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1 Introduction

The present paper is inspired by two current trends in industry. Firstly, driven by environmen-
tal issues, new EU legislation, to be effective from 2006, will make manufacturers responsible
for the entire life cycle of certain products, including their disposal. Moreover, the lifetime
of a commercial product is nowadays much shorter than the actual lifetime of hardware. For
example, newly designed photocopying machines are functioning using the same electric mo-
tors but new software. Re-use of modules and components is therefore becoming increasingly
important, and methods are needed to estimate their expected remaining lifetime. Secondly,
as businesses are becoming more reliant on technology, the cost of machine failures increases
dramatically. On-line monitoring of machines, allowing replacement of parts before failure,
is therefore a potentially important method of improving customer service. Flextronics, pro-
ducer of photocopying machines, has initiated a joint project with Eindhoven University of
Technology and EURANDOM, which is part of the programme Economy, Ecology and Tech-
nology (EET, see www.eet.nl/english/), organized by the Dutch Ministry of Economic Affairs,
the Dutch Ministry of Education, Culture and Science, and the Dutch Ministry of Housing,
Spatial Planning and the Environment, in order to investigate the possibility of meeting
these goals. Several experiments have been carried out for assessing the feasibility of on-line
monitoring and re-use of components. In one of these experiments, carried out in 2002, the
vibrations produced by a copying machine during operation have been measured, while vary-
ing settings of internal machine parameters. The internal parameters are all parameters of
the machine varied during the experiment. Using vibration signals in this respect is highly
promising, as is demonstrated e.g. by [1], [2], [3], [4]. Some of the internal parameters may
be indicative of the performance of the photocopying machine, whereas other parameters are
nuisance parameters.

The specific question addressed in this paper is whether the internal state of the machine
can be determined using dynamic calibration of the aggregated profile of the machine’s vibra-
tions. Calibration is a technique for recovering difficult to measure “internal” parameters of
a system from easily measurable “external” parameters. Normally, calibration is applied to
static data, for example, in chemical engineering, where it is very helpful in the determination
of the ion concentration in a solution. Ion concentration is difficult to measure directly but
can be determined knowing the electric resistance of the solution. Additionally, calibration is
often applied during spectral analysis. This paper extends calibration techniques to signals,
that is, to the time domain. We will refer to this as dynamic calibration. Furthermore, this
paper demonstrates that calibration techniques can, in principle, be used for the online moni-
toring of machine performance (rather than failure) and assessment of the remaining life-time
of components.

Since the vibration signal contain a huge number of measurements, and since neighboring
measurements are highly dependent, it has to be compressed to a few salient parameters,
that is, a parsimonious representation of the signal has to be found. We propose such a
compression and apply two methods of calibration to the compressed signals: (i) Forward
calibration is the most commonly used one and is based on regression of internal parameters
on external ones, and (ii) Reverse calibration is based on regression of external parameters
on internal parameters and a subsequent inversion of these regressions. We also consider a
situation when it is known in advance what the possible values of the initial parameters are
and when the set of all possible values is discrete. This may be helpful not only in order to
assess accuracy of the method, but also for the case when all normal and critical values of
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Figure 1: Three parts of the finisher module involved in the experiment.

the parameters are related to some of the most characteristic values or when some values are
physically not possible.

Applied to the experimental data, reverse calibration proves to be the most accurate and
stable. It not only requires a smaller training set in order to reach the same accuracy level
but also for a smaller training set it is able to account for the greater part of the information
contained in the data.

In Section 2, the experimental setup is described and the internal parameters to be recov-
ered by calibration are given. In Section 3, the focus of the analyses of this paper, namely
the stapling operation, is described and the external parameters obtained from the vibration
signals during stapling are defined. In Section 4, two different methods for calibration are
described, and their relative merits are assessed. A conclusion and discussion is given in
Section 5.

2 Description of the experiment and measurements

In this section a summary is given of the experiment carried out by Flextronics and PD&E. A
more extensive description can be found in [5]. The experiment concerns the finisher module
of a photocopying machine, and measurements were done during the processing of sheets of
paper. For efficiency reasons, a single machine was tested during and the experiment lasted for
two days. It should not be problematic to generalize from this machine to other machines of
the same type, since experience from other experiments indicates that the between machine
variation is small with respect to the present measurements. Furthermore, the aim of the
present paper is to provide a general methodology rather than a detailed analysis of the
copying machine itself. Three parts of the finisher module were of interest in the experiment:
the solenoid, the stapler motor, and the nip motor (see Figure 1). The stapler motor stitches
three staples in each piece of paper, the nip motor regulates the paper transport process
and the solenoid decides whether the paper goes to main or top tray. There were five time
intervals in which the measurements for the motors and the solenoid are taken. A schematic
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Figure 2: Time sequence of measurements on the parts shown in Figure 1 for one piece of
paper.
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Figure 3: Top view of the finisher with location of the vibration sensors.

representation of the times the parts were on and the times the measurements were taken is
given in Figure 2.

Although both sound and vibrations were measured in the experiment, we shall only
analyze the vibration signals in this paper. In many industrial and office settings there
is much background noise, making on-line monitoring of the machine using sound signals
practically impossible. Hence, the vibration measurements appear to be the most promising
for practical use. The vibrations were measured using four acceleration sensors located at
four different positions in the finisher, see Figure 3. Each sensor measured vibrations in three
orthogonal directions, converting the physical acceleration into voltage (V), with a sensitivity
of 10 mV/g.

