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Abstract
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1 Introduction

Value-at-Risk (VaR) has been widely accepted as a tool for financial risk management. The
Basel Committee’s recommendation for VaR in 1996 (Basel Committee on Banking Supervi-
sion, 1996) and recently proposed Basel II norms (Basel Committee on Banking Supervision,
2003) have heightened the importance of VaR as a market risk measure. Following the guide-
lines of the Basel Committee, financial regulators all over the world have adopted VaR for
designing capital adequacy standard for banks and financial institutions. Apart from financial
regulators like central banks and Securities Exchange regulators, financial firms have adopted
VaR for internal risk management and allocation of resources.

Despite its global recognition as a measure of financial risk, VaR has been criticised on certain
theoretical grounds. Artzner et al. (1997) and Artzner et al. (1999) have criticised VaR for not
satisfying the conditions of a “coherent” risk measure. The axioms of “coherency” comprise
four mathematical properties, viz., monotonicity, positive homogeneity, translation invariance
and sub-additivity. VaR, being a tail-quantile, is not sub-additive in general, and therefore,
is not coherent. VaR is sub-additive under the restrictive assumption of normally distributed
asset returns, which is a rare situation. since most often asset returns are found to be heavy
tailed rather than normally distributed.

In this paper we study the issue of non sub-additivity of VaR in the tail region of heavy tailed
asset returns. Using the concept of “regular variation” to define heavy tails, we show that for
heavy tailed distributions, VaR is sub-additive in the tail region. Thus, although VaR is not
sub-additive for a generic distribution, at the tail region of heavy tailed distribution VaR does
satisfy sub-additivity. Keeping in view that financial returns are often heavy tailed, coupled
with the fact that only the tail region is most relevant for risk management and not the entire
distribution, this provides an interesting insight into the ongoing debate on the suitability of
VaR as a risk measure. This is specially relevant for stress testing that require estimation of
extreme quantiles, lying far out in the tail region.

This paper is organised as follows: Section 2 discusses the concept of sub-additivity, along with
a brief review of the sub-additivity debate. Section 3 discusses the concept of “regular varia-
tion” and defines heavy-tailed distributions as those with “regularly varying” tails. In Section
4 we discuss sub-additivity of VaR at the tail region and establish that VaR is sub-additive in
the tail area for distributions with well-defined first moment. This is further demonstrated in
Section 5 with the help of Monte Carlo simulation to display the sub-additivity of 95% and
99% VaR for simulated asset returns belonging to three categories of bivariate distributions.
Section 6 concludes the paper.

2 Sub-additivity

Let X and Y be two financial assets. A risk measure ρ is sub-additive if the following is true.

ρ(X + Y ) ≤ ρ(X) + ρ(Y ) (1)

Thus, the risk measure of the sum of two assets is bounded above by the sum of their individual
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risks.1 The property of sub-additivity can be motivated by many practical considerations.
Sub-additivity ensures that the diversification principle of modern portfolio theory holds. A
sub-additive measure would always generate a lower risk measure for a diversified portfolio
than a non-diversified portfolio. In terms of internal risk management, sub-additivity also
implies that the overall risk of a financial firm can be added up to be equal to or less than
the sum of the risks of individual departments of the firm. This appears to give an appealing
dimension into the idea of integrated risk management. Further, in the absence of sub-
additivity, a financial firm with risk X + Y would calculate a smaller regulatory capital of
ρ(X) + ρ(Y ), leading to underestimation of risk reserve.

It can be proved easily by constructing suitable examples that VaR violates sub-additivity
property (Artzner et al., 1999; Acerbi & Tasche, 2001; Acerbi et al., 2001). The lack of sub-
additivity of VaR has been severely criticised, and several alternative measures have been
proposed to replace VaR such as tail conditional expectation (TCE) and worst conditional
expectation (WCE) by Artzner et al. (1999) and expected shortfall (ES) by Acerbi et al.
(2001).

It is however, argued that “imposing sub-additivity for all risks (including dependent risks)
is not in line with what could be called best practice” (Dhaene et al., 2003).2 The measure
of global risk may not be a priori smaller than the sum total of local risks. The following
example attempts to illustrate this point.

