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In the context of adaptive nonparametric curve estimation problem, a common as-
sumption is that a function (signal) to estimate belongs to a nested family of func-
tional classes, parameterized by a quantity which often has a meaning of smoothness
amount. It has already been realized by many that the problem of estimating the
smoothness is not sensible. What then can be inferred about the smoothness? The
paper attempts to answer this question. We consider the implications of our results
to hypothesis testing. We also relate them to the problem of adaptive estimation.
The test statistic is based on the marginalized maximum likelihood estimator of the
smoothness for an appropriate prior distribution on the unknown signal.

1 Introduction

Suppose we observe independent Gaussian data X = (Xi)i∈N, where Xi ∼ N (θi, n
−1),

θ = (θi)i∈N ∈ `2 is an unknown parameter. This model is the sequence version of the
Gaussian white noise model dY (t) = f(t)dt+n−1/2dW (t), t ∈ [0, 1], where f ∈ L2[0, 1] = L2

is an unknown signal and W is the standard Brownian motion. The infinite dimensional
parameter θ ∈ `2 can be regarded as the sequence of the Fourier coefficients of f ∈ L2 with
respect to some orthonormal basis in L2. Sometimes we will call θ a signal.

The white noise model has received much attention in the last few decades and compre-
hensive treatments of it can be found in Ibragimov and Khasminski (1981) and Johnstone
(1999).

Besides of being of interest on its own (the problem of recovering a signal transmitted
over a communication channel with Gaussian white noise of intensity n−1/2), the white noise
model turns out to be a mathematical idealization of some other nonparametric models.
For instance, the white noise model arises as the limiting experiment as n → ∞, for the
model of n i.i.d. observations with unknown density (see Nussbaum (1996), Grama and
Nussbaum (1998)) and for the regression model (see Brown and Low (1996)). On the other
hand, this model captures the statistical essence of the original model and preserves its
main features in a pure form; cf. Johnstone (1999). Most of the estimation problems are
studied in asymptotic setup (n → ∞) from the viewpoint of increasing information. In
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fact, one deals with a sequence of models parameterized by n. Though non-asymptotic
estimation problems are also very important, they are often not tractable mathematically.
Our approach in this paper is also primarily asymptotic, however the intention is to derive
non-asymptotic results as well, to be able to precisely evaluate the influence of different
quantities and constants on the quality of the inference.

An enormous number of problems have already been studied involving statistical in-
ference about a signal as in the white noise model. For example, signal estimation under
different norms, estimation of a functional of the signal, testing hypothesis about the signal,
construction of confidence sets.

A typical approach to the problems mentioned above is to assume that the unknown
vector θ belongs to some compact set Θβ ⊂ `2 indexed by β ∈ B which has a meaning
of smoothness (here we consider only one-dimensional β ∈ B ⊆ R). If the parameter β
is known, then we can use this knowledge in making inference about θ. If this knowledge
is not available, an adaptation problem arises. For example, in the problem of adaptive
estimation of θ, we have a list of models {Θβ}, β ∈ B. It is then desirable to construct an
estimator that depends only on the data X and asymptotically efficient for any subset Θβ

from the list.
Another way to look at the adaptation problem is based on the oracle inequalities

approach (see Cavalier, Golubev, Picard and Tsybakov (2002), Tsybakov (2004)). Suppose
that θ belongs to one of the compact subspaces Θβ of the parameter space Θ and β is
unknown. Let us choose a family of estimators P, for instance, it can be the family of
all possible projection estimators. Then for any fixed θ we can define an optimal (oracle)
”estimator” from the family P which minimizes the risk over all the estimators from the
family. Of course, the oracle is not really an estimator since it depends on θ that is unknown.
The idea of oracle inequalities approach is to find an estimator θ̂ depending only on the
observations such that its risk can be well approximated from above by the risk of the
oracle for any fixed θ ∈ Θ. This approximation is called oracle inequality and it upper
bounds the risk of θ̂. Moreover, this inequality provides us with a correct upper bound to
the minimax risk over the set Θβ. Indeed, since the risk of the oracle is minimal among
all the estimators from P, it will be less than the risk of the minimax projection estimator
over the set Θβ. Then the risk of the estimator θ̂ will be also less than the risk of the
minimax projection estimator over Θβ. Thus our estimator θ̂ is adaptive and gives correct
minimax rate of convergence for any θ ∈ Θ. Although this method does provide us with
an optimal adaptation procedure, we do not learn anything about the subspace Θβ our
parameter belongs to. In this paper we try to find a procedure that can give us information
about the parameter class. Our goal is to find out what we can say about the smoothness
of our parameter θ.

However, it is not quite clear how to characterize the amount of smoothness that a
particular signal has. Suppose we are given that θ ∈ Θβ for some known β ∈ B. Using
this information, we can construct an estimator which is minimax over Θβ. However, it
can happen that the smoothness of θ is greater than β. For example, if the family of sets
Θβ is nested: Θβ1 ⊂ Θβ2 , β1 > β2, and B is a continuous set, then for any θ ∈ Θβ2 we
can find β1 > β2 such that θ ∈ Θβ1 . In this case the performance of our estimator under
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the assumption θ ∈ Θβ will not be the best possible. Thus even if we know that θ ∈ Θβ,
it is still more advantageous to use an adaptive estimator, since the above smoothness
condition on θ does not exclude the case θ ∈ Θβ1 with β1 > β. This actually means that
for each particular θ ∈ Θβ, it might be possible to find an adaptive procedure with better
performance than the minimax one, which leads to the super-efficiency phenomenon. A
good adaptation method should use this fact and provide better quality of the statistical
inference corresponding to the smoothness of this particular signal.

Interestingly, this question is not relevant in the minimax setting. Indeed, in this case
the measure of estimation quality involves taking the supremum over θ ∈ Θβ and therefore,
according to this criteria, adaptive procedures can at best attain the minimax risk. An
intuitive explanation is that, under the minimax criteria, all the estimation procedures are
oriented to the worst signal (sequence of signals) from the class Θβ with the smoothness at
most β. Thus the generic smoothness is always the one which appears in the definition of
the minimax risk. At first sight, adaptive procedures in the minimax sense may not seem
very attractive, but, fortunately, in many cases they lead to superefficient estimators.

Many estimators considered in the literature are shown to be minimax or nearly minimax
over some functional classes or some functional scales; see, for example, Donoho, Johnstone,
Kerkyacharian, and Picard (1995) and further references therein. However, in practice
only one signal is to be estimated. Practitioners would prefer an estimator with better
performance for the underlying unknown signal rather than an estimator which is minimax
over a functional class (or nearly minimax over a functional scale), unless one wants to
estimate several signals by the same estimator.

The paper is organized as follows. Section 2 describes the empirical Bayes approach.
The main results are given in Section 3. We prove some auxiliary lemmas in Section 4. In
Section 5 we relate our results to the problem of testing the smoothness of the signal. In
Section 6 we discuss some implications of the results to the problem of adaptive estimation
of θ. Some technical lemmas are gathered in Appendix.

2 Empirical Bayes approach

Let
{
Θβ

}
β∈B, B = (1/2, +∞) be a family of Sobolev type subspaces

θ ∈ Θβ =
{

θ :
∞∑

i=1

i2βθ2
i < ∞

}
.

We suppose that θ belongs to a certain Θβ ⊂ `2 for some unknown β ∈ B.
For a particular θ ∈ `2 define a function

(1) Aθ(β) =
∞∑

i=1

i2βθ2
i , β ∈ B .

It is a monotone function of β. Note that θ ∈ Θβ if and only if Aθ(β) < ∞. Throughout the
paper we assume that there exists β̄ ∈ B such that β̄ = β̄(θ) = sup{β ∈ B : Aθ(β) < ∞}.
We will call β̄ ≡ β̄(θ) the smoothness of θ. Two possibilities may occur: either Aθ(β) →∞
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as β ↑ β̄ or Aθ(β̄) < ∞ and Aθ(β) = ∞ for all β > β̄. It is the behavior of this function
Aθ(β) that effectively measures the smoothness of the underlying signal θ. Unless otherwise
specified, we assume from now on that Aθ(β̄) = ∞.

The main goal of this paper is to make an inference about the smoothness of the signal
on the basis of the observed data X. The inference will be based on a statistic β̂(X) (with
the intuitive meaning of being an estimator of smoothness), which we construct using the
empirical Bayes approach. In the next section we will make this problem mathematically
formal by evaluating so-called probabilities of undersmoothing and oversmoothing for this
statistic. In the rest of this section we describe the construction of β̂(X). The idea of the
approach is to put a “right” prior π(β) on the parameter θ, find the marginal distribution
of X which will depend on β, and then use the marginal maximum likelihood estimator of
β as the test statistic.

We need to clarify the meaning of being “right” for a family of priors π(β), β ∈ B. As
it is well illustrated in a series of papers by Diaconis and Freedman, an arbitrary choice of
the prior may lead to Bayesian procedures that easily fail in infinite dimensional problems.
In order to be “right”, the prior should reflect adequately the smoothness assumption
on the unknown signal. There are many ways to describe this. Here we propose the
following guiding principle, which adapts to the inference problem on θ. For example, the
inference problems can be estimation of θ, estimation of a functional of θ, testing hypotheses,
constructing confidence set. Usually these problems come with their own performance
criteria, like the rate of convergence for the estimation problem. According to our principle,
we require a prior that guarantees high performance relative to the given criteria under the
given Bayesian and simultaneously under the corresponding frequentist formulation. For
instance, in the case of an estimation problem, the Bayesian estimator should be a minimax
estimator, at least with respect to the convergence rate. This principle should not be taken
as a precise prescription, but rather as a starting point in the choice of “correct” priors in
infinite dimensional statistical problems. In each particular statistical problem, one has to
investigate the performance of the resulting Bayesian procedure. The choice of the prior
surely depends on the underlying inference problem on θ.

