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1 Introduction

Lindley’s recursion [10] is Wn+1 = max{0, Bn−An+Wn} and it describes the waiting time
Wn+1 of a customer in a single-server queue in terms of the waiting time of the previous
customer, his or her service time Bn, and the interarrival time An between them. It is
one of the fundamental and most well-studied equations in queuing theory. For a detailed
study of Lindley’s equation we refer to Asmussen [1], Cohen [6], and the references therein.

In this paper we study a Lindley-type equation that differs from the original Lindley
equation only in the change of a plus sign into a minus sign. More precisely, we are
interested in the recursion

Wn+1 = max{0, Bn+1 −An −Wn} (1.1)

and the main goal is to derive a closed-form expression for the steady-state limiting dis-
tribution of W. The implications of this minor difference are rather far reaching, since, in
the particular case we are studying in this paper, Lindley’s equation has a simple solution,
while for our equation it is probably not possible to derive an explicit expression without
making some additional assumptions. It is interesting to investigate the impact on the
analysis of such a slight modification to the original equation.

There are various real-life applications that are described by Equation (1.1). This
Lindley-type recursion arises naturally in a two-carousel bi-directional storage system,
where a picker serves in turns two carousels; for details on this application see Park et
al. [15]. In this situation, the recursion describes the waiting time Wn of the picker
in a model involving two carousels alternately served by a single picker in terms of the
rotation times Bn and the pick times An. Carousel models have been extensively studied
during the last decades and there are several articles that are concerned with various
relevant questions on these models. Indicative examples include the work by Litvak et al.
[11, 12, 13], where the authors study the travel time needed to collect n items randomly
located on a carousel under various strategies, and Jacobs et al. [8], who, by assuming a
fixed number of orders, proposes a heuristic defining how many pieces of each item should
be stored on the carousel in order to maximise the number of orders that can be retrieved
without reloading. Another model that is described by (1.1) is a queuing model that
involves a single server alternating between two service points. This model has already
been introduced in [17]. In Section 2 we shall describe this model in detail, since it will
be our main working example for the rest of the paper.

In the applied probability literature there has been a considerable amount of interest in
generalisations of Lindley’s recursion, namely the class of Markov chains described by the
recursion Wn+1 = g(Wn, Xn). Our model is a special case of this general recursion and it
is obtained by taking g(w, x) = max{0, x−w}. Many structural properties of the recursion
Wn+1 = g(Wn, Xn) have been derived. For example Asmussen and Sigman [2] develop
a duality theory, relating the steady-state distribution to a ruin probability associated
with a risk process. For more references in this domain, see for example Borovkov [3]
and Kalashnikov [9]. An important assumption which is often made in these studies
is that the function g(w, x) is non-decreasing in its main argument w. For example, in
[2] this assumption is crucial for their duality theory to hold. Clearly, in the example
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g(w, x) = max{0, x − w} discussed here this assumption does not hold. For this reason,
we believe that a detailed study of our recursion is of theoretical interest.

This paper is organised as follows. In Section 2 we shall give the setting of the problem
and explain how this work complements the work that has been previously done on this
Lindley-type equation. In Section 3 we prove that there exists a unique equilibrium distri-
bution and that the system converges to it, irrespective of the initial state. We continue
along the same lines in Section 4, where we look at the uniqueness issues of a solution to
the limiting distribution of Equation (1.1) from an analytic point of view. Further on, in
Section 5 we study some properties of the tail of the invariant distribution and in this way
we conclude our study of the general case. In Section 6 we assume that the service times
are exponentially distributed and derive the integral equation that our system satisfies.
We use these results in Section 7, where we state a sufficient condition that the distri-
bution of Bn should satisfy so that we can derive an explicit expression for the invariant
distribution. We conclude in Section 8 with an overview of the results so far, remarks and
further research possibilities.

2 The setting

It is perhaps more practical to view Equation (1.1) through an application that is described
by it. This will allow us later on to use the terminology of this application in order to
refer to the different elements of the equation and furthermore it will provide us with a
background example that we can think of in order to develop our intuition.

To this end, we consider a system consisting of one server and two service points. At
each service point there is an infinite queue of customers that needs to be served. The
server alternates between the service points, serving one customer at a time. Before being
served by the server, a customer must first undergo a preparation phase. Thus the server,
after having finished serving a customer at one service point, may have to wait for the
preparation phase of the customer at the other service point to be completed. Immediately
after the server concludes his service at some working station another customer from the
queue begins his preparation phase there. We are interested in the waiting time of the
server. Let Bn denote the preparation time for the n-th customer and let An be the time
the server spends on this customer. Then the waiting times Wn of the server satisfy (1.1).
We assume that {An} and {Bn} are two mutually independent sequences of independent
and identically distributed (i.i.d.) nonnegative random variables. For the sake of simplicity
we shall write from now on Xn+1 = Bn+1−An, n > 1, unless it is necessary to distinguish
between the preparation and the service times. We shall also assume that P[Xn < 0] > 0.