Before the experiment, a Failure Mode and Effect Analysis (FMEA) was performed in
order to determine which internal parameters may have influence on the vibration pattern.
The following seven were found: (i) Supply voltage 1, the voltage supplied to the motors
and the solenoid, (ii) the stapler set size which is the number of sheets stapled, (iii) feed roll
load, which measures the load on the feed roll and has direct influence on the nip transport
motor, (iv) PWBA modification, (v) PWBA temperature, (vi) the tension of the belt which
is located around the transport nip, and (vii) Supply voltage 2, the voltage supplied to the
printed wire board assembly (PWBA). The levels over which the factors were varied are given
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Factor Level 1 Level 2 Level 3
P1: Supply voltage 1 (Volt DC) 22 24 26
P2: Paper set size (number of sheets) 5 27 50
P3: Feed roll load 0 (Low) - 1 (High)
P4: PWBA modification 0 (Mod1) - 1 (Mod2)
P5: PWBA temperature 20 40 60
P6: Belt tension 0 (Low) - 1 (High)
P7: Supply voltage 2 (Volt DC) 4.5 5.0 5.5

Table 1: Factors and their settings varied in the experiment.

in Table 1. For the purpose of the numerical regression they were coded according to Table 2.
The FMEA further indicated that the following interactions are important:

1. Supply voltage 1 × Paper set size

2. Supply voltage 1 × Feed roll load

3. Supply voltage 1 × PWBA Modification

4. Supply voltage 1 × PWBA Temperature

5. Paper set size × PWBA Modification

6. Paper set size × Feed roll load

7. PWBA Modification× Feed roll load

An echelon design was made using 20 combinations of settings and which allowed these
interactions to be estimated (see [6]). This is in fact the smallest experimental design able
to account for these seven factors at required number of levels. With the current study we
attempted to find out if there are internal parameters that are both indicative of performance
of the machine and possibly to recover easily accessible vibrational patterns of the device.
For that reason, it is surprising how well the proposed calibration methods work already with
small training set and minimal experimental design we could supply. This makes application
of the method for greater training sets and more extended experimental design very promising.

At each setting, five replications were done on the same machine. Because the experiment
was done in only two days, these replications should yield very similar measurements. Thus,
for each time point in total 100 vibration signals were obtained. The sampling rate for each
measurement was 40960 Hz, and the measurement was performed for a duration of 0.5 second,
i.e., 20480 measurements were taken.

Not all of these seven parameters are indicative for the potential machine failure. For
example, paper set size (P2) is a nuisance parameter, which influence the vibration pattern
but has no clear connection to the potential failure. On the other hand, supply voltage 1
(P1) seems to have a close connection to current state of the system. However, if the nuisance
parameter has influence on the vibration pattern used in order to perform system monitoring,
then it is required to separate its effect at the pattern analysis. Therefore, it is also important
to be able to recover the nuisance parameters.
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Factor Level 1 Level 2 Level 3
P1: Supply voltage 1 -1 0 1
P2: Paper set size 5 27 50
P3: Feed roll load 0 - 1
P4: PWBA modification 0 - 1
P5: PWBA temperature -1 0 1
P6: Belt tension 0 - 1
P7: Supply voltage 2 -1 0 1

Table 2: Coded factors and their settings varied in the experiment.

3 Calculation of external parameters

The objective of this paper is to calibrate the signal with the internal machine parameters
given in Figure 4. Since the signal from each vibration sensor contains huge numbers of
readings, it needs to be compressed, that is, the most informative parameters concerning the
internal machine parameters need to be extracted from the signals in order to make calibration
possible. Such a function of the vibration signal will be called an external parameter. Below,
we first describe which time point we consider, and then describe how appropriate external
parameters can be obtained from the vibration signals at that time point.

We focus on the stapling operation and, more specifically, only the time interval t2 in
Figure 2 is considered, when the solenoid and the nip motor are off. The reason for this
choice is that the noise in the measured signal for the stapler motor is minimal at t2, and
therefore t2 is the most suitable for testing the present methodology. For other time points,
more complex techniques like blind source separation may need to be used. The vibration
sensor closest to the stapler motor was used, which is sensor 2 in Figure 2, so that we can
assume that noise is negligible. Therefore, complex techniques like blind source separation
do not need to be used to purify the signal, though for more complex systems it may be
necessary (see e.g. [?]). Each vibration sensor reads vibration in three directions showed in
Figure 3. Figure 4 shows the plot of the vibration signal for run 1, replication 1, direction
z. This plot is similar to plots of all the other measured signals. Two clear “bursts” of high
vibration can be observed. The first peak is caused by the anvil being pressed down on the
paper and the second is caused by the staple being pressed through the paper.

A signal consisting of the 20480 measurements in one of the directions is denoted by the
vector w. We define the first burst to be the first 8000 measurements (w1, . . . , w8000), and
the second one to be the remaining measurements (w8001, . . . , w20480). We consider the nine
external parameters given below to be informative with respect to the internal parameters
given in Table 1. The first and second internal parameters are the maximum absolute values
of the signal corresponding to the two bursts:

θ1(w) = max
i∈{1,8000}

|wi|,
θ2(w) = max

i∈{8001,20480}
|wi|.

These may be interpreted as the peak energy level corresponding to the two stapling proce-
dures. The third and fourth external parameters are the energy contained in the first and
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Figure 4: Vibration signal measured during the stapling process.

second bursts:

θ3(w) = 10−4
∑

i∈{1,8000}
w2

i ,

θ4(w) = 10−4
∑

i∈{8001,20480}
w2

i .