Consider a hypothetical economy where there are only two banks, viz. B1 and B2. Suppose
that B1 has only one investment project P1 and B2 has only one investment project P2, P1
and P2 being independent, each project having exactly the same pay off structure as follows:

Pay-off Probability

High profit (H) 1
4

Low profit (L) 1
4

High loss (-H) 1
4

Low loss (-L) 1
4

Thus, the probability of failure of a bank is 1
2 .

Under this scenario, it is easy to show that

Pr{At least one bank fails} =
3
4

Pr{Systemic failure} =
1
4

Now, assume that the two banks merge. Then, the hypothetical economy has just one bank,
investing in two independent projects P1 and P2 with the pay-off structure from each project

1“...a merger does not create extra risk” (Artzner et al., 1999). However it depends. Merger usually creates
positive diversification effect but might increase the systemic risk. See example that follows.

2Dhaene et al. (2003) have also argued that the axioms of “coherence” leads to a very restrictive set of risk
measures that cannot be used in practical situations.
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as given above. Under this scenario it is easily shown that

Pr{Bank fails} =
6
16

Pr{Systemic failure} =
6
16

Thus, the probability of bank failure
(

6
16

)
is less in the second scenario than that in the first

scenario
(

3
4

)
. This implies that the diversification effect of the merger has reduced the risk of

the bank failure.

As far as the global risk is concerned, in the first scenario, systemic breakdown occurs when
both the banks fail and in the second scenario this occurs when the merged bank fails. In
this example we see that the probability of systemic failure is higher in the second scenario
( 6
16) than that in the first scenario (1

4)! Thus, the merger has led to an increase in the global
risk, despite the benefit of diversification.3

This simple example illustrates that the diversification does not necessarily lead to a reduction
in the global risk. From this point of view sub-additivity may not depict the complex nature
of the financial markets.

As the debate over the requirement of sub-additivity (or, for that matter, the axioms of
coherence) continues, we take a fresh look at VaR for heavy tailed asset return distribution.
We present a new dimension into the debate by establishing that VaR is sub-additive in the
tail regions of heavy tailed distributions.

3 Heavy tailed asset returns and Regular Variation

Empirical studies have established that the distribution of speculative asset returns tend to
have heavier tails than the normal distribution tails (Mandelbrot, 1963; Pagan, 1996; Engle,
1982; Jansen & de Vries, 1991). Heavy tailed distributions are often defined in terms of higher
than normal kurtosis. However, the kurtosis of a distribution may be high if either the tails
of the cdf are heavier than the normal or if the center is more peaked, or both. Further, it
is not only the higher than normal kurtosis, but also failure of higher moments that define
heavy tails.

In this paper we define heavy tailed distribution as one characterised by the failure of the
moments of order m (> 0) or higher. Such distributions have tails that exhibit a power type
behaviour like the Pareto distribution, as commonly observed in finance. Such tail behaviour
can be mathematically defined by using the notion of “regular variation”, as defined below4 .

Definition: A cdf F (x) varies regularly at minus infinity with tail index α > 0 if

lim
t→∞

F (−tx)
F (−t)

= x−α ∀x > 0 (2)

3One can easily generalise this example to incorporate more complex financial entities, and still come up
with similar argument.

4For an encyclopedic treatment of regular variation, see Bingham et al. (1987); Resnick (1987).
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This implies that, to a first order approximation, all distributions have a tail comparable to
the Pareto distribution:

F (−x) = Ax−α[1 + o(1)], x > 0, for α > 0 and A > 0 (3)

This implies, for large x,

f(−x) ≈ αAx−α−1 x > 0, for α > 0 and A > 0 (4)

so that the density declines at a power rate x−α−1 far to the left of the centre of the distribution
which contrasts with the exponentially fast declining tails of the Gaussian distribution. This
power is outweighed by the explosion of xm in the computation of moments of order m ≥ α.
Thus, moments of order m ≥ α are unbounded and therefore these distributions display
heavy tailed behaviour. The power α is called the tail index and it determines the number
of bounded moments. It is readily verified that Student–t distributions, among others, vary
regularly at infinity, has degrees of freedom equal to the tail index and satisfies the above
approximation. Likewise, the stationary distribution of the popular GARCH(1,1) process has
regularly varying tails, see de Haan et al. (1989).

