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Abstract

We present a unified approach to the analysis of several popular models in
collective risk theory. Based on the analysis of the discounted penalty function
in a semi-Markovian risk model by means of Laplace-Stieltjes transforms, we
rederive and extend some recent results in the field. In particular, the classical
compound Poisson model, Sparre Andersen models with phase-type interclaim
times and models with causal dependence of a certain Markovian type between
claim sizes and interclaim times are contained as special cases.
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1 Introduction

Let us consider the following risk model for the surplus process R(t) of an insurance
portfolio:

R(t) = x+ ct−

N(t)
∑

j=1

Xj, (1)

where x is the initial capital, c is the premium density which is assumed to be
constant, Xj is the size of the jth claim and N(t) is the number of claims up to
time t. In classical risk theory, the claims Xj and the claim number process N(t)
are assumed to be independent. However, in many applications the independence
assumption is too restrictive and recently several authors looked at more general
models where this assumption is relaxed in some way (see Asmussen [5] for a survey
on the subject).
In this paper we will consider a semi-Markovian dependence structure of the follow-
ing type: Let Wi denote the time between the arrival of the (i − 1)th and the ith
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claim and W0 = X0 = 0 a.s. Then

P(Wn+1 ≤ x,Xn+1 ≤ y, Zn+1 = j |Zn = i, (Wr, Xr, Zr), 0 ≤ r ≤ n)

= P(W1 ≤ x,X1 ≤ y, Z1 = j |Z0 = i) = (1 − e−λix)pij Bj(y), (2)

where {Zn, n ≥ 0} is an irreducible discrete-time Markov chain with state space
{1, . . . ,M} and transition matrix P = ((pij), 1 ≤ i, j ≤ M). Thus at each instant
of a claim, the Markov chain jumps to a state j, and the distribution Bj of the
claim depends on the new state j. Then the next interarrival time is exponentially
distributed with parameter λj. Note that given the states Zn−1 and Zn, the quan-
tities Wn and Xn are independent, but there is autocorrelation among consecutive
claim sizes and among consecutive interclaim times as well as cross-correlation be-
tween Wn and Xn. This semi-Markov process was first considered in Janssen and
Reinhard [18], where a formal solution for the survival probabilities in terms of an
infinite series of matrix convolutions was derived.
We considerably generalize the approach in Janssen and Reinhard [18] and inves-
tigate the discounted penalty function in such a risk model by means of Laplace-
Stieltjes transforms (LST). This allows to obtain information on several character-
istics of the ruin process.

The model considered in this paper is quite general: it contains the compound
Poisson model (M = 1) and Sparre Andersen models with (generalized) Erlang(n)-
interclaim distributions (see e.g. Gerber and Shiu [16], Li and Garrido [20]) as well
as phase-type interclaim distributions (see Avram and Usabel [6] and Li and Garrido
[21]) as special cases (just choose appropriate transition probabilities and let Bj be
degenerate at 0 for all but one state among {1, . . . ,M}). Moreover, it also covers
models with causal dependence structures of the type considered in Albrecher and
Boxma [3], namely that the distribution of the inter-arrival time depends on the
size of the previous claim in a specified way. To see this, choose a generic claim size
random variable X and for all i = 1, . . . ,M , pij = P(X ∈ Aj) for some (possibly
random) interval Aj ⊂ R and Bj ∼ X|X ∈ Aj (cf. Section 6.3). Note that by
considering state-dependent transition probabilities pij = P(X ∈ Aj | current state
i), we here arrive at a more general model that also allows the claim size distribution
itself to depend on the state of the Markov chain. The purpose of this paper can
also be seen as to provide an umbrella to the analysis of all these risk models.

A fluid queue approach for the Laplace transform of the time until ruin (which is a
special case of the discounted penalty function) in a related model can be found in
Badescu et al. [7]. For an analysis of the time until ruin based on the methodology
of piece-wise deterministic Markov processes, see Jacobsen [17]. For a study on the
asymptotic behavior of the ruin function in the presence of dependence between
interclaim times and claim sizes based on random walk techniques, see Albrecher
and Teugels [4]. Adan and Kulkarni [1] recently considered a queueing model with
dependence structure (2) with λi replaced by λj. Translated to a risk model setting,
the latter means that an interclaim time of state j is always followed by a claim size
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of state (and thus distribution) j (whereas in model (2) it is the other way round).
In principle, a similar analysis can be developed for this model, too. However, in
view of applications, (2) seems more appealing.

The paper is organized as follows. In Section 2, an explicit expression for the Laplace
transform of the discounted penalty function in model (2) is derived. Section 3 then
gives an explicit formula for the discounted penalty function for zero initial capital.
In Section 4, the asymptotic behavior of the penalty function is investigated for
light-tailed claim sizes. In concrete cases, it is sometimes not possible to explicitly
evaluate the occurring expressions. Thus, in Section 5 it is shown how to (at least)
obtain arbitrary moments of the time to ruin, surplus before ruin and the deficit at
ruin. Finally, in Section 6, we specify examples and use the results of the paper to
rederive and extend various formulas from the risk theory literature.

2 An equation for the discounted penalty func-

tion

Let µ
(j)
i denote the jth moment of distribution Bi, given it exists and furthermore

µi := µ
(1)
i . In the sequel we will always assume the net profit condition

M
∑

i=1

πiµi < c

M
∑

i=1

πiλ
−1
i , (3)

where π = (π1, . . . , πM) is the stationary distribution of {Zn}. We are now interested
in various characteristics of the risk model (1) together with (2). Gerber and Shiu
[15] introduced the by now classical discounted penalty function at ruin

mδ(x) := E

(

w(R(T−
x ), |R(Tx)|)e

−δTx1{Tx<∞}

)

, (4)

where Tx denotes the time of ruin with initial capital x, R(T−
x ) is the surplus im-

mediately before ruin, |R(Tx)| is the deficit at ruin and the penalty w(x1, x2) is an
arbitrary non-negative function on [0,∞) × [0,∞). δ ≥ 0 may be interpreted as a
force of interest, but (4) may also be considered in terms of a Laplace transform
with δ as its argument. The function mδ(x) contains a lot of useful information
about the ruin process. For example, if w ≡ 1, then mδ(x) is the LST of the time
to ruin given it occurs, and m0(x) is then simply the ruin probability ψ(x). For
w(x1, x2) = 1{x1≤y1}1{x2≤y2}, m0(x) is just the joint distribution of the surplus be-
fore ruin and the deficit at ruin.

We will now derive an integro-differential equation formδ(x) for our Markov additive
risk process. Let mδ,i(x) denote the discounted penalty function given that Z0 = i.
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Then by conditioning on the time interval (0, dt), we obtain

mi(x) = (1−λi dt)e
−δdtmδ,i(x+c dt)+λi dt

M
∑

j=1

pij

x+c dt
∫

0

e−δdtmδ,j(x+c dt−y)dBj(y)

+ λi dt
M
∑

j=1

pij

∞
∫

x+c dt

e−δdtw(x+ c dt, y− x− c dt)dBj(y) + o(dt) (i = 1, . . . ,M).

