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Abstract

We consider a fluid flow model processing two types of fluid at constant rate, where

one type of fluid receives full service priority over the other. The two types of fluid

are stored in separate infinite capacity buffers. The input is governed by an external

Markovian environment process. We derive the Laplace-Stieltjes transform of the steady-

state joint buffer content distribution by decomposing the problem into two subproblems:

first, we study the buffer content processes over periods of time with positive leftover

service capacity for the lower priority fluid, and then over periods of time with no leftover

service capacity, after which we combine both results to get the joint distribution. We

illustrate the results by a numerical example.

Key words: Fluid flow model, static priority service discipline, fluid process

with jumps

1 Introduction

Fluid-flow models provide an important tool for the performance analysis of high-speed

data networks, or large-scale production systems where a large number of relatively small

jobs are processed. There has been a fervent research on fluid models related to telecom-

munication applications. Some of the pioneering works in the area are the papers by An-

ick, Mitra and Sondhi (1982), Kosten (1974), Mitra (1988). The survey paper of Kulkarni
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(1997) provides a good overview of the research on single-sever fluid models by this time.

The study of fluid models with priorities is motivated by the performance analysis of

asynchronous transfer mode (ATM) switches and internet protocol (IP) routers that sup-

port classes of traffic with different quality of service (QoS), e.g. Choi and Choi (1998),

Elwalid and Mitra (1995), Kulkarni and Naraynan (1996), Zhang (1993). The employ-

ment of priority provides an efficient measure for congestion control in modern high-speed

integrated networks like the Internet. For example, to ensure a good quality of service

a provider may need to distinguish and prioritize between different traffic streams, such

as video/voice, which is delay sensitive, and standard data transmission, which is loss

sensitive. With the growing importance and diversity of the Internet traffic, the study of

multi-class fluid models with priorities is a hot topic of immediate significance.

We study a single-node fluid-flow model with two types of fluid served according to a

static priority service discipline, where type 1 fluid has higher priority than type 2 fluid.

The service rate is constant and the input flows are regulated by an irreducible finite

state Continuous Time Markov Chain (CTMC). We obtain exact analytic results for the

steady-state joint distribution of the two buffer content processes. The same problem is

the topic of the paper of Choi and Choi (1998) where the authors determine the Laplace-

Stieltjes transform (LST) of the stationary joint buffer content distribution by a spectral

decomposition technique. Here, we present a new probabilistic approach based on an

embedded analysis of the system. We study separately the buffer content processes, first,

over periods with positive leftover service capacity for type 2 fluid and then over periods

with zero leftover service capacity. For the analysis during periods with positive leftover

service capacity we show that the buffer content process is a fluid process with jumps to

which the results of Tzenova, Adan and Kulkarni (2005) can be directly applied. The

analysis during periods with no left-over capacity is facilitated by the fact that during

these periods the lower priority buffer content can only increase. In addition to splitting

the entire system analysis in two easier subproblems we believe that this approach is also

more attractive from a practical point of view, since it involves only systems of first-order

linear differential equations that are explicitly solved by standard well known techniques.

Note that in case of (K > 2) priority classes the steady-state marginal distribution of the

lowest class of fluid can be computed recursively by reducing the problem to a two-priority
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system with the higher priority class defined as the aggregate of the first K − 1 priority

classes of fluid. Thus the method of this paper can be used for more than two priority

classes. Another important observation is that the tandem fluid model of H. van den Breg

and Mandjes (1999), Elwalid and Mitra (1995), can be represented as a two-priority fluid

model and hence can be analyzed using the techniques developed here.

For the same model Zhang (1993) develops an algorithm for the moments of the buffer

content processes and, for the special case of a two-state governing Markov chain, obtains

the distribution of the buffer contents in closed form. Assuming exponentially distributed

busy periods of type 1 fluid, Elwalid and Mitra (1995) approximate the distribution of type

2 fluid by implementing results on the analysis of systems with non-prioritized service.

Kulkarni and Narayanan (1996) consider the case of independent Markovian on-off sources

and derive the LST of the steady-state marginal buffer-content distributions by noting

that the down time of the server for type 2 fluid is the same as the busy period of type 1

fluid.

This paper is organized as follows. In the next section we describe the model in detail.