In this paper, we consider the following version of the above principle: we take the
underlying inference problem on θ to be the problem of estimating θ in `2-norm. Thus,
we should choose a prior leading to a Bayes estimator that is at least rate optimal in the
minimax sense over the corresponding class with smoothness β. The minimax `2-rate over
the Sobolev ellipsoid of smoothness β is n2β/(2β+1) (see Pinsker (1980)) and the Bayes
risk of our estimator should attain the same convergence rate. We put the following prior
π = π(β) on θ: the θi’s are independent and for δ ∈ [0, 1]

(2) θi ∼ N (0, τ2
i (β)) , τ2

i (β) = τ2
i (β, δ, n) = n

δ−1
2β+1 i−(2β+δ) , i ∈ N .

Recall the following simple fact: if Z|Y ∼ N (Y, τ2) and Y ∼ N (µ, σ2), then

Y |Z ∼ N
(Zσ2 + µτ2

τ2 + σ2
,

τ2σ2

τ2 + σ2

)
.

Let Eπ denote the expectation with respect to the prior π. The Bayesian estimator of
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θ based on the above prior is the vector θ̂ = (θ̂i)i∈N with components

(3) θ̂i = θ̂i(β) = E(θi|Xi) =
τ2
i (β)Xi

τ2
i (β) + n−1

, i ∈ N .

The choice of the prior and the variance (2) is made according to our principle as the
following lemma shows.

We will need the following notation. For 0 < p < ∞, 0 < q < ∞, 0 ≤ r < ∞ such that
pq > r + 1 denote

(4) B(p, q, r) =
∫ ∞

0

ur

(1 + up)q
du = p−1Beta

(
q − r + 1

p
,
r + 1

p

)
,

where, for α, β > 0, Beta(α, β) =
∫ 1
0 uα−1(1− u)β−1du is the Beta function.

Lemma 1. Let θ ∈ Θβ for some β ∈ B and θ̂ be defined by (3). Then, as n →∞,

Eπ‖θ − θ̂‖2 = n−2β/(2β+1)B(2β + δ, 1, 0)(1 + o(1)) ,

Eθ‖θ − θ̂‖2 ≤ n−2β/(2β+1)
(
Aθ(β)C(β, δ) + B(2β + δ, 2, 0)

)
(1 + o(1)) ,

where C(β, δ) =
(1 + δβ−1)2(β+δ)/(2β+δ)

(2 + δβ−1)2
and function B is defined by (4).

Proof. By (2) and Lemma 8, we have, as n →∞,

Eπ‖θ−θ̂‖2 =
∞∑

i=1

τ2
i (β)n−1

τ2
i (β) + n−1

=
∞∑

i=1

n−(1−δ)(2β+1)

n(2β+δ)(2β+1) + i2β+δ
= n−2β/(2β+1)B(2β+δ, 1, 0)(1+o(1)) .

The frequentist risk consists of two terms

Eθ‖θ − θ̂‖2 = Eθ

∞∑

i=1

( τ2
i (β)Xi

τ2
i (β) + n−1

− θi

)2
=

∞∑

i=1

n−2θ2
i

(τ2
i (β) + n−1)2

+
∞∑

i=1

n−1τ4
i (β)

(τ2
i (β) + n−1)2

.

Using again (2) and Lemma 8, we bound these terms as follows: as n →∞,

∞∑

i=1

n−2θ2
i

(τ2
i (β) + n−1)2

=
∞∑

i=1

i2(2β+δ)θ2
i

(n(2β+δ)/(2β+1) + i2β+δ)2
≤ Aθ(β)max

i∈N
i2β+2δ

(
n(2β+δ)/(2β+1) + i2β+δ

)2

≤ Aθ(β)C(β, δ)n−2β/(2β+1)(1 + o(1)) ;

∞∑

i=1

n−1τ4
i (β)

(τ2
i (β) + n−1)2

=
∞∑

i=1

n(2β+2δ−1)/(2β+1)

(
n(2β+δ)/(2β+1) + i2β+δ

)2 = n−2β/(2β+1)B(2β + δ, 2, 0)(1 + o(1)) .

The lemma is proved.

Below we present another lemma which justifies in a way the choice of variance of the
prior distribution. Roughly speaking, this lemma says that if θ belongs to the set Θβ, then
the estimator θ̂ belongs to the same set with probability tending to 1.
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Lemma 2. Let θ ∈ Θβ for β > 1/2. Then

lim
T→∞

sup
n≥1

Pθ

{ ∞∑

i=1

θ̂2
i i

2β > T
}

= 0.

Proof. By Chebyshev’s inequality,

Pθ

{ ∞∑

i=1

θ̂2
i i

2β > T
}
≤ T−1

∞∑

i=1

Eθ(θ̂2
i )i

2β.

Note that

Eθ(θ̂2
i ) =

(
τ2
i (β)

τ2
i (β) + n−1

)2

EθX
2
i = n2(2β+δ)/(2β+1) θ2

i + n−1

(n(2β+δ)(2β+1) + i2β+δ)2
.

Therefore,

Pθ

{ ∞∑

i=1

i2β θ̂2
i > T

}
≤ T−1

∞∑

i=1

i2βn2(2β+δ)/(2β+1) θ2
i + n−1

(n(2β+δ)/(2β+1) + i2β+δ)2

= T−1n2(2β+δ)(2β+1)

( ∞∑

i=1

i2βθ2
i

(n(2β+δ)/(2β+1) + i2β+δ)2
+

∞∑

i=1

i2βn−1

(n(2β+δ)/(2β+1) + i2β+δ)2

)
.

It is sufficient to show that the sums in the above display are finite and bounded in n.
Obviously, the first sum is bounded from above by Aθ(β). Applying Lemma 8 we can
estimate the second sum. Thus we obtain

Pθ

{ ∞∑

i=1

θ̂2
i i

2β > T
}
≤ T−1 (Aθ(β) + B(2β + δ, 2, 2β)) .

and prove the lemma.

Remark 1. From now on we assume that δ = 1, unless otherwise is specified.

Recall that we have the following marginal distribution of X: the Xi’s are independent
and Xi ∼ N

(
0, τ2

i (β) + n−1
)
, i ∈ N. Let Ln(β) = Ln(β,X) be the marginal likelihood of

the data X = (Xi)i∈N:

Ln(β) =
∞∏

i=1

1√
2π

(
τ2
i (β) + n−1

) exp
{
− X2

i

2
(
τ2
i (β) + n−1

)
}

.

Maximizing the function Ln(β) is equivalent to minimizing − log Ln(β). To avoid compli-
cations in defining the minimum of − log Ln(β) under the event {− log Ln(β) = ∞}, it is
convenient to introduce Zn(β) = Zn(β, β0) = −2 log Ln(β)

Ln(β0) for some reference value β0 ∈ B.
For any set S ⊂ B, define a marginal likelihood estimator of β restricted to the set S:

(5) β̂(S) ≡ β̂(S, X, n) = arg min
β∈S

Zn(β).
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This means that Zn(β̂(S)) ≤ Zn(β) for all β ∈ S or, equivalently,

∞∑

i=1

(
τ2
i (β0)− τ2

i (β̂(S))
)
X2

i

(τ2
i (β0) + n−1)(τ2

i (β̂(S)) + n−1)
+

∞∑

i=1

log
τ2
i (β̂(S)) + n−1

τ2
i (β0) + n−1

≤
∞∑

i=1

(
τ2
i (β0)− τ2

i (β)
)
X2

i

(τ2
i (β0) + n−1)(τ2

i (β) + n−1)
+

∞∑

i=1

log
τ2
i (β) + n−1

τ2
i (β0) + n−1

for all β ∈ S. It follows also that Zn(β̂(S), β) ≤ 0 for all β ∈ S.
Denote for brevity

(6) ai = ai(β, β0) =
1

τ2
i (β) + n−1

− 1
τ2
i (β0) + n−1

=
τ2
i (β0)− τ2

i (β)
(τ2

i (β0) + n−1)(τ2
i (β) + n−1)

,

(7) bi = bi(β, β0) =
τ2
i (β) + n−1

τ2
i (β0) + n−1

.

Then Zn(β, β0) =
∑∞

i=1 ai(β, β0)X2
i +

∑∞
i=1 log bi(β, β0), and for all β ∈ S

(8)
∞∑

i=1

ai(β̂(S), β)X2
i ≤

∞∑

i=1

log
[
bi(β̂(S), β)

]−1
.

Remark 2. It is not so difficult to check that the above β̂ can be related to a penalized
least square estimator with the penalty pen(θ, β) =

∑∞
i=1

[
θ2
i τ
−2
i (β) + log

(
τ−2
i (β) + n−1

)]
.

Indeed,

β̂(S) = arg min
β∈S

Zn(β) = arg min
β∈S

min
θ∈Θβ

{
n

∞∑

i=1

(Xi − θi)2 + pen(θ, β)
}

.

As to the set S, we assume it to be finite, dependent on n in such a way that S = Sn

forms an εn-net in (1/2, sup{Sn}], with εn = o
(
1/(log n)

)
and sup{Sn} → ∞ as n → ∞.

The requirement εn = o
(
1/(log n)

)
stems from the fact that n2β1/(2β1+1) = O

(
n2β2/(2β2+1)

)
if |β1 − β2| = O

(
1/(log n)

)
. For a set B, denote by |B| the number of elements in the set

B, possibly taking the value ∞. We also suppose that |Sn| ≤ C1 exp{C2n
γ} for sufficiently

large n for certain positive constants C1, C2, γ. Still there are many possible choices: for
example, εn = n−1 and Sn = {1/2 + kεn, k = 0, 1, . . . , n2} meet all the requirements.