Taylor expansion and rearranging yields

c
dmδ,i

dx
(x) − (λi + δ)mδ,i(x) + λi

M
∑

j=1

pij

x
∫

0

mδ,j(x− y)dBj(y)

+ λi

M
∑

j=1

pij

∞
∫

x

w(x, y − x)dBj(y) = 0 (i = 1, . . . ,M). (5)

Define, for Re s ≥ 0 the Laplace(-Stieltjes) transforms

m̃δ,i(s) :=

∫ ∞

0

e−sxmδ,i(x) dx,

b̃i(s) :=

∫ ∞

x=0

e−sx dBi(x), (i = 1, . . . ,M),

ω̃i(s) :=

∫ ∞

x=0

e−sx
∫ ∞

x

w(x, y − x) dBi(y) dx, (i = 1, . . . ,M).

Then we obtain for i = 1, . . . ,M ,

cs m̃δ,i(s) − cmδ,i(0) − (λi + δ) m̃δ,i(s) + λi

M
∑

j=1

pij (m̃δ,j(s)b̃j(s) + ω̃j(s)) = 0, (6)

or in matrix notation,

(

(cs− δ) I − Λ + ΛP B̃(s)
)

~̃mδ(s) = c ~mδ(0) − ΛP ~̃ω(s), (7)

where I is the identity matrix, Λ = diag(λ1, . . . , λM), B̃(s) = diag(b̃1(s), . . . , b̃M(s))
and ~̃mδ(s) = (m̃δ,1(s), . . . , m̃δ,M(s)).
Thus it remains to solve a system of linear equations. First, the quantities mδ,i(0)
have to be determined. For that purpose, denote

Aδ(s) := (cs− δ) I − Λ + ΛP B̃(s).

Proposition 2.1. (i) The equation det(A0(s)) = 0 has one zero s1 = 0 and M − 1
zeroes s2, . . . , sM with Re(si) > 0.
(ii) If δ > 0 then det(Aδ(s)) = 0 has M zeroes s1, . . . , sM with Re(si) > 0.
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Proof: Case (i): If δ = 0, then the statement immediately follows from Theorem
3.2 of [1] (after transposing their matrix).
Case (ii): We follow an idea in [9], see also [1]. Let C denote a circle with its
center at [δ + max1≤i≤Mλi]/c and radius [δ + max1≤i≤Mλi]/c, and let Aδ(s, u) :=
(cs− δ)I − Λ + uΛPB̃(s), 0 ≤ u ≤ 1. We first prove, for 0 ≤ u ≤ 1, that

det(Aδ(s, u)) 6= 0 for s ∈ C. (8)

The matrix Aδ(s, u) is diagonally dominant for 0 ≤ u ≤ 1, since

|cs− δ − λi + uλipi,ib̃i(s)| ≥ |δ + λi − cs| − |uλipi,ib̃i(s)|

≥ δ + λi − uλipi,ib̃i(0) > uλi(1 − pi,ib̃i(0))

= uλi
∑

j 6=i

pi,j b̃j(0) ≥ |uλi
∑

j 6=i

pi,j b̃j(s)|. (9)

The diagonal dominance implies (cf. [23, pp.146-147]) that detAδ(s, u) 6= 0 for
s ∈ C.
Now let f(u) denote the number of zeroes of det(Aδ(s, u)) in C+, the interior of C.
Then

f(u) =
1

2πi

∫

C

d
ds

det(Aδ(s, u))

det(Aδ(s, u))
ds.

Hence f(u) is a continuous function on [0, 1], integer valued, and therefore constant.
f(0) = M , because det(A0(s)) = det((cs− δ)I − Λ) = 0 for s∗i := δ+λi

c
, 1 ≤ i ≤ M .

Hence also f(1) = M . 2

Remark 2.1. It follows from the above proof for Case (ii), and from Remark 6.2 of
[1] for Case (i), that the zeroes are located in the interior C+ (s1 = 0 is located on
C in Case (i)).

Remark 2.2. The solutions of
det(Aδ(s)) = 0 (10)

are intimately connected with the behavior of mδ(x): zeroes with negative real part
determine the asymptotic behavior, whereas zeroes in the right half-plane determine
the constants in the exact expressions for mδ(x). Since for M = 1, this equation
is known as the Lundberg fundamental equation (see e.g. [16]), we call (10) the
generalized Lundberg fundamental equation.

Now, under the assumption that the functionsmδ,i(x) do not grow super-exponentially
fast (which is fulfilled for all penalty functions of practical interest), m̃δ,i(s) are an-
alytic functions for Re(s) ≥ 0, so that for each of the M zeroes s1, . . . , sM we can

proceed in the following way: Determine a non-trivial solution ~ki of

ATδ (si)~ki = ~0
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for each i = 1, . . . ,M . Since we then have

0 = ~̃mδ(si)
T ATδ (si)~ki = (c~mδ(0) − ΛP ~̃ω(si))

T ~ki, (11)

this gives M linear equations for mδ,1(0), . . . , mδ,M(0).

Remark 2.3. For δ = 0, the zeroes s1, . . . , sM can always be obtained numerically.
Moreover, if the involved claim size distributions have a rational Laplace transform,
then the discounted penalty function can be obtained explicitly by inversion of the
Laplace transform of the solution of (7).

3 Zero initial capital

The following explicit expression for the discounted penalty function with zero initial
capital can be obtained:

Proposition 3.1. Let K := (~k1, . . . , ~kM)T and let detKj2,i denote the minor of K
with respect to row j2 and column i. Then

mδ,i(0) =
M
∑

j1=1

M
∑

j2=1

C
(i)
j1,j2

(s1, . . . , sM , δ) ω̃j1(sj2), (i = 1, . . . ,M) (12)

where the coefficients C
(i)
j1,j2

(j1, j2 = 1, . . . ,M) are given by

C
(i)
j1,j2

=
(−1)i+j2 · detKj2,i ·

∑M
l=1 λl pl,j1kj2,l

c detK
(13)

with kj2,l denoting the l-th component of vector ~kj2 (l=1,. . . ,M).

Proof: Equations (11) can be written as

cK ~mδ(0) =







∑M

j1=1 d
(1)
j1
ω̃j1(s1)

...
∑M

j1=1 d
(M)
j1

ω̃j1(sM)






,

with d
(j2)
j1

=
∑M

l=1 λlpl,j1kj2,l. An application of Cramér’s rule gives

mδ,i(0) =

∣

∣

∣

∣

∣

∣

∣

k1,1 · · · k1,i−1

∑M
j1=1 d

(1)
j1
ω̃j1(s1) k1,i+1 · · · k1,M

...
...

...
...

...

kM,1 · · · kM,i−1

∑M
j1=1 d

(M)
j1

ω̃j1(sM) kM,i+1 · · · kM,M

∣

∣

∣

∣

∣

∣

∣

c detK
.