In the following we will only consider the system in equilibrium. Our aim is to calculate
explicitly the distribution of the steady-state waiting time of the server. In Section 3 we
prove that such a distribution indeed exists. For now, it suffices to say that obtaining a
closed-form expression of the distribution is, in general, a non-trivial task. Let A, B and
W denote the steady-state service, preparation and waiting time respectively. Then we
have that

W
D= max{0, B −A−W}. (2.1)

We call π0 the mass of the steady-state waiting time distribution at zero. Additionally,
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for some random variable Y we denote its distribution and its density by FY and fY

respectively.
In [17] we have already examined the case where FA is some general distribution and

FB is a phase-type distribution. Other work on this recursion includes the work on a two-
carousel system by Park et al. [15], where the authors derive the steady-state distribution
FW , assuming that FB is the uniform distribution on [0, 1] and FA is either exponential
or deterministic. Keeping the carousel application in mind, in [18] we have extended this
result. While keeping the assumptions made on FB, we have allowed FA to be some
phase-type distribution. Here we would like to complement these results by letting now
B follow some general distribution while the service time A is exponentially distributed
with parameter µ.

One should pay special attention to Equation (2.1). If only the sign of W were different,
then (2.1) would be Lindley’s equation and we would be analysing the waiting time of a
customer in an M/G/1 queue. Unfortunately, the standard methods that are used to
derive the waiting time of a customer in the M/G/1 queue do not work here. In Section
6 we shall review some of these methods and explain in detail what are the intrinsic
differences between the two equations that cause these problems.

We can now proceed with the first step in calculating the steady-state waiting time of
the server, which is proving that such a distribution exists and is unique.

3 Stability

In order to prove that there is a unique equilibrium distribution, we need to address three
issues: the existence of an invariant distribution, the uniqueness of it and the convergence
to it, irrespective of the state of the system at zero.

3.1 Existence

To prove the existence of an equilibrium distribution, we first give the definition of tight-
ness.

Definition:
A sequence µn of probability measures on R+, n > 1, is said to be tight if for every

ε > 0 there is a number M < ∞ such that µn[0,M ] > 1− ε, for all n.

In other words, almost all the measure is included in a compact set.
Consider now the recursion Wn+1 = max{0, Xn+1−Wn}, where Xn is an i.i.d. sequence

of almost surely finite random variables. Let W1 = w and M > w. Then, since Wn+1 6
max{0, Xn+1} for all n > 1, we have that

P[Wn+1 6 M ] > P[max{0, Xn+1} 6 M ] = P[max{0, X1} 6 M ].

So we can choose M to be the maximum of w and the 1− ε quantile of max{0, X1}. Thus,
the sequence P[Wn 6 x] is tight.

Moreover, since the function g(w, x) = max{0, x− w} is continuous in both x and w,
the existence of an equilibrium distribution is a direct application of Theorem 4 of Foss
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and Konstantopoulos [7]. So there exists an almost surely finite random variable W, such
that W

D= max{0, X1 −W}.

3.2 Uniqueness

Suppose there are two solutions W 1,W 2, such that

W 1 D= max{0, X −W 1},
W 2 D= max{0, X −W 2}.

In order to show that W 1 and W 2 have the same distribution, we shall first construct two
sequences of waiting times that converge to W 1 and W 2. Then by using coupling we shall
show that these two sequences coincide after some finite time. This implies that they have
the same limiting distribution.

To this end, define for i = 1, 2 the following quantities.

τ = inf{n : W 1
n = W 2

n = 0}, X̂i
n =

{
Xi

n, n 6 τ
X1

n, n > τ
,

W i
1 = wi, and W i

n+1 = max{0, X̂i
n+1 −W i

n},
where for every i and n, Xi

n is equal in distribution to X and wi is a realisation of W i.
Then {W i

n}, i = 1, 2, is a stationary sequence. We shall examine the system (W 1
n , W 2

n).
We have

P[τ > m] 6 P[X1
k > 0 or X2

k > 0; for all k ∈ 1, . . . , m] = P[X1
1 > 0 or X2

1 > 0]m = qm
1

and q1 < 1. Thus limm→∞ P[τ > m] = 0. Furthermore, note that for n > τ we have that
W 1

n = W 2
n . Therefore,

P[W 1 6 x] = lim
n→∞P[W 1

n 6 x] = lim
n→∞

(
P[W 1

n 6 x; τ 6 n] + P[W 1
n 6 x; τ > n]

)

= lim
n→∞P[W

1
n 6 x; τ 6 n]

= lim
n→∞P[W

2
n 6 x; τ 6 n] = lim

n→∞P[W
2
n 6 x] = P[W 2 6 x],

which means that there exists a unique invariant distribution for our equation.