Further, to a second order approximation, the tail of a regularly varying cdf can be approxi-
mated as

F (−x) = Ax−α
[
1 + Bx−β + O

(
x−β

)]
, as x →∞ (5)

4 Sub-additivity of VaR in the tail

In this section, we examine sub-additivity of VaR at the tail region of heavy tailed distributions
defined as above. We consider only the lower tail.5

In the following, we assume that X and Y are two asset returns, each having a regularly
varying tail with tail index α > 0. In this paper we consider only the case where the two
asset returns have equal tail index and equal or unequal tail coefficients. If the tail coefficients
are equal then the asset returns have identical tails while the tails are non-identical if the
tail coefficients are different. Thus, we assume that the source of non-identical tail behaviour
arises from the differing values of the tail coefficients.6

We consider the case of independent X and Y in Section 4.1 and the case where X and Y
are dependent in Section 4.2.

5For defining the upper tails of a heavy tailed distributions, we may use the notion of “regular variation”
at plus infinity and carry on with an analogous proof.

6Some empirical studies have found that most asset returns distributions tend to display equal tail coeffi-
cients but do differ considerably with respect to their scale coefficients. See, eg. Hyung & de Vries (2002).
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4.1 Case of independent assets

Proposition 1 Suppose that X and Y are two independent asset returns both having regularly
varying tails with index α > 0 and scale coefficients A > 0 and B > 0. Then for α > 1 VaR
is sub-additive in the tail region, regardless of whether or not A = B.

Proof:
See Appendix A.1.

Thus, if we assume that α > 1, so that the mean of the assets are well defined, then sub-
additivity of VaR is established. The case of α ≤ 1, or the case of unbounded mean is very
rare in finance, and therefore the assumption of α > 1 is not unreasonable for financial assets.

4.1.1 Second order approximation

The second order tail approximation (5) approximates a much larger area in the tail than the
first order approximation.

We can show that even a second order approximation of the tails, when such an approximation
is valid, can display VaR sub-additivity in some cases.

For example, suppose that X and Y are two independent asset returns, each having regularly
varying tails with the second order approximation as in (5) with identical tail indexes and
identical tail coefficients.

Application of the Bruijn’s theory of asymptotic inversion (Bingham et al., 1987) (pages
28-29) leads to the following results

V aRp(X) ≈ A
1
α p−

1
α

[
1 +

B

α
A− β

α p
β
α

]
(6)

V aRp(Y ) ≈ A
1
α p−

1
α

[
1 +

B

α
A− β

α p
β
α

]
(7)

V aRp(X) + V aRp(Y ) ≈ 2A
1
α p−

1
α

[
1 +

B

α
A− β

α p
β
α

]
(8)

Proposition 2 If X and Y are independent returns with regularly varying tails, each follow-
ing the second order approximation (5) with identical tail index and identical scale coefficients,
then V aRp(X + Y ) can be approximated by the following expression.

V aRp(X + Y ) ≈ (2A)
1
α p−

1
α

[
1 +

B

α

( p

2A

) β
α +

α + 1
2

E(X2)
( p

2A

) 2
α

]
+ E(X) (9)

Proof:
See Appendix A.2.

Proposition 3 If X and Y are independent returns with regularly varying tails, each follow-
ing the second order approximation (5) with identical tail index and identical scale coefficients,
and if E(X) = 0, β < 2 and B > 0, then VaR is sub-additive in the tail region.
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Proof:
Using results from (6) to (9), and using the conditions E(X) = 0, β < 2 and B > 0, it is
easy to show that

V aRp(X + Y )− V aRp(X)− V aRp(Y ) ≈ A
1
α p−

1
α

[(
2

1
α − 2

)
+

B

α
A− β

α p
β
α

(
2

1
α
− β

α − 2
)]

< 0

Thus under these specific assumptions, even a second order tail approximation leads to VaR
sub-additivity.

4.2 Case of dependent assets

It is well known that financial assets are not necessarily independent. In this section we
consider the case where the assets are assumed to be dependent.

Suppose that X1 and X2 are two assets, not necessarily independent. The simplest way to
model the dependence between X1 and X2 would be to introduce the dependence through a
common market factor, as in the case of a single index market model, given below

Xi = βi R + Qi, i = 1, 2 (10)

where R denotes the return of the market portfolio, βi the market risk and Qi the idiosyncratic
risk of asset Xi. In this model, the Qis and R are independent of each other; further Qis are
themselves independent of each other. Thus, the only source of cross-sectional dependence
between X1 and X2 is the common market risk. The security specific risks Qi are independent
of each other and therefore can be diversified away.