Expanding the determinant in the numerator along the i-th column then yields the
desired result. 2
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Let fi(y1, y2, t|x) denote the (defective) joint density function of R(T−
x ), |R(Tx)| and

Tx given Z0 = i, i.e.

mδ,i(x) =

∫ ∞

y1=0

∫ ∞

y2=0

∫ ∞

t=0

w(y1, y2) e
−δ tfi(y1, y2, t|x) dt dy2 dy1

and define the discounted joint density function of surplus prior to and after ruin
by fi(y1, y2|x) =

∫∞

0
e−δtfi(y1, y2, t|x) dt. The following result generalizes Formula

(8.3) of Gerber and Shiu [16]:

Corollary 3.2. Assume that the claim size distributions Bi (i = 1, . . . ,M) are ab-
solutely continuous with density function bi(y). Then

fi(y1, y2|0) =
M
∑

j1=1

M
∑

j2=1

C
(i)
j1,j2

(s1, . . . , sM , δ)e
−sj2

y1 bj1(y1 + y2), (i = 1, . . . ,M)

(14)

Proof: Choose w(x1, x2) to be the Dirac delta function with respect to x1 = y1, x2 =
y2 (i.e. ω̃i(s) = e−s y1bi(y1+y2)). Then the assertion is a direct consequence of Propo-
sition 3.1. 2

Accordingly, we obtain for the discounted marginal density of the surplus prior to
ruin

fi(y1|0) =

∫ ∞

0

fi(y1, y2|0) dy2 =

M
∑

j1=1

M
∑

j2=1

C
(i)
j1,j2

(s1, . . . , sM , δ)e
−sj2

y1(1 − Bj1(y1))

and for the discounted marginal density fi(y2|0) =
∫∞

0
fi(y1, y2|0) dy1 of the deficit

at ruin

fi(y2|0) =
M
∑

j1=1

M
∑

j2=1

C
(i)
j1,j2

(s1, . . . , sM , δ)e
sj2

y2

(

b̃j1(sj2) −

∫ y2

0

e−sj2
zbj1(z) dz

)

.

4 Asymptotic behavior

From Section 2 it follows that

~̃mδ(s) =
Aδ,adj(s)

(

c ~mδ(0) − ΛP ~̃ω(s)
)

detAδ(s)
(15)

is a vector of analytic functions for Re(s) > 0 (here Aδ,adj(s) denotes the adjunct
matrix of Aδ(s)).
Let us assume that all the LST b̃i(s) of the claim size distributions Bi exist in a
neighborhood of the origin. Then, due to the structure of (15), the functions m̃δ,i(s)
are analytic for all s with Re(s) > −Rδ, where −Rδ denotes the zero with largest
real part in the negative halfplane of detAδ(s) (which is the generalized Lundberg
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adjustment coefficient). From the damping property of Laplace transforms, we have
L(eRδxmδ,i(x)) = m̃δ,i(s−Rδ) so that

lim
x→∞

eRδx ~mδ(x) = lim
s→0

s ~̃mδ(s−Rδ) = ~C,

given that the limit exists (which for instance is guaranteed if eRδxmδ,i(x) is mono-
tonically increasing in x for each i = 1, . . . ,M , see e.g. Doetsch [14]).
For convenience, let s = −Rδ be a simple pole of m̃δ,i(s), then we obtain, using de
L’Hospital:

~C =
Aδ,adj(−Rδ)

(

c~mδ(0) − ΛP ~̃ω(−Rδ)
)

∂
∂s

(

detAδ(s)
)∣

∣

∣

s=−Rδ

. (16)

Thus the discounted penalty function decays exponentially with initial capital x at
rate Rδ and the corresponding constants are given by (16).

5 Moments of three Characteristics of the Ruin

Process

5.1 Moments of the Time to Ruin

First take w(·, ·) ≡ 1 and define fn,i(s) :=
∂nm̃δ,i(s)

∂δn

∣

∣

∣

δ=0
which is (up to the sign) the

Laplace transform w.r.t. x of the nth moment of the time to ruin. Differentiation
of Formula (6) and substitution of δ = 0 gives after some algebraic manipulations:

(cs− λi)fn,i(s) − n fn−1,i(s) + λi

M
∑

j=1

pij b̃j(s)fn,j(s) = c
∂nmδ,i(0)

∂δn

∣

∣

∣

δ=0
,

or in matrix form

A0(s)~fn(s) = c
∂n ~mδ(0)

∂δn

∣

∣

∣

δ=0
+ n ~fn−1(s). (17)

Note that ~f0(s) = ~̃m0(s) =
~̃
ψ(s), where ψ̃i(s) is the Laplace transform of the ruin

probability ψi(x) (i = 1, . . . ,M). The vector
~̃
ψ(s) is available as the solution of (6)

for δ = 0. Thus we get a recursion for the nth moment of the time to ruin. In the jth

recursive step, we have to determine the M constants
∂jmδ,i(0)

∂δj

∣

∣

∣

δ=0
(i = 1, . . . ,M) in

the above way using the M zeroes of detA0(s) = 0 in the positive halfplane (which
can always be obtained numerically).

5.2 Moments of the Surplus prior to Ruin

Next take w(x, y) ≡ e−ax so that ω̃i(s) = 1−b̃i(s+a)
s+a

. Let furthermore δ = 0 and

denote gn,i(s) =
∂nm̃0,i(s)

∂an

∣

∣

∣

a=0
, which is (up to the sign) the Laplace transform w.r.t.
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x of the nth moment of the surplus prior to ruin. Differentiation of (6) w.r.t. a and
substitution of a = 0 gives

A0(s)~gn(s) = c
∂n ~m0(0)

∂an

∣

∣

∣

a=0
− Λ P diag (ξn,1(s), . . . , ξn,M(s)),

where

ξn,i(s) :=
∂nω̃i(s)

∂an

∣

∣

∣

a=0
=

(−1)n n!

sn+1

(

1 − b̃i(s) −
n
∑

j=1

(−s)j

j!

∂j b̃i(s)

∂sj

)

.

Thus the Laplace transform of the n-th moment can be obtained by first deter-

mining the M constants
∂nm0,i(0)

∂an

∣

∣

∣

a=0
using the zeroes of the generalized Lundberg’s

fundamental equation in the positive halfplane in the usual way and then solving
the above linear system of equations.

5.3 Moments of the Deficit at Ruin

Finally take w(x, y) ≡ e−ay and thus ω̃i(s) = b̃i(a)−b̃i(s)
s−a

. Define kn,i(s) :=
∂nm̃0,i(s)

∂an

∣

∣

∣

a=0
,

which is (up to the sign) the Laplace transform w.r.t. x of the nth moment of the
deficit at ruin. Differentiation of (6) w.r.t. a and substitution of a = 0 gives

A0(s)~kn(s) = c
∂n ~m0(0)

∂an

∣

∣

∣

a=0
− Λ P diag (ηn,1(s), . . . , ηn,M(s)),

where

ηn,i(s) :=
∂nω̃i(s)

∂an

∣

∣

∣

a=0
= −

n!

sn+1

(

b̃i(s) −
n
∑

j=0

(−s)j

j!
E(Bj

i )

)

.

Thus the Laplace transform of the n-th moment can again be obtained by first

determining theM constants
∂nm0,i(0)

∂an

∣

∣

∣

a=0
using the zeroes in the positive halfplane of

Lundberg’s fundamental equation and subsequently solving the above linear system
of equations.