3.3 Convergence

We need to show that a system that does not start in equilibrium will eventually converge
to it. To achieve this, we will compare two systems that are identical, apart from the
fact that one of them does not start in equilibrium while the other one does. To this end,
assume that the random variables Xn are distributed as X and for i = 1, 2 let the process
{W i

n} satisfy the recursion W i
n+1 = max{0, Xn+1 − W i

n}. Furthermore, let W 1
1 = y and

W 2
1 = w, where w is a realisation of W while y is not. We also have that for every n > 1,

W 2
n
D= W. We need to prove that

lim
n→∞P[W

1
n 6 x] = P[W 6 x].
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As before, define τ = inf{n : W 1
n = W 2

n = 0}. Then

P[τ > m] 6 P[Xk > 0; for all k ∈ 1, . . . , m] = P[X1 > 0]m = qm
2 , (3.1)

where q2 < 1. Therefore, we have that

lim
n→∞P[W 1

n 6 x] = lim
n→∞

(
P[W 1

n 6 x; τ 6 n] + P[W 1
n 6 x; τ > n]

)

= lim
n→∞P[W 2

n 6 x; τ 6 n]

= lim
n→∞P[W 2

n 6 x] = P[W 6 x].

In the argument above, the second equality is valid because

lim
n→∞P[W

1
n 6 x; τ > n] 6 lim

n→∞P[τ > n] = 0.

From this we can also conclude that q2 = P[X1 > 0] is a bound of the rate of convergence
to the equilibrium distribution.

One should note at this point that the stochastic process {Wn} is a (possibly delayed)
regenerative process with the time points where Wn = 0 being the regeneration points.
Since P[Xn < 0] > 0 the process is moreover aperiodic and from (3.1) it follows that it has
a finite mean cycle length. Therefore, from the standard theory on regenerative processes
it follows that the limiting distribution exists; see for example Corollary 1.5 in Asmussen
[1, p. 171]. However, the coupling method that we have presented in this section has
the advantage that it allows us to obtain an estimate of the rate of convergence to the
invariant distribution. The essential feature remains though that, because we have an
aperiodic regenerative process with a finite mean cycle length, we can couple the system
with the stationary version of the process.

The above results on uniqueness and convergence are fairly general since we did not
have to impose any conditions on the distributions of X or W. Nonetheless, it only proves
that there exists a unique invariant distribution FW ; i.e. there is only one element of
the class of all distribution functions that satisfies Equation (2.1). If we demand though
that FW is continuous, then we can, in fact, prove more. We can expand the class of
distributions to the class of measurable bounded functions and prove that the solution of
(2.1) is still unique. The proof of this is the subject of the following section.

4 The recursion revisited

The aim of this section is to examine the set of functions that satisfy (2.1). Note, first,
that for x > 0 Equation (2.1) yields that FW (x) = P[W 6 x] = P[X −W 6 x]. Assuming
that FW is continuous, then the last term is equal to 1 − P[X −W > x], which gives us
that

FW (x) = 1−
∫ ∞

x
P[W 6 y − x]dFX(y) = 1−

∫ ∞

x
FW (y − x)dFX(y).

This means that the invariant distribution of W, provided that it is continuous, satisfies
the functional equation

F (x) = 1−
∫ ∞

x
F (y − x)dFX(y). (4.1)
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Therefore, there exists at least one function that is a solution to (4.1). The question
remains though whether there exist other functions, not necessarily distributions, that
satisfy (4.1). The following theorem clarifies this matter.

Theorem 1. There is a unique measurable bounded function F : [0,∞) → R that satisfies
the functional equation

F (x) = 1−
∫ ∞

x
F (y − x)dFX(y).

Proof. Let us consider the space L∞([0,∞)), i.e. the space of measurable and bounded
functions on the real line with the norm

‖F‖ = sup
t>0

|F (t)|.

In this space we define the mapping

(T F )(x) = 1−
∫ ∞

x
F (y − x)dFX(y).

Then for two arbitrary functions F1 and F2 in this space we have

‖(T F1)− (T F2)‖ = sup
x>0

|(T F1)(x)− (T F2)(x)|

= sup
x>0

∣∣∣∣
∫ ∞

x
[F2(y − x)− F1(y − x)] dFX(y)

∣∣∣∣

6 sup
x>0

∫ ∞

x
sup
t>0

|F2(t)− F1(t)|dFX(y)

= ‖F1 − F2‖ sup
x>0

(1− FX(x))

6 ‖F1 − F2‖ (1− FX(0)).

Thus
‖(T F1)− (T F2)‖ 6 ‖F1 − F2‖ (1− FX(0)) = ‖F1 − F2‖ P(B > A).

Since P(B > A) < 1 we have a contraction mapping. Furthermore, we know that
L∞([0,∞)) is a Banach space, therefore by the Fixed Point Theorem we have that (4.1)
has a unique solution.

