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Abstract

In this paper we study some prominent downside risk measures for heavy tailed dis-
tribution. Using the notion of regular variation to define heavy tailed distributions we
provide approximations of the risk measures in the tail region. We show that the downside
risk measures produce similar and consistent ranking of risk. However, Expected Shortfall
may not always distinguish between the differing risk levels of assets.
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1 Introduction

Downside risk measures may be defined as measures of “distance” between a risky situation
and the corresponding risk-free situation when only unfavourable discrepancies contribute to
the “risk” (Dhaene et al., 2003). Early literature on downside risk measures dates back to the
“safety first” rule of Roy (1952). Subsequently lower partial moments were developed (Bawa,
1975; Fishburn, 1977) where risk was defined as probability weighted functions of deviations
below certain target return. There is a renewed interest in downside risk measures in recent
times due to the prominence of concepts like Value-at-Risk (VaR) and Expected Shortfall
(es) for financial risk management and prudential regulation.

In this paper we study some important downside risk measures, viz., lower partial moments
(of second, first and zeroth orders), VaR and es for heavy tailed asset returns. Using the
notion of “regular variation” to define heavy tailed behaviour, we provide approximations of
the risk measures in the tail region.

Further, it is analytically shown that the heavy tailed feature induces similar asset rankings
regardless of the particular risk measure being used.

2 Heavy tailed distribution and downside risk measures

A plethora of empirical studies have established that asset returns tend to have heavy tailed
distributions (Mandelbrot, 1963; Pagan, 1996; Engle, 1982; Jansen and de Vries, 1991). Heavy
tailed distributions are often defined in terms of higher than normal kurtosis. However, the
kurtosis of a distribution may be high if either the tails of the cdf are heavier than the normal
or if the center is more peaked, or both. Further, it is not only the higher than normal
kurtosis, but also failure of higher moments that define heavy tails. In this paper we define
heavy tailed distribution as one characterised by the failure of the moments of order m (> 0)
or higher. Such distributions have tails that exhibit a power type behaviour like the Pareto
distribution, as commonly observed in finance. Such tail behaviour can be mathematically
defined by using the notion of “regular variation”, as defined below1 .

2.1 Regular Variation

A cdf F (x) varies regularly at minus infinity with tail index α > 0 if

lim
t→∞

F (−tx)
F (−t)

= x−α ∀x > 0 (1)

An implication of regular variation is that, to a first order approximation, all distributions
have a tail comparable to the Pareto distribution:

F (−x) = Ax−α[1 + o(1)], x > 0, for α > 0 and A > 0 (2)
1For an encyclopedic treatment of regular variation, see Bingham et al. (1987); Resnick (1987).
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Further, to a second order approximation, the tail of a regularly varying cdf can be written
as

F (−x) = Ax−α
[
1 + Bx−β + O

(
x−β

)]
, as x →∞ for α > 2, β > 0, A > 0and B 6= 0 (3)

For distributions with regularly varying tails, moments of order m > α are unbounded and
therefore these distributions display heavy tailed behaviour. The power α is called the tail
index and it determines the number of bounded moments. It is readily verified that Student–t
distributions, among others, vary regularly at infinity, has degrees of freedom equal to the
tail index and satisfies the above approximation. Likewise, the stationary distribution of the
popular GARCH(1,1) process has regularly varying tails, see de Haan et al. (1989).

3 Downside risk measures for heavy-tailed distribution

In this section we discuss how the downside risk measures can be formed under the assump-
tion of regularly varying tails. Also we discuss whether the downside risk measures provide
consistent preference ordering under the condition of regularly varying tails.

Before proceeding, we provide the definitions of the risk measures under consideration below.

1. Second Lower Partial Moment or Semi-variance (SLPM)

SLPM =
∫ q

−∞
(q − x)2f(x)dx = 2

∫ q

−∞
(q − x)F (x)dx

2. First Lower Partial Moment (FLPM)

FLPM =
∫ q

−∞
(q − x)f(x)dx =

∫ q

−∞
F (x)dx

3. Zeroth Lower Partial Moment (ZLPM)

ZLPM =
∫ q

−∞
f(x)dx = F (q)

4. Value-at-Risk (VaR): If F (q) is fixed at p, then the inverse of zlpm gives Value-at-Risk
(VaR) as

V aRp = −F−1(p) = −q

VaR is defined as the maximum potential loss to an investment with a pre-specified
confidence level (1− p).