6 Examples

6.1 The classical compound Poisson model

For M = 1 we retain the classical compound Poisson risk model, and indeed from
(6) it follows that in this case

m̃δ(s) =
cmδ(0) − λω̃(s)

cs− δ − λ + λb̃(s)
=

λ(ω̃(s1) − ω̃(s))

cs− δ − λ+ λb̃(s)
, (18)

in agreement with [11]. If the LST of the claim size distribution B exists in a
neighborhood of the origin, then one obtains from (16)

lim
x→∞

eRδxmδ(x) =
λ(ω̃(s1) − ω̃(−Rδ))

c+ λb̃′(−Rδ)
, (19)
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where −Rδ denotes the negative zero of cs− δ− λ+ λb̃(s) = 0 (which is unique, cf.
[15]). In the special case w ≡ 1 and δ = 0 we have s1 = 0 and ω̃(s) = (1 − b̃(s))/s,
so that (19) reduces to the Cramér-Lundberg approximation limx→∞ eR0xψ(x) =

λµ−c

c+λb̃′(−R0)
.

Let us now look at moments of the time to ruin in the classical risk model and
assume that µ(2) < ∞. Let, for n ∈ N, ψn(x) := E(T nx 1{Tx<∞}) and ψ0(x) := ψ(x),

the ruin probability. Then E(T nx |Tx < ∞) = ψn(x)
ψ(x)

and the Laplace transform of

ψn(x) is just (−1)nfn(s) defined in Section 5.1. Equation (17) here translates into

fn(s) =
c ∂

nmδ(0)
∂δn

∣

∣

∣

δ=0
+ n fn−1(s)

cs− λ+ λb̃(s)
. (20)

Lemma 6.1. For the classical compound Poisson model and w ≡ 1, the following
recursive relation holds for n ≥ 1 (n ∈ N):

∂nmδ(0)

∂δn

∣

∣

∣

δ=0
=

(−1)nn

c

∫ ∞

0

ψn−1(u) du.

Proof: (20) is an analytic function for Re(s) ≥ 0. Since s = 0 is the only zero of
the denominator in the positive halfplane, it follows that

∂nmδ(0)

∂δn

∣

∣

∣

δ=0
= −

n

c
lim
s→0

∂n−1m̃δ(s)

∂δn−1

∣

∣

∣

δ=0

= −
n

c

∫ ∞

0

∂n−1mδ(u)

∂δn−1

∣

∣

∣

δ=0
du =

(−1)n n

c

∫ ∞

0

ψn−1(u) du.

2

Using the Pollaczek-Khintchine formula ψ̃(s) = 1
s
− c−λµ

cs−λ+λb̃(s)
and Lemma 6.1, (20)

now yields

fn(s) = (−1)nψ̃n(s) = (−1)nn

(
∫ ∞

0

ψn−1(u) du+ n ψ̃n−1(s)

) 1
s
− ψ̃(s)

c− λµ

leading to

ψn(x) =
n

c− λµ

(
∫ x

0

ψ(x− u)ψn−1(u) du+

∫ ∞

x

ψn−1(u) du− ψ(x)

∫ ∞

0

ψn−1(u) du

)

,

which is equivalent to Formula (6.29) of Lin and Willmot [22], where the result was
obtained using compound geometric tails. Note that the above derivation is partic-
ularly simple.

Using the identity
∫∞

0
ψ(x) dx = λµ(2)

2(c−λµ)
(which itself is a direct consequence of the

Pollaczek-Khintchine formula for µ(2) <∞), one obtains for the specific case n = 1

E(Tx|Tx <∞) =

∫ x

0
ψ(x− u)ψ(u) du+

∫∞

x
ψ(u) du− λµ(2)

2(c−λµ)
ψ(x)

(c− λµ)ψ(x)
,
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which is Formula (6.23) of Lin and Willmot [22].

Let us now choose δ = 0, then s1 = 0 and it follows from (18) and the Pollaczek-
Khintchine formula

m̃0(s) = λ
(

ω̃(0) − ω̃(s)
) 1

s
− ψ̃(s)

c− λµ

so that

m0(x) =
λ

c− λµ

(

ω̃(0)(1−ψ(x))−

∫ x

0

(1−ψ(x−u))

∫ ∞

u

w(u, y−u) dB(y) du
)

. (21)

The latter formula gives rise to a number of nice identities. For instance, the LST

of the surplus prior to ruin is obtained for w ≡ e−ax, i.e. ω̃(s) = 1−b̃(a+s)
a+s

, and from
(21)

E(e−aR
−
Tx 1{Tx<∞}) =

λ

c− λµ

(

1 − b̃(a)

a
(1 − ψ(x)) −

∫ x

0
(1 − ψ(x− u))e−a uB̄(u) du

)

.

(22)

This leads to the defective density of the surplus prior to ruin

f(y1|x) =
λ

c− λµ

(

B̄(y1)(1 − ψ(x)) − 1{y1<x}B̄(y1)(1 − ψ(x− y1))
)

,

which already appeared in Dickson [10]. By differentiation of (22) we immediately
obtain

E((R−
Tx

)n|Tx <∞) =
λ

(c− λµ)ψ(x)

(

µ(n+1)(1 − ψ(x))

n + 1
−

∫ x

0

un(1 − ψ(x− u))B̄(u) du

)

,

in agreement with (5.3) of Lin and Willmot [22] (again, our Laplace transform
approach leads to the result in a straight-forward way).

On the other hand, the choice w ≡ e−ay (i.e. ω̃(s) = b̃(a)−b̃(s)
s−a

) in (21) leads to the
LST of the deficit at ruin

E(e−a |RTx |1{Tx<∞}) =
λ

c− λµ

(1 − b̃(a)

a
(1 − ψ(x))

−

∫ x

0
(1 − ψ(x− u))

∫ ∞

u

e−a(y−u)dB(y) du
)

(23)

and differentiation gives the moments

E(|RTx
|n|Tx <∞) =

λ

(c− λµ)ψ(x)

(µ(n+1)(1 − ψ(x))

n + 1

−

∫ x

0

(1 − ψ(x− u))

∫ ∞

u

(y − u)ndB(y) du
)

,

which is another way of writing Equation (4.5) in [22].

In particular, it follows from (22) and (23) that for x = 0 the distributions of the
surplus prior to ruin and of the deficit at ruin coincide (a fact that seems to be
unmentioned in the literature on the classical model).
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6.2 Renewal models

6.2.1 Generalized Erlang(n)-interclaim times

Let us assume that we start in state 1 and that

P =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
0 0 0 · · · 1
1 0 0 · · · 0















.

Assume furthermore that a claim can only occur in state 1 (with claim size dis-
tribution B1 = B and LST b̃), and the claim size distributions B2, . . . , BM of
all other states are degenerate at zero, i.e. B̃(s) =diag(b̃(s), 1, . . . , 1) and ~̃ω(s) =
(ω̃(s), 0, . . . , 0)T .
Then mδ(x) := mδ,1(x) is the discounted penalty function for a renewal model with
generalized Erlang(n) interclaim times. Here Aδ(s) has the simple form

Aδ(s) =



















cs− δ − λ1 λ1 0 · · · 0 0
0 cs− δ − λ2 λ2 · · · 0 0
... 0

. . .
. . .

...
...