Remark 3. We have chosen to maximize the process Zn(β) over some finite set S = Sn to
avoid unnecessary technical complications. Indeed, we could also take S to be the whole set
B and then study the behavior of a (near) minimum point of Zn(β). The usual technique
in such cases inspired by the empirical processes theory is to consider the minimum over
some finite grid in B and to make sure at the same time that the increments of the process
Zn(β) are uniformly small over small intervals (provided the process is smooth enough).
We do not pursue this approach simply because it boils down to the same considerations as
in the case when we restrict the minimization to the finite set Sn from the very beginning.
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3 Main results

Let θ ∈ Θβ0 . For any β < β0 ∈ Sn it is reasonable to call Pθ

{
β̂(Sn) ≤ β

}
the probability

of undersmoothing. Given θ ∈ Θβ0 , we would like to prove that Pθ

{
β̂(Sn) ≤ β0 − δn

}
converges to zero, with δn tuned as precisely as possible. Define a set S−n (β) = S−n (β, Sn) =
{β′ ∈ Sn : β′ ≤ β}. The next theorem claims that the probability of underestimating β0

for properly chosen δn converges to zero as n →∞.

Theorem 1. Suppose θ ∈ Θβ0 for some β0 ∈ Sn and |S−n (β0)| ≤ C1 exp
{
C2n

1/(2β0+1)
}

for
some C1, C2 > 0. Then there exists an integer N = N(β0, θ, C2) such that for any C > 0
there exists a positive C0 = C0(β0, C2, C) such that for all c > C0 the inequality

Pθ

{
β̂(Sn) ≤ β0 − c

log n

}
< C1 exp

{− Cn1/(2β0+1)
}

holds for all n ≥ N .

Remark 4. In fact N = N(Aθ(β0), C2). As it follows from the proof, the bigger Aθ(β0),
the bigger the corresponding N(Aθ(β0), C2). Even if Aθ(β) ↑ ∞ as β ↑ β̄(θ), by some
subtle estimates one can show that there exists a sequence βn = βn(θ) such that βn ↑ β̄(θ)
(sufficiently slowly) and Pθ

{
β̂(Sn) ≤ βn

} → 0 as n →∞. The slower βn ↑ β̄(θ), the faster
Pθ

{
β̂(Sn) ≤ βn

} → 0 as n →∞.

Proof of Theorem 1. Notice that if βθ(B) ∈ Bθ
0, then Aθ(β0) < ∞. From Lemma 4 it

follows that

Pθ{β̂(Sn) ≤ β0 − δn} ≤
∑

β∈Sn,β≤β0−δn

Pθ{β̂ = β}

≤ C1 exp
{(

C2 +
I(β0)

2

)
n1/(2β0+1) +

5
8
− n1/(2β0+1−δn)

16

}

for all n ≥ N(β0, θ). Set C ′ = C2 + I(β0)
2 . Then

C ′n1/(2β0+1) +
5
8
− 1

16
n1/(2β0+1−δn)

=
(
C ′ +

5
8
n−1/(2β0+1) − 1

16
n

δn
(2β0+1−δn)(2β0+1)

)
n1/(2β0+1)

≤
(
C ′ + 1− nδn/(2β0+1)2

16

)
n1/(2β0+1)

=
(
C ′ + 1− 1

16
exp

{ δn

(2β0 + 1)2
log n

})
n1/(2β0+1)

≤ −Cn1/(2β0+1)

for any c > C0 with C0 = (2β0 + 1)2 log(16(C ′ + 1 + C)). The lemma follows for C0 =
(2β0 + 1)2 log

[
16(C2 + 1 + C) + 8I(β0)

]
.
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Suppose that β ≥ β̄(θ), then it is reasonable to call Pθ

{
β̂(Sn) ≥ β

}
the probability

of oversmoothing. To claim good properties of β̂ as some kind of smoothness estimator,
we would like this probability to converge to zero. However, it turned out to be not the
case without some extra condition. Intuitively, we can explain this by the fact that our
statistics β̂ is based on the prior which is designed for `2-risk based problem. So, the
corresponding estimator θ̂(β2) for some β > β̄(θ) can have a smaller `2-risk than θ̂(β1) for
some β1 < β̄(θ). Therefore, our empirical Bayes procedure can pick some values β ∈ Sn,
β > β̄(θ), with significant nonzero probability. The condition below says essentially that
θ 6∈ Θβ for all β > β̄(θ) (or for all β ≥ β̄(θ) if Aθ(β̄(θ)) = ∞) in more strict terms than just
Aθ(β) = ∞.

For a set S ⊆ R, define [x]S = inf{y ∈ S : y ≥ x} and bxc = [x]N.
Condition A. Let β̄ be the smoothness of θ. For β ∈ Sn, β ≥ β̄ + δA, δA > 0 there exist
β′ ≡ β′(β) ∈ Sn, β̄ < β′ < β, a constant KA > 0, and an integer NA ≡ NA(β̄) such that
for n ≥ NA ∞∑

i=1

ai(β, β′)
(θ2

i

2
− τ2

i (β′)
)
≥ (KA −K2(β̄))n1−2β′/(2β+1),

where K2(β̄) = 2 + (2β̄)−1.
Define a set Vθ(δA,KA, NA) = {β ∈ Sn : Condition A is satisfied}.

Example 1. If θ2
i = i−(2β̄+1) then for any δA > 0, ∆ > δA there exists NA = NA(β̄, δA,∆)

such that Condition A is satisfied for Vθ = [β̄ + δA, β̄ + ∆] with KA = 2 + 3/(4β̄).

In the next theorem the probability of oversmoothing is established to converge to zero
under Condition A.

Theorem 2. Let β̄ be the smoothness of θ. Let Condition A be fulfilled and the constants δA,
KA and NA be defined in Condition A. Then there exists an integer N = N(θ, δA, KA, NA)
such that

Pθ

{
β̂(Sn) ≥ β̄ + δA

} ≤ |Sn| exp
{
−1

2

(
CA −K2(β̄)

)
n1/(2β̄+3)

}
,

for all n ≥ N , where CA = min{KA, δεK
8 }, K2(β̄) = 1 + (2β̄)−1, K > 8K2(β̄)/(1 −

2−1/(2β̄+5/2)).

Proof. The proof follows easily from Lemma 7 and remarks to this lemma. Indeed, we have
from Lemma 7 and Remark 11 that for any β ≥ β̄ + δA there exists N = N(θ, δA, KA, NA)
such that for all n > N

Pθ{β̂(Sn) = β} ≤ exp
{
−1

2

(
CA −K2(β̄)

)
n1/(2β̄+3)

}
.

Then

Pθ

{
β̂(Sn) ≥ β̄+δA

}
=

∑

β∈Sn∩[β̄+δA,+∞)

Pθ

{
β̂(Sn) = β

} ≤ |Sn| exp
{
−1

2

(
CA−K2(β̄)

)
n1/(2β̄+3)

}

for all n > N .

9



Remark 5. If δA > 1/2 then Condition A is always satisfied (see Lemma 6). Thus there
exists N = N(θ, K) such that for all n ≥ N

Pθ{β̂(Sn) > β̄ + δA} ≤ |Sn| exp
{
−1

2

(δεK

8
−K2(β̄)

)
n1/(2β̄+3)

}
.

Remark 6. Let us give an intuitive explanation of Condition A. Let β̄ be the smoothness
of θ. Then θ ∈ Θβ0 for any 1/2 < β0 < β̄. For each β ∈ Sn consider the Bayesian estimator
θ̂(β) of the parameter θ given by (3). For this estimator we can define bias and variance
terms of the mean square risk. Denote them by biasθ(β) and varθ(β). Using Theorem 1 it
is not difficult to show that for any β the variance term varθ(β) has the rate of convergence
n−2β0/(2β0+1). The same is true for the bias term if β < β̄.

Let β > β̄. We believe that the following conjecture holds true. In particular, it implies
that the plug-in estimator θ̂(β̂) is an adaptive estimator of θ.

Conjecture. Let β > β̄. If there exists β′ ∈ (β̄, β) and a constant d > 0 such that
∞∑
i=1

ai(β, β′)(θ2
i /2− τ2

i (β′)) ≥ dnγ , where 0 < γ ≤ n1/(2β̄+1) for sufficiently large n, then

Pθ{β̂ = β} ∼ exp{−Cn1/(2γ)}, n →∞.

Otherwise, for any β0 < β̄ there exist C > 0 and N(θ, β0) such that for all n ≥ N

biasθ(β) ≤ Cn−2β0/(2β0+1).

Shortly, Condition A controls the behavior of bias of the estimator θ̂(β).

Here we give an example of θ for which the conjecture holds true.

Example 2. Consider again θ ∈ `2 with components θ2
i = i−(2β̄+1). Let β0 > 1/2 be fixed,

β0 < β̄. Then certainly θ ∈ Θβ0 . For any β > β̄ consider the estimator θ̂(β). As it follows
from Lemma 8, for any β > β̄

biasθ(β) =
∞∑

i=1

i2(β−β̄)

(n + i2β+1)2
≤ B(2β + 1, 2, 2(β − β̄))n−(2β̄/(2β+1)).

If β < β̄(2β0 + 1)/(2β0) − 1/2 then n−2β̄/(2β+1) < n−2β0/(2β0+1). Thus we get biasθ(β) <
B(β̄)n−2β0/(2β0+1), where B(β̄) = π(2β̄+1)−1(sin(π/(2β̄+1)))−1 upper bounds the constant
B(2β + 1, 2, 2(β − β̄)) (see Lemma 9).