In Section 3 we derive the LST of the total increase of type 2 fluid in the buffer during

periods with no leftover service capacity. The latter represents the jumps of the type

2 buffer content process when embedded on time periods with positive leftover service

capacity, which is analyzed in Section 4. Section 5 consists of some preliminary results

that are necessary for the computation of the LST of the limiting joint fluid content

distribution during periods with no leftover service capacity in Section 6. The results are

illustrated by numerical examples in Section 7.

2 Model Description

We consider a single-node fluid flow model with a server that is always on and works at

its full capacity µ. There are two different priority types of fluid entering two infinite

capacity buffers that are emptied by the server. Their input rates are determined by the

state of an external environment process {I(t), t ≥ 0} that is an irreducible CTMC with

finite state space S = {1, . . . , N} and infinitesimal generator Q. While I(t) = i, i ∈ S,

the input rate of type k fluid is pk(i) ≥ 0, k = 1, 2 and the overall net input rate to
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the two buffers is r(i) = p1(i) + p2(i) − µ. We assume that type 1 fluid has a higher

priority than type 2 fluid, i.e., the server allocates as much of its capacity µ as needed to

serve type 1 fluid and then allocates the rest of the capacity to serve type 2 fluid. Let

r1(i) = p1(i) − µ denote the net input rate of type 1 fluid while the environment is in

state i ∈ S. Then type 2 fluid can be served only when there is no type 1 fluid in the

buffer and the governing CTMC is in a state i with r1(i) < 0. Therefore, we call these

periods of time on-periods (from the point of view of type 2 fluid). To avoid trivialities

we assume that every on-period is followed by an off-period which starts when the CTMC

{I(t), t ≥ 0} jumps to a state I(t) = i with r1(i) ≥ 0 in which there is no server capacity

available to type 2.

To this end, we shall use the following partitioning of the state space S:

S ′− := {i ∈ S : r1(i) < 0}, S ′+ := {i ∈ S : r1(i) ≥ 0}, N ′
− := |S ′−|, N ′

+ := |S ′+|,

S0 := {i ∈ S : r(i) = 0}, S+ := {i ∈ S : r(i) > 0}, S− := {i ∈ S : r(i) < 0},

N0 := |S0|, N+ := |S+|, N− := |S−|.

The following matrices are used throughout the paper

R := diag[r(1), . . . , r(N)], R1 := diag[r1(1), . . . , r1(N)]. (2.1)

Let πI denote the limiting distribution of the CTMC {I(t), t ≥ 0}. Then the system is

stable if and only if the mean net input rate in steady-state is negative, πIRe < 0, e.g.,

see Choi et al. (1998) [3]. We assume that this condition is satisfied.

Let Xk(t) denote the amount of type k, k = 1, 2, fluid in the buffer at time t and

consider the Markov process {(X1(t), X2(t), I(t)), t ≥ 0}. Clearly, the service of type 1

fluid is not affected by the presence of type 2 fluid in the system and the results from the

classical single buffer fluid model, as given in Kulkarni (1997) and Kulkarni et al. (2002)

[8, 10], can be directly applied to the analysis of X1(t). In this paper we obtain the LST

of the joint steady-state distribution of the two buffer content processes

F̃i(s1, s2) := lim
t→∞E(e−s1X1(t)e−s2X2(t); I(t) = i)
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Figure 2.1: Type 2 buffer content process X2(t) embedded over on-periods and off-periods.

in two parts. We consider the embedded processes over on-periods and over off-periods

denoted by Xon
k (t), Ion(t) and by Xoff

k (t), Ioff (t), respectively (see Fig. 2.1). Clearly,

Xon
1 (t) ≡ 0 and Xon

2 (t) is a fluid process with jumps as in Tzenova et al. (2005) [13],

where a jump occurs at the end of an on-period and represents the total accumulation

of type 2 fluid during an off-period (that is skipped when embedded to on-periods only).

These observations facilitate the study of

F̃ on
i (s2) := E(e−s2Xon

2 ; Ion = i) = lim
t→∞E(e−s2Xon

2 (t); Ion(t) = i). (2.2)

Next, we study the embedded processes over off-periods, during which type 2 can only

increase,

F̃ off
i (s1, s2) := E(e−s1Xoff

1 e−s2Xoff
2 ; Ioff = i) = lim

t→∞E(e−s1Xoff
1 (t)e−s2Xoff

2 (t); Ioff (t) = i).