...
... · · · cs− δ − λn−2 λn−2 0

0 0 · · · 0 cs− δ − λn−1 λn−1

λn b̃(s) 0 · · · · · · 0 cs− δ − λn



















so that its determinant is easily calculated yielding

detAδ(s) = (−1)n

(

n
∏

j=1

(λj + δ − cs) − b̃(s)
n
∏

j=1

λj

)

. (24)

Due to the simple transition matrix P of this example, it follows from (5) that mδ(x)
is the solution of the integro-differential equation

n
∏

j=1

(

1 +
δ − cD

λj

)

mδ(x) =

∫ x

0

mδ(x− y)dB(y) +

∫ ∞

x

w(x, y − x)dB(y), (25)

where D denotes the differentiation operator w.r.t. x.
This model has recently been studied in detail by Gerber and Shiu [16] and for
λ1 = . . . = λM by Li and Garrido [20] (see [13, 24, 8] for the special case n = 2).

Again, our formalism can be used to rederive results for this model in a quite trans-
parent way. For instance, mδ(0) follows from Proposition 3.1: Since we start in
state i = 1 and only in state 1 there is a non-degenerate claim size distribution, (12)
simplifies to

mδ(0) =

n
∑

j2=1

C
(1)
1,j2

(s1, . . . , sn, δ) ω̃(sj2).
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It remains to determine the constants

C
(1)
1,j2

(s1, . . . , sn, δ) =
(−1)1+j2 λn kj2,n detKj2,1

c detK
.

From (11) one obtains

K =















n
∏

j=2

λj+δ−cs1
λj−1

n
∏

j=3

λj+δ−cs1
λj−1

· · · λn+δ−cs1
λn−1

1

...
...

. . .
...

...
n
∏

j=2

λj+δ−csn

λj−1

n
∏

j=3

λj+δ−csn

λj−1
· · · λn+δ−csn

λn−1
1















leading to

detK =
c

n(n−1)
2

λ1λ2
2 · · ·λ

n−1
n−1

∣

∣

∣

∣

∣

∣

∣

1 s1 · · · sn−1
1

...
...

. . .
...

1 sn · · · sn−1
n

∣

∣

∣

∣

∣

∣

∣

=
c

n(n−1)
2

λ1λ2
2 · · ·λ

n−1
n−1

n
∏

j,k=1

k>j

(sk − sj).

Analogously,

detKj2,1 =
c

(n−1)(n−2)
2

λ2λ2
3 · · ·λ

n−2
n−1

n
∏

j,k=1

k>j,k 6=j2,j 6=j2

(sk − sj),

from which we obtain

C
(1)
1,j2

(s1, . . . , sn, δ) =
λ1 · · ·λn

cn

n
∏

k=1
k 6=j2

1

sk − sj2

and finally

mδ(0) =
n
∑

j2=1

λ1 · · ·λn
cn

n
∏

k=1
k 6=j2

1

sk − sj2
ω̃(sj2). (26)

As in Corollary 3.2, it for instance follows that the discounted joint defective density
function of the surplus prior to ruin and the deficit at ruin with x = 0 is given by

f(y1, y2|0) =
n
∑

j2=1

λ1 · · ·λn
cn

n
∏

k=1
k 6=j2

1

sk − sj2
e−sj2

y1 b(y1 + y2), (27)

which is Formula (8.3) of Gerber and Shiu [16] (for further details, see Albrecher
[2]). A comparison of (26) with (22) and (23) elucidates that for n ≥ 2 the presence
of strictly positive zeroes sj distorts the symmetry of the classical model between
the distribution of the surplus prior to ruin and of the deficit at ruin for x = 0 .

A general expression for m̃δ(s) in this model can be obtained by evaluating the first
row of the numerator in (15):
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Lemma 6.2. The first row of the vector Aδ,adj(s)~mδ(0) is given by

(

Aδ,adj(s)~mδ(0)
)

1
=

(−1)n+1λ1 · · ·λn
c

n
∑

j=1

ω̃(sj)

n
∏

k=1
k 6=j

s− sk
sj − sk

. (28)

Proof: The first row of the adjunct matrix Aδ,adj(s) of Aδ(s) is given by

(Aδ,adj(s))1 =
(

n
∏

i=2

(c s−δ−λi),−λ1

n
∏

i=3

(c s−δ−λi), λ1λ2

n
∏

i=4

(c s−δ−λi), . . . , (−1)n+1λ1 · · · λn−1

)

.

In view of (12), we have

~mδ(0) =
λn

c detK











detK1,1ω̃(s1) − detK2,1ω̃(s2) + . . .+ (−1)n+1 detKn,1ω̃(sn)
−detK1,2ω̃(s1) + detK2,2ω̃(s2) + . . . + (−1)n+2 detKn,2ω̃(sn)

...
(−1)n+1 detK1,nω̃(s1) + (−1)n+2 detK2,nω̃(s2) + . . .+ detKn,nω̃(sn)











.

Now, collecting all coefficients of ω̃(sj) (j = 1, . . . , n) in
(

Aδ,adj(s)~mδ(0)
)

1
, we

obtain

(−1)j+1λn

c detK

(

n
∏

i=2

(c s− δ − λi) detKj,1 + λ1

n
∏

i=3

(c s− δ − λi) detKj,2

+ . . .+ λ1 · · · λn−1 detKj,n

)

=
(−1)j+1λ1 · · · λn

c detK

(

(−1)n−1
n
∏

i=2

λi + δ − c s

λi−1
detKj,1 + (−1)n−2

n
∏

i=3

λi + δ − c s

λi−1
detKj,2

+ . . .+ detKj,n

)

=
(−1)n−1λ1 · · · λn

c detK

(

− 1)j+1
n
∏

i=2

λi + δ − c s

λi−1
detKj,1 + (−1)j+2

n
∏

i=3

λi + δ − c s

λi−1
detKj,2

+ . . . + (−1)j+n detKj,n

)

.

But the last term in brackets is just the determinant of a matrix K∗
j , which is the

matrix K with entries s instead of sj. Hence (28) follows from
detK∗

j

detK
=
∏n

k=1
k 6=j

s−sk

sj−sk
.2

Since (Aδ,adj(s)ΛP ~̃ω(s))1 = (−1)n+1λ1 · · ·λnω̃(s), (15) now implies that

m̃δ(s) =

ω̃(s) −
n
∑

j2=1

ω̃(sj2)
n
∏

k=1
k 6=j2

s−sk

sj2
−sk

∏n
j=1(1 + δ−cs

λj
) − b̃(s)

, (29)
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which is Equation (7.3) of Gerber and Shiu [16].

If the LST of the claim size distribution B exists in a neighborhood of the origin,
then (16) yields

lim
u→∞

eRδumδ(u) =

n
∑

j2=1

ω̃(sj2)
n
∏

k=1
k 6=j2

−Rδ−sk

sj2
−sk

− ω̃(−Rδ)

∑n
j=1

c
λj

∏n
k=1
k 6=j

(1 + δ+cRδ

λk
) + b̃′(−Rδ)

,

where −Rδ is the largest negative zero of detAδ = 0. This formula generalizes
Equation (24) of Li and Garrido [20].