5. Expected Shortfall (ES): When the return distribution is continuous, es at confidence
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level (1− p) is defined as

esp = E(x|x ≤ V aRp)

=
∫ q

−∞
x

f(x)
F (q)

dx

= q − 1
F (q)

FLPM

In the following propositions we provide expressions for approximating the risk measures.

Proposition 1 If the asset return distribution is heavy tailed with tail index α > 0 and tail
coefficient A > 0, then the downside risk measures can be approximated as follows:

1. slpm(q) ≈ 2Aq−α+2

(1−α)(2−α) , α 6= 1, α 6= 2

2. flpm(q) ≈ Aq−α+1

(1−α) , α 6= 1

3. zlpm(q) ≈ Aq−α, α > 0

4. V aR(p) ≈
(

A
p

) 1
α

5. es(q) ≈ αq
(α−1)

Proof:
See Appendix A.

Proposition 1 provides approximations for the downside risk measures in terms of the param-
eters of the tail approximation of heavy tailed distribution. If the tail index α = 2 or α = 1
then the risk measure slpm is undefined. Similarly if α = 1 flpm is undefined. However
α = 1 is a rare situation in finance, as it would imply unbounded mean.

Proposition 2 If the asset X has a regularly varying tail that satisfy the second order ap-
proximation (3), then the downside risk measures can be approximated as follows:

1. slpm(q) ≈ 2
[

Aq−α+2

(1−α)(2−α) + ABq−α−β+2

(α+β−1)(α+β−2)

]
2. flpm(q) ≈ −Aq−α+1

α−1

[
1 + (α−1)Bq−β

α+β−1

]
3. zlpm(q) ≈ Aq−α

[
1 + Bq−β

]
4. V aRp(x) ≈ A

1
α p−

1
α

[
1 + B

α A− β
α p

β
α

]
5. es(q) ≈ q

α
α−1

+ α+β
α+β−1

Bq−β

1+Bq−β

Proof:
See Appendix B.

From Propositions 1 and 2 it is interesting to note that except for es all the downside risk
measures are functions of both the tail coefficient A and the tail index α, while the expression
for es involves only the tail index α and not the tail coefficient A. This can be seen as a
drawback of es since es will yield the same risk measure for two assets having same tail index
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but different tail coefficients. Other measures, as seen from the above expressions, take into
account both the tail index and the tail coefficients. This is more relevant because financial
returns are often found to be similar with respect to the tail index, but vary widely with
respect to the tail coefficient.2

3.1 Comparing the risk measures under the condition of regular variation

Suppose that asset returns X and Y have regularly varying tails with tail indexes α1 and α2

and tail coefficients A1 and A2 respectively.

Proposition 3 If α1 > α2 and A1 = A2, then the following relationships hold.

1. slpmx(q) < slpmy(q) for α1 > 2, α2 > 2

2. flpmx(q) < flpmy(q) for α1 > 1, α2 > 1

3. zlpmx(q) < zlpmy(q)

4. V aRx(p) < V aRy(p)

5. esx(q) < esy(q)

Proof:
Differentiating the expressions for the downside risk measures as in Proposition 1, it follows
that each downside risk measure is decreasing in α, for large q > 1. Hence the result.

Thus, in the tail region, we can order X and Y in a clear manner with respect to each of
the downside risk measures. The ordering is consistent with the assumption that X is less
risky than Y . Thus, far in the tail region, all measures provide similar preference ranking.
This is in line with the recent empirical findings of Hahn et al. (2002). Using real world
data from the trading book of an investment bank, Hahn et al. (2002) found empirically that
many of the downside risk measures (including the ones considered in this paper) assess risk
of the trading portfolios in nearly the same way. Proposition 3 explain this similarity in an
analytical manner.

Now, assume that α1 = α2 but the tail coefficients A1 6= A2. Without loss of generality, let
A1 < A2. In this case we have Fx(−x) < Fy(−x), so that the tail of the distribution of Y
is heavier than that of X. Thus, although the number of bounded moments are same for X
and Y , Y has a fatter tail than X, and hence more risky.