The fifth parameter is the distance between the peaks. Writing ji for the index for which the
ith burst occurs, it is given as

θ5(w) = j2 − j1.

The parameters θ1 to θ5 have a clear physical interpretation. The following additional parame-
ters, which do not have a clear physical interpretation, contain further important information.
The sixth and seventh parameters are the average absolute values of the measurements:

θ6(w) = 10−4
∑

i∈{1,8000}
|wi|,

θ7(w) = 10−4
∑

i∈{8001,20480}
|wi|.
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The eighth and ninth are the fourth moments:

θ8(w) = 10−4
∑

i∈{1,8000}
w4

i ,

θ9(w) = 10−4
∑

i∈{8001,20480}
w4

i .

The parameters are calculated for the signals in all three directions, yielding 27 parameters
in total.

In addition to the above, we have also looked at the power spectrum of the signals, but
this did not seem to yield much additional information for the present purposes.

We denote by wijk (i = 1, . . . , 3, j = 1, . . . , 20 and k = 1, . . . , 5) the measured signal for
direction i, setting j, and replication k. Hence, for each setting j and replication k, we have
a vector of 27 external parameters, given as

XT = (θ1(w1jk), . . . , θ9(w1jk), θ1(w2jk), . . . , θ9(w2jk), θ1(w3jk), . . . , θ9(w3jk)).

We hypothesize that these 27 external parameters contain most of the information in the
vibration signal concerning the internal parameters P1 to P7 which were varied in the experi-
ment (see Table 1). In the next section, we shall investigate to what extent this is true, that is,
we shall try to calibrate these with the internal parameters. For notational simplicity we shall
denote the (random) external parameters obtained from the signals by XT = (X1 . . . , X27).

4 Calibration

Under calibration we will understand recovering real values of (some of) the internal pa-
rameters P1, . . . , P7 given the value of corresponding observable values X1, . . . , X27. In this
section we will construct two possible calibration procedures using the forward, commonly
used approach, and the reverse approach. For more details we refer to [?] and [7].

Most publications in this area are concerned with the static calibration problem such as
determination of the concentration of various elements in a solution. For that purpose one
may use spectral analysis or consider the electric properties of the solution. The problem we
consider is somewhat different. It may be impossible to recover the internal parameters of
the system using only one reading of the vibration. On the other hand, the vibration pattern
contains a lot of information about the system. Therefore, as suggested, we need to perform
a dynamic calibration. Moreover, it is not feasible to determine the vibrational pattern on
the basis of physical laws since even simplest vibrating units are rather complicated systems.

First we separate the data into a training and a validation set where the training set
will be used in order to construct the calibration procedure and the validation set in order
to validate the procedure constructed. We assume that the data in the validation data set
shows certain dependencies between observable values X1, . . . , X27 separated in section 3
and internal parameters P1, . . . , P7 in Table 2, but these dependencies are assumed to be
additively disturbed by some random mechanism. For the validation data set we assume the
same dependencies and the same kind of disturbance but this time independent from that
for the training data set. Therefore, if the procedure constructed for the training data set
is correct, it should work correctly for the validation data set. If it is not correct then, the
constructed procedure is probably capturing random fluctuations of the training data as the
expected dependencies and bases its conclusion on them.
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On the other hand, correctness of the procedure for the training data set itself is also
expected. Moreover, this procedure should work for the training data set even better than for
the validation data set. This is because the training data set is already used for construction
of the calibration procedure, so that random fluctuations are partly accounted for in the
calibration procedure constructed.

Then we will separate the set of internal parameters between P1, . . . , P7 which can be
recovered by the methods of the calibration. Certainly, if any dependence between some Pk

and the observable values X1, . . . , X27 is missing, it is not possible to recover its value on the
basis of X1, . . . , X27. On the other hand, strict linear dependence without any random fluctu-
ations guarantees successful calibration. Any situation between these two makes calibration
possible. However, three questions are important, namely how complicated the relation is,
how much it explains the variation in Pk, and how certain can we be about the presence of
such a relation.

To discover complicated dependence between Pk and X1, . . . , X27 much more data is
required than for a simple dependence. In the current paper we only have at our disposal
the results of 100 runs and for that reason we have to restrict ourselves to consideration of
quadratic regressions. The second and third questions above will be answered by application
of well-known statistical procedures.

Principal component analysis (PCA) is an important part of this and later analysis. It
allows separation of uncorrelated factors from the data. It is also very important for the
forward calibration approach.

The first calibration approach considered is the forward one. For this we regress internal
parameters on the orthogonalized vectors of the observable values and consider this regres-
sion function as a predictor for the cases when the values of Pk are unknown. The second
calibration approach considered is the reverse approach. It requires regression of the orthog-
onalized vectors of the observable values on the vectors of internal parameters and further
reversion of this relation by means of minimal quadratic distance in order to predict the
internal parameters when Pk is unknown.

The situation when Pk can take values only in some set Pk will be considered too. For
the forward approach it requires minimization of a certain distance between prediction for R
and prediction for Pk. For the reverse approach it simply calls for minimization over Pk at
reversion.

For both approaches we will check how close their values are to the observed ones in the
Euclidian metric. Moreover, we will construct a restriction of these calibration methods to
the set of all possible Pk and consider accuracy of calibration in terms of correct/incorrect
calibration. For such restrictions it is possible to make a second choice and consider “best
but one” candidate between all Pk. Their relative likelihood is a possible measure of cer-
tainty of the calibration. Larger ratio shows that the method does not hesitate between two
possibilities. We will also consider in how many cases both first and second candidate were
incorrect.