(2.3)

We put these results together to compute

F̃i(s1, s2) = ponF̃ on
i (s2) + poff F̃ off

i (s1, s2) (2.4)

where pon (poff ) denotes the long-run fraction of time the system is in an on-period (off-

period). Note that pon can be computed directly from a standard fluid model with only
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the first type of fluid as

pon = lim
t→∞P (X1(t) = 0, I(t) ∈ S ′−). (2.5)

In the following section we study the accumulation of type 2 fluid in the buffer during

an off-period that corresponds to the jumps in the type 2 buffer content process when

restricted over on-periods only.

3 Accumulation of Type 2 Fluid during an Off-Period

During an off-period type 2 fluid is not served and it only accumulates in the buffer. Let

A2(t) denote the amount of type 2 fluid that accumulates in the buffer by time t during

an off-period. In this section we compute the LST of A2(T ) for an off-period of length T .

Define

ψji(x, y) := P (A2(T ) ≤ y, I(T ) = i|I(0) = j,X1(0) = x), x, y ≥ 0, j, i ∈ S, (3.6)

and

ψ̃ji(x, s) := E(e−sA2(T ); I(T ) = i|I(0) = j, X1(0) = x), Re(s) ≥ 0; j, i ∈ S. (3.7)

Clearly, ψji(x, y) = ψ̃ji(x, s) = 0 if i ∈ S ′+. For the purposes of the following result we

define the column vectors

ψ̃i(x, s) := [ψ̃1i(x, s), . . . , ψ̃Ni(x, s)]t, i ∈ S ′−.

Theorem 3.1 For fixed i ∈ S ′− the LST ψ̃i(x, s) satisfies the following system of differ-

ential equations

R1
∂ψ̃i

∂x
(x, s) + (Q− sP2)ψ̃i(x, s) = 0 (3.8)

with boundary conditions

ψ̃ji(0, s) = δji, for j ∈ S ′−, (3.9)

where δji is the Kronecker symbol and P2 := diag[p2(1), . . . , p2(N)].

Proof: Let x > 0, j ∈ S and i ∈ S ′−. After conditioning on a small time interval of

length h > 0 we have
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ψ̃ji(x, s) =
∑

k 6=j

qjkhE(e−s(A2(T )+p2(k)h); I(T ) = i|I(0) = k, X1(0) = x + r1(k)h)

+(1 + qjjh + o(h))E(e−s(A2(T )+p2(j)h); I(T ) = i|I(0) = j, X1(0) = x + r1(j)h) + o(h).

Using the notation of (3.7) and rearranging the last equation we get

esp2(j)hψ̃ji(x, s)− ψ̃ji(x + r1(j)h, s)

h
=

∑

k∈S

qjkψ̃ki(x + r1(k)h, s) + o(1).

Next, we substitute esp2(j)h = 1 + sp2(j)h + o(h) and let h → 0 to get

−r1(j)
∂ψ̃ji

∂x
(x, s) + sp2(j)ψ̃ji(x, s) =

∑

k∈S

qjkψ̃ki(x, s).

In vector notation this equation is equivalent to (3.8). The boundary conditions (3.9)

follow from the definition of A2(T ). Given X1(0) = 0 and I(0) ∈ S ′− it is clear that the

length of the off-period is 0 and therefore A2(T ) = 0. ♦

It is well known that the solution to (3.8) and (3.9) can be computed by standard

spectral decomposition in terms of the generalized eigenvalues λ and eigenvectors φ of

the system (3.8) that solve (λR1 + Q − sP2)φ = 0, see Kulkarni (1997) [8]. Therefore in

the sequel we will skip the explicit solutions to similar systems of first-order differential

equations.

4 Type 2 Buffer Content Process during an On-Period

Consider the low priority fluid content process during on-periods, i.e., while X1(t) = 0

and I(t) ∈ S ′−. The embedded process Xon
2 (t) is a fluid process with jumps as treated

in Tzenova et al. (2005) [13]. A jump occurs at the end of an on-period and the size

of the jump is equal to A2(T ), the total amount of type 2 fluid accumulated during the

corresponding off-period of length T . Let Jji(z) denote the distribution of the jump size

A2(T ) during an off-period of length T that starts in state j ∈ S ′+ and ends in state
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i ∈ S ′−,

Jji(z) := P (A2(T ) ≤ z, I(T ) = i|I(0) = j), z ≥ 0, j ∈ S ′+, i ∈ S ′−.

