA% (v2 — i) +2a°Axv(av — 1) (1 — Fx (u+v)) > 0.

Indeed, the quantity vo — 17 is the variance of the distribution G, while by definition v; < av.
This then shows that the requested partial derivative is nonnegative and hence that CoVar(u,v) is also
nondecreasing in u. For fixed a € ]0,1], CoVar(u,v) is thus nondecreasing both in v and v. In particular,
we find that:

CoVar(u,v) > CoVar(0,v). (10)

Applying both inequalities (8) and (10), we get the following lower and upper bounds for the coefficient
of variation of the reinsured quantity Xg v o:

CoVar(0,v) < CoVar(u,v) < CoVar(u,o0)

comparing the risk measure for three of the partners in a reinsurance chain for any value of a € ]0,1].
Applying the inequality on the left for v = 0o and that on the right for u = 0, we also get the following
inequalities:

CoVar(0,v) < CoVar(0,00) = CoVar(X) < CoVar(u,o0)

where the quantity in the middle is the coefficient of variation of the initial risk X. The latter inequality
has been obtained by Mack [6] for a = 1.

3 Risk Measures for the Total Amount Reinsured over the Port-
folio

After a combination of a drop down excess-of-loss treaty with a quota-share treaty, the reinsured amount
over a portfolio with N claims is the quantity given by:

au'u5 ZYauv (11)

where ;Y 4, ., which is used as the reinsured part of the original claim size Y;, has the same distribution
as the random variable Y, ,, , := amin {v,max (0,Y — u)} corresponding to the reinsured part defined by
(1) of the generic claim size Y whose distribution function is Fy .

When v = oo in (11), we get a combination of quota-share and excess-of-loss reinsurance treaties. Fur-
thermore, if also u = 0, we get a quota-share reinsurance for the aggregate claim amount in that then

ano G’Z'L 1Y



Using the so-called Wald identities, we easily derive the following expressions for the mean and the
variance of the quantity Ry o:

ERa,u;u - /11 EN
VRouw = VYguwEN+ [L% VN
where fi; and VY, , , are respectively given by (3) and (7), replacing Fx by Fy in these formulas.

By way of example and without loosing too much of generality, we assume from now on that there are
exactly three partners involved. For the first line there is a deductible determined by a retention u. The
first reinsurer is responsible for the part of the claims above the level v and up to the retention u + v.
Finally, a last reinsurer deals with all the claims above the level u + v. Consequently, we assume that
Fy (u)Ay (1 — Fy(u +v)) > 0. To investigate the effect of reinsurance on the partners involved, let us
introduce some notation.

1. For the first insurer, the total claim amount is Sy, := Zf\;l L; where L; has the same distribution
as the random variable:

L:=aYIY <ul+aullY > u| = amin(u,Y).

This corresponds to the choice w = 0 and v = w in the general approach (11). We use the letter L
to point at the lower part of the claims.

2. For the first reinsurer, the total claim amount is Sy, := vazl M; where M; has the same distribution
as the random variable:

M:=aY —u)lu<Y <u+v]+avl]Y > u+v] = amin{v, max(0,Y —u)}.

This case corresponds to the general approach (11) with u and v. The letter M points to the middle
part of the claims.

3. Finally, the top layer is carried by the second and last reinsurer. Its total claim amount is given
by: Sy := vazl U; where U; has the same distribution as the random variable:

U=aY — (u+v)I[Y >u+v]=amax{0,Y — (u+v)}.

In (11) we need to replace u by u + v while v = co. We use the letter U to indicate that the upper
part of the claims is now at stake.

Of course, the sum of the three total claim amounts Sy, Sir and Sy adds up to Re0,00 = a Zf\; Y;. The
remaining part (1 — a) vazl Y; should be considered as taken out, prior to the risk sharing of the part
aZlN:l Y; by the three partners.

As an additional risk measure, let us also look at the correlations. From the definitions of the three
variables L, M and U, it follows that E{LM} = au EM, E{LU} = au EU and E{MU} = av EU.
Therefore, the three covariances Cov(L, M), Cov(L,U) and Cov(M,U) are all positive. To see the
influence on the three separate total claim amounts, we calculate the covariances between the quantities
S, Sy and Sy. An easy calculation learns us that:

E{SLSu} = pn Y E{L:M}+> p.y Y E{L;M;}
n=0 =1 n=0 =1 j=1
i
where p,, := P[N = n] for n € N, and hence:

Cov(Sy, Sy) = Cov(L, M) EN + EL EM VN. (12)



In equation (12), one can replace the pair (L, M) by (L,U) and (M, U) without any problem. Using the
expressions for the covariances between the variables L, M and U, one finds the expressions:

Cou(Sy,Sy) = ELEM (VN —EN)+ auEM EN
Cov(Sp,Sy) = ELEU (VN —EN) + auEU EN

Cov(Sy,Sy) = EM EU (VN — EN) + av EU EN.

In the following, we compare some risk measures for the different partners in the chain, namely variance,
dispersion, coefficient of variation and reduction effect. Let A and B be any two distinct letters from the
set {L, M,U}.

3.1 Variance

First, we deal with the variances. If one uses the variance as a risk measure then one should compare the
variance of a combined risk with the sum of the individual variances. It is clear that:

V{Sa+Sp} =V{A+ B}EN + (EA+EB)? VN.
Since (12) learns us that Cov(S4,Sp) > 0, we get by a simple calculation:
V{SA + SB} =VS4+VSE+ QCOU(SA,SB) >VSs+VSp.

A similar relation holds between the two other pairs. Hence, there is an increase in variance if one
combines different layers in the reinsurance chain.