Finally, we will study how stable both calibration methods are related to the sample size.
For this we will interchange the training and the validation data sets and repeat the same
procedure.
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4.1 Separation of internal parameters.

First we shall separate the data into a training data set which will be used in order to construct
the calibration procedure and a validation data set which will be used to verify its correctness.
For simplicity, only one training set is used. The training data set

(ai,1, . . . , ai,27), i = 1, . . . , 80,

contains the data from the first four of each five runs for each experiment. Consequently, the
validation data set

(bi,1, . . . , bi,27), i = 1, . . . , 20

contains the data from each fifth run of each experiment.

Moreover, we shall centralize and standardize both data sets by the same means and
standard deviations. Let

di,j = (ai,j −mj)/sj , i = 1, . . . , 80, j = 1, . . . , 27,

where

mj =
1
80

80∑

i=1

ai,j , s2
j =

1
79

80∑

i=1

(ai,j −mj)2, j = 1, . . . , 27,

and let
cij = (bi,j −mj)/sj , i = 1, . . . , 20, j = 1, . . . , 27.

In fact, we have performed the same linear transformation to all the data in both the training
and the validation data sets.

First we perform the principal component analysis (PCA) of the training data set. It will
result in a set of loading vectors l1, . . . , l27 and a set of score vectors (s1, . . . , s27), for which

(s1, . . . , s27) = (d1, . . . ,d27)(l1, . . . , l27)

(here and later we write dj = (d1,j , . . . , d80,j)T ). Similarly, we introduce

(s′1, . . . , s
′
27) = (c1, . . . , c27)(l1, . . . , l27). (1)

We will also call the score vectors s′1, . . . , s
′
27 the predicted score vectors. For notational

simplicity we will also denote P1, . . . ,P7 vectors corresponding to the training data set and
P′

1, . . . ,P
′
7 vectors corresponding to the validation data set. Their meanings are described in

Table 2.
First we use PCA in order to determine the set of parameters that can be recovered by the

calibration using X1, . . . , X27. For that we regress seven vectors P1, . . . ,P7 corresponding to
different internal parameters linearly on s1, . . . , s27 and the intercept.

Pk = (1, s1, . . . , s27)ck + εk,

where εk ∼ N (0, I80σ
2
k) are vectors of normal errors.

We only regress parameters Pk on linear terms since higher order regression would require
estimation of 757 regression coefficients. They can not be solved from 80 equations. Though,
application of the second order regression could make sense if we had very large data set.
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Parameter Name R2 pF

P1 Supply voltage 1 0.873 0.000

P2 Paper set size 0.973 0.000

P3 Feed roll load 0.281 0.785

P4 PWBA modification 0.542 0.005

P5 PWBA temperature 0.347 0.458

P6 Belt tension 0.380 0.267

P7 Supply voltage 2 0.274 0.815

Table 3: Regression of Pk - multiple R-squared statistic and p-value of multiple F -statistic.

When the first order regression captures dependence of parameter Pk on the scores, it is
clear that this Pk is partly characterized by the observable variables. Moreover, when more
variance in parameter Pk is explained, then P′

k can be recovered more accurately. In Table
4.1 we give the values of two statistics, the multiple R-squared statistic, and the p-value of
the multiple F -statistic calculated for seven first order regressions.

Let us consider, for example, the internal parameter P4. The value of its multiple R-
squared statistic is 0.542. Therefore, regression explains approximately a half of its variation.
It is better than for example for P3 but still dependence of the parameter P4 on the scores is
weak compared to these for P1 or P2. The value of pF is equal to 0.005. Therefore, effect of
external parameters on P4 is significant.

Analysis of this table suggests that it is possible to recover the values of internal parameters
P1, P2, and P4 using the separated data, whereas it is questionable whether it is possible for
the other four internal parameters. Nevertheless, in the current paper we will restrict ourselves
to recovering parameters P1 and P2 that depend on the extracted data most distinctly. They
not only depend on the observed variables, but also larger part of their variance is explained
by such dependence. As we will see later, P1 is recovered less accurately than P2 which is
explained by the smaller multiple R-squared statistic.

4.2 Forward calibration.

First consider the forward calibration approach which is commonly used in the literature (see
e.g. [7] and [?]). We regress parameters P1 and P2 on s1, . . . , s27. Regressing up to the second
order terms we found that only scores s1, . . . , s5 are significant. We have selected terms

1, s1, s2 , s3 , s4 , s5 , s2
1 , s2

2 , s2
4 , s1s2 , s1s3 , s4s5

as significant for regression of parameters P1 and P2 on the scores. Here under product like
s1s2 we understand a vector of componentwise products.

Let us denote the regression functions

Pi,k = gk(si,1, . . . , si,5) + εi,k, i = 1, . . . , 80, k = 1, 2,

where
εi,k ∼ N (0, σ2

k)
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are independent normally distributed random errors, and Pi,k denotes the i-th component of
the vector Pk. Therefore, we also assume that

P′
i,k = gk(s′i,1, . . . , s

′
i,5) + ε′i,k, i = 1, . . . , 20, k = 1, 2,

where
ε′i,k ∼ N (0, σ2

k)

are independent normally distributed random errors.
Let for (y1, . . . , y5) ∈ R5

(P̂1, P̂2) = (g1(y1, . . . , y5), g2(y1, . . . , y5)). (2)

When considering possible values of (P1, P2) in R2, (2) provides a closed form solution for
the calibration problem. In that form it can be directly applied to some vector (x1, . . . , x27) ∈
R27 assumed to be the values extracted as described in section 3. That vector must be
transformed according to (1) and then first five of its components must be substituted into (2).