Now, if β > β̄ + 1 then Condition A is satisfied as it is shown in the second part of
Lemma 6. If β̄ + 1 ≥ β > β̄(2β0 + 1)/(2β0)− 1/2, then we have from Lemmas 8 and 9 that
there exists an integer N(β0, β̄) such that for any n ≥ N , for any β > β′ > β̄

∞∑

i=1

ai(β, β′)
(θ2

i

2
− τ2

i (β′)
)

=
1
2

∞∑

i=1

ni2(β−β̄)

n + i2β+1
− 1

2

∞∑

i=1

ni2(β′−β̄)

n + i2β+1

−
∞∑

i=1

ni2(β−β′)

n + i2β+1
+

∞∑

i=1

n

n + i2β′+1

≥ 1/(4β̄)n1−2β̄/(2β+1) > 1/(4β̄)n1/(2β̄+1).

10



Thus Condition A is satisfied for any β > β̄(2β0 + 1)/(2β0)− 1/2. Then from Lemma 7 it
follows that Pθ{β̂ = β} decreases exponentially as n →∞.

4 Auxiliary results

This section provides some auxiliary lemmas which we need to prove the main results.

Lemma 3. Suppose |Sn| < ∞. Then for any β0, β ∈ Sn

Pθ

{
β̂(Sn) = β

} ≤ exp
{1

2

∞∑

i=1

(τ2
i (β)− τ2

i (β0))(θ2
i − τ2

i (β0))
τ2
i (β)τ2

i (β0) + 2n−1τ2
i (β0) + n−2

}
.

Proof. We use here the following shorthand notations: ai = ai(β, β0), bi = bi(β, β0).
Since β0 ∈ Sn, by (8) and the Markov inequality, we have

Pθ{β̂ = β} = Pθ

{
Zn(β, β′) ≤ 0 ∀β′ ∈ Sn

} ≤ Pθ

{
Zn(β, β0) ≤ 0

}

= Pθ

{
−

∞∑

i=1

aiX
2
i ≥

∞∑

i=1

log bi

}

≤ Eθ exp
{
− 1

2

∞∑

i=1

aiX
2
i

}
exp

{
− 1

2

∞∑

i=1

log bi

}
.

To compute Eθ exp{−1
2aiX

2
i }, we use the following elementary identity for a Gaussian

random variable η ∼ N (µ, σ2):

E exp{κη2} = (1− 2κσ2)−1/2 exp
{ κµ2

1− 2κσ2

}
, for κ <

1
2σ2

.

Apply this equality for κ = −ai
2 and η = Xi (condition κ < 1

2σ2 corresponds to −ai < n
which is always true since |ai| < n for all i ∈ N):

Eθ exp
{
− 1

2
aiX

2
i

}
= (1 + n−1ai)−1/2 exp

{ −aiθ
2
i

2(1 + n−1ai)

}
.

Combining the previous relations, we obtain

(9) Pθ{β̂ = β} ≤
∞∏

i=1

b
−1/2
i

(1 + n−1ai)1/2
exp

{ −aiθ
2
i

2(1 + n−1ai)

}
.

From the definitions (6) and (7) it follows

b−1
i

1 + n−1ai
= 1 +

aiτ
2
i (β0)

1 + n−1ai
.

Using this, the elementary inequality 1 + x ≤ ex, x ∈ R, and (9), we finally arrive at

Pθ{β̂ = β} ≤ exp
{1

2

∞∑

i=1

ai

(
τ2
i (β0)− θ2

i

)

1 + n−1ai

}
= exp

{1
2

∞∑

i=1

(τ2
i (β)− τ2

i (β0))(θ2
i − τ2

i (β0))
τ2
i (β)τ2

i (β0) + 2n−1τ2
i (β0) + n−2

}
.
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The proof of Theorem 1 is based on the following lemma.

Lemma 4. Let Aθ(β0) < ∞ for some β0 ∈ Sn, |Sn| < ∞. Then for any β ∈ Sn, β < β0,
there exists N = N(β0, θ) such that for any n ≥ N

Pθ

{
β̂(Sn) = β

} ≤ exp
{I(β0)n1/(2β0+1)

2
+

5
8
− n1/(β+β0+1)

16

}
,

where I(β0) = B(2β0 + 1, 2, 0) is defined by (4).

Proof. We make use of Lemma 3:

(10) Pθ{β̂ = β} ≤ exp
{1

2

∞∑

i=1

(τ2
i (β)− τ2

i (β0))(θ2
i − τ2

i (β0))
τ2
i (β)τ2

i (β0) + 2n−1τ2
i (β0) + n−2

}
= exp

{S1 + S2(θ)
2

}
,

where

S1 =
∞∑

i=1

τ4
i (β0)− τ2

i (β)τ2
i (β0)

τ2
i (β)τ2

i (β0) + 2n−1τ2
i (β0) + n−2

= S11 − S12 ,

S2(θ) =
∞∑

i=1

−ai(β, β0)θ2
i

1 + n−1ai(β, β0)
=

∞∑

i=1

(
τ2
i (β)− τ2

i (β0)
)
θ2
i

τ2
i (β)τ2

i (β0) + 2n−1τ2
i (β0) + n−2

.

The rest of the proof is very much the same as the proof of Lemma 3.1 in Belitser and
Ghosal (2003). First we bound term S1. As β < β0, i−(2β+1) > i−(2β0+1) and therefore, by
Lemma 8, we obtain

S11 =
∞∑

i=1

i−2(2β0+1)

i−2(β+β0+1) + 2n−1i−(2β0+1) + n−2
≤

∞∑

i=1

i−2(2β0+1)

(i−(2β0+1) + n−1)2

= n2
∞∑

i=1

1
(n + i2β0+1)2

≤ B(2β0 + 1, 2, 0)n1/(2β0+1) + 1 .

To bound S12 from below, note first that the term i−2(β+β0+1) is not less than n−2

for i ≤ n1/(β+β0+1) and not less than n−1i−(2β0+1) for i ≤ n1/(2β+1) (which includes all
i ≤ n1/(β+β0+1) since β < β0). This implies

S12 =
∞∑

i=1

i−2(β0+β+1)

i−2(β+β0+1) + 2n−1i−(2β0+1) + n−2
≥
bn1/(β+β0+1)c∑

i=1

i−2(β+β0+1)

4i−2(β+β0+1)
≥ bn1/(β+β0+1)c

4
.

Combining the last two inequalities, we arrive at

(11) S1 ≤ B(2β0 + 1, 2, 0)n1/(2β0+1) − n1/(β+β0+1)

4
+

5
4

.

Now note that τ2
i (β) > τ2

i (β0) as β < β0. Then, for some integer M , we have

S2(θ) ≤
∞∑

i=1

τ2
i (β)θ2

i

τ2
i (β)τ2

i (β0) + 2n−1τ2
i (β0) + n−2

=
∞∑

i=1

n2i2β0+1θ2
i

n2 + 2ni2β+1 + i2(β+β0+1)

≤
M∑

i=1

i2β0+1θ2
i +

∞∑

i=M+1

n2i2β0θ2
i

i2β+2β0+1
≤ M

M∑

i=1

i2β0θ2
i +

n2

M2β+2β0+1

∞∑

i=M+1

i2β0θ2
i .
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Take M = Mn = Mn(β0, β, Aθ(β0)) = bε(2Aθ(β0))−1n1/(β+β0+1)c + 1 for some ε > 0 so
that M

∑M
i=1 i2β0θ2

i ≤ ε/2 for all n ≥ N1 = N1(β0). Since Aθ(β0) < ∞, there exists
N2 = N2(β0, θ, ε) such that for any n ≥ N2

∞∑

i=Mn+1

i2β0θ2
i ≤

ε

2
(
2Aθ(β0)/ε

)−4β0−1 ≤ ε

2
(
2Aθ(β0)/ε

)−2β−2β0−1
.

which implies that the second term is also at most ε/2 for all n ≥ N2. Therefore S2(θ) ≤
εn1/(β+β0+1) for all n ≥ max{N1, N2}. We choose ε = 1/8 and combine the last relation
with (10) and (11) to finish the proof.

Remark 7. The above result is not uniform with respect to θ since the inequality holds
only for n ≥ N(β0, θ). In general, the result is not uniform over the the set θ ∈ Θβ0(θ̄, Q) =
{θ : Aθ−θ̄(β0) ≤ Q}, which is an ellipsoid of “size” Q around θ̄. However, if Aθ̄(β0) < ∞,
then for a sufficiently small ellipsoid size Q, the uniformity does hold. Indeed, we need only
to evaluate the term S2(θ). Now, for any θ ∈ Θβ0(θ̄, Q) we have S2(θ) ≤ 2S2(θ̄)+2S2(θ− θ̄).
As in the proof of Lemma 4, we can find N1 = N1(β0, θ̄, ε) such that S2(θ̄) ≤ ε/4 for all
n ≥ N1. Next, by taking M = Mn = b(n1/(β+β0+1)c + 1, we derive that for any Q < ε/4
there exists N2 = N2(β0, Q) such that S2(θ − θ̄) ≤ Aθ−θ̄(β0)n1/(β+β0+1)

(
1 + n−(β+β0+1)

) ≤
εn1/(β+β0+1)/4 for all n ≥ N2 for any θ ∈ Θβ0(θ̄, Q). We conclude that for any Q < ε/4 there
exists N3 = N3(β0, θ̄, Q, ε) = max{N1(β0, θ̄, ε), N2(β0, Q)} such that S2(θ) ≤ εn1/(β+β0+1)

for all n ≥ N3, uniformly over θ ∈ Θβ0(θ̄, Q) . Take ε = 1/8 to derive the assertion of the
lemma uniformly over θ ∈ Θβ0(θ̄, Q) for any Q < 1/32.