Since R and Qi are independent, we can use Feller’s convolution theorem to approximate the
tails of X1 and X2, depending upon the tail behaviour of R, Q1 and Q2. We can further use
it to approximate the tail of X1 +X2. Thus, under such a model, we can proceed in a similar
manner as in the case of independent asset returns. To illustrate this, we present below one
particular case, viz., the case where R, Q1 and Q2 have regularly varying tails with the same
tail index α, but with different tail coefficients.

Proposition 4 Suppose that asset returns X1 and X2 can be modelled by the single index
market model, where R, Q1 and Q2 all have regularly varying tails with tail index α > 0 and
tail coefficients Ar > 0, A1 > 0 and A2 > 0 respectively. If α > 1, then under the assumption
that the distribution of R is symmetric, VaR is sub-additive in the tail region.

Proof:
See Appendix A.3

In general, the single index market model (10) may not describe the true nature of the
dependence between X1 and X2 since Qi’s may not be cross sectionally independent, although
each one of them may be independent from the common market factor R. For example, apart
from the market risk, the assets X1 and X2 may be dependent on an industry specific risk,
depicted by the movement of an industry specific index S, also known as “sectoral index”
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in finance. Such industry specific factor may lead to dependence between Q1 and Q2. We
may model such cross sectional dependence by generalising the model (10) by incorporating
a sector specific factor S.

Xi = βi R + τi S + Qi, i = 1, 2 (11)

where R is the market factor, S is the industry specific factor and Qi is the idiosyncratic
risk of the asset Xi. In this model Qi is independent of R and S. Further, Qi are cross
sectionally independent. In this model, τi is the industry specific risk of the asset Xi. If S has
a regularly varying tail with scale coefficient As and tail index α, then under the assumption
of symmetric tails for R and S, it can be shown in the similar manner as in Appendix A.3,
that

V aRp(X1) ≈ p
1
α (|β1|αAr + |τ1|αAs + A1)

1
α

V aRp(X2) ≈ p
1
α (|β2|αAr + |τ2|αAs + A2)

1
α

V aRp(X1 + X2) ≈ p
1
α (|β1 + β2|αAr + |τ1 + τ2|αAs + A1 + A2)

1
α

Proceeding similarly as in the case of case of the single index market model above (Proposition
4), one case easily establish that

V aRp(X1 + X2) ≤ V aRp(X1) + V aRp(X2)

One can generalise the model by introducing more factors in the dependence structure between
X1 and X2 and establish sub-additivity in an analogous manner.

5 Simulation results

In order to demonstrate empirically the above results, we have carried out a set of simulations.
In this section we present the results from the simulations from three categories of bivariate
distributions: Student’s t, jump process and bivariate garch. We simulate from two sample
sizes N = 103 and 106, the former is chosen to mimic the real world sample sizes, and the latter
the asymptotics. The number of simulations from each sample size is S = 10000 and 200. In
the simulations, p denotes the significance level of VaR and n denotes the number of cases
where

V aRp(X1 + X2) > V aRp(X1) + V aRp(X2)

5.1 Student’s t-distribution

The Student’s t-distribution is widely applied in modeling financial returns. It has a regularly
varying tail with tail index equal to its degrees of freedom and tail coefficient as below:

A =
Γ(ν+1

2 )
Γ(ν

2 )
ν

ν−1
2

√
νπ
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where ν is the degrees of freedom. Further, for ν > 2 the tail of Student’s t-distribution
satisfy the second order approximation (5) with β = 2, and B = −ν2

2
ν+1
ν+2 .

Suppose that X1 is N draws from t(ν1) and X2 is N draws from t(ν1), both being iid. We then
provide a dependence structure as follows. Suppose ρ is a correlation coefficients. Consider
the Choleski decomposition of the covariance matrix

Σ =

1 ρ

ρ 1

 = A′A

Then the data matrix is given by

X =
(

X1

X2

)
A′

Thus, the correlation between the two columns of X is ρ at least when the second moment is
defined. The results from simulating these data are presented in Tables 1 and 2.