As promised we apply (2) to the training and the validation data sets. Accuracy of the
forward approach is pictured by the differences of vectors P̂1 − P1, and P̂′

1 − P′
1 (box plots

1 and 2 in Figure 7), and P̂2 −P2, and P̂′
2 −P′

2 (box plots 1 and 2 in Figure 8).

However, if the set of all possible values of (P1, P2) ∈ P1 × P2 is known in advance, it is
preferable to have (P̂1, P̂2) lying in this set. For that, consider the following squared distance
between (P̂1, P̂2) in (2) and some (P1, P2) ∈ R2

ρ((P1 − P̂1), (P2 − P̂2)) = σ̂−2
P1

(P1 − P̂1)2 + σ̂−2
P2

(P2 − P̂2)2,

where σP1 and σP2 are estimated using the training data set only. It is proportional to minus
the loglikelihood of (P1, P2) in the estimated model and it should be as small as possible.

Let
(P̃ 1

1 , P̃ 1
2 ) = argmin ρ(P1 − g1(y1, . . . , y5), P2 − g2(y1, . . . , y5)), (3)

where argmin is taken over the set P1 × P2. This is another calibration mechanism, which
also can be applied to any vector (x1, . . . , x27) ∈ R27 assumed to be the values extracted as
described in section 3.

We apply calibration method (3) to the training and the validation data set with P1×P2 =
{−1, 0, 1} × {5, 27, 50} (choice of P1 × P2 is explained in section 3). Numbers of cases for
the training and for the validation data sets where the calibration by (3) did not recover the
correct values of (P1, P2) are given in Table 4.

One can also look at the second candidate by the calibration procedure (3), namely

(P̃ 2
1 , P̃ 2

2 ) = argmin ρ(P1 − g1(y1, . . . , y5), P2 − g2(y1, . . . , y5)), (4)

where argmin is taken over the set P1 × P2 \ (P̃ 1
1 , P̃ 1

2 ), and where (P̃ 1
1 , P̃ 1

2 ) is the same as
in (3).

When the calibration is performed in order to define if the internal parameters are not in
a critical set, it is advisable to look at the second candidate too. If the undesirable state is
not (P̃ 1

1 , P̃ 1
2 ) but (P̃ 2

1 , P̃ 2
2 ), then it may be still advisable to monitor the system closely. The

numbers of cases when both the first and the second choices were not correct can be found
in Table 4.
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Moreover, the value of

κ = ρ(P̂1 − P̃ 2
1 , P̂2 − P̃ 2

2 )− ρ(P̂2 − P̃ 1
2 , P̂2 − P̃ 1

2 )

is proportional to the logarithm of the likelihood ratio of the first/second choice in the es-
timated model. When κ is large, then the probability of correct calibration by (P̃ 1

1 , P̃ 1
2 ) is

higher. Box plots of the values of κ for the training data set, correct calibration (box plot 1),
validation data set, correct calibration (box plot 2), training data set, incorrect calibration
(box plot 3), and validation data set, incorrect calibration (box plot 4), are given on Figure 5.

From Figure 5 we conclude that the value of κ is informative as an indicator of certainty
or uncertainty of the calibration though it is not able to indicate all incorrect calibrations
without giving false alarm in case of correct calibrations.

4.3 Reverse calibration.

Anther approach to the calibration problem that we consider is the reverse calibration. We
regress each of the scores s1, . . . , s27 on the values of the parameters (P1,P2) up to the second
order terms. We have selected terms

1,P1,P2,P2
1,P1P2

as significant for regression of the scores on the parameters P1 and P2. Unfortunately, the
echelon minimal experimental design able to account for all seven factors with required number
of levels which we have used does not allow to consider the dependent variable P2

2 too. We
preferred P2

1 and P1P2 for two reasons. First, we would like to capture possible interaction
between P1 and P2, and secondly, the value of the multiple R-squared statistic in Table 4.1
makes us think that P1 may be more difficult to recover and hence, more precision in that
direction is preferable. Let us denote the regression functions as

si,j = fj(Pi,1,Pi,2) + εi,j , i = 1, . . . , 80, j = 1, . . . , 27,
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where
εi,j ∼ N (0, σ2

j )

are independent normally distributed random errors.
Therefore we also assume that

s′i,j = fj(P′
i,1,P

′
i,2) + ε′i,j , i = 1, . . . , 20, j = 1, . . . , 27.

where
ε′i,j ∼ N (0, σ2

j )

are independent normally distributed random errors.
Let

(P̂1, P̂2) = argmin
27∑

j=1

(yj − fj(P1, P2))
2 /σ̂2

j , (5)

where we minimize over R2, and where we have used only the training data set in order to
estimate σ1, . . . , σ27. In fact, that is approximate inversion of all regressions together. This
is a calibration method that we will further call a forward calibration approach.

When considering possible values of (P1, P2) in R2, (5) provides a solution for the cali-
bration problem. It can be directly applied to some vector (x1, . . . , x27) ∈ R27 assumed to be
the values extracted as described in section 3. That vector must be transformed according to
(1) and then substituted into (5).