Below are some auxiliary lemmas, which we will use in the proof of Theorem 12.

Lemma 5. For any β0, β
′, β ∈ B such that β0 ≤ β′ < β the following inequality holds:
∞∑

i=1

τ2
i (β′)

τ2
i (β) + n−1

≤ K2n
1−2β′/(2β+1),

where K2 = K2(β0) = 2 + (2β0)−1.

Proof. Notice that
∞∑

i=1

τ2
i (β′)

τ2
i (β) + n−1

=
∞∑

i=1

ni2β−2β′

n + i2β+1

The sum in the right hand side of the above inequality is bounded from above by

bn1/(2β+1)c∑

i=1

i2β−2β′ +
∞∑

i=bn1/(2β+1)c+1

ni−(2β′+1)

≤
bn1/(2β+1)c∫

1

x2β−2β′ dx + bn1/(2β+1)c+

∞∫

bn1/(2β+1)c+1

nx−(2β′+1) dx

<

(
1

2β − 2β′ + 1
+

1
2β′

+ 1
)

n1−2β′/(2β+1).
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Combining this with β0 ≤ β′ < β completes the proof of the lemma.

Remark 8. We can also obtain exact constant in the above upper bound using Lemma 9.

Then next lemma shows that Condition A is satisfied for β ∈ Sn, β ≥ β̄ + 1/2 + ε for
any ε > 0.

Lemma 6. Let β ∈ [β̄ + 1/2 + ε,+∞)∩Sn for some ε > 0 and K2(β̄) = 2 + (2β̄)−1, where
β̄ is the smoothness of θ.

1. If 0 < ε ≤ 1/2 then there exist β′ ∈ (β̄ + 1/2 + ε, β) and an integer N = N(θ,K, ε)
such that for all n ≥ N

∞∑

i=1

ai(β, β′)
(θ2

i

2
− τ2

i (β′)
)
≥

(δεK

8
−K2(β̄)

)
n1/(2β̄+2+ε),

where δε = 1− 2−1/(2β̄+2+ε), K > 8K2(β̄)/δε.

2. If ε > 1/2 then there exists β′ ∈ (β̄ + 1, β) and an integer N = N(θ,K) such that for
all n ≥ N

∞∑

i=1

ai(β, β′)
(θ2

i

2
− τ2

i (β′)
)
≥

(δK

8
−K2(β̄)

)
n1/(2β̄+1),

where δ = 1− 4−1/(2β̄+1), K > 8K2(β̄)/δ.

Proof. First, notice that from Lemma 5 we get that for any β′ ∈ (β̄, β)

(12)
∞∑

i=1

ai(β, β′)τ2
i (β′) <

∞∑

i=1

τ2
i (β′)

τ2
i (β) + n−1

≤ K2(β̄)n1−2β′/(2β+1).

Next, for any β′ < β, 0 ≤ δ ≤ 1− exp{−2(log 2)(β − β′)}) and Tn = bn1/(2β+1)c we have

(13)
∞∑

i=1

ai(β, β′)θ2
i ≥ δ

∞∑

i=2

n2i2β+1θ2
i

(i2β+1 + n)(i2β′+1 + n)
≥ δ

2

Tn∑

i=2

ni2β+1θ2
i

i2β+1 + n
≥ δ

4

Tn∑

i=2

i2β+1θ2
i .

Let β ≥ β̄ + 1/2 + ε. Since
∑∞

i=1 i2β̄+ε/2θ2
i = ∞ for any ε > 0, there exist infinitely

many i ∈ N such that i2β̄+ε/2θ2
i ≥ Ki−1−ε/2 for any K > 0. Thus for β > β̄ + 1/2 we have

δ

4

Tn∑

i=2

i2β+1θ2
i =

δ

4

Tn∑

i=2

i2β−2β̄+1−ε/2θ2
i i

2β̄+ε/2 ≥ δ

4
K

Tn
1+ε/2

Tn
2β−2β̄+1−ε/2 ≥ δK

4
n(2β−2β̄+ε)/(2β+1)

for infinitely many n. Certainly n(2β−2β̄+ε)/(2β+1) ≥ n1−2β′/(2β+1) for any β′ ≥ β̄ + 1+ε
2 .

Thus for any β > β̄ + 1/2 + ε/2, there exists β′ ∈ (β̄ + 1/2 + ε, β) such that

(14)
∞∑

i=1

ai(β, β′)θ2
i ≥

δ

2

Tn∑

i=2

ni2β+1θ2
i

i2β+1 + n
≥ δ

4

Tn∑

i=2

i2β+1θ2
i ≥

δK

4
n1−2β′/(2β+1)
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for any K > 0 and infinitely many n. This inequality holds not just for infinitely many n,
but also for all sufficiently large n. This is true by the following arguments: it is easy to
show that, for any α ∈ (0, 1), n−α

∑Tn
i=2

ni2β+1θ2
i

i2β+1+n
is a decreasing function of n. Therefore if

this function is bigger than a certain constant for infinitely many n, then this inequality
must hold for all n ≥ N0 for some N0 = N0(θ, K).

Combining estimates (12) and (14) we get that for β ≥ β̄ + 1/2 + ε there exists β′ such
that for sufficiently large n

∞∑

i=1

ai(β, β′)
(θ2

i

2
− τ2

i (β′)
)
≥

(δK

8
−K2(β̄)

)
n1−2β′/(2β+1).

Notice that if we choose β′ = [β̄(2β + 1)/(2β̄ + 1)]Sn then n1−2β′/(2β+1) ≥ n1/(2β̄+1) and at
the same time β̄ < β′ < β. This choice is possible only for β > β̄ +1, since only in this case
β′ > β̄ + 1/2. In this case β − β′ > 1/(2β̄ + 1), thus taking δ = 1− exp{−2 log 2/(2β̄ + 1)}
we get from (12) and (13) that for β > β̄ + 1 there exists β′ ∈ (β̄ + 1, β) such that

∞∑

i=1

ai(β, β′)
(θ2

i

2
− τ2

i (β′)
)
≥

(δK

8
−K2(β̄)

)
n1/(2β̄+1).

If β ∈ [β̄ + 1/2 + ε,+∞) then choose β′ = [(β̄ + 1/2 + ε/2)(2β + 1)(2β̄ + 2 + ε)]Sn .
In this case β − β′ > ε/(2(2β̄ + 2 + ε)) and n1−2β′/(2β+1) ≥ n1/(2β̄+2+ε). Thus, taking
δ = δε = 1− exp{− log 2ε/(2β̄ + 2 + ε)} we get analogously that for all n ≥ N(θ, ε, K)

∞∑

i=1

ai(β, β′)
(θ2

i

2
− τ2

i (β′)
)
≥

(δεK

8
−K2(β̄)

)
n1/(2β̄+2+ε).

The lemma is proved.

Remark 9. If Condition A is satisfied then for β ∈ (β̄ + δA, β̄ + 1] we have for all n ≥ NA

∞∑

i=1

ai(β, β′)
(θ2

i

2
− τ2

i (β′)
)
≥

(
CA −K2(β̄)

)
n1/(2β̄+3),

where CA = min{KA, δεK/8}. This fact follows from the following relation: n1−2β′/(2β+1) >
n1/(2β′+1) > n1/(2β+1) > n1/(2β̄+3).

Lemma 7. Let β̄ be the smoothness of θ, β ∈ Vθ(δA, KA, NA) and β′ be chosen as in
Condition A. Then for all n ≥ NA

Pθ{β̂ = β} ≤ exp
{
−1

2

(
KA −K2(β̄)

)
n1−2β′/(2β+1)

}
.

Proof. For any β′ < β we have ai(β, β′) > 0. For β′ chosen to satisfy Condition A we
obtain from Lemma 3

Pθ{β̂ = β} ≤ exp
{1

2

∞∑

i=1

ai(β, β′)
(
τ2
i (β′)− θ2

i

)

1 + n−1ai(β, β′)

}
.
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Since 0 < ai(β, β′) < n, we have

∞∑

i=1

ai(β, β′)
(
τ2
i (β′)− θ2

i

)

1 + n−1ai(β, β′)
<

∞∑

i=1

ai(β, β′)
(
τ2
i (β′)− θ2

i

2

)
.

We upper bound the right-hand side using Condition A and prove the lemma.

Remark 10. For β > β̄ + 1/2 the probability Pθ{β̂ = β} decreases exponentially even if
Condition A is not satisfied. Namely, let β ∈ [β̄ + 1/2 + ε,+∞) ∩ Sn for some ε > 0.

1. If 0 < ε ≤ 1/2, then there exists N = N(θ, KA) such that for all n ≥ N

Pθ{β̂ = β} ≤ exp
{
−1

2

(δεK

8
−K2(β̄)

)
n1/(2β̄+2+ε)

}
.

2. If ε > 1/2, for all n ≥ N

Pθ{β̂ = β} ≤ exp
{
−1

2

(δK

8
−K2(β̄)n1/(2β̄+1)

}
.

The proof is similar to the proof of Lemma 7 and follows immediately from Lemma 6.

Remark 11. For β > β̄ + δA there exists an integer N = N(θ, δA,KA, NA) such that for
all n ≥ N

Pθ{β̂ = β} ≤ exp
{
−1

2

(
CA −K2(β̄)

)
n1/(2β̄+3)

}

where CA = min{KA, δK/8}, K > 8K2(β̄)/(1− 2−1/(2β̄+5/2)).
This result follows immediately from Remarks 9, 10 and Lemma 7 if we compare the

constants and rates in the upper bounds taking into account that δε < 1/(1− 2−1/(2β̄+5/2))
and δε < δ.