Clearly, Jji(z) = ψji(0, z) where ψji(0, z) is as in Eq. (3.6). In this section we determine

F̃ on
i (s2) as defined in Eq. (2.2) above. The next theorem gives the differential equations

satisfied by the row vector F on(x) := [F on
i (x), i ∈ S ′−] where

F on
i (x) := lim

t→∞P (Xon
2 (t) ≤ x, Ion(t) = i), x ≥ 0, i ∈ S ′−. (4.10)

We use matrix convolution defined as follows. Suppose that A(x) = [Aij(x)] and

B(x) = [Bij(x)] are two matrices of functions where the number of columns of A(x) is

equal to the number of rows of B(x). Then their convolution A ∗ B(x) is the matrix

C(x) = [Cij(x)] with elements

Cij(x) =
∑

k

∫ x

0
Aik(x− t)dBkj(t).

To simplify the notation we also use the sub-matrices

R−− := [Rij, i, j ∈ S ′−], Q−− := [Qij, i, j ∈ S ′−], Q−+ := [Qij, i ∈ S ′−, j ∈ S ′+],

J+−(z) := [Jij(z), i ∈ S ′+, j ∈ S ′−].

For the proofs of the subsequent results we refer to Theorems 2.2, 2.3, and 2.4, respec-

tively, in Tzenova et al (2005) [13].

Theorem 4.1 The vector F on(x) satisfies the system of differential equations

dF on

dx
(x)R−− = F on(x)Q−− + F on ∗ (Q−+J+−)(x), (4.11)

with boundary conditions

F on
j (0) = 0, if j ∈ S ′− ∩ S+,

F on(0)[Q−−].,j + F on(0)[Q−+J+−(0)].,j = 0, if j ∈ S ′− ∩ S0.

After we take the LST of both sides of Eq. (4.11) we have

s(F̃ on(s)− F on(0))R−− = F̃ on(s)Q−− + F̃ on(s)Q−+J̃+−(s),
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which is equivalent to

F̃ on(s)[sR−− −Q−− −Q−+J̃+−(s)] = sF on(0)R−−.

Here the elements of the matrix J̃+−(s) are given by J̃ji(s) = ψ̃ji(0, s), j ∈ S ′+, i ∈ S ′−,

from Eq. (3.7). To find the remaining F on
j (0), j ∈ S ′− ∩ S− first note that S ′− ∩ S− = S−

and therefore we need |S−| = N− equations. The following result is required to derive

these equations.

Theorem 4.2 The generalized eigenvalue problem

(sR−− −Q−− −Q−+J̃+−(s))φ = 0

has exactly N− solutions (s1, φ1), . . . , (sN− , φN−), with s1 = 0, Re(si) > 0, i = 2, . . . , N−

and φi 6= 0.

Define Γ−− := [Γij, i, j ∈ S ′−] with elements

Γij :=
∑

k∈S′+

qikmkj,

where mkj is the mean size of a jump that starts in k and ends in j. Clearly mkj can be

computed by Theorem 3.1 as − ∂

∂s
ψ̃ji(x, s)|x=0,s=0.

Theorem 4.3 The LST F̃ on(s) is given by the solution to

F̃ on(s)(sR−− −Q−− −Q−+J̃+−(s)) = sF on(0)R−−,

where the unknowns F on
i (0), i ∈ S ′− are determined from the following set of equations

F on
i (0) = 0, i ∈ S ′− ∩ S+,

F on(0)[Q−−].,i + F on(0)[Q−+J+−(0)].,i = 0, i ∈ S ′− ∩ S0,

F on(0)R−−φi = 0, for i = 2, . . . , N−,

F on(0)R−−e = π(R−− + Γ−−)e.

Before we proceed with the analysis of the two buffers content processes during off-

periods we collect some necessary preliminary results in the next section.
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5 Auxiliary Results

Consider νij - the probability that the environment process is in state j ∈ S ′+ at the

beginning of the next off-period given that the current on-period starts at state i ∈ S ′−,

see Fig. 5.2 where Tn denotes the beginning of the n-th on-period and T ′
n the beginning

of the n-th off-period. The next result follows by first-step analysis.