We also apply (5) to the training and the validation data sets. Accuracy of the reverse
approach is pictured by the differences P̂1−P1, and P̂′

1−P′
1 (box plots 3 and 4 in Figure 7),

and P̂2 −P2, and P̂′
2 −P′

2 (box plots 3 and 4 in Figure 8).
Application of all scores in the method is reasonable since the scores are uncorrelated

(predicted scores - approximately uncorrelated) and the information about (P1, P2) contained
in each of the scores is approximately independent. In fact, that is one of the advantages of
the reverse calibration since for small training data sets the forward method can only use the
most informative scores.

However, if the set of all possible values of (P1, P2) ∈ P1 × P2 is known in advance, it is
preferable to have (P̂1, P̂2) lying in this set. For that, let

(P̃ 1
1 , P̃ 1

2 ) = argmin
27∑

j=1

(yj − fj(P1, P2))
2 /σ̂2

j , (6)

where we minimize over P1 × P2.
We apply calibration method (6) to the training and the validation data set with P1×P2 =

{−1, 0, 1} × {5, 27, 50}. Numbers of cases for the training and for the validation data sets
where the calibration by (6) did not recover correct values of (P1, P2) are given in Table 4.

One can also look at the second candidate by the calibration procedure (6), namely

(P̃1, P̃2) = argmin
27∑

j=1

(yj − fj(P1, P2))
2 /σ̂2

j , (7)

where we minimize over P1 × P2 \ (P̃ 1
1 , P̃ 1

2 ), and where (P̃ 1
1 , P̃ 1

2 ) is the same as in (6). The
numbers of cases when both the first and the second choices were not correct can be found
in Table 4.

13



Type of calibration Training Validation
Forward, first choice 10/80 2/20
Forward first & second choice 0/80 0/20
Reverse, first choice 2/80 0/20
Reverse, first & second choice 1/80 0/20
Reverse, first choice, small training set 5/80 0/20
Reverse, first & second choice, small training set 2/80 0/20

Table 4: Calibration errors.

0
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10
15

20
25

30

1 2 3

Figure 6: Reverse approach - κ for training/validation data set, correct/incorrect calibration.

Moreover, the value of

κ =
27∑

j=1

(
yj − fj(P̃ 2

1 , P̃ 2
2 )

)2
/σ̂2

j −
27∑

j=1

(
yj − fj(P̃ 1

1 , P̃ 1
2 )

)2
/σ̂2

j

is proportional to the logarithm of the likelihood ratio of the first/second choice in the esti-
mated model. When κ is large, then probability of correct calibration by (P̃ 1

1 , P̃ 1
2 ) is higher.

Box plots of the values of κ for the training data set, correct calibration (box plot 1), vali-
dation data set, correct calibration (box plot 2), training data set, incorrect calibration (box
plot 3), are given on Figure 6. The fourth box plot is missing since the reverse calibration
does not calibrate incorrectly for the validation data set.

From Figure 6 we conclude that the value of κ is informative as an indicator of certainty
or uncertainty of the calibration though it is not able to indicate all incorrect calibrations
without giving false alarm in case of correct calibrations.

Moreover, we consider the reverse calibration approach only using first 18 of the presum-
ably the most informative scores. Numbers of cases for the training and for the validation
data sets where this calibration did not recover correct values of (P1, P2) and where both the
first and the second choice by this calibration were not correct can be found in Table 4.
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Type of calibration Training Validation
Forward, first choice 34/80 0/20
Forward first & second choice 19/80 0/20
Reverse, first choice 16/80 0/20
Reverse, first & second choice 4/80 0/20

Table 5: Calibration errors, interchanged roles.

4.4 Smaller training data set.

It also makes sense to check how stable both methods are with respect to the sample size.
For that we interchange the roles of the training and the validation data sets and performed
the same analysis. It is summarized in Table 5.

It appeared that already for this small training data set size accuracy of the calibration
algorithms is quite high. Nevertheless, it is still desirable to provide a large training data set
in order to reach better calibration algorithm. Also, the reverse calibration is found to be
more accurate already for a small training data set.

4.5 Comparison of both calibration methods

Tables 4 and 5 suggest that the reverse approach is preferable to the forward one since its
accuracy is much higher, though in one case it fails to detect the correct value of (P1, P2) by
both the first and the second choice. The forward approach never misses the correct value of
the pair by both the first and the second choices.

Moreover, it is interesting how much the reverse approach uses the observed data. So, if
we would only consider regression of the first 18 scores on the values of P1 and P2, then the
reverse approach would also make more calibration errors. Therefore, the reverse calibration
approach is more suitable for the purpose of dynamic calibration where the signal in time
domain can be compressed into high-dimensional vector (in the current study, its dimension
is equal to 27 as we discussed in section 4).

Reverse calibration is also less dependent on the PCA analysis. It only uses it in order
to determine which of Pk can be recovered by the calibration and orthogonalize vectors of
dependent variables.

Figures 7 shows that precision of the forward calibration of P1 in the continuous metric
is also lower whereas for P2 they both are approximately equally good. It may be explained
by the fact that calibration of P2 is more accurate.

All analysis in this section were performed using S-PLUS. S-PLUS code for calibration
functions and all used data are available from the first author.