5 Goodness-of-fit testing

In this section we discuss some implications of Theorems 1 and 2 related to hypotheses
testing. We can use the statistic β̂(X) from (5) in the following goodness-of-fit problem.

We observe independent Gaussian data X = (Xi)∞i=1 such that Xi ∼ N (θi, n
−1) where

θ ∈ Θ∞. Here Θ∞ = ∪β∈BΘβ. Let P = {Pθ,n, θ ∈ Θ∞} be a set of Gaussian probability
measures with mean θ and covariance matrix n−1I. Fix some β0 ∈ B. We would like to
test the hypothesis H0 : θ ∈ Θβ0 . It would be ideal to test this hypothesis against the
alternative H1 : θ ∈ Θ∞ \Θβ0 . Unfortunately, as it was realized by many researchers, this
problem has no solution. Typical approach in this case is to restrict the set of alternatives
(see [11]).

Define a set

ΛδA
β0,n = {θ :

∞∑

i=1

θ2
i i

2(β0−δn) = ∞, Vθ(δA,KA, NA) ⊇ (β0 + δA,∞)},
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where KA > K2(β0), δA and NA are defined by Condition A, δn is a positive sequence.
Evidently, ΛδA

β0,n ∩Θβ0 = ∅, but (Θ∞ \ ΛδA
β0,n) ∩Θβ0 6= ∅. In fact, ΛδA

β0,n is a set of all θ’s for
which Condition A is satisfied for all β > β0 + δA.

We are going to test the hypothesis

H0 : θ ∈ Θβ0+δA
against H1 : θ ∈ ΛδA

β0,n.

The decision rule is a function

ψn(X) = 1{β̂(X) < β0 − δn}
where β̂(X) is the marginal maximum likelihood estimator (5).

Introduce two disjoint subsets of P corresponding to our hypotheses:

P0 = {Pθ,n : θ ∈ Θβ0+δA
}, P1 = {Pθ,n : θ ∈ ΛδA

β0,n}.
The probabilities of type I and II errors

α1(ψ) ≡ α1(ψ, P ) = EP ψ, P ∈ P0; α2(ψ) ≡ α2(ψ, P ) = EP (1− ψ), P ∈ P1

can be written in equivalent form

α1(ψ, θ) = Pθ{θ ∈ ΛδA
β0,n}, θ ∈ Θβ0+δA

; α2(ψ, θ) = Pθ{θ ∈ Θβ0+δA
}, θ ∈ ΛδA

β0,n.

Notice that {θ ∈ ΛδA
β0,n} ⊂ {θ /∈ Θβ0−δn}. Consequently, we have

α1(ψ, θ) ≤ Pθ{β̂ < β0 − δn}, θ ∈ Θβ0+δA
; α2(ψ, θ) = Pθ{β̂ > β0 + δA}, θ ∈ ΛδA

β0,n.

Theorem 3. Set β0 ∈ B.

1. Let |S−n (β0)| ≤ C1 exp
{
C2n

1/(2β0+1)
}

for some C1, C2 > 0. For any θ ∈ Θβ0 there
exists an integer N = N(β0, θ, C2) such that for any C > 0 there exists a positive
C0 = C0(β0, C2, C) such that for all c > C0 and for all n > N

α1(ψ, θ) ≤ Pθ{β̂ < β0 − c

log n
} < C1 exp

{− Cn1/(2β0+1)
}

2. Let θ ∈ ΛδA
β0,n. Then there exists an integer N = N(θ, βA,KA, NA) such that

α2(ψ, θ) ≡ Pθ

{
β̂ > β0 + δA

} ≤ |Sn| exp
{
−1

2

(
CA −K2(β0 − δn)

)
n1/(2β0+3−2δn)

}
,

for all n ≥ N , where the constant CA is defined in Theorem 2 and K2(β0 − δn) =
2 + 1/(2β0 − 2δn).

Proof. The proof of the first part immediately follows from Theorem 1. As to the second
part, notice that if θ ∈ ΛδA

β0,n then β̄ ≤ β0 − δn and

Pθ

{
β̂ > β0 + δA

} ≤ Pθ

{
β̂ > β̄ + δn + δA

} ≤ {
β̂ > β̄ + δA

}
.

Applying now Theorem 2 we compete the proof.
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Remark 12. If δA > 1/2 then we can construct consistent test for the problem of testing

H0 : θ ∈ Θβ0+δA
against H1 : θ /∈ Θβ0−δn .

In this case for the same decision rule the probabilities of errors have the form

α1(ψ, θ) = Pθ{θ /∈ Θβ0−δn} = Pθ{β̂ < β0 − δn}, θ ∈ Θβ0+δA

α2(ψ, θ) = Pθ{θ ∈ Θβ0+δA
} = Pθ{β̂ > β0 + δA}, θ /∈ Θβ0−δn .

Then α2(ψ, θ) < Pθ{β̂ > β̄+δn +1/2} and from Remark 5 we get that our test is consistent
and asymptotically unbiased. Namely, α1(ψ, θ) → 0 and α2(ψ, θ) → 0 as n →∞.

6 Discussion: adaptive estimation

In this section we discuss some implications of our results relating to adaptive estimation.
Let β̄ > 1/2 be the smoothness of θ ∈ `2. Then for any 1/2 < β0 < β̄ the parameter θ
belongs to a subspace Θβ0 . Define the quantities

biasθ(β) =
∞∑

i=1

n−2θ2
i

(τ2
i (β) + n−1)2

and varθ(β) = Eθ

∞∑

i=1

n−1τ4
i (β)ξ2

i

(τ2
i (β) + n−1)2

,

which are in fact the bias and variance terms of the risk Eθ‖θ−θ̂(β)‖2 of the Bayes estimator
θ̂(β) corresponding to the prior π(β) (see also Example 2).

If we substitute the parameter β in the Bayes estimator (3) by its estimate β̂, we get
the estimator θ̂(β̂) with components

(15) θ̂i ≡ θ̂i(β̂) =
τ2
i (β̂)Xi

τ2
i (β̂) + n−1

.

This estimator does not depend on the smoothness parameter of the Sobolev class. Define
the risk of this estimator:

(16) R(θ̂(β̂), θ) = Eθ‖θ̂(β̂)− θ‖2.

Then the following theorem holds true.

Theorem 4. Let θ ∈ Θβ0, β0 < β̄ and Condition A be fulfilled for any δA ∈ (0, 1/2]. Then

lim
n→∞n2β0/(2β0+1)R(θ̂(β̂), θ) ≤ C(β0, β̄),

where C(β0, β̄) = Aθ

(
[β̄ + β0(2β̄ + 1)/(2β0 + 1)]/2

)
(2β̄)2β̄/(2β̄+1).

18



Proof. Notice that from the trivial inequality (x + y)2 ≤ 2x2 + 2y2 we get

R(θ̂, θ) = Eθ‖θ̂(β̂)− θ‖2

= Eθ

∞∑

i=1

(
n−1/2ξi

τ2
i (β̂)

τ2
i (β̂) + n−1

− n−1θi

τ2
i (β̂) + n−1

)2

≤ 2Eθ

∞∑

i=1

n−1ξ2
i

(
τ2
i (β̂)

τ2
i (β̂) + n−1

)2

+ 2Eθ

∞∑

i=1

n−2θ2
i

(τ2
i (β̂) + n−1)2

= 2Eθ

∞∑

i=1

ξ2
i

n

(n + i2β̂+1)2
+ 2Eθ

∞∑

i=1

θ2
i

i4β̂+2

(n + i2β̂+1)2
≡ 2EθR1 + 2EθR2.

In order to prove the theorem we have to show that for k = 1, 2

lim
n→∞n2β0/(2β0+1)EθRk = 0.

Consider first the term R1. Let β′ = [(β0 + β̄)/2]Sn , δn = c/ log n as in Theorem 1 and
U1 = (1/2, β′ − δn), U2 = [β′ − δn,+∞). Then EθR1 = EθR11{β̂ ∈ U1}+ EθR21{β̂ ∈ U2}.

Using the Hölder inequality we get

(17) EθR11{β̂ ∈ Uk} ≤

Eθ

( ∞∑

i=1

ξ2
i

n

(n + i2β̂+1)2

)2



1/2 (
Pθ{β̂ ∈ Uk}

)1/2
, k = 1, 2.

Since β′ = [(β0 + β̄)/2]Sn < β̄ we have Aθ(β′) < ∞ and we can apply Theorem 1. There
exists an integer N = N(β0, β̄, θ, C2) such that for any C > 0 there exists a positive
C0 = C0(β0, β̄, C2, C) such that for all c > C0 we have

(18) Pθ{β̂ ∈ U1} ≡ Pθ{β̂ ≤ β′ − δn} < C1 exp{−Cn1/(β0+β̄+1)} ∀n > N.