Proposition 4 If α1 = α2 but A1 < A2, then the following relationships hold.

1. slpmx(q) < slpmy(q)

2. flpmx(q) < flpmy(q)

3. zlpmx(q) < zlpmy(q)

4. V aRx(p) < V aRy(p)

5. esx(q) = esy(q)

2See, eg.,Hyung and de Vries (2002).
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Proof:
Above can be proved easily by using the results from the Proposition 1.

Thus, all the risk measures, except es give consistent ordering of the assets X and Y in this
case. However, es does not differentiate between the risk levels of X and Y by ignoring the
scale coefficients.

4 Conclusion

We examine downside risk measures for heavy tailed distributions defined as distributions
with regularly varying tails. Using tail approximations of regularly varying tails, we provide
expressions that approximate the various downside risk measures as functions of the tail
coefficient and tail index. We show that when two heavy tailed distributions have different
tail indexes but same tail coefficients, all downside risk measures provide consistent preference
ordering as under the notion of risk conveyed by the tail indexes. In this case the measures
slpm and flpm do not display any clear preference order. If the tail indexes are same but the
tail coefficients vary, then all but es provide consistent preference ordering as under the risk
information conveyed by the differing tail coefficients. In this case, es estimates risk equally,
thus ignoring the different risk levels of the assets arising out of different tail coefficients.

6



Appendix A: Derivation of the expressions in Proposition 1

Suppose that the distribution of X has a regularly varying tail. Then, to a fist order approx-
imation,

F (−x) ≈ A x−α, as x →∞ where A > 0, α > 0

1. slpm

slpm(q) = 2
∫ q

−∞
(q − x) F (x)dx

≈ 2
∫ q

−∞
(q − x) Ax−αdx

= 2
∫ q

−∞
qAx−αdx− 2

∫ q

−∞
Ax−α+1dx

= 2qA

∣∣∣∣ x−α+1

−α + 1

∣∣∣∣q
−∞

− 2A

∣∣∣∣ x−α+2

−α + 2

∣∣∣∣q
−∞

, α > 2

= 2A

[
q−α+2

−α + 1
− q−α+2

−α + 2

]
=

2Aq−α+2

(1− α)(2− α)

2. flpm(q)

flpm(q) =
∫ q

−∞
F (x)dx

≈
∫ q

−∞
Ax−αdx

= A

∣∣∣∣ x−α+1

−α + 1

∣∣∣∣q
−∞

, α > 1

=
Aq−α+1

1− α

3. zlpm(q)

zlpm(q) = F (q)
≈ Aq−α

4. V aRp(x)

F (V aRp(x)) = p

p ≈ A [V aRp(x)]−α

V aRp(x) ≈
(

A

p

) 1
α
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5. es(q)

es(q) = q − flpm(q)
F (q)

≈ q − Aq−α+1

Aq−α (1− α)

=
α q

(α− 1)

Appendix B: Derivation of the expressions in Proposition 2

Suppose that X has a regularly varying tail that satisfy the following second order approxi-
mation as x →∞

F (−x) ≈ Ax−α
[
1 + Bx−β

]
, A > 0, α > 2, β > 0 and B 6= 0

1. slpm(q)

slpm(q) = 2
∫ q

−∞
(q − x) F (x)dx

= 2q

∫ q

−∞
F (x)dx− 2

∫ q

−∞
xF (x)dx

= T1 − T2, say

Using the second order tail approximation, we have

T1 ≈ 2q

∫ q

−∞

[
Ax−α + ABx−α−β

]
dx

= 2q

∣∣∣∣Ax−α+1

−α + 1
+

ABx−α−β+1

−α− β + 1

∣∣∣∣q
−∞

= 2q

[
Aq−α+1

−α + 1
+

ABq−α−β+1

−α− β + 1

]
, α + β > 1

T2 ≈ 2
∫ q

−∞

[
Ax−α+1 + ABx−α−β+1

]
dx

= 2
[
Aq−α+2

−α + 2
+

ABq−α−β+2

−α− β + 2

]
, provided α + β > 2

Therefore,

slpm(q) ≈ 2
[
Aq−α+2

−α + 1
− ABq−α−β+2

α + β − 1
− Aq−α+2

−α + 2
+

ABq−α−β+2

α + β − 2

]
= 2

[
Aq−α+2

(1− α)(2− α)
+

ABq−α−β+2

(α + β − 1)(α + β − 2)