In principle, it is also possible to use estimates of the form

(P1, P2) = argmin
27∑

j=1

h ((yj − fj(P1, P2)) /σ̂j) ,

where h is some monotone increasing function e.g. hz(x) = 1{x ≤ z} or h(x) = |x|. The
first one can be extremely helpful if the considered regression only explains a part of the
variation in the parameters P1 and P2. However, the calibration problem considered in the
current paper is solved more efficiently by setting h(x) = x2. Also, it provides a likelihood
ratio related predictor of accuracy of the calibration performed.
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Figure 7: P1 errors, forward/reverse, training/validation.
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Figure 8: P2 errors, forward/reverse, training/validation.
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5 Conclusion and Discussion

Today there is a need for cheap practical methods for the purposes of online monitoring of
machine performance and for the assessment of the remaining life-time of components. A
potentially promising signal to measure in this respect is the vibration produced by a compo-
nent. If the accelerometer is placed close to the relevant component, a relatively clean signal
may be obtained. The aim of this paper is to investigate whether indeed vibrations can be
used for these purposes, and if so to present a practical methodology by which this can be
done. The results of this paper show that the answer to the question is affirmative. Fur-
thermore, practical dynamic calibration methods were presented for decoding the aggregated
profile represented by the machine’s vibrations. Note that the purpose of this paper was not
to present a completely thorough analysis of the copying machines under investigation, but
rather to show that the general methodology is practical, which has been done successfully.

In the current paper we have investigated two calibration methods, namely the forward
and reverse ones. It is clear that the reverse calibration is preferable for the experiment
considered. One of its strong sides is that it is able to use all the data contained in the
observations in a more efficient way than the forward calibration which is restricted to the
use of some of the first scores, explaining most of the variation in the observations. This
makes the reverse approach more suitable for dynamic calibration. Its advantage can also be
seen from comparison of the reverse calibration procedures using only the first 18 scores to
the reverse calibration procedure using all scores and its quality for smaller training data sets.
One immediately striking advantage of the forward calibration is its computational simplicity
when maximizing over large set of possible values of (P1, P2), though when the set of possible
values of the internal parameters is restricted this advantage is minimal.

In order to apply the calibration procedures developed in this paper for the assessment of
the remaining life-time of components and for online monitoring, a more elaborate experiment
should be done than the experiment presented in the current paper, which was a screening
experiment. In particular, more settings of the internal parameters should be used, and prefer-
ably multiple machines should be tested. In future research we also suggest to consider other
types of the signal compression. For example, instead of looking for physically interpretable
compression it may be interesting to look at wavelet coefficients of the vibrational signal.
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P1 P2

Intercept -0.554 20.094
s1 0.055 -5.441
s2 -0.002 0.086
s3 0.278 1.792
s4 0.004 -2.737
s5 -0.176 2.802
s2
1 0.042 0.533

s2
2 0.034 0.403

s2
5 -0.105 -1.120

s1s2 -0.045 -0.395
s1s3 -0.053 -0.182
s4s5 0.138 0.513
StDev 0.373 4.69

Table 6: Forward approach - regression coefficients.
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6 Appendix

6.1 Tables of regression coefficients

In Tables 6 and 7 we provide regression coefficients and standard deviation used in the previous
analysis.
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Intercept P1 P2 P 2
1 P1P2 StDev

s1 3.8299 2.6654 -0.1528 0.4732 -0.0458 1.1890
s2 -3.7081 0.2025 0.0123 4.2209 0.0105 1.5960
s3 -0.1856 0.9639 0.0163 -0.3774 0.0086 1.1080
s4 0.7441 -0.7091 -0.0230 -0.1761 0.0088 1.2040
s5 -0.3652 0.2976 0.0072 0.2165 -0.0172 0.7969
s6 -0.3606 -0.2207 -0.0004 0.4540 0.0105 0.8060
s7 0.4866 0.1483 0.0001 -0.6037 -0.0029 0.8060
s8 -0.1339 0.2588 0.0012 0.1313 -0.0098 0.5102
s9 -0.0705 -0.0733 -0.0007 0.0880 0.0046 0.5630
s10 0.0416 -0.1440 -0.0003 -0.0426 0.0052 0.4591
s11 0.0917 -0.1027 -0.0006 -0.0687 0.0038 0.4168
s12 0.0707 0.1082 0.0011 -0.1202 -0.0024 0.3919
s13 -0.0531 -0.1595 -0.0026 0.1378 0.0035 0.3809
s14 -0.0863 0.0288 -0.0006 0.1089 -0.0006 0.3382
s15 0.0317 -0.0687 -0.0013 0.0241 0.0020 0.3140
s16 -0.0009 -0.0763 0.0000 -0.0046 0.0008 0.2893
s17 0.0548 -0.0115 -0.0001 -0.0420 0.0002 0.2269
s18 -0.0350 0.0243 0.0007 0.0118 -0.0005 0.1812
s19 -0.0108 0.0405 0.0000 0.0246 -0.0012 0.1878
s20 -0.0464 -0.0585 -0.0008 0.0754 0.0018 0.1548
s21 -0.0478 0.0163 -0.0002 0.0605 -0.0004 0.1302
s22 -0.0179 0.0110 -0.0001 0.0223 -0.0001 0.1056
s23 0.0034 -0.0052 0.0000 -0.0014 0.0005 0.0985
s24 0.0013 -0.0217 -0.0002 0.0067 0.0005 0.0814
s25 0.0026 -0.0158 0.0001 -0.0073 0.0007 0.0660
s26 0.0335 -0.0049 0.0000 -0.0366 0.0003 0.0366
s27 0.0075 -0.0014 -0.0001 -0.0063 0.0001 0.0371

Table 7: Reverse approach - regression coefficients.
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6.2 SPLUS code