Theorem 5.1 The absorption probabilities νkj, k ∈ S ′−, j ∈ S ′+ are given by the solution

to
∑

k∈S′−

qikνkj + qij = 0, i ∈ S ′−, j ∈ S ′+.

Consider αjk(x) - the probability that the environment process is in state k ∈ S ′− at

the beginning of the next on-period given that its current state is j ∈ S and there is an

amount x of type one fluid in the buffer. We use the following notation

αk(x) := [αik(x), i ∈ S]t,
dαk

dx
(x) :=

[
dαik

dx
(x), i ∈ S

]t

, k ∈ S ′−.

Theorem 5.2 For a fixed k ∈ S ′− the column vector αk(x) satisfies the differential equa-

tions

R1
dαk

dx
(x) + Qαk(x) = 0, x ≥ 0, k ∈ S ′−, (5.12)

with boundary conditions

αik(0) = δik, i ∈ S ′−. (5.13)

Proof: The proof is based on conditioning on a small interval of length h > 0 and using

the fact that the probabilities of two or more transitions in the CTMC {I(t), t ≥ 0} over

an interval of length h are o(h), so

αik(x) =
∑

j∈S,j 6=i

qijhαjk(x + r1(j)h) + (1 + qiih)αik(x + r1(i)h) + o(h).

After rearranging the last equation and letting h → 0 we get

−r1(i)
d

dx
αik(x) =

∑

j∈S

qijαjk(x),
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Figure 5.2: On- and off-periods for the two-priority fluid model; embedded processes

which can be written in matrix form to obtain (5.12). The boundary conditions (5.13)

follow directly from the definition of αik(0). ♦

Now, consider the discrete time processes {I ′n, n ≥ 0} and {In, n ≥ 0} defined by

the state of the governing CTMC at the beginning T ′
n of the n-th off-period and at the

beginning Tn of the n-th on-period, respectively. The next result follows trivially by

noting that there is no type 1 fluid in the buffer at the beginning of on- and off-periods.

Therefore knowing the state of the environment I ′n := I(T ′
n) = k and In := I(Tn) = i is

enough to determine I ′n+1 and In+1.

Theorem 5.3 {I ′n, n ≥ 0} and {In, n ≥ 0}, are irreducible time-homogeneous Markov

chains with state spaces S ′+ and S ′−, respectively. Their respective transition probability

matrices P ′ = [p′kl, k, l ∈ S ′+] and P = [pij, i, j ∈ S ′−] are given by

p′kl =
∑

i∈S′−

αki(0)νil, k, l ∈ S ′+,

pij =
∑

k∈S′+

νikαkj(0), i, j ∈ S ′−.

The irreducibility of {I ′n, n ≥ 0} and {In, n ≥ 0} implies that the existance of their

limiting probablity vectors denoted by π′ := [π′k, k ∈ S ′+] and π := [πi, i ∈ S ′−], respec-

tively.

The time between the beginning of two consecutive on-periods is called a cycle. Let

τi denote the mean length of a cycle that starts in state i, ui - the mean length of an
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on-period that starts in state i, and dk - the mean length of an off-period that starts in

state k. Then ui is the mean first passage time into the set S ′+ of the CTMC {I(t), t ≥ 0},
and is given by the unique solution to

∑
j∈S′−

qijuj = −1, i ∈ S ′−, e.g., see Kulkarni (1995)

[9]. Also, dk can be found directly as the mean first passage time (to an empty buffer and

a state of the environment in S ′−) in a standard fluid model with only the first type of

fluid, see Theorem 4.2 in Kulkarni and Tzenova (2002) [10]. Thus, clearly

τi = ui +
∑

k∈S′+

νikdk, i ∈ S ′−.

Before we discuss the two buffer content processes during an off-period in the next section

we obtain

µkj - mean time between two consecutive type k(∈ S ′+) off-periods that end in j ∈ S ′−,

µj - mean time between two consecutive off-periods that end in j ∈ S ′−.