]
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2. flpm(q)

flpm(q) =
∫ q

−∞
F (x)dx

≈
∫ q

−∞

[
Ax−α + ABx−α−β

]
dx

=
Aq−α+1

−α + 1
+

ABq−α−β+1

−α− β + 1
, α + β > 1

= −Aq−α+1

α− 1

[
1 +

(α− 1)Bq−β

α + β − 1

]

3. zlpm(q)

zlpm(q) = F (q)

≈ Aq−α
[
1 + Bq−β

]
4. es(q)

es(q) = q − flpm(q)
F (q)

≈ q −
−Aq−α+1

α−1

[
1 + (α−1)Bq−β

α+β−1

]
Aq−α [1 + Bq−β]

=
Aq−α+1

[
1 + Bq−β

]
+ Aq−α+1

α−1

[
1 + (α−1)Bq−β

α+β−1

]
Aq−α [1 + Bq−β]

= q
1 + Bq−β + 1

α−1 + Bq−β

α+β−1

1 + Bq−β

= q

α
α−1 + α+β

α+β−1 Bq−β

1 + Bq−β

5. V aRp(x) = F−1(p). We use Bruijn’s theory of asymptotic inversion (Bingham et al.,
1987) (pages 28-29) to establish this result.
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Let p = F (x). Using the second order approximation of F (x),

p ≈ Ax−α
[
1 + Bx−β

]
p

A
≈ x−α

[
1 + Bx−β

]
y ≈ x−α

[
1 + Bx−β

]
where y =

p

A
(4)

x ≈ y−
1
α [1+Bx−β]

1
α

= y−
1
α g (x(y))

= y−
1
α + y−

1
α g (x(y))− 1}

= y−
1
α + ε(y) say (5)

Clearly,

ε(y)

y−
1
α

→ 0 as x →∞ since, as x →∞, g (x(y)) → 1

Using (5) in (4), we have the following:

y ≈ x−α
[
1 + Bx−β

]
=

[
y−

1
α + ε(y)

]−α
[
1 + B

(
y−

1
α + ε(y)

)−β
]

= y

(
1 +

ε(y)

y−
1
α

)−α [
1 + By

β
α

(
1 +

ε(y)

y−
1
α

−β
)]

1 ≈

(
1 +

ε(y)

y−
1
α

)−α [
1 + By

β
α

(
1 +

ε(y)

y−
1
α

−β
)]

(6)

Now, let

u =
ε(y)

y−
1
α

, and

f(u) = (1 + u)−α

Taylor’s expansion of f(u) around u = 0 gives

f(u) = f(0) + uf
′
(u)|u=0 +

u2

2!
f
′′
(u)|u=0 +

u3

3!
f
′′′

(u)|u=0 + ...

= 1− αu + α(α + 1)
u2

2
− α(α + 1)(α + 2)

u3

6
+ ...
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Thus, to a first order approximation,

f(u) ≈ 1− αu(
1 +

ε(y)

y−
1
α

)−α

≈ 1− α
ε(y)

y−
1
α

(7)

Using (7) in (6), we have,to a first order,

1 ≈

(
1− α

ε(y)

y−
1
α

)[
1 + By

β
α

(
1− β

ε(y)

y−
1
α

)]
= 1 + By

β
α

(
1− βε(y) y

1
α

)
− α ε(y) y

1
α −B α ε(y) y

β
α

+ 1
α

(
1− βε(y)y

1
α

)
αε(y)y

1
α ≈ By

β
α − ε(y) y

β
α

+ 1
α

(
Bβ + Bα−Bαβε(y)y

1
α

)
ε(y) ≈ B

α
y

β
α
− 1

α , to a first order approximation (8)

Because as x →∞, the other terms → 0 faster.

Using (8) in (5),

x ≈ y−
1
α +

B

α
y

β
α
− 1

α

= y−
1
α

[
1 +

B

α
y

β
α
− 1

α

]
Substituting y = p

A ,

x ≈ A
1
α p−

1
α

[
1 +

B

α
A− β

α p
β
α

]
V aRp(x) ≈ A

1
α p−

1
α

[
1 +

B

α
A− β

α p
β
α

]
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