As shown in these tables, n, the number of times when sub-additivity fails is very high when
ν1 = 1 and/or ν2 = 1. These are the cases when the first moments of X1 and X2 are not
well defined. Existence of well-defined mean is a necessary assumption in our analysis for
sub-additivity to hold.

When the degrees of freedom of the Student’s t-variates is higher than 1, then the first moment
is well defined. As shown in Tables 1 and 2 for well defined first moment, the violation of
sub-additivity is negligible or zero.

5.2 Jump process

x1 and x2 are N draws from N (0, 1), where each process is subject to the occasional jump:

xi,j =
{

xi,j with probability a
b + c, c˜U (0, d) with probability 1− a

in our case

xi,j =
{

xi,j with probability 0.995
10 + c, c˜U (0, 0.2) with probability 0.005

we then introduce what we call joint event prob, denoted by q, which is the probability that
on days when the x1 jumps, x2 also Jumps.

Table 3 presents the results of the simulation from the jump process.

5.3 BEKK GARCH

we estimate the parameters of a bivariate GARCH model, specifically the BEKK form with
daily data from Microsoft and Goldman Sachs over four years. We then simulate from this
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model. Using these simulated results, we estimate VaRs of the individual returns and their
sum. In Table 4 we present the results from the simulation. It is seen from this table that
the number of sub-additivity failure is close to zero.

6 Conclusion

In this paper we take a fresh look at the issue of sub-additivity of VaR. We argue that for
heavy tailed asset return distributions VaR is sub-additive in the tail region. We define heavy
tailed distribution as one characterised by the failure of moments of order m > 0 or higher.
Using the notion of “regular variation” to describe such a tail behaviour, we establish that
for distributions with well defined mean (m > 1), VaR is sub-additive at the tail region of
the distribution. Thus in the relevant region for risk management, i.e., the tail region, VaR
is sub-additive. We further demonstrate our results with the help of a set of Monte Carlo
simulation of 99% and 95% VaR for asset returns simulated from three categories of bivariate
distributions: Student’s t-distribution, jump processes and bivariate garch processes.

Our results provide a new insight into the sub-additivity debate and offers VaR to be still
applicable for risk management despite its lack of sub-additivity in general.
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Appendix A

A.1 Proof of Proposition 1

Suppose that X and Y are two independent asset returns both having regularly varying tails
such that

Pr{X ≤ −x} ≈ A x−α

Pr{Y ≤ −x} ≈ B x−α

Then the V aR at p-level for X, denoted by V aRp(X), is given by

Pr{X ≤ V aRp(X)} ≈ p

A [V aRp(X)]−α ≈ p

V aRp(X) ≈
[
A

p

] 1
α

Similarly,

V aRp(Y ) ≈
[
B

p

] 1
α

We consider the following cases:

I. A = B7 In this case,

V aRp(X) + V aRp(Y ) ≈ 2
[
A

p

] 1
α

Using Feller’s convolution theorem (Feller, 1971)(page 278), we have

Pr{X + Y ≤ V aRp(X + Y )} ≈ p

2 A [V aRp(X + Y )]−α ≈ p

V aRp(X + Y ) ≈ 2
1
α

[
A

p

] 1
α

Thus it follows

V aRp(X + Y )− [V aRp(X) + V aRp(Y )] ≈
[
A

p

] 1
α

[2
1
α − 2]

Following cases may be considered
7Garcia et al. (2003) have examined this by using a different approach than ours.
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(a) α = 1 : in this case V aRp(X + Y ) = V aRp(X) + V aRp(Y ) and therefore VaR is
additive.

(b) 0 < α < 1 : in this case V aRp(X + Y ) > V aRp(X) + V aRp(Y ) and hence VaR is
super-additive.

(c) α > 1 : in this case V aRp(X + Y ) < V aRp(X) + V aRp(Y ) and hence VaR is
sub-additive.

II. A 6= B

In this case, Feller’s theorem gives

Pr{X + Y ≤ −x} ≈ (A + B) x−α

Thus we get the VaR as:

V aRp(X + Y ) ≈
[
A + B

p

] 1
α

This gives

V aRp(X + Y )− V aRp(X)− V aRp(Y ) ≈
(

1
p

) 1
α [

(A + B)
1
α −A

1
α −B

1
α

]
Following cases may be considered:

(a) α > 1: In this case, 1
α < 1. Using Cα inequality (Loeve, 1963), (p. 155), it directly

follows that

(A + B)
1
α ≤ A

1
α + B

1
α

VaR is sub-additive in this case

(b) α < 1: In this case, 1
α > 1. Hence the Cα inequality gives

(A + B)
1
α ≤ 2

1
α
−1(A

1
α + B

1
α )

Thus VaR is not necessarily sub-additive in this case.