Lemma 5.4 For all j ∈ S ′−, k ∈ S ′+

µkj =

∑
l∈S′+

π′ldl

π′kαkj(0)
, (5.14)

µj =

∑
l∈S′+

π′ldl

πj

. (5.15)

Proof: Since time is restricted to only time spent in off-periods, the Elementary Renewal

Theorem gives the mean number of off-periods per time unit in steady state as 1/E(Length

of an off-period). Now, the long-run fraction of off-periods that start in state k ∈ S ′+ and

end in state j ∈ S ′− in steady state is given by π′kαkj(0). Also, the mean length of an

off-period is given by
∑

l∈S′+
π′ldl. Hence

1

µkj

=
π′kαkj(0)∑

l∈S′+
π′ldl

,

which is equivalent to Eq. (5.14). Eq. (5.15) can be obtained similarly. ♦

Note that

∑

k∈S′+

π′kαkj(0) = πj,
∑

j∈S′−

πjνjk = π′k, and
1

µj

=
∑

k∈S′−

1

µkj

.
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6 The Two Buffer Content Processes during an Off-

Period

In this section we compute F̃ off
i (s1, s2) as defined in Eq. (2.3) above, where Xoff

k (t) and

Ioff (t) are the buffer content processes and the governing environment embedded over off-

periods only (see Fig. 2.1). In addition, consider the process Y (t) := I(T ′
n), T ′

n ≤ t < T ′
n+1

where T ′
n denotes the beginning of the n-th off-period (see Fig. 5.2). Clearly, Y (t) stays

the same within a given off-period and the following on-period and denotes the state in

which the most recent off-period has started. For a fixed k ∈ S ′+, we refer to the off-

periods that start in k as type k off-periods. First, we consider an off-period of type k and

determine

G̃kj(s1, s2) := lim
t→∞E(e−s1Xoff

1 (t)e−s2Aoff
2 (t); Ioff (t) = j, Y off (t) = k), k ∈ S ′+, j ∈ S,

where Aoff
2 (t) denotes the total amount of type 2 fluid accumulated in the buffer by time

t during the current off-period (of type k). To simplify notation, in the rest of this section

X1, X2, Y , and A2 will represent Xoff
1 , Xoff

2 , Y off , and Aoff
2 , unless indicated otherwise.

Also let B̃kj(s2) be the LST of type 2 fluid that is added to the buffer within an arbitrary

type k off-period of length T that finishes in state j, i.e.,

B̃kj(s2) := E(e−s2A2(T ); I(T ) = j, Y (0) = k), k ∈ S ′+, j ∈ S.

Clearly, B̃kj(s2) = 0 if j ∈ S ′+ and from Eq. (3.7) we have

B̃kj(s2) = π′kψ̃kj(0, s2), j ∈ S ′−,

where ψ̃kj(0, s2) are found from Theorem 3.1. For a fixed k ∈ S ′+ we intorduce the row

vectors B̃k(s2) := [B̃kj(s2), j ∈ S], G̃k(s1, s2) := [G̃kj(s1, s2), j ∈ S]. To further facilitate

the notation in the sequel we write αkj := αkj(0). In the next theorem we find G̃k(s1, s2)

as a solution to a linear system of equations.

Theorem 6.1 G̃k(s1, s2) is given by the solution to the following linear system of equa-

tions

G̃k(s1, s2)(s1R1 + s2P2 −Q) = lek −mB̃k(s2), (6.16)
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where l :=
∑

j∈S′
νjk

µj
, ek is the standard unity vector with 1 at position k and m =

1/
∑

i∈S′+
π′idi.

Proof: Let k ∈ S ′+ be fixed. Consider

Gkj(x1, a2) := lim
t→∞P (Xoff

1 (t) < x1, A
off
2 (t) < a2; I

off (t) = j, Y off (t) = k), j ∈ S.

Following standard techniques we can derive the following differential equations

r1(j)
∂

∂x1

Gkj(x1, a2) + r2(j)
∂

∂a2

Gk,j(x1, a2) =

∑

i∈S

qijGki(x1, a2)− δjk

∑

l:r1(l)≥0

∑

i:r1(i)<0

νijr1(i)
∂

∂x1

Gli(0,∞), j ∈ S ′+. (6.17)

and

r1(j)
∂

∂x1

Gkj(x1, a2) + r2(j)
∂

∂a2

Gkj(x1, a2)− r1(j)
∂

∂x1

Gkj(0, a2) =
∑

i∈S

qijGki(x1, a2), j ∈ S ′−.