Forward calibration, restricted set of possible values.
Requires vector xx of length 5 which consists of the first five score coordinates and matrix a
of size 13× 2 as described in Table 6.
Returns vector of length 5 containing first choice, second choice, and the value of κ.

function(xx,a)

{

x<-c(1,xx,xx[1]^2,xx[2]^2,xx[4]^2,xx[1]*xx[2],xx[1]*xx[3],xx[4]*xx[5])

i<-1

j<-1

min<-1e+022

prevmin<-1e+022

ans<-c(-1e+022,-1e+022)

prevans<-c(-1e+022,-1e+022)

x1<-c(-1,0,1)

x2<-c(5,27,50)

for(i in 1:3){

for(j in 1:3){

dist<-(x%*%a[1:12,1]-x1[i])^2/a[13,1]^2+(x%*%a[1:12,2]-x2[j])^2/a[13,2]^2

if(dist<min){

min<-dist

ans<-c(x1[i],x2[j])

}

}

}

for(i in 1:3){

for(j in 1:3){

dist<-(x%*%a[1:12,1]-x1[i])^2/a[13,1]^2+(x%*%a[1:12,2]-x2[j])^2/a[13,2]^2

if(dist<prevmin & abs(dist-min)>1e-050){

prevmin<-dist

prevans<-c(x1[i],x2[j])

}

}

}

return(c(ans, prevans, prevmin-min))

}

Forward calibration, non-restricted set of possible values.
Requires vector xx of length 5 which consists of the first five score coordinates and matrix a
of size 13× 2 as described in Table 6.
Returns vector of length 2 containing the result of forward calibration.

function(xx,a)

{

x<-c(1,xx,xx[1]^2,xx[2]^2,xx[4]^2,xx[1]*xx[2],xx[1]*xx[3],xx[4]*xx[5])

return(x%*%a[1:12,])
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}

Reverse calibration, restricted set of possible values.
Requires vector x of length 27 which contains all score coordinates, matrix z of size 6x27 as
described in Table 6, and vector v of length 27 which characterizes contribution of each score
into calibration. In the paper choices v = (1, . . . , 1) and v = (1, . . . , 1, 0, . . . , 0) are made,
where zero’s are on the last 9 places.
Returns vector of length 5 containing first choice, second choice, and the value of κ.

function(x,z,v)

{

i1<-1

i2<-1

i3<-1

min<-(1e+022)

min2<-(1e+022)

argmin<-0

argmin2<-0

for(i1 in 1:3){

for(i2 in 1:3){

a<-c(1,i1-2,0,0,0)

if(i2==1){

a[3]<-5

}

if(i2==2){

a[3]<-27

}

if(i2==3){

a[3]<-50

}

a[4]<-a[2]^2

a[5]<-a[2]*a[3]

b<-((a%*%z[1:5,]-x)^2/(z[6,]^2))+log(z[6,])

s<-b%*%v

if(min>s){

min<-s

argmin<-a

}

}

}

for(i1 in 1:3){

for(i2 in 1:3){

a<-c(1,i1-2,0,0,0)

if(i2==1){

a[3]<-5

}
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if(i2==2){

a[3]<-27

}

if(i2==3)){

a[3]<-50

}

a[4]<-a[2]^2

a[5]<-a[2]*a[3]

b <-((a%*%z[1:5,]-x)^2/(z[6,]^2))+log(z[6,])

s<-b%*%v

if(min2>s & nopp(argmin,a)){

min2<-s

argmin2<-a

}

}

}

return(c(argmin[2:3],argmin2[2:3],(min2-min)))

}

Where function nopp is given by

function(x,y) (nopp)
{

i<-0

flag<-F

for(i in 1:length(x)){

if(x[i]!=y[i]){

flag<-T

}

}

return(flag)

}

requires two vectors of equal length and returns ”T” is they are not exactly the same.

Reverse calibration, non-restricted set of possible values.
This requires two functions: the first one takes care of minimization by means of SPLUS
function nlminb. Requires vector x1 of length 27 containing all score coordinates, matrix z
of size 6× 27 as described in Table 7, vector v of length 27 which characterizes contribution
of each score into calibration, and the starting value st (it may be taken (0, 0)). In the paper
choice v = (1, . . . , 1) is made, where zero’s are on the last 9 places.
Returns vector of length 2 containing minimizer of the function Rev.nonrestr() being result
of the reverse calibration.

function(x1,z1,v1,st)

{
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return(nlminb(start=st,objective=Rev.non_restr,x=x1,z=z1,v=v1)$parameters)

}

Requires vector x of length 27, matrix z of size 6× 27, and vector v of length 27. In the
paper v = (1, . . . , 1) is taken.
Returns the values of the quadratic sum.

function(aa,x,z,v) (Rev.non restr)
{

a<-c(1,aa,aa[1]^2,aa[1]*aa[2])

b<-((a%*%z[1:5,]-x)^2/(z[6,]^2))

s<-b%*%v

return(s)

}

In our study all these functions were applied to calibration of two vectors P1′, P2′, and
P1, P2. For this reason they were applied by the function

function(x,y,v)

{

i<-1

a<-c(0,,0)

for(i in 1:N){

a<-rbind(a,CALIBRATION.FUNCTION(x[i,],y,v))

}

return(a[2:N+1,])

}

It requires matrix x of proper dimension (its rows will be used in each calibration proce-
dure), matrix y is in Tables 6 or 7, and vector v if any.
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