Finally, in line with the approach leading to (21), one can provide an alternative
proof of Identity (3.4) of Dickson and Drekic [12]:

Proposition 6.3. The joint (defective) distribution function of the surplus prior to
ruin and the deficit at ruin in the Sparre Andersen model with generalized Erlang
interclaim times is given by

f(y1, y2|x) =
λ1 · · ·λn b(y1 + y2)

cnφ(0)

n
∑

j2=1

(

n
∏

k=1
k 6=j2

1

sk − sj2

)

e−sj2
(y1−x)

x
∫

max{0,x−y1}

e−sj2
z dφ(z),

(30)
where φ(x) = 1 − ψ(x) is the survival probability for initial capital x.

Proof: For δ = 0 and w ≡ 1 we have from (29)

ψ̃(s) =

1−b̃(s)
s

−
n
∑

j2=1

1−b̃(sj2
)

sj2

n
∏

k=1
k 6=j2

s−sk

sj2
−sk

∏n

j=1(1 − cs
λj

) − b̃(s)
.

In terms of the survival probability, this implies

φ̃(s) =
1

s
− ψ̃(s) =

∏n

j=1(1 − cs
λj

) − 1 + s
n
∑

j2=1

1−b̃(sj2
)

sj2

n
∏

k=1
k 6=j2

s−sk

sj2
−sk

s
(

∏n
j=1(1 − cs

λj
) − b̃(s)

) .

Obviously the numerator is a polynomial in s of degree n. But φ̃(s) is an analytic
function for Re(s) > 0 and has a simple pole at s = 0, so that the numerator has
to have the zeroes s1, . . . , sn (since for δ = 0 we have s1 = 0, the latter is a zero of
multiplicity 2 in the above denominator). One can deduce that the numerator is of
the form β

∏n
j=1(s− sj) for a constant β ∈ R. By taking the limit

φ(0) = lim
s→∞

sφ̃(s) =
(−1)nβ λ1 · · ·λn

cn
,
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we obtain

φ̃(s) =
(−1)n cn φ(0)

∏n
j=1(s− sj)

λ1 · · ·λn s
(

∏n

j=1(1 − cs
λj

) − b̃(s)
) . (31)

Clearly, f(y1, y2|x) is obtained from the discounted penalty function for δ = 0 and
w the Dirac delta function at x1 = y1 and x2 = y2 (so that ω̃(s) = e−s y1b(y1 + y2)).
Thus the Laplace transform of f(y1, y2|x) follows from (29) to be

f̃(y1, y2|s) = b(y1 + y2)

e−s y1 −
n
∑

j2=1

e−sj2
y1

n
∏

k=1
k 6=j2

s−sk

sj2
−sk

∏n

j=1(1 − cs
λj

) − b̃(s)
.

Substituting (31) into the last equation leads to

f̃(y1, y2|s) = b(y1+y2)
(−1)nλ1 · · ·λn sφ̃(s)

cn φ(0)

( e−s y1
∏n

j=1(s− sj)
−

n
∑

j2=1

e−sj2
y1

s− sj2

n
∏

k=1
k 6=j2

1

sj2 − sk

)

.

Using partial fractions, the first term in the brackets above can be written as

e−s y1
∏n

j=1(s− sj)
=

n
∑

j2=1

e−s y1

(s− sj2)
n
∏

k=1
k 6=j2

(sj2 − sk)

and hence

f̃(y1, y2|s) = b(y1 + y2)
λ1 · · ·λn
cn φ(0)

(

n
∑

j2=1

sφ̃(s)
e−sj2

y1 − e−s y1

s− sj2

n
∏

k=1
k 6=j2

1

sk − sj2

)

, (32)

which is just the Laplace transform of (30). 2

6.2.2 Phase-type interclaim times

Our Markov additive process also contains the Sparre Andersen model with a phase-
type interclaim time distribution and arbitrary claim size distribution. From the
definition, a phase-type distribution is the lifetime of a terminating Markov process
{Jt} with finite state space E and time homogeneous transition rates (see e.g. As-
mussen [5]). In our setting, we pick out state 1 as the absorbing state of {Jt} and
let pij (i, j = 2, . . . ,M) coincide with the transition probabilities of the embedded
Markov chain of Jt. A claim (with distribution B) can then only occur, if our pro-
cess is in state 1 (i.e. Bi is degenerate at 0 for i = 2, . . . ,M), so that again B̃(s) =
diag(b̃(s), 1, . . . , 1) and ~̃ω(s) = (ω̃(s), 0, . . . , 0). Moreover, the first row entries of
P are given by p11 = 0 and p1j = αj, where ~α = (α2, . . . , αM) is the (M − 1)-
dimensional vector of initial probabilities of {Jt} and p21, . . . , pM1 represent the exit
probabilities of {Jt} into the absorbing state 1. If our Markov additive process R(t)
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is in state 1 and a claim has occurred, it immediately jumps to one of the other
states according to the vector ~α. Thus, R(t) corresponds to a renewal risk model
with phase-type interclaim times, if we let λ1 → ∞. For then, by taking the limit
in (6) for i = 1, we obtain the discounted penalty function

mδ(x) := mδ,1(x) =
M
∑

j=2

αj mδ,j(x). (33)

Going to the limit λ1 → ∞, one can rewrite (7) as

APhδ (s) ~̃mδ(s) = c(0, mδ,2(0), . . . , mδ,M(0))T − ΛPh P ~̃ω(s),

where ΛPh = diag (1, λ2, . . . , λM), APhδ (s) :=
(

(cs− δ) I − ΛPh + ΛPh P B̃(s)
)

−

(cs− δ) I ~e1 ~e
T
1 (with ~e1 = (1, 0, . . . , 0)T ), i.e.

APhδ (s) =











−1 α2 α3 · · · αM
λ2p21b̃(s) cs− δ − λ2(1 − p22) λ2p23 · · · λ2p2M

...
...

. . .
. . .

...

λMpM1b̃(s) λMpM2 · · · · · · cs− δ − λM(1 − pMM)











and

~̃mδ(s) =

APhδ,adj(s) ·











0
mδ,2(0) − λ2p21ω̃(s)

...
mδ,M(0) − λMpM1ω̃(s)











detAPhδ (s)
, (34)

where APh
δ,adj(s) is the adjugate matrix of APh

δ (s).

The equation detAPh
δ (s) = 0 has exactly M − 1 solutions s1, . . . , sM−1 in the right

half-plane (which, for simplicity, we assume to be distinct). Thus, one can determine
the unknown quantities mδ,j(0) (j = 2, . . . ,M) by (11) (with the obvious adaptation)
and (12). Finally, mδ(0) then follows from (33).
However, in the concrete situation, mδ(0) can also be obtained more directly from
(34): A careful analysis of the structure of APh

δ,adj(s) reveals that

m̃δ(s) =
qδ(s) − gδ(s) ω̃(s)

detAPhδ (s)
, (35)

where qδ(s) is a polynomial in s of degree M − 2, the coefficients of which contain
the unknown quantities mδ,j(0) (j = 2, . . . ,M). In addition, gδ(s) is explicitly given
by

gδ(s) = det
(

(cs− δ) I − ΛPh + ΛPh P
)

+ (1,1)APhδ (s), (36)

with (1,1)APhδ (s) denoting the minor of APh
δ (s) w.r.t. row and column 1. In partic-

ular, gδ(s) is also a polynomial in s of degree M − 2. Since m̃δ(s) is analytic in the
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positive halfplane, the zeroes s1, . . . , sM−1 must also be zeroes of the numerator in
(35). By Lagrange interpolation we thus obtain

qδ(s) =

M−1
∑

j=1

gδ(si) ω̃(si)

M−1
∏

k=1,k 6=j

s− sk
sj − sk

. (37)

Now, mδ(0) = lims→∞ s m̃δ(s) and it just remains to determine the latter limit.
Since for s→ ∞, b̃(s) → 0 and ω̃(s) = O(1/s) (the latter holds for penalty functions
w that do not grow super-exponentially fast), we have to collect the dominating
terms in the denominator and numerator of (35), i.e.

qδ(s) ∼ sM−2
M−1
∑

j=1

gδ(si) ω̃(si)

M−1
∏

k=1,k 6=j

1

sj − sk

and
det
(

(cs− δ) I − ΛPh + ΛPh P
)

∼ −cM−1sM−1.

