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1 Introduction

Box and Meyer (1986) were the first to consider identifying both location and dispersion effects
from unreplicated two-level fractional factorial designs. Since the publication of their paper
a number of different procedures (both iterative and non-iterative) have been proposed for
estimating the location and dispersion effects (Wang (1989); Nelder and Lee (1991); Engel and
Huele (1996); Bergman and Hynén (1997); Wiklander (1998); Liao and Iyer (2000); McGrath
and Lin (2001); Brenneman and Nair (2001); Wiklander and Holm (2003)). An overview and
a critical analysis of most of these procedures is given by Brenneman and Nair (2001). In
their paper they note that the analysis of location and dispersion effects is an intrinsically
difficult problem and show that all methods proposed so far suffer from bias to some extent.

Most of the papers consider a log-linear model for the dispersion effects. However, several
estimation methods have been proposed for cases in which a linear structure for the disper-
sion effects is more applicable. Under a linear structure for dispersion effects, non-iterative
estimation methods were proposed by Brenneman and Nair (2001), Liao and Iyer (2000) and
Wiklander (1998) (see also Wiklander and Holm (2003)). In these papers the following general
mixed linear model is assumed for the random vector Y of observations

E (Y ) = Xθ

Var (Y ) =
m∑

i=1

αiΓi

, (1)

where X is a known N × p full rank matrix and Γ1,Γ2, . . . ,Γm are known matrices, but pa-
rameters α1, α2, . . . , αm and θ = (θ1, θ2, . . . , θp)

T are unknown. Brenneman and Nair (2001)
suggest a linear regression of the squared residuals. This method can be applied for any design
and the model in (1) provided that the matrices Γi, i ∈ {1, 2, . . . ,m}, are diagonal. Liao and
Iyer (2000) describe a general method for finding quadratic forms in the vector of observations
that estimate the dispersion parameters α1, α2, . . . , αm in model (1). Although their method
for estimation applies to any design, the content of their paper is mainly restricted to estima-
tion in two-level factorial designs. They present a method to construct two-level fractional
factorial designs that are A-optimal for this method of estimation when there is only one
factor responsible for the dispersion effects. The estimators proposed by Wiklander (1998)
and Wiklander and Holm (2003) are sums of products of specific pairs of linear estimators
of negligible (higher order) location effects. The use of this method is restricted to two-level
factorial designs and regular fractions of such designs.

Surprisingly, the three proposed methods for estimation are equivalent when the design
is a two-level factorial design. In this paper a proof for the equivalence of these estimation
methods is given. The proof uses the framework of Seely (1970a) and Seely (1970b). Within
this framework quadratic estimators are expressed as inner products of symmetric matrices.
The paper is organized as follows. First the notation of the article is described in Section 2.
In Section 3 we present the framework for quadratic estimators proposed in Seely (1970a)
and Seely (1970b). The estimation methods of Wiklander (1998) (see also Wiklander and
Holm (2003)), Liao and Iyer (2000) and Brenneman and Nair (2001) are described in Sec-
tion 4. Equivalence of these estimation methods for two-level full factorial designs and regular
fractions of these designs is shown in Section 5.
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2 Preliminaries

The following notation will be used for two-level factorial designs. We let N = 2n (for some
n ∈ N) denote the total number of runs in the experiment. We denote by Y the length N
random vector of observations and for this vector the model given in (1) is assumed. The
design matrix X is an N×p matrix, the columns of which will be denoted by x1, x2, . . . , xp. We
let the column x1 correspond to the constant term in the model, i.e., all entries in this column
be equal to 1. The other columns of X each correspond to a main-effect or interaction-effect.
The jth entry in these columns equals 1 when the corresponding factor is at its high level
and −1 when it is at its lower level in run j. The matrices Γi, i ∈ {1, 2, . . . ,m}, are diagonal
matrices. We let Γ1 = I and let the other matrices correspond to main-effects or interaction-
effects. The jth diagonal element of Γk is 1 if the corresponding factor or interaction is at its
higher level and −1 otherwise. Note that we do not assume that the location model and the
dispersion model involve the same factors and interactions.