The set of continuous and bounded functions on [0,∞) with the norm ‖F‖ = supt |F (t)|
is also a Banach space, since it is a closed subspace of L∞([0,∞)). The above theorem,
combined with the results of Section 3.2, assures us that should we find a continuous
solution to (4.1) that belongs to L∞([0,∞)), then this solution is necessarily a distribution.

One should also note the usefulness of the above result in calculating numerically
the invariant distribution. Since we have a contraction mapping, we can evaluate the
distribution of W by successive iterations. One can start from some (trivial) distribution
and substitute it into the right-hand side of (4.1). This will produce the second term of
the iteration, and so on. The convergence to the invariant distribution is geometrically
fast and the rate is bounded by the probability P(B > A). Note that we retrieve with this
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method the same bound for the rate of convergence as the one that we had in Section 3.3,
namely the probability q2.

Now we have the theoretical background that is required in order to proceed with
determining the distribution of W. In the following section we shall first discuss though
the tail behaviour of this distribution under various assumptions on the random variable
B and later on we will proceed with the calculation of a closed-form expression for FW .

5 Tail behaviour

We are interested in the tail asymptotics of W. In other words, we would like to know
when we can estimate the probability that W exceeds some large value x by using only
information from the given distributions of A and B.

Suppose that for some finite constant κ > 0

P[B > x + y]
P[B > x]

x→∞−→ e−κy.

Then
P[eB > ex · ey]
P[eB > ex]

x→∞−→ (ey)−κ,

which means that eB is regularly varying with index −κ. For the random variable B this
means that if κ = 0, then B is long-tailed, and thus, in particular, heavy-tailed. If κ > 0,
then B is light-tailed, but not lighter than an exponential tail.

For the tail of the waiting time we have that P[W > x] = P[B − (W + A) > x] which
implies that

P[eW > ex] = P[eBe−(W+A) > ex]. (5.1)

It is known that if X > 0 is a regularly varying random variable with index −κ, κ > 0, and
Y > 0 is independent of X with E[Y κ+ε] finite for some ε > 0, then XY is regularly varying
with index −κ; see Breiman [4, Proposition 3] and in particular Cline and Samorodnitsky
[5, Corollary 3.6]. Specifically,

P[X · Y > x] ∼ E[Y κ]P[X > x].

So (5.1) now becomes

P[eW > ex] ∼ P[eB > ex]E[e−κ(W+A)]

or

P[W > x] ∼ P[B > x]E[e−κW ]E[e−κA].

In other words, the tail of W behaves asymptotically as the tail of B, multiplied by a
constant. One can write the above result in terms of the tail of X. It suffices to note that

P[X > x] = P[B −A > x] = P[eBe−A > ex],

and since eB is regularly varying with index −κ we have that the above expression is
asymptotically equal to P[B > x]E[e−κA]. The above findings are summarised in the
following proposition.
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Proposition 1. Let eB be regularly varying with index −κ. Then for the tail of W we
have that

P[W > x] ∼ P[X > x]E[e−κW ].

Another case that is particularly interesting is when eB is rapidly varying with index
−∞. This means that

lim
x→∞

P[eB > ex · ey]
P[eB > ex]

= lim
x→∞

P[B > x + y]
P[B > x]

=





0, if y > 0;
1, if y = 0;
∞, if y < 0.

This is equivalent to letting the index κ that was given previously go to infinity. For the
random variable B this means that B is extremely light tailed. That would be the case
if, for example, the tail of B is given by P[B > x] = e−x2

. As before, we are interested in
deriving the asymptotic behaviour of the tail of W in terms of the tail of X. We shall first
prove the following lemma.

Lemma 1. eB is rapidly varying ⇒ eX is rapidly varying.

Proof. It suffices to show that for y > 0,

lim
x→∞

P[X > x + y]
P[X > x]

= 0.

We have that

P[X > x + y]
P[X > x]

=
P[B −A > x + y]
P[B −A > x]

=

∫∞
0 P[B > x + y + z]dFA(z)∫∞

0 P[B > x + z]dFA(z)
. (5.2)

Since eB is rapidly varying and y > 0 then we have that

lim
x→∞

P[B > x + y + z]
P[B > x + z]

= 0,

or in other words, for every δ > 0 there is a finite constant ηδ, such that if x + z > ηδ,
then P[B > x+ y + z] 6 δP[B > x+ z]. By taking the limit of (5.2) for x going to infinity,
we have that

lim
x→∞

P[X > x + y]
P[X > x]

6 lim
x→∞

δ
∫∞
0 P[B > x + z]dFA(z)∫∞

0 P[B > x + z]dFA(z)
= δ,

which proves the assertion, since the left-hand side of the above expression is independent
of δ, and δ can be chosen to be arbitrarily small.

To derive the tail asymptotics we shall first decompose the tail of W as follows.