This finally leads to

mδ(0) = lim
s→∞

s m̃δ(s) = −
1

cM−1

M−1
∑

j=1

gδ(sj)ω̃(sj)

M−1
∏

k=1,k 6=j

1

sj − sk
, (38)

which is Equation (20) of Li and Garrido [21]. For instance, let w(x1, x2) be the
Dirac delta function with respect to x1 = y1, x2 = y2 (i.e. ω̃(s) = e−s y1b(y1 + y2)).
Then we obtain from (38) the (defective) joint density function of the surplus prior
to ruin and the deficit at ruin

f(y1, y2|0) = (−1)M−1 b(y1 + y2)

cM−1

M−1
∑

j=1

gδ(sj)e
−sjy1

M−1
∏

k=1,k 6=j

1

sk − sj
,

generalizing Formula (27) and Formula (4.6) of Dickson and Drekic [12].

For arbitrary x > 0, f(y1, y2|x) is, from (35), given as the inverse Laplace transform
of

f̃(y1, y2|s) = b(y1 + y2)

∑M−1
j=1 gδ(si) e−si y1

∏M−1
k=1,j 6=k

s−sk

sj−sk
− gδ(s) e

−s y1

detAPhδ (s)
, (39)

which can be obtained explicitly whenever the claim size distribution B has a ra-
tional Laplace transform. On the other hand, for arbitrary B and δ = 0, one can
derive the following generalization of (30):

Proposition 6.4. The joint (defective) distribution function of the surplus prior to
ruin and the deficit at ruin in the Sparre Andersen model with phase-type interclaim
times satisfies

f(y1, y2|x) = −
b(y1 + y2)

cM−1φ(0)

n
∑

j=1

g0(sj)
(

n
∏

k=1
k 6=j

1

sk − sj

)

e−sj(y1−x)

x
∫

max{0,x−y1}

e−sjz dφ(z).

(40)
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Proof: We will proceed in a similar fashion as in Proposition 6.3. First, one observes
that

φ̃(s) =
1

s
−ψ̃(s) =

detAPh0 (s) − s
∑M−1

j=1 g0(sj)
1−b̃(sj)

sj

∏M−1
k=1,j 6=k

s−sk

sj−sk
+ g0(s)(1 − b̃(s))

s detAPh0 (s)
.

The polynomial g0(s) can also be written as

g0(s) =
detAPh0 (s) + (1,1)APh0 (s)

b̃(s)
,

so that we are left with

φ̃(s) =
− (1,1)APh0 (s) − s

∑M−1
j=1 g0(sj)

1−b̃(sj)

sj

∏M−1
k=1,j 6=k

s−sk

sj−sk
+ g0(s)

s detAPh0 (s)
,

the numerator of which is again a polynomial in s of degree M − 1. As in the proof
of Proposition 6.3, it follows by analyticity arguments that

φ̃(s) =
−cM−1φ(0)

∏n
j=1(s− sj)

s detAPh0 (s)
.

Now, the latter equation can be substituted in (39) which gives

f̃(y1, y2|s) =
b(y1 + y2) sφ̃(s)

cM−1φ(0)

( g0(s) e
−s y1

∏M−1
k=1 (s− sk)

−

M−1
∑

j=1

g0(sj) e
−sj y1

s− sj

M−1
∏

k=1,k 6=j

1

sj − sk

)

.

By partial fractions, we have

g0(s)
∏M−1

k=1 (s− sk)
=

M−1
∑

j=1

g0(sj)
∏M−1

k=1,k 6=j(sj − sk)

1

s− sj

and hence

f̃(y1, y2|s) =
b(y1 + y2)

cM−1φ(0)

M−1
∑

j=1

g0(sj) sφ̃(s)
e−s y1 − e−sj y1

s− sj

M−1
∏

k=1,k 6=j

1

sj − sk
, (41)

which is the Laplace transform of (40). 2

Note that for generalized Erlang(n) interclaim times we have g0(s) = (−1)M+1λ2 · · ·λM
(corresponding to (−1)nλ1 · · ·λn in the notation of Subsection 6.2.1), so that indeed
in this case (40) reduces to (32).

Finally, our approach leads to an alternative proof of a nice identity that is due to
Dickson and Drekic [12, Equ. 2.4]:
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Corollary 6.5. For δ = 0 we have

f(y1, y2|x) =
b(y1 + y2)

φ(0)

∫ x

max{0,x−y1}

f(y1 − x + z|0)

1 −B(y1 − x + z)
dφ(z). (42)

Proof: The density of the surplus prior to ruin is obtained from mδ(x) for δ = 0
and w the Dirac-delta function w.r.t. x1 = y1 (and thus ω̃(s) = e−sy1(1 − B(y1))).
From (38) we then have

f(y1|0) = −
1 −B(y1)

cM−1

M−1
∑

j=1

g0(sj)e
−sjy1

M−1
∏

k=1,k 6=j

1

sj − sk
.

The idea is now to consider the function

f(y1 − x|0)

1 − B(y1 − x)
1{y1≥x},

whose Laplace transform w.r.t. x is given by

−
1

cM−1

M−1
∑

j=1

g0(sj)e
−sjy1

1 − e−(s−sj)y1

s− sj

M−1
∏

k=1,k 6=j

1

sj − sk
.

In view of (41), the result easily follows. 2

6.3 A causal dependency model

In Albrecher and Boxma [3], a causal dependency model was introduced, where
the distribution of the interclaim time depends on the actual size of the previous
claim in the following way: if the claim exceeds a (possibly random) threshold T ,
then the next interclaim time is exponentially distributed with rate λ1, otherwise
the interclaim time is exponentially distributed with rate λ2. As mentioned in the
introduction, the approach introduced in this paper contains this case for the special
choice M = 2 and

dB1(y) =
1

P(T < B)
T (y) dB(y) and dB2(y) =

1

P(T > B)
(1 − T (y)) dB(y)

for a generic claim size distribution B(y) and a threshold variable T together with
the transition probabilities pi1 = P(B > T ) and pi2 = P(T > B) for i = 1, 2. We can
thus extend the analysis of [3] considerably, since an investigation of the discounted
penalty function is at hand.