A.2 Proof of Proposition 2

Suppose that X and Y are two independent asset returns, each having regularly varying tails
with the following identical second order approximation

Pr{X ≤ −x} = Pr{X > x} = Ax−α
[
1 + Bx−β + o(x−α)

]
Pr{Y ≤ −x} = Pr{Y > x} = Ax−α

[
1 + Bx−β + o(x−α)

]
where α > 2, β > 0, A > 0 and B ∈ R1 − {0}
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Following the second order convolution result from Dacorogna et al (1998) and de Vries (1999),
we have,

Pr{X + Y > x} = Pr{X + Y ≤ −x} ≈ 2Ax−α

[
1 + Bx−β + αE(X)x−1 +

1
2
α(α + 1)E(X2)x−2

]
where E(X) = E(Y ) and E(X2) = E(Y 2)

Let p = Pr{X + Y ≤ −x}. Then,

p ≈ 2Ax−α

[
1 + Bx−β + αE(X)x−1 +

1
2
α(α + 1)E(X2)x−2

]
p

2A
≈ x−α

[
1 + Bx−β + αE(X)x−1 +

1
2
α(α + 1)E(X2)x−2

]
y ≈ x−α

[
1 + Bx−β + αE(X)x−1 +

1
2
α(α + 1)E(X2)x−2

]
where y =

p

2A
(12)

x ≈ y−
1
α

[
1 + Bx−β + αE(X)x−1 +

1
2
α(α + 1)E(X2)x−2

] 1
α

= y−
1
α g (x(y))

= y−
1
α + y−

1
α {g (x(y))− 1}

= y−
1
α + ε(y) say (13)

Clearly,
ε(y)

y−
1
α

→ 0 as x →∞ since, as x →∞, g (x(y)) → 1

Using (13) in (12), we have the following:

y ≈
(
y−

1
α + ε(y)

)−α
[
1 + B

(
y−

1
α + ε(y)

)−β
+ αE(X)

(
y−

1
α + ε(y)

)−1
+

1
2
α(α + 1)E(X2)

(
y−

1
α + ε(y)

)−2
]

= y

(
1 +

ε(y)

y−
1
α

)−α
1 + By

β
α

(
1 +

ε(y)

y−
1
α

)−β

+ αE(X)y
1
α

(
1 +

ε(y)

y−
1
α

)−1

+
1
2
α(α + 1)y

2
α

(
1 +

ε(y)

y−
1
α

)−2


Thus,

1 ≈

(
1 +

ε(y)

y−
1
α

)−α
1 + By

β
α

(
1 +

ε(y)

y−
1
α

)−β

+ αE(X)y
1
α

(
1 +

ε(y)

y−
1
α

)−1

+
1
2
α(α + 1)E(X2)y

2
α

(
1 +

ε(y)

y−
1
α

)−2


(14)
Now, let

u =
ε(y)

y−
1
α

, and

f(u) = (1 + u)−α

15



Taylor’s expansion of f(u) around u = 0 gives

f(u) = f(0) + uf
′
(u)|u=0 +

u2

2!
f
′′
(u)|u=0 +

u3

3!
f
′′′

(u)|u=0 + ...

= 1− αu + α(α + 1)
u2

2
− α(α + 1)(α + 2)

u3

6
+ ...

Thus, to a first order approximation,

f(u) ≈ 1− αu(
1 +

ε(y)

y−
1
α

)−α

≈ 1− α
ε(y)

y−
1
α

(15)

Using (15) in (14), we have,

1 ≈

(
1− α

ε(y)

y−
1
α

)[
1 + By

β
α

(
1− β

ε(y)

y−
1
α

)
+ αE(X)y

1
α

(
1− ε(y)

y−
1
α

)

+
1
2
α(α + 1)E(X2)y

2
α

(
1− 2

ε(y)

y−
1
α

)]