Notice now that for any β̂ > 1/2 we have

Eθ

( ∞∑

i=1

ξ2
i

n

(n + i2β̂+1)2

)2

< Eθ

( ∞∑

i=1

ξ2
i

n

(n + i2)2

)2

= Eθ




∞∑

i=1

ξ4
i

n2

(n + i2)4
+ 2

∞∑

i=1

∞∑

j=i+1

ξ2
i ξ2

j

n2

(n + i2)2(n + j2)2




2

< 3
∞∑

i=1

n2

(n + i2)4
+ 2n2




∞∑

i=1

∞∑

j=1

1
(n + i2)2




= 3B(2, 4, 0)n−3/2 + 2B2(2, 2, 0)n−1 + φn,

where the last inequality follows from Lemma 8, |φn| ≤ Dn−2, D is some positive constant.
Using this estimate, (18), and (17) we get that there exists an integer N = N(β0, β̄, θ, C2)
such that for all n > N

(19) EθR11{β̂ ∈ U1} ≤ 2
√

2B(2, 2, 0)
√

C1n
−1/2 exp{−1

2
Cn1/(β0+β̄+1)}.
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Let us estimate now the term EθR11{β̂ ∈ U2}. Since β̂ > β′ − δn we apply Lemma 8 and
obtain

EθR11{β̂ ∈ U2} ≤ Eθ

∞∑

i=1

ξ2
i

n

(n + i2(β′−δn)+1)2

=
∞∑

i=1

n

(n + i2(β′−δn)+1)2
= B(2β′ − 2δn + 1, 2, 0)n−2(β′−δn)/(2(β′−δn)+1) + φ′n,

where |φ′n| ≤ D′n−1. It follows from β′ > β0 that β′ − δn > β0 for sufficiently large n and
n−2(β′−δn)/(2(β′−δn)+1) < n−2β0/(2β0+1). Consequently,

n2β0/(2β0+1)EθR11{β̂ ∈ U2} → 0, n →∞.

Combining this relation with (19) we get

(20) n2β0/(2β0+1)EθR1 → 0, n →∞.

Consider now the term R2. Let EθR2 = EθR21{β̂ ∈ U3} + EθR21{β̂ ∈ U4}, where
U3 = (1/2, β̄ + δA], U4 = (β̄ + δA, +∞). Set β′′ = [(β̄ + β0(2β̄ + 1)/(2β0 + 1))/2]Sn . Then
Aθ(β′′) < ∞ and

EθR21{β̂ ∈ U3} = Eθ

{ ∞∑

i=1

i4β̂+2−2β′′

(n + i2β̂+1)2
i2β′′θ2

i 1{β̂ ∈ U2}
}

≤ Aθ(β′′)Eθ

{
max

i

i4β̂+2−2β′′

(n + i2β̂+1)2
1{β̂ ∈ U2}

}

≤ Aθ(β′′)max
i

i4(β̄+δA)+2−2β′′

(n + i2(β̄+δA)+1)2
≤ Aθ(β′′)Dn−2β′′/(2β̄+2δA+1) + ψn,

where the last estimate follows from Lemma 8, D = (2β̄)2β̄/(2β̄+1) upper bounds the constant
D = D(2β̄ +2δA +1, 2, 4(β̄ + δA)+2− 2β′′), |ψn| ≤ D′n−(2β′′+1)/(2β̄+2δA+1), D′ > 0 is some
constant. Notice that for all n

n−2β′′/(2β̄+2δA+1) =
(
n−2β0/(2β0+1)

)(2β̄+1)/(2β̄+2δA+1)
.

Tending δA to zero, we get

(21) n2β0/(2β0+1)EθR21{β̂ ∈ U3} → C(β0, β̄), n →∞.

Now, using the Hölder inequality and Theorem 2 it is easy to show that

EθR21{β̂ ∈ U4} ≤

Eθ

( ∞∑

i=1

θ2
i

i4β̂+2

(n + i2β̂+1)2

)2



1/2 (
Pθ{β̂ ∈ U4}

)1/2

≤ ‖θ‖2
(
Pθ{β̂ > β̄ + δA}

)1/2
= ‖θ‖2|Sn| exp

{
−1

2
(CA −K2(β̄))n1/(2β̄+3)

}
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for n ≥ NA. Thus this term decreases exponentially for properly chosen grid |Sn|. Com-
bining this estimate with (21) and tending δA to zero we get

n2β0/(2β0+1)EθR2 → C(β0, β̄), n →∞,

and prove the theorem.

7 Appendix

In this section we gather several technical lemmas which are used in the proofs of the main
results.

Let b+ denote the nonnegative part of b. A version of the following auxiliary result
is contained in Freedman (1999). As compared to Lemma 2 from Freedman (1999), our
lemma below provides also bounds for the second order terms suitable for our purposes.

Lemma 8. Suppose 0 < p < ∞, 0 < q < ∞, 0 ≤ r < ∞ and pq > r + 1. Let γn → ∞ as
n →∞. Then ∞∑

i=1

ir

(γn + ip)q
= B(p, q, r)γ(1+r)/p−q

n + φn ,

max
i∈N

ir

(γn + ip)q
= D(p, q, r)γ(r/p)−q

n + ψn ,

where φn = φn(p, q, r) and ψn = ψn(p, q, r) are such that |φn| ≤ D(p, q, r)γ−q+r/p
n , |ψn| ≤

C(p, q, r)γ
−q+

(r−1)+
p

n for some constant C(p, q, r) > 0, B(p, q, r) =
∫∞
0

urdu
(1+up)q is defined by

(4) and D(p, q, r) = rr/p(pq − r)q−(r/p)(pq)−q =
(
1− r

pq

)q(pq
r − 1

)−r/p, with the convention
00 = 1.

Remark 13. Notice that if r ≥ 1 then 0 ≤ D(p, q, r) ≤ 1.

Proof. Denote g(u) = ur

(γn+up)q , u > 0. Function g(u) is increasing on u ∈ [0, umax] en

decreasing on [umax,∞) with umax =
(
rγn/(pq − r)

)1/p. Therefore,
∫ ∞

0

ur

(1 + up)q
− g(umax) ≤

∞∑

i=1

ir

(γn + ip)q
≤

∫ ∞

0

ur

(1 + up)q
+ g(umax) ,

with g(umax) = D(p, q, r)γ(r/p)−q
n , which establishes the first relation. To prove the second

relation, we first compute g′(u) = rγnur−1−(pq−r)up+r−1

(γn+up)q+1 and then evaluate

max
u≥1

|g′(u)| ≤ max
{

max
u≥1

{ rγnur−1

(γn + up)q+1

}
, max

u≥1

{(pq − r)up+r−1

(γn + up)q+1

}}
≤ C(p, q, r)γ

−q+
(r−1)+

p
n

for some constant C(p, q, r) > 0. Finally, using this bound and the unimodality of the
function g(u) on [0,∞), we obtain

∣∣∣g(umax)−max
i∈N

ir

(γn + ip)q

∣∣∣ ≤ max
u≥1

|g′(u)| ≤ C(p, q, r)γ
−q+

(r−1)+
p

n ,
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which completes the proof of the lemma.

The following short lemma that we give without proof follows directly from the prop-
erties of Beta and Gamma functions.

Lemma 9. Let p, q, r > 0, pq > r + 1. Then for q = 1, 2 we have

B(p, 1, r) =
π

p sin
(
π(r + 1)/p

) , B(p, 2, r) =
π(p− r − 1)

p2 sin
(
π(r + 1)/p

) .

Moreover, if β ≥ β̄ > 1/2, we have the following bounds for the function B:

(2β̄)−1 ≤ B(2β + 1, 1, 2(β − β̄)) ≤ π
(
(2β̄ + 1) sin

(
π/(2β̄ + 1)

))−1
,

(2β + 1)−1 ≤ B(2β + 1, 2, 2(β − β̄)) ≤ π
(
(2β̄ + 1) sin

(
π/(2β̄ + 1)

))−1
.

Lemma 10. Let ai(β, β0) be defined by (6) and A2
n =

∑∞
i=1 a2

i (β, β0). There exists an
integer N = N(β, β0) such that for any n > N

(22)
1
16

n1/(2γ+1) ≤ n−2A2
n < B(2γ + 1, 2, 0)n1/(2γ+1),

where γ = min(β, β0) and B is defined by (4).

Proof. Recalling (6), we have

n−2
∞∑

i=1

a2
i (β, β0) = n−2

∞∑

i=1

τ4
i (β0) + τ4

i (β)− 2τ2
i (β0)τ2

i (β)
(τ2

i (β) + n−1)2(τ2
i (β0) + n−1)2

≡ S1 + S2 − 2S3 ,

where

S1 =
∞∑

i=1

n2i4β+2

(n + i2β+1)2(n + i2β0+1)2
, S2 =

∞∑

i=1

n2i4β0+2

(n + i2β+1)2(n + i2β0+1)2
,

S3 =
∞∑

i=1

n2i2(β+β0+1)

(n + i2β+1)2(n + i2β0+1)2
.

By Lemma 8, we evaluate for any β, β0

S1 <
∞∑

i=1

n2

(n + i2β0+1)2
= B(2β0 + 1, 2, 0)n1/(2β0+1) + φn,1,(23)

S2 <
∞∑

i=1

n2

(n + i2β+1)2
= B(2β + 1, 2, 0)n1/(2β+1) + φn,2,(24)

where φn,1 = φn(2β0 + 1, 2, 0), φn,2 = φn(2β + 1, 2, 0). Thus we have the upper bound for
(22).
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Denote Nβ = bn1/(2β+1)c, Nβ0 = bn1/(2β0+1)c, Nβ,β0 = bn1/(β+β0+1)c.
If β > β0 then

S1 =
∞∑

i=1

n2i4β+2

(n + i2β+1)2(n + i2β0+1)2
≥

Nβ0∑

i=Nβ+1

n2i4β+2

(2n)2(2i2β+1)2
≥ 1

16
(n1/(2β0+1) − n1/(2β+1)).

Taking into account (24) we can neglect S2 because it is smaller in order than n1/(2β0+1).
Let us estimate S3. We have

S3 =
∞∑

i=1

n2 i2(β+β0+1)

(i2β0+1 + n)2(i2β+1 + n)2
≤

Nβ,β0∑

i=1

n2i2(β+β0+1)

n2 · n2
+

∞∑

i=Nβ,β0
+1

n2i2(β+β0+1)

i4(β+β0+1)

= C(β, β0)n1/(β+β0+1)(1 + o(1)),

where C(β, β0) is some constant. Combining the estimates for S1, S2, and S3 we get the
lower bound of (22) for the case β > β0. The proof of (22) for β < β0 is analogous.