3.2 Dispersion

The situation is different for the dispersions. We recall that the dispersion of a positive random variable
7 is defined and denoted by:

\4

D(Z) := 7"

This risk measure is frequently used in (re)insurance and its value allows to compare the volatility with
respect to the Poisson case.

The correlation coefficient between S, and Sp is at most 1 in absolute value. Hence, we see that
Cov(Sa,Sp) < VVS4VSE and as a result:

VV{S4+ Sp} < /VSs +/VS5. (13)
Using (13), we calculate:
V{SA + SB}
D(Sa+ S = =
(Sa+Sg) E{S.+ S}
< VS84 +VSp +2¢VS54VSp
E{S4 + Sp}

E E NENET
_ D(SA)+D(SB)_{ VSAESp VSpESa VSAVSB}

ESAE{Sa + S5}  ESpE{Sa+ S5} E{Sa+ S5}
VSA(ESB)2 + VSB(]ESA)Q — 2/ VSAESE/VSBES 4
ESAESB]E{SA + SB}

= D(SA)+D(SB)_{
< D(Sa)+ D(SB).

Therefore, the dispersion decreases by combining different layers.



3.3 Coefficient of Variation

Let us look at the coefficient of variation of S4. From general principles, we derive:

VSsy _ VAEN + (EA)? VN
(ES4)? (EAEN)?
VA VN

[EAZEN | (EN)’
Hence, we obtain the interesting formula:

CoVar?(A)

CoVar?(S4) = EN

+ CoVar?(N).

The second term on the right depends on the number of claims and is the same for all partners involved.
Also the factor (EN)~! is the same. Therefore, the differences in the risk measure solely depend on the
coefficient of variation for the retained risk. However, the comparison of this risk measure or the quantity
fiz/ i3 for the different values of u and v is by no means simple.

Moreover, using (13), we easily deduce:

_ \/V{SA-FSB} VSa VVSg _
CoVar(Sa+ Sp) = E{S1+ 55} < ES, + ES, = CoVar(Sa) + CoVar(Sp).

Thus, by combining different layers in the reinsurance chain, the coefficient of variation decreases.

3.4 Reduction Effect

As another risk measure, we finally look at the reduction effect. There are at least two ways of writing
out a reduction effect depending on the partner one is looking at. For the first insurer however it does
hardly matter how the second reinsurance retention v is decided. Therefore it seems natural to calculate
the reduction by the quantity:

— ESy,
L= E{SL + S +SU}.

However, this is easily calculated since:

EL 1 [
- -~ [ a-F .
"L=UEY _EY /0 (1= Fy(z)) dz

The latter quantity is well known from renewal theory where it is called the equilibrium distribution of
Fy . Properties of this distribution can be found in standard treatises of renewal theory.

For the first reinsurer, the natural reduction effect is:

ESum

M= E{SM + SU}

as only the reduction with respect to the last reinsurer needs to be taken into account. Then we can
write:

_ EM [0 —Fy(u+tx))de
CEM+EU  [(1-Fy(u+a))de

=: F(v).

"M

Note that the quantity on the right is indeed a proper distribution which for every fixed value of u can
be considered as an equilibrium distribution.



4

Conclusion

In this paper, we have been concerned with some common risk measures for the reinsured amount asso-
ciated with a nonproportional reinsurance form defined as a combination of quota-share and drop down
excess-of-loss treaties. In particular, we have considered Value-at-Risk, variance, coefficient of variation,
dispersion and reduction effect.

A forthcoming paper will be devoted to the study of the reinsured quantity defined in (1) when the risk
X is coming from an ordered claim X]’Q,( it U and v being replaced by functions both depending on
time t and rank 4. In particular, asymptotic properties of this quantity will be derived.

References
[1] Albrecher H., Teugels J.L. (2004): Asymptotic analysis of measures of variation, EURANDOM
Report 2004-042, Technical University of Eindhoven, The Netherlands.
[2] Benktander G., Ohlin J. (1967): A combination of surplus and excess reinsurance of a fire portfolio,
Astin Bull., 4, 2, 177-190.
[3] Centeno L. (1985): On combining quota-share and excess of loss, Astin Bull., 15, 1, 49-63.
[4] Embrechts P., Kliippelberg C., Mikosch T. (1997): Modelling Extremal Events for Insurance and
Finance, Springer-Verlag, Berlin.
[5] Ladoucette S.A., Teugels J.L. (2004): Reinsurance of large claims, EURANDOM Report 2004-025,
Technical University of Eindhoven, The Netherlands.
[6] Mack T. (1997): Schadenversicherungsmathematik, Verlag Versicherungswirtschaft e. V., Karlsruhe.
[7] Rolski T., Schmidli H., Schmidt V., Teugels J.L. (1999): Stochastic Processes for Insurance and
Finance, John Wiley & Sons, Chichester.
[8] Schmitter H. (1987): Eine optimale Kombination von proportionalem und nichtproportionalem Selb-
stbehalt, Mitt. Ver. Schweiz. Versich. Math., 2, 229-236.
[9] Steenackers A., Goovaerts M.J. (1992): Optimal reinsurance from the viewpoint of the cedent, Proc.
L.C.A., 2, 271-299.
[10] Teugels J.L. (1985): Selected Topics in Insurance Mathematics, Katholieke Universiteit Leuven,
Belgium.
[11] Teugels J.L. (2003): Reinsurance Actuarial Aspects, EURANDOM Report 2003-006, Technical Uni-
versity of Eindhoven, The Netherlands.
[12] Venter G.G. (2001): Measuring value in reinsurance, CAS Forum, Summer, 179-199.

10