= 1 + By
β
α

(
1− β

ε(y)

y−
1
α

)
+ αE(X)y

1
α

(
1− ε(y)

y−
1
α

)
+

1
2
α(α + 1)E(X2)y

2
α

(
1− 2

ε(y)

y−
1
α

)

−α
ε(y)

y−
1
α

− αBε(y)y
β
α

+ 1
α

(
1− βε(y)y

1
α

)
− α2E(X)ε(y)y

2
α (1− ε(y)y

1
α )

−1
2
α2(α + 1)E(X2)ε(y)y

3
α (1− 2ε(y)y

1
α )

αε(y)y
1
α ≈ By

β
α + αE(X)y

1
α +

1
2
α(α + 1)E(X2)y

2
α − ε(y)

[
Bβy

β
α

+ 1
α + αE(X)y

2
α

+α(α + 1)E(X2)y
3
α + αBy

β
α

+ 1
α + α2E(X)y

2
α +

1
2
α2(α + 1)E(X2)y

3
α

]
+(ε(y))2

[
αβBy

β
α

+ 2
α + α2E(X)y

3
α + α2(α + 1)E(X2)y

4
α

]
ε(y) ≈ B

α
y

β
α
− 1

α + E(X) +
1
2
(α + 1)E(X2)y

1
α (16)

As x →∞, the other terms → 0 faster. Using (16) in (13),

x ≈ y−
1
α +

B

α
y

β
α
− 1

α + E(X) +
1
2
(α + 1)E(X2)y

1
α

y−
1
α

[
1 +

B

α
y

β
α +

α + 1
2

E(X2)y
2
α

]
+ E(X)

substituting y = p
2A ,

x ≈
( p

2A

)− 1
α

[
1 +

B

α

( p

2A

) β
α +

α + 1
2

E(X2)
( p

2A

) 2
α

]
+ E(X)
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Appendix A.3 Proof of Proposition 4

Suppose that R has a regularly varying tail with index α and Qi i = 1, 2 has a regularly
varying tail with index α. Further, suppose that R has a symmetric distribution. Thus, to a
first order approximation,

Pr{R ≤ −x} ≈ Ar x−α

Pr{R ≥ x} ≈ Ar x−α

Pr{βiR ≤ −x} = Pr{R ≤ − x

βi
}

If βi > 0 then

Pr
{

R ≤ − x

βi

}
≈ Arβ

α
i x−α

If βi < 0 then

Pr{βiR ≤ −x} = Pr{−|βi|R ≤ −x}
= Pr{|βi|R ≥ x}
≈ Ar|βi|α x−α

Thus
Pr{βiR ≤ −x} ≈ Ar|βi|α x−α, βi ∈ R

For the individual assets Q1 and Q2

Pr{Qi ≤ −x} ≈ Ai x−α, i = 1, 2

By Feller’s convolution theorem

Pr{Xi ≤ −x} ≈ |βi|αAr x−α + Aix
−α

p ≈ x−α (Ai + |βi|αAr)

x ≈ p−
1
α (Ai + |βi|αAr)

1
α

Similarly

Pr{X1 + X2 ≤ −x} ≈ |β1 + β2|αAr x−α + A1x
−α + A2x

−α

Thus,

V aRp(X1) ≈ p−
1
α (A1 + |β1|αAr)

1
α

V aRp(X2) ≈ p−
1
α (A2 + |β2|αAr)

1
α

V aRp(X1 + X2) ≈ p−
1
α

[
(A1 + A2 + |β1 + β2|αAr)

1
α

]
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To establish the sub-additivity we proceed as follows.

V aRp(X1 + X2) ≈ p−
1
α

[
(A1 + A2 + |β1 + β2|αAr)

1
α

]
≤ p

1
α [Ar (|β1|+ |β2|)α + (A1 + A2)]

1
α

Using Triangular inequality

= p
1
α

[
Ar (|β1|+ |β2|)α +

(
(A1 + A2)

1
α

)α] 1
α

≤ p
1
α

[
Ar (|β1|+ |β2|)α +

(
A

1
α
1 + A

1
α
2

)α] 1
α

Using Cα inequality for α > 1

= p
1
α

[(
A

1
α
r |β1|+ A

1
α
r |β2|

)α

+
(

A
1
α
1 + A

1
α
2

)α] 1
α

≤ p
1
α

[((
A

1
α
r |β1|

)α

+
(

A
1
α
1

)α) 1
α

+
((

A
1
α
r |β2|

)α

+
(

A
1
α
2

)α) 1
α

]
,

Using Minkowski’s Inequality for α > 1

= p
1
α (Ar|β1|α + A1)