P[W > x] = P[X −W > x] = P[X −W > x ; W = 0] + P[X −W > x ; W > 0]
= P[X > x]P[W = 0] + P[X −W > x ; 0 < W < ε] + P[X −W > x ; W > ε], (5.3)
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for some ε > 0. Since the last two terms of the right-hand side of (5.3) are positive, we
can immediately conclude that

lim inf
x→∞

P[W > x]
P[X > x]P[W = 0]

> 1.

For the upper limit we first observe that

P[X −W > x ; 0 < W < ε] 6 P[X > x]P[0 < W < ε]

and that

P[X −W > x ; W > ε] 6 P[X > x + ε]P[W > ε].

Furthermore, since eX is rapidly varying, we have that for ε > 0 the limit of P[X > x + ε]
over P[X > x] tends to zero as x tends to infinity, or in other words

P[X > x + ε] = o(P[X > x]).

Combining the above arguments we obtain from (5.3) that

lim sup
x→∞

P[W > x]
P[X > x]P[W = 0]

6 1 +
P[0 < W < ε]
P[W = 0]

= 1,

since the left-hand side does not depend on ε and the inequalities in P[0 < W < ε] are
strict. The above results are summarised in the following proposition.

Proposition 2. Let eB be rapidly varying with index −∞. Then for the tail of W we have
that

P[W > x] ∼ P[X > x]P[W = 0].

In the case when eB was regularly varying, it was possible to express the tail of W also
in terms of the tail of B – instead of the tail of X– simply by applying Breiman’s result.
In this situation though, this does not seem to be so straightforward. However, in some
special situations it is indeed possible to derive the tail of X in terms of the tail of B, and
consequently use this form for the tail asymptotics of the waiting time. In the following
we shall give one particular example where it is possible to do so.

Assume that A is exponentially distributed with parameter µ and the tail of B is given
by P[B > x] = e−xp

, where p > 1. In this example we shall limit ourselves to p = 2.
However, the extension to the set of natural numbers is almost straightforward. For the
tail of X we have that

P[X > x] = P[B −A > x] =
∫ ∞

0
µe−µye−(x+y)2dy

= e−x2

∫ ∞

0
µe−µy−y2

e−2xydy = e−x2 1
x

∫ ∞

0
µe−µ u

x
−u2

x2 e−2udu.

Note that the prefactor e−x2
is equal to the tail of B and that the integral at the right-hand

side behaves asymptotically like µ
2 , as x goes to infinity. In other words, we have that

P[X > x] ∼ P[B > x]
µ

2x
.
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For p being any natural number greater than 1, the procedure is exactly the same. For
p = n the change of variables that will be the most adequate is xn−1y = u and the
asymptotic behaviour of X in this situation is given by

P[X > x] ∼ P[B > x]
µ

nxn−1
.

6 Derivation of the integral equation

In this section we derive the equation that we shall work with later on and we compare this
equation with the analogous equation for the M/G/1 single-server queue. Furthermore,
we examine various methods that are traditionally used for the single-server queue, but
do not seem to be very helpful in our case.

In Section 4 we had already derived the integral equation (4.1) that our model satisfies.
However, this form of the integral equation is not the best option to work with, since
the distribution of X, that appears in the integral, will only complicate the calculations.
Therefore it is now useful to distinguish between the random variables A and B. To begin
with, consider Equation (2.1). Then for the distribution of W we have that

FW (x) = P[W 6 x] = P[B −W −A 6 x]

=
∫ ∞

0

∫ ∞

0
P[B 6 x + z + y]dFA(z)dFW (y)

= π0

∫ ∞

0
P[B 6 x + z]dFA(z) +

∫ ∞

0+

∫ ∞

0
P[B 6 x + y + z]dFA(z)dFW (y). (6.1)

It seems natural that the first two cases one might be interested in are the cases that are
analogous to the M/G/1 and the G/M/1 single-server queue. In our model that means
that we allow either the service time A or the preparation time B to be exponentially
distributed. Here we are concerned with the first case, while in [17] we have already
covered the second case. The methods that were described there were surprisingly simple.
One approach is by exploiting the memoryless property of the exponential distribution
in order to directly derive the Laplace transform of FW . Unfortunately, if the situation
is reversed and we assume that A, instead of B, is exponentially distributed, then this
simple calculation fails at its very first step. The other approach that was mentioned in
[17] is by defining a Markov chain, based on the number of exponential phases that the
customer has to complete during his preparation time when the server returns to that
service point. Also this approach is heavily relying on the fact that B has some structure
that can be exploited, and the memoryless property comes in handy again. Nonetheless, if
B follows some general distribution, this method is not applicable either. We would have
to incorporate in the Markov chain the –unknown– remaining preparation time, which
includes too little information to make any calculations possible. Therefore, the case that
we are considering in this paper needs special attention.