(6.18)

Before we take the Laplace Transform (LT) of Eq. (6.18) we need to evaluate the

integral

∫ ∞

x1=0

∫ ∞

a2=0

∂

∂x1

Gkj(0, a2)e
−s1x1e−s2a2dx1da2 =

1

s1

∫ ∞

0

∂

∂x1

Gkj(0, a2)e
−s2a2da2 =

1

s1

∂

∂x1

Gkj(0,∞)
1

π′kαkj

∫ ∞

0

π′kαkj
∂

∂x1
Gkj(0, a2)

∂
∂x1

Gkj(0,∞)
e−s2a2da2. (6.19)

Next we note that

π′kαkj

∂
∂x1

Gkj(0, a2)
∂

∂x1
Gkj(0,∞)

is equal to the c.d.f. of the total accumulation of type 2 fluid during an off-period, and the

off-period is of type k and ends in state j. Hence, the integral in (6.19) equals B̃kj(s2)/s2,

and (6.19) can be written as

1

s1s2

∂

∂x1

Gkj(0,∞)
B̃kj(s2)

π′kαkj

.

Taking LT of both sides of Eqs. (6.17) and (6.18) leads to

r1(j)s1G
∗
kj(s1, s2) + r2(j)s2G

∗
kj(s1, s2) =

14



∑

i∈S

qijG
∗
ki(s1, s2)− δjk

s1s2

∑

l:r1(l)≥0

∑

i:r1(i)<0

νijr1(i)
∂

∂x1

Gli(0,∞), j ∈ S ′+,

r1(j)s1G
∗
kj(s1, s2) + r2(j)s2G

∗
kj(s1, s2)− r1(j)

s1s2

∂

∂x1

Gkj(0,∞)
B̃kj(s2)

π′kαkj

=

∑

i∈S

qijG
∗
ki(s1, s2), j ∈ S ′−.

Next, note that

−r1(j)
∂

∂x1

Gkj(0,∞), j ∈ S ′−

represents the mean number of type k off-periods that end in state j, j ∈ S ′−, per time

unit in steady state and therefore, from the classic theory of Renewal processes, we have

−r1(j)
∂

∂x1

Gkj(0,∞) =
1

µkj

,

where µkj is given by (5.14). Now, the above equations become

r1(j)s1G
∗
kj(s1, s2) + r2(j)s2G

∗
kj(s1, s2) =

∑

i∈S

qijG
∗
ki(s1, s2) +

δjk

s1s2

∑

l:r1(l)≥0

∑

i:r1(i)<0

νij
1

µli

, j ∈ S ′+, (6.20)

r1(j)s1G
∗
kj(s1, s2) + r2(j)s2G

∗
kj(s1, s2) +

mB̃kj(s2)

s1s2

=

∑

i∈S

qijG
∗
ki(s1, s2), j ∈ S ′−, (6.21)

where in the last equation we use Lemma 5.4 to get

−r1(j)
∂

∂x1

Gkj(0,∞)
1

π′kαkj

=
1

µkjπ′kαkj

=
1∑

l∈S′+
π′ldl

(= m).

Finally, (6.20) and (6.21) can be written in matrix form to obtain (6.16).

♦

We proceed with the study of X2 and I at the beginning of an arbitrary off-period.

Consider a given state k ∈ S ′+ and denote by Hk(x) the steady-state probability that

X2 < x and I = k at the beginning of an arbitrary off-period.
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Theorem 6.2 For a fixed state k ∈ S ′+ and buffer content of type 2, x ≥ 0 at the beginning

of an off-period

Hk(x) =

∑
i∈S′−

F on
i (x)qik

∑
i∈S′−

F on
i (∞)qik

π′k, (6.22)

where F on
i (x) is as in Eq. (4.10).

Proof: Consider an arbitrary off-period of type k. Denote by M the total number of

initiations per time unit of type k off-periods that start with X2 < x. Such initiations

can occur only from states in an on-period with X2 < x, i.e., from states (X1 = 0, X2 <

x, I = i), for some i ∈ S ′−. The long-run fraction of time the system is in such states is

pon ∑
i∈S′−

F on
i (x) and the rate to state (X1 = 0, X2 < x, I = k) is qik. Hence

M = pon
∑

i∈S′−

F on
i (x)qik.