1
α + p

1
α (Ar|β2|α + A2)

1
α

= V aRp(X1) + V aRp(X2)

Thus, for α > 1, VaR is sub-additive.
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Table 1 Simulation from Student’s t-distribution: realistic sample size

N S p ν1 ν2 ρ n n
S

1000 10000 0.01 1 1 0.000 4088 0.4088
1000 10000 0.05 1 1 0.000 4611 0.4611
1000 10000 0.01 1 1 0.500 4308 0.4308
1000 10000 0.05 1 1 0.500 4578 0.4578

1000 10000 0.01 2 1 0.000 95 0.0095
1000 10000 0.05 2 1 0.000 0 0.0000
1000 10000 0.01 2 1 0.500 867 0.0867
1000 10000 0.05 2 1 0.500 126 0.0126

1000 10000 0.01 1 3 0.000 95 0.0095
1000 10000 0.05 1 3 0.000 0 0.0000
1000 10000 0.01 1 3 0.500 867 0.0867
1000 10000 0.05 1 3 0.500 126 0.0126

1000 10000 0.01 3 3 0.000 3 0.0003
1000 10000 0.05 3 3 0.000 0 0.0000
1000 10000 0.01 3 3 0.500 165 0.0165
1000 10000 0.05 3 3 0.500 5 0.0005

1000 10000 0.01 4 4 0.000 0 0.0000
1000 10000 0.05 4 4 0.000 0 0.0000
1000 10000 0.01 4 4 0.500 48 0.0048
1000 10000 0.05 4 4 0.500 1 0.0001

1000 10000 0.01 6 6 0.000 0 0.0000
1000 10000 0.05 6 6 0.000 0 0.0000
1000 10000 0.01 6 6 0.500 17 0.0017
1000 10000 0.05 6 6 0.500 0 0.0000
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Table 2 Simulation from Student’s t-distribution: very large Sample size

N S p ν1 ν2 ρ n n
S

1000000 200 0.01 1 1 0.000 110 0.550
1000000 200 0.05 1 1 0.000 109 0.545
1000000 200 0.01 1 1 0.500 103 0.515
1000000 200 0.05 1 1 0.500 96 0.480

1000000 200 0.01 2 1 0.000 0 0.000
1000000 200 0.05 2 1 0.000 0 0.000
1000000 200 0.01 2 1 0.500 0 0.000
1000000 200 0.05 2 1 0.500 0 0.000

1000000 200 0.01 1 3 0.000 0 0.000
1000000 200 0.05 1 3 0.000 0 0.000
1000000 200 0.01 1 3 0.500 0 0.000
1000000 200 0.05 1 3 0.500 0 0.000

1000000 200 0.01 3 3 0.000 0 0.000
1000000 200 0.05 3 3 0.000 0 0.000
1000000 200 0.01 3 3 0.500 0 0.000
1000000 200 0.05 3 3 0.500 0 0.000

1000000 200 0.01 4 4 0.000 0 0.000
1000000 200 0.05 4 4 0.000 0 0.000
1000000 200 0.01 4 4 0.500 0 0.000
1000000 200 0.05 4 4 0.500 0 0.000

1000000 200 0.01 6 6 0.000 0 0.000
1000000 200 0.05 6 6 0.000 0 0.000
1000000 200 0.01 6 6 0.500 0 0.000
1000000 200 0.05 6 6 0.500 0 0.000
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Table 3 Simulation from Jump processes

N S p q n n
S

1000 10000 0.01 0.000 2504 0.2504
1000 10000 0.01 0.050 4811 0.4811
1000 10000 0.05 0.000 0 0.0000
1000 10000 0.05 0.050 0 0.0000

1000000 200 0.01 0.000 90 0.4500
1000000 200 0.01 0.050 1 0.0050
1000000 200 0.05 0.000 0 0.0000
1000000 200 0.05 0.050 0 0.0000

Table 4 Simulation from the bekk garch processes

N S p n n
S

1000 10000 0.01 10 0.0010
1000 10000 0.05 2 0.0002

1000000 200 0.01 0 0.0000
1000000 200 0.05 0 0.0000
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