Assume now that A is exponentially distributed with parameter µ, i.e. fA(x) = µe−µx.
Since A has a density, then one can easily show that W has a density too as follows. From
Equation (2.1) we readily have that

P[W 6 x] =
∫ ∞

−∞
P[A > y − x] dFB−W (y).
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Since A has a density then the integral
∫ ∞

−∞

d

dx
P[A > y − x] dFB−W (y)

exists and is the density of FW . Then (6.1) becomes

FW (x) = π0

∫ ∞

0
FB(x + z)µe−µzdz +

∫ ∞

0
fW (y)

∫ ∞

0
FB(x + y + z)µe−µzdzdy

= µπ0e
µx

∫ ∞

0
FB(x + z)e−µ(x+z)dz

+
∫ ∞

0
µeµ(x+y)fW (y)

∫ ∞

0
FB(x + z + y)e−µ(x+z+y)dzdy

= µπ0e
µx

∫ ∞

x
FB(u)e−µudu +

∫ ∞

0
µeµ(x+y)fW (y)

∫ ∞

x+y
FB(u)e−µududy.

For the remainder of the paper we shall also need to assume that FB is a continuous
function. Therefore, we can differentiate with respect to x using Leibniz’s rule to obtain

fW (x) = µ2π0e
µx

∫ ∞

x
FB(u)e−µudu− µπ0FB(x)

+ µ2

∫ ∞

0
eµ(x+y)fW (y)

∫ ∞

x+y
FB(u)e−µududy − µ

∫ ∞

0
FB(x + y)fW (y)dy

or
fW (x) = µFW (x)− µπ0FB(x)− µ

∫ ∞

0
FB(x + y)fW (y)dy. (6.2)

What makes this equation troublesome to solve is the plus sign that appears in the
integral at the right-hand side. If we would be dealing with the classic M/G/1 single-
server queue, then the equation for the M/G/1 queue that is analogous to (6.2) would be
identical apart from this sign. This difference nonetheless is of great importance when we
try to derive the waiting-time distribution. It is not possible to derive a linear differential
equation of fW by differentiating (6.2), since we will not be able to avoid having some
integral at the right-hand side. Taking Laplace transforms is also not useful since the
integral at (6.2) is not a convolution (as it would be, if only the sign in the argument of
FB were different). Therefore, we are not able to directly obtain an expression for the
Laplace transform of W. Moreover, it does not seem possible to factorise the transformed
equation into terms that are analytic either in the right half complex plane or in the
left half plane (this would allow us to use the Wiener-Hopf technique in order to derive
the Laplace transform of W ). However, Equation (6.2) can be reduced to a generalised
Wiener-Hopf equation. It is known that the following equation

∫ ∞

0
(k(x− y) + FB(x + y)) fW (y)dy = −π0FB(x) (x > 0) (6.3)

is equivalent to a generalised Wiener-Hopf equation (see Noble [14, p. 233]). Equation
(6.2) reduces to Equation (6.3), if we let the kernel k(x) be the function

k(x) =
δ(x)
µ

− 1{x>0} −
FW (0)

1− FW (0)
,

11



where δ(x) is the Dirac δ-function and 1{x>0} is the indicator function of the set {x > 0}.
This is indeed the case, since we have that
∫ ∞

0

(
δ(x− y)

µ
− 1{x>y} −

FW (0)
1− FW (0)

)
fW (y)dy =

fW (x)
µ

− [FW (x)− FW (0)]− FW (0),

which is exactly in the form of Equation (6.2). We were unable though to solve this
generalised Wiener-Hopf equation.

It is interesting to note at this point that Equation (6.2) is a Fredholm integral equa-
tion with infinite domain. For a textbook treatment of Fredholm integral equations, the
interested reader is referred to Tricomi [16]. It is well-known that such equations can be
solved by the method of successive iterations. We have already observed this in Section 4,
where it was shown that Equation (6.2) satisfies a contraction mapping. Therefore, suc-
cessive iterations provide us with a series of functions that converge (geometrically fast)
to the unique solution of (6.2).

From the previous discussion it is apparent that none of the well-known techniques that
work for Lindley’s equation will help us find a closed-form expression for FW . Therefore we
will limit ourselves to studying under which conditions we can derive an explicit formula
for FW . As discussed in [14], the generalised Wiener-Hopf equation can be solved in special
cases. In the following section we shall study a class of distribution functions FB for which
such a solution is possible.

7 The distribution of W

Before we begin with the analysis, we first define the class M as the collection of distri-
bution functions F on [0,∞) that have the following property. For every x, y > 0, we can
decompose the tail of the distribution as follows

F (x + y) = 1− F (x + y) =
n∑

i=1

gi(x)hi(y),

where for every i, gi and hi are arbitrary measurable functions (that can even be con-
stants). Of course, by demanding that F is a distribution we have implicitly made some
assumptions on the functions gi and hi, but these assumptions are, for the time being, of
no real importance.