Now, let N denote the number of times per time unit an off-period starts in state k.

Clearly,

N = pon
∑

i∈S′−

F on
i (∞)qik.

Thus, the conditional probability that an off-period starts with X2 < x given that it starts

in state k is equal to M/N . We obtain the joint steady-state probability Hk(x) as given

in Eq. (6.22) by recalling that π′k denotes the long-run fraction of number of off-periods

that start in k. ♦

After we take LST of Eq. (6.22) we obtain the following Corollary.

Corollary 6.3 The LST of the amount of type 2 fluid in the buffer at the beginning of

an arbitrary off-period that starts in state k in steady-state is given by

H̃k(s) =

∑
i∈S′−

F̃ on
i (s)qik

∑
i∈S′−

F on
i (∞)qik

π′k.

Now, we are ready to formulate the main result of this section which gives the LST of

the limiting joint distribution of the two buffer content processes during off-periods. The
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result follows immediately by noting that for an arbitrary off-period of type k the amount

of type 2 fluid at the beginning of the off-period is independent of the amount of type 2

fluid accumulated in the buffer.

Theorem 6.4 For all i ∈ S

F̃ off
i (s1, s2) = E(e−s1Xoff

1 e−s2Xoff
2 ; Ioff = i) =

∑

k∈S′+

H̃k(s2)
G̃ki(s1, s2)

π′k
.

Now the LST of the limiting distribution of (X1(t), X2(t), I(t)) can be computed by

putting together the two components of Eq. (2.4), namely F̃ on
i (s2) and F̃ off

i (s2) as found

above.

7 Examples

For illustration purposes we consider a two-priority fluid model where the fluid of type

k is generated by a Markov on-off source with on-times Exp(αk) and off-times Exp(βk).

Such on/off sources are frequently used to model traffic streams in telecommunication

systems. The sources behave independently. While the k-th source is on (off) fluid of

type k enters the buffer at rate pk > 0 (zero). We assume that p1 ≥ µ to avoid trivialities

and to insure off-periods, i.e. S ′− 6= ∅. The system is stable if

2∑

k=1

pkβk

αk + βk

< µ.

We present numerical results for identical sources with αk = α = 4, βk = β = 1, k = 1, 2;

the input rate of the first source is p1 = 8 and we compare the two cases of p2 = 1

and p2 = 15. The idea is to observe the impact on the system of the lower priority

input rate by keeping the rest of parameters constant. The possible range for the server

capacity,
∑2

k=1
pkβk

αk+βk
< µ ≤ p1, in each case is 1.8 < µ ≤ 8 and 4.6 < µ ≤ 8, respectively.

The numerical results are obtained by numerical inversion of the LSTs using the EULER

algorithm of Abate and Whitt (1992).

The governing CTMC with state space S = {(0, 0), (0, 1), (1, 0), (1, 1)} has limiting

distribution

π =
1

(α + β)2
[α2, αβ, αβ, β2] = [0.64, 0.16, 0.16, 0.04].
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Let X2 denote the steady-state type 2 buffer content. Figures 7.3 and 7.4 show the

joint and the marginal steady-state probabilities, P (X2 < t, I = i), i ∈ S and P (X2 < t),

for the two cases of p2 when the service capacity is µ = 7.5. As expected these probabilities

decrease as type 2 input rate p2 increases and P (X2 < t, I = i) → πi as t →∞. Figures 7.5

and 7.6 show the behavior of P (X2 < t) for each case as the server capacity µ changes. As

µ increases the marginal distributions also increase for each t. This implies that in steady

state X2 decreases stochastically as µ increases. An interesting characteristic of the system

is the steady-state probability of no output of type 2 (the long-run fraction of time type

2 fluid does not pass through the server), P (X2 = 0, I = (0, 0)) + P (X2 = 0, I = (1, 0)).

Figure 7.7 gives a comparison of these as µ varies from 4.75 to 7.55 in the three cases

p2 = 1, p2 = 6, p2 = 15. It supports the intuition that smaller values of p2 lead to higher

values of P (X2 = 0, I = (0, 0)) + P (X2 = 0, I = (1, 0)).
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