In this paper both full two-level factorial designs and balanced orthogonal fractions of
these designs are considered. Throughout the paper we will use the term regular to refer to
a balanced orthogonal fraction. When considering a fraction we assume that the effects to
which the columns of X correspond are not confounded. Furthermore, we assume that there
is no confounding of the effects to which the matrices Γj , 1 ≤ j ≤ m, correspond. By X̃
we denote the extended design matrix. In case of the full factorial design this is the N ×N
matrix that comes from extending the design matrix X with all columns that correspond to
location effects that are not in the model. In the case of a regular fraction the matrix X̃ is
defined as any non-unique matrix that results from extending the matrix X to an N × N
matrix for which the columns correspond to a maximum set of unconfounded effects. This
will be illustrated in Section 5.2.

Throughout the paper the operator ◦ denotes the Hadamard product for vectors. For a =
(a1, a2, . . . , aN )T and b = (b1, b2, . . . , bN )T the product a◦b is given by (a1b1, a2b2, . . . , aNbN )T .
The columns of the extended design matrix X̃ for a full factorial design form a group under
this operation. Finally, by diag (A) we denote the diagonal of the matrix A as a column
vector.

3 Framework for quadratic estimators

In this section we describe the framework for quadratic estimators proposed by Seely (1970a)
(see also Seely (1970b)), in which quadratic estimators are expressed as inner products of
symmetric matrices. A specific orthonormal basis for the vector space of symmetric matrices
is proposed. In proving equality of the estimators we use the unique Fourier-Bessel expansion
with respect to this basis.

We let M denote the vector space of all symmetric N × N matrices endowed with the
inner product 〈·, ·〉, defined by 〈A,B〉 = Tr (AB). If we let U = Y Y T then the set of all
quadratic estimators, i.e., the set of all quadratic forms in the random vector Y , is given by
{〈A,U〉 : A ∈M}.

We use a method from Seely (1970b) to construct an orthonormal basis for M from
an orthonormal basis for RN . Let {q1, q2, . . . , qp} ⊂ RN and define symmetric matrices
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Qij , 1 ≤ i ≤ j ≤ p, by

Qii = qiq
T
i 1 ≤ i ≤ p

Qij = 1√
2

(
qiq

T
j + qjq

T
i

)
1 ≤ i < j ≤ p

. (2)

The following theorem tells us that if {q1, q2, . . . , qp} is an orthonormal set in RN then the
matrices Qij , 1 ≤ i ≤ j ≤ p, form an orthonormal set in M. It also tells us how to construct
an orthonormal basis for M given an orthonormal basis for RN .

Theorem 3.1 Let {q1, q2, . . . , qp} be an orthonormal set of vectors in RN . The set {Qij :
1 ≤ i ≤ j ≤ p} with Qij as defined in (2) is an orthonormal set of vectors in the inner product
space (M, 〈·, ·〉). In particular, if {q1, q2, . . . , qN} is an orthonormal basis for RN , then the
set {Qij : 1 ≤ i ≤ j ≤ N} is an orthonormal basis for (M, 〈·, ·〉).
Proof Let Bij be defined as

Bij = qiq
T
j + qjq

T
i 1 ≤ i ≤ j ≤ p .

Then we have

〈Bij , Bk`〉 = Tr (BijBk`) = Tr
(
qiq

T
j qkq

T
`

)
+Tr

(
qiq

T
j q`q

T
k

)
+Tr

(
qjq

T
i qkq

T
`

)
+Tr

(
qjq

T
i q`q

T
k

)
=

Tr
(
qT
j qkq

T
` qi

)
+ Tr

(
qT
j q`q

T
k qi

)
+ Tr

(
qT
i qkq

T
` qj

)
+ Tr

(
qT
i q`q

T
k qj

)
=

qT
j qkq

T
` qi + qT

j q`q
T
k qi + qT

i qkq
T
` qj + qT

i q`q
T
k qj .

Let δij denote the Kronecker delta. Since {q1, q2, . . . , qp} is a orthonormal set we find that

〈Bij , Bk`〉 = δjkδ`i + δj`δki + δikδ`j + δi`δkj =


4 if i = j = k = l
2 if i = k < j = `
0 otherwise

.