The class M is particularly rich. To begin with, one can show that all phase-type
distributions are included in M. Then all the individual functions gi and hi have a nice
interpretation. Let F be a phase-type distribution. Such a distribution F is defined in
terms of a Markov jump proces J(x), x > 0, with finite state space E ∪∆, such that ∆ is
the set of absorbing states and E the set of transient states. Then F is the distribution of
the time until absorption. It is usually assumed that the process starts in E; see Asmussen
[1, Chapter 3]. For our purpose, suppose that we have an n+1-state Markov chain, where
state 0 is absorbing and states {1, . . . , n} are not. Then

F (x) = P[J(x) is not absorbed].

12



So we have that

F (x + y) = P[J(x + y) ∈ {1, . . . , n}]

=
n∑

i=1

P[J(x + y) ∈ {1, . . . , n} | J(x) = i]P[J(x) = i]

=
n∑

i=1

P[J(y) ∈ {1, . . . , n} | J(0) = i]P[J(x) = i]

=
n∑

i=1

hi(y)gi(x),

with

hi(y) = P[J(y) ∈ {1, . . . , n} | J(0) = i]
gi(x) = P[J(x) = i].

However, M includes more distribution functions apart from the phase-types. A well-
known distribution that is not phase-type but has a rational Laplace transform (cf. As-
mussen [1, p. 87]) is the distribution with a density proportional to (1 + sinx)e−x. So, let
the density be f(x) = c(1 + sinx)e−x, where

c−1 =
∫ ∞

0
(1 + sin x)e−xdx =

3
2
.

Then the distribution is given by

F (x) = 1− e−x(2 + sinx + cosx)
3

and one can easily check now that F (x+y) can be decomposed into a finite sum of products
of functions of x and of functions of y. In fact, all functions with rational Laplace transforms
are included in this class. To see this, let the function f(x) have the Laplace transform

f̂(s) =
P (s)
Q(s)

,

where P (s) and Q(s) are polynomials in s with deg[P ]<deg[Q]. Let now the roots of Q(s)
be q1, . . . , qn with multiplicities m1, . . . , mn respectively. Then f̂(s) can be decomposed
as follows:

f̂(s) =
c1
1

(s− q1)
+

c1
2

(s− q1)2
+ · · ·+ c1

m1

(s− q1)m1
+

c2
1

(s− q2)
+ · · ·+ cn

mn

(s− qn)mn
,

where the constants ci
j are given by

ci
j =

1
(mi − j)!

dmi−j

dsmi−j

[
(s− qi)mi

P (s)
Q(s)

]∣∣∣∣
s=qi

.
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Then f(x) is simply the function

f(x) =
n∑

i=1

mi∑

j=1

ci
j xj−1

(j − 1)!
eqix,

which clearly belongs in M.
Denote by β and γi, i = 1, . . . , n, the Laplace transforms of the functions FB and gi

respectively. Then the following theorem holds.

Theorem 2. Assume that FB ∈ M, is continuous, and that for every i = 1, . . . , n the
functions hi(y) are bounded and

∫ ∞

0
|gi(x)|dx < ∞.

Then the distribution of W is given by

FW (x) = 1− eµx

∫ ∞

x
e−µs

(
µπ0FB(s) + µ

n∑

i=1

cigi(s)

)
ds,

where the constants π0 and ci, i = 1, . . . , n, are a solution to the linear system of equations

2π0 − µπ0 β(µ) + µ

n∑

i=1

ciγi(µ) = 1

and for i = 1, . . . , n,

ci = µπ0

∫ ∞

0
hi(x)

(
FB(x)− µ

∫ ∞

x
e−µ(s−x)FB(s)ds

)
dx

+ µ

n∑

j=1

cj

∫ ∞

0
hi(x)

(
gj(x)− µ

∫ ∞

x
e−µ(s−x)gj(s)ds

)
dx. (7.1)

Proof. Since FB ∈M, (6.2) becomes

fW (x) = µFW (x) + µπ0FB(x)− µπ0 + µ

∫ ∞

0
FB(x + y)fW (y)dy − µ

∫ ∞

0
fW (y)dy

= µFW (x) + µπ0FB(x)− µπ0 + µ
n∑

i=1

gi(x)
∫ ∞

0
hi(y)fW (y)dy − µ(1− π0),

or

fW (x) = µFW (x) + µπ0FB(x) + µ

n∑

i=1

cigi(x)− µ, (7.2)

where ci =
∫∞
0 hi(y)fW (y)dy.

Equation (7.2) is a linear differential equation of first order that satisfies the initial
condition FW (0) = π0. Its solution is given by

FW (x) = eµx

∫ x

0
e−µs

(
µπ0FB(s) + µ

n∑

i=1

cigi(s)− µ

)
ds + π0e

µx. (7.3)
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We can rewrite the previous equation as follows.