For illustration, let us work out explicit expressions for a numerical example. Let
T ∼ Exp(2), B ∼ Exp(1), c = 2, λ1 = 3, λ2 = 1 (which is the setup of Example 3 of
[3]), and thus

P =

(

2/3 1/3
2/3 1/3

)

, Λ =

(

3 0
0 1

)

,
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b̃1(s) =
3

2

(

1

1 + s
−

1

3 + s

)

, b̃2(s) =
3

3 + s
.

Assume in the sequel δ = 0. Then we obtain the determinant

detA0(s) = 3 − 8s+ 4s2 +
6s− 3

1 + s
−

4s

3 + s
,

which has one zero at 0 and one positive zero (s2 = 1.226, all the other zeroes are
negative), as it should be (here and later on, all numbers are rounded to their last
digit). Moreover,

K =

(

2/3 1
−0.922 0.388

)

.

For an arbitrary penalty function w, one thus obtains from Proposition 3.1

m0(0) =

(

0.328
0.781

)

ω̃1(0) +

(

0.672
−0.448

)

ω̃1(1.226)

+

(

0.164
0.391

)

ω̃2(0) +

(

0.336
−0.224

)

ω̃2(1.226). (43)

The largest negative zero of detA0(s) = 0 is given by −R0 = −0.065. Consequently,
it follows from (16) and (43) that

lim
x→∞

e0.065x ~m0(x) = ~C

with

~C =

(

6.014
5.555

)

ω̃1(−0.065) −

(

5.631
5.202

)

ω̃1(0) −

(

0.383
0.354

)

ω̃1(1.226)

+

(

3.007
2.778

)

ω̃2(−0.065) −

(

2.815
2.601

)

ω̃2(0) −

(

0.191
0.177

)

ω̃2(1.226). (44)

In the special case w ≡ 1 (where mi(x) is the ruin probability ψi(x), given Z0 = i),
we have

ω̃1(s) =
1

s

(

1 −
3/2

1 + s
+

3/2

3 + s

)

, ω̃2(s) =
1

s

(

1 −
3

3 + s

)

and from (43) it follows that ψ1(0) = 0.945, ψ2(0) = 0.870. Subsequently, from (7)
we then arrive at

ψ1(x) = 0.007 e−3.161 x + 0.938 e−0.065x, ψ2(x) = 0.003 e−3.161 x + 0.867 e−0.065x,

which coincides with (26) in [3]. Moreover, in this case (44) indeed reduces to
~C = (0.938, 0.867)T .

Let us now choose w(x1, x2) as the Dirac delta function with respect to x1 = y1, x2 =
y2 (i.e. ω̃i(s) = e−s y1bi(y1+y2)). Thenm0,i(x) is the (defective) joint density function
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fi(y1, y2|x) of the surplus prior to ruin and the deficit at ruin. From (43) we obtain
~m0(0) and then from (7) and inversion of the Laplace transform

~f(y1, y2|x) = e−y2 ~f(y1|x)

with

~f(y1|x) = 1{x≤y1}

(

9
9

)

e−y1 + e−3.161x

(

(

0.106
0.045

)

e−2.226y1 −

(

0.061
0.026

)

e−y1

)

+ e−0.065x

(

(

−0.574
−0.531

)

e−2.226y1 −

(

8.446
7.802

)

e−y1

)

+ 1{x≤y1}e
1.226x−2.226y1

(

1.476
−0.186

)

+ 1{x≥y1}

(

(

9.020
8.333

)

e−0.0645x−0.935y1 −

(

0.045
0.019

)

e−3.161x+2.161y1

)

Note that due to the lack-of-memory property of the exponential distribution, the
distribution of the deficit at ruin is again exponential and independent of the surplus
before ruin. Alternatively, one could have derived the above formula using w = e−a x1

(so thatm(x) is the Laplace transform of the surplus before ruin) and then, by virtue
of (43) and (7), inverting iteratively the Laplace transform with respect to s and
with respect to a. The moments of the surplus before ruin can now be determined
either from the density above or by differentiating the above mentioned Laplace
transform of the surplus before ruin. For instance,

E(R−
Tx

1{Tx<∞}) =

(

1.746
1.613

)

e−0.065x −

(

0.050
0.021

)

e−3.161x −

(

1
0.556

)

e−x

E((R−
Tx

)2 1{Tx<∞}) =

(

5.041
4.657

)

e−0.065x−

(

0.095
0.040

)

e−3.161x−

(

2x+ 3.778
1.111x+ 2.395

)

e−x.

In Figure 1 the density function fi(y1|x)/ψi(x) of the surplus prior to ruin, given it
occurs, is plotted for two specific values of initial capital x. Figure 2 depicts both
the expected value

E(R−
Tx
|Tx <∞, Z0 = i) =

E(R−
Tx

1{Tx<∞}|Z0 = i)

ψi(x)

and the standard deviation

SDR−
Tx

=
√

E((R−
Tx

)2|Tx <∞, Z0 = i) − E2(R−
Tx
|Tx <∞, Z0 = i)

as a function of initial capital x. Note that from the analytic expressions above, we
see that limx→∞ E(R−

Tx
|Tx < ∞) = 1.86 and limx→∞ SDR−

Tx

= 2.32 (this holds for

both Z0 = 1, 2).

Finally, we briefly illustrate how to use the procedure of Section 5.1 to obtain mo-
ments of the time to ruin. From (17), we have for n = 1

A0(s)~f1(s) = c
∂ ~mδ(0)

∂δ

∣

∣

∣

δ=0
+ ~̃ψ(s). (45)
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Figure 1: Density function of the surplus prior to ruin, given it occurs, for x = 1
(left) and x = 3 (right) (initial state Z0 = 1 (dashed line) and Z0 = 2 (solid line)).
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Figure 2: Expected value (left) and standard deviation (right) of the surplus prior
to ruin, given it occurs (initial state Z0 = 1 (dashed line) and Z0 = 2 (solid line)).

By analyticity of ~f1(s) in the right half-plane we thus obtain c ∂ ~mδ(0)
∂δ

∣

∣

∣

δ=0
= −

(

7.949
17.841

)

and thus, after solving (45) and inverting the Laplace transform, we obtain

E(Tx 1{Tx<∞}) =

(

4.330x+ 4.431
4x + 9.114

)

e−0.065x −

(

0.457
0.193

)

e−3.161x

Analogously, from (17),

E(T 2
x 1{Tx<∞}) =

(

19.980x2 + 711.096x+ 681.816
18.458x2 + 703.242x+ 1469.25

)

e−0.065x−

(

75.458
32.806

)

e−3.161x.

Figure 3 depicts the expected value E(Tx|Tx < ∞, Z0 = i) =
�
(Tx 1{Tx<∞}|Z0=i)

ψi(x)
and

the standard deviation of the time to ruin, given it occurs, as a function of initial
capital x. One clearly sees that the standard deviation of the time to ruin exceeds
the expected value, so that in this dependency model it is particularly dangerous to
just consider the first moment as an indicator for the riskiness of a portfolio strategy.

Acknowledgement. The authors would like to thank Clemens Heuberger for help-
ful advice on handling determinants.
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Figure 3: Expected value (left) and standard deviation (right) of the time to ruin,
given it occurs (initial state Z0 = 1 (dashed line) and Z0 = 2 (solid line)).
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