At the end of this section an alternative proof of Lemma 7 is given. It is based on the
following result which is essentially contained in Cavalier, Golubev, Picard and Tsybakov
(2002) (see Lemma 2 in that paper, cf. also Lemma 4 in Freedman (1999)). We provide the
proof for the completeness.

Lemma 11. Let ξi’s be independent standard normal variables, a = {ai}i∈N ∈ `2, i.e.

‖a‖2 =
∞∑
i=1

a2
i < ∞ and ca = supi∈N |ai|/‖a‖. Then for any u > 0

P
(∣∣∣

∞∑

i=1

ai(ξ2
i − 1)

∣∣∣ > u

)
≤ 2 exp

{
− u2

4‖a‖2
(
1 + uca‖a‖−1

)
}

.

Proof. Denote V =
∑∞

i=1 ai(ξ2
i − 1). Recall that for ξ ∼ N (0, 1) and λ < 1/2,

E exp{λ(ξ2 − 1)} = (1− 2λ)−1/2e−λ .

Using this relation, the Markov inequality and the expansion log(1− x) = −∑∞
k=1

xk

k , we
have that

P(V > u) ≤ e−λu exp
{
−

∞∑

i=1

(
λai +

1
2

log(1− 2λai)
)}

for λ such that λai < 1/2 for all i = 1, 2, . . ., which is in turn true for all λ < (2ca‖a‖)−1.
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Now we evaluate

−
∞∑

i=1

(
λai +

1
2

log(1− 2λai)
)

=
∞∑

i=1

(
− λai +

∞∑

k=1

(2λai)k

2k

)

=
∞∑

i=1

∞∑

k=2

(2λai)k

2k
≤

∞∑

k=2

(2λ)k‖a‖k

2k

∞∑

i=1

|ai|k
‖a‖k

≤
∞∑

k=2

(2λ)k‖a‖k

2k
ck−2
a =

1
2c2

a

∞∑

k=2

(2λca‖a‖)k

k

= − log
(
1− 2λca‖a‖

)

2c2
a

− λ‖a‖
ca

,

which leads to

P(V > u) ≤ exp
{
− log

(
1− 2λca‖a‖

)

2c2
a

− λ‖a‖
ca

− λu
}

= exp
{
gu(λ)

}

for all λ < (2ca‖a‖)−1. Minimizing the function gu(λ) defined above, we derive the optimal

λo = λo(u) =
u

2‖a‖(‖a‖+ uca)
.

For each u > 0, we obviously have that λo < (2ca‖a‖)−1 so we can use this λ in the above
bound:

P(V > u) ≤ exp
{
gu(λo)

}
= exp

{ 1
2c2

a

(
log

(
1 + uca‖a‖−1

)− uca‖a‖−1
)}

.

Finally using the elementary inequality for any x ≥ 0

log(1 + x)− x ≤ − x2

2(1 + x)
,

we obtain

P(V > u) ≤ exp
{ 1

2c2
a

u2c2
a‖a‖−2

2(1 + uca‖a‖−1)

}
= exp

{
− u2

4‖a‖2
(
1 + uca‖a‖−1

)
}

.

The lemma is proved.

Lemma 12. 1. Let Condition A be fulfilled, β̄ + δ < β ≤ β̄ + 1 and the constants δA, KA,
NA be defined in Condition A. Then there exist an integer N = N(θ, δA, KA, NA) such that

Pθ{β̂(Sn) = β} ≤ 2 exp
{
− C

8
√

B
n(2β̄−1)/(2(2β̄+3)2)

}
+

n−1/(4β̄+6)

µ
√

CA
exp

{
−µ2CA

2
n1/(2β̄+3)

}

for all n ≥ N , 0 < δ < 1 − 2−1/(2β̄+5/2), 0 < µ < 1/2 − 4K2(β̄)/(2CA), where CA =
min{KA, δK/8}, C = C(β̄, KA, δ, µ) = (1− 2µ)CA −K2(β̄) > 0, K2(β̄) = 2 + (2β̄)−1, and
B = π

(
(2β̄ + 1) sin(π/(2β̄ + 1))

)−1.
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2. If β > β̄ + 1 then there exist an integer N = N(θ, K) such that for all n ≥ N

Pθ{β̂(Sn) = β} ≤ 2 exp
{
− C

8
√

B
n1/(2(2β̄+1))

}
+

n−1/(4β̄+2)

µ
√

CA
exp

{
−µ2CA

2
n1/(2β̄+1)

}
,

where 0 < δ < 1 − 4−1/(2β̄+1), 0 < µ < 1/2 − 4K2(β̄)/(2CA), where CA = δK/8, C =
C(β̄, µ, K) = (1−2µ)CA−K2(β̄) > 0, K2(β̄) = 2+(2β̄)−1, and B = π

(
(2β̄+1) sin(π/(2β̄+

1))
)−1.

Proof. For the sake of brevity, in this proof we use denote ai = ai(β, β′), bi = bi(β, β′),
β′ = [βA(2β + 1)/(2βA + 1)]Sn . According to the formulas (6) and (7), we have that
b−1
i = 1 + ai(τ2

i (βA) + n−1). Therefore, the elementary inequality log(1 + x) ≤ x, x > −1,
implies that

∞∑

i=1

(
log bi + n−1ai

)
= −

∞∑

i=1

(
log b−1

i − n−1ai

) ≥ −
∞∑

i=1

aiτ
2
i (β0) .

Note that ai(β, β′) > 0 for β′ < β. Using (8) and the last relation, we get for any µ > 0

Pθ{β̂(Sn) = β} = Pθ{Zn(β, β′′) ≤ 0∀β′′ ∈ Sn} ≤ Pθ{Zn(β, β′) ≤ 0}

= Pθ

{
−

∞∑

i=1

ai(β, β′)X2
i ≥

∞∑

i=1

log bi(β, β′)
}

= Pθ

{
−

∞∑

i=1

ai(β, β′)
(
θ2
i +

2θiξi√
n

+
ξ2
i

n

)
≥

∞∑

i=1

log bi(β, β′)
}

= Pθ

{
−

∞∑

i=1

ai

(ξ2
i − 1
n

+
2θiξi√

n

)
≥

∞∑

i=1

ai(θ2
i − τ2

i (β′))
}

≤ Pθ

{
−

∞∑

i=1

ai(ξ2
i − 1)
n

≥
∞∑

i=1

ai

(θ2
i

2
− τ2

i (β′)
)
− µ

∞∑

i=1

aiθ
2
i

}

+Pθ

{ ∞∑

i=1

2aiθiξi√
n

≤ −µ
∞∑

i=1

aiθ
2
i

}
.(25)

Let β̄ + δA < β ≤ β̄ + 1. Using Lemma 5 and Lemma 6, we get that there exists an integer
N1 = N1(θ, δA,KA, NA) such that for all n > N1

n−1u ≡
∞∑

i=1

ai

(θ2
i

2
− τ2

i (β′)
)
− µ

∞∑

i=1

aiθ
2
i = (1− 2µ)

∞∑

i=1

ai

(θ2
i

2
− τ2

i (β′)
)
− 2µ

∞∑

i=1

aiτ
2
i (β′)

≥ Cn
1

2β̄+3 ,

where C = C(β̄, KA, δ, µ) = (1 − 2µ)CA − K2(β̄) is a positive constant for sufficiently
small µ with CA = min{KA, δK/8}, 0 < δ < 1 − 2−1/(2β̄+5/2) (see also Remark 9). Using

Lemma 10, we can estimate ‖a‖2 =
∑∞

i=1 a2
i ≤ B(2β′ + 1, 2, 0)n2+ 1

2β′+1 and then upper
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bound the constant B(2β′ + 1, 2, 0) by B = π
(
(2β̄ + 1) sin(π/(2β̄ + 1))

)−1 using Lemma 9.
Taking into account that ca ≤ 1 and ‖a‖ is smaller in order than u, we apply Lemma 11 to
bound the first term in the right hand side of inequality (25):

Pθ

{
−

∞∑

i=1

ai(ξ2
i − 1)
n

≥ un−1
}
≤ 2 exp

{
− u2

4‖a‖2(1 + uca‖a‖−1)

}

≤ 2 exp
{
− u

8‖a‖
}
≤ 2 exp

{
− C

8
√

B
n(2β̄−1)/(2(2β̄+3)2)

}

for all n > N2 = N2(θ, δA,KA, NA).
As to the second term in the right hand side of (25), notice first it is of the form

P{η ≥ x}, with η ∼ N (0, σ2), σ2 = n−1
∑∞

i=1 a2
i θ

2
i , x = µ

2

∑∞
i=1 aiθ

2
i . Since |ai| ≤ n for all

i ∈ N, we have
∑∞

i=1 aiθ
2
i ≥ n−1

∑∞
i=1 a2

i θ
2
i , and consequently

x2

σ2
=

µ2
(∑∞

i=1 aiθ
2
i

)2

4n−1
∑∞

i=1 a2
i θ

2
i

≥ µ2

4

∞∑

i=1

aiθ
2
i .

From Lemma 6 it follows that there exists an integer N3 = N3(θ, δA,KA, NA) such that for
all n ≥ N3 ∞∑

i=1

aiθ
2
i ≥ 2CAn1/(2β̄+3).

Thus we obtain x2

σ2 ≥ µ2CAn1/(2β̄+3) for all n ≥ N3. Applying the elementary inequality
P{η ≥ x} ≤ σ

x exp
{ − x2

2σ2

}
and taking N = max(N1.N2.N3) completes the proof of the

first part. Similarly, we can prove the second part for β > β̄ + 1 using the second part of
Lemma 6.
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