FW (x) = eµx

∫ x

0
e−µs

(
µπ0FB(s) + µ

n∑

i=1

cigi(s)

)
ds + (π0 − 1)eµx + 1

= eµx

(
2π0 − µπ0 β(µ) + µ

n∑

i=1

ciγi(µ)− 1

)

− eµx

∫ ∞

x
e−µs

(
µπ0FB(s) + µ

n∑

i=1

cigi(s)

)
ds + 1. (7.4)

There are n + 1 unknown terms in the above equation, the probability π0 and the
constants ci for i = 1, . . . , n. These constants are a solution to the linear system of n + 1
equations

lim
x→∞FW (x) = 1, (7.5)

or equivalently,

2π0 − µπ0 β(µ) + µ

n∑

i=1

ciγi(µ) = 1, (7.6)

and, for i = 1, . . . , n,

ci =
∫ ∞

0
hi(y)fW (y)dy for i = 1, . . . , n. (7.7)

For the fact that Equation (7.6) is both necessary and sufficient for (7.5) to hold, one only
needs to note that

lim
x→∞

n∑

i=1

cigi(x) = 0.

Moreover, Equation (7.7) can be rewritten as follows. We substitute fW by using (7.2).
For the distribution FW that appears in the latter equation we use Equation (7.4), after
simplifying this one by using (7.6). With this straightforward calculation we derive the
constants ci in the form that they appear in (7.1).

Let us now call the system formed by Equations (7.6) and (7.7) Σ. We can show that
Σ has at least one solution by constructing one as follows. From Section 3.1 we know
that there exists at least one invariant distribution for W. This distribution, by definition,
satisfies the condition that its limit at infinity equals one and it also satisfies Equation
(7.3). Then it is clear that it also satisfies Σ, therefore Σ has at least one solution.

In Section 4 we have already explained that if one finds a continuous and bounded
solution to (2.1), then this solution is necessarily a distribution. To complete the proof,
it remains to show that these conditions apply to (7.3). First of all, (7.3) is clearly a
continuous function and since limx→∞ FW (x) = 1 and 0 6 FW (0) = π0 < ∞, it is also
bounded. Therefore (7.3) is a distribution.
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Remark 1. The conditions that appear in Theorem 2 guarantee that all the integrals that
appear in the intermediate calculations and in Σ are well defined. In particular, one should
note that demanding that ∫ ∞

0
|gi(x)|dx < ∞

implies that the random variable B has a finite mean, γi(µ) and β(µ) exist and are finite
numbers, and that

∫ ∞

0
hi(x)FB(x)dx and

∫ ∞

0
hi(x)gj(x)dx

exist and are finite (cf. Equation (7.1)).

Remark 2. We have explained in the proof why Σ has at least one solution, but we have
not excluded the possibility that Σ has multiple solutions. However, this is not necessary.
The fact that (7.3) is necessarily the unique invariant distribution guarantees that the
(possible) multiple solutions of Σ will make the term

∑n
i=1 cigi(s) unique. It does not

seem possible to derive answers –in an algebraic way– from Equation (7.1) about the
uniqueness of the solution of Σ. More information about the functions gi would probably
allow us to decide upon this matter.

8 Final comments

In this paper we have considered the Lindley-type equation W = max{0, B−A−W}. The
main characteristic of this equation, that deviates from the standard literature, is that it
is non-increasing in its main argument. This fact produces some surprising results when
analysing the equation.

Here we have examined various issues that are related to this equation, without limiting
ourselves to the specific distributional conditions on the random variables that appear.
For the general case we have shown that there is a unique invariant distribution and
that the system converges to it. Furthermore, we gave an upper bound on the rate of
convergence. We have further shown that if we demand that this invariant distribution
is continuous, then W = max{0, B − A − W} satisfies an integral equation that is a
contraction mapping. This is particularly useful when one tries to approximate numerically
the invariant distribution. We have also studied the tail behaviour of W both for heavy-
tailed and (extremely) light-tailed distributions of the preparation time B. We have shown
that in both cases, the tail behaviour of W is asymptotically proportional to the tail
behaviour of the random variable B − A and in some cases it is possible to express the
asymptotics in terms of the random variable B alone.

Although sometimes the methods that apply in Lindley’s equation seem to work here
as well (as it was the case in [17]), this is not true in general. It seems that a closed-form
expression for the distribution FW of W cannot be easily derived. We review some of the
standard methods that provide us with answers in Lindley’s equation and yet fail to do so
with this Lindley-type equation only to derive in the end a sufficient condition that allows
us to compute FW explicitly.
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One can apparently ask for this equation all the questions that have been asked for
Lindley’s equation so far. Yet it is not clear that it will always be possible to derive
(similar) answers. In future work we shall try to remove the condition that the sequences
{An} and {Bn} are mutually independent and examine the difficulties that arise there.
Furthermore, for the method that we followed in this paper, it was essential that FB has
an unbounded support. Otherwise the decomposition of FB(x+y) in products of functions
would not be possible for every x and every y in the support. It would be interesting to
also investigate which method can provide us with answers in the case where FB is defined
over a bounded interval.
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