Using this result we find that 〈Qij , Qk`〉 = 0 if i 6= k or j 6= ` and 〈Qij , Qij〉 = 1 for all i and
j. The set {Qij : 1 ≤ i ≤ j ≤ p} is thus an orthonormal set of vectors in the inner product
space (M, 〈·, ·〉). If p = N then {q1, q2, . . . , qN} is an orthonormal basis for RN . The number
of elements in the orthonormal set {Qij : 1 ≤ i ≤ j ≤ N} is in that case equal to 1

2N (N + 1)
which is dim (M). We have shown that the set {Qij : 1 ≤ i ≤ j ≤ N} is an orthonormal basis
for (M, 〈·, ·〉) �

The next lemma tells us how any element in the span of an orthonormal set of vectors in an
inner product space can be uniquely expressed in terms of this orthonormal set.

Lemma 3.2 Consider a finite orthonormal set {e1, e2, . . . , en} in an inner product space.
Then {e1, e2, . . . , en} is a basis for S = span {e1, e2, . . . , en} and every x ∈ S has a unique
representation of the form

x =
n∑

i=1

〈x, ei〉ei.

Proof Let x ∈ S. Then there exist β1, β2, . . . , βn such that x = β1e1+β2e2+. . .+βnen. Using
orthonormality of {e1, e2, . . . , en} we find that 〈x, ei〉 = βi for all i. As a result {e1, e2, . . . , en}
is linearly independent and a basis for S. �

The expansion given in Lemma 3.2 is called the Fourier-Bessel expansion. It tells us how any
symmetric matrix in M can be expressed as a unique linear combination of the symmetric
matrices Qij , 1 ≤ i ≤ j ≤ N, defined in (2).
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4 Estimation methods

Wiklander (1998) (see also Wiklander and Holm (2003)), Liao and Iyer (2000) and Brenneman
and Nair (2001) proposed non-iterative methods for estimation of the dispersion effects in the
model given in (1). All methods at first neglect the heterogeneity and use the ordinary
least squares as a first step in the estimation of the location effects. The three methods for
estimating the dispersion effects are described in this section.

4.1 Wiklander and Holm

Wiklander (1998) and Wiklander and Holm (2003) describe a method for finding estimators
for the parameters α1, α2, . . . , αm when the design is a two-level full factorial design or a
regular fraction of such a design. The method for a 2n full factorial design can be described
as follows. Let X̃ denote the N × N matrix resulting from extending the design matrix
X = (x1 : x2 : . . . : xp) with columns corresponding to all effects that are not in the location
model. The ith column of X̃ is denoted by xi. Wiklander (1998) and Wiklander and Holm
(2003) propose a one-to-one transformation of the elements of Y into new random variables

Zi =
1
N

xT
i Y for 1 ≤ i ≤ N.

Note that the random variables Z1, Z2, . . . , Zp are unbiased estimators for the location effects.
These estimators need not be independent. The estimators for the dispersion parameters are
constructed using products of specific pairs of random variables in the set {Zi : p+1 ≤ i ≤ N}.
More precisely, for any pair (i, j) such that diag (Γk) = xi ◦xj and p+1 ≤ i ≤ j ≤ N we have
that NZiZj is an unbiased estimator for αk. The estimator for αk proposed by Wiklander
(1998) and Wiklander and Holm (2003) is the average of all such estimators with different i
and j. This is the estimator that we consider in this paper. Wiklander (1998) and Wiklander
and Holm (2003) also propose a reduced estimator consisting of the maximum number of
independent estimators NZiZj . We do not consider this reduced estimator here.

For a regular fraction a slight modification is needed. Let n = q − r, then the extended
design matrix of a regular 2q−r fraction is equal to that of a 2n full factorial design up to the
signs of the columns. If for a certain pair (i, j) with p + 1 ≤ i ≤ j ≤ N and k ∈ {1, 2, . . . ,m}
we have diag (Γk) = xi ◦ xj , then E (NZiZj) = αk. If, on the other hand, diag (Γk) =
−xi ◦ xj , then E (−NZiZj) = αk. The proposed unbiased estimator for αk is the average of
all estimators of these two types.

4.2 Liao and Iyer

Liao and Iyer (2000) propose a general method for finding estimators for the parameters
α1, α2, . . . , αm in model (1). They define matrices A1, A2, . . . , Am of the form

Ak = (I − PX) Γk (I − PX) , (3)

where PX is the projection matrix onto the column space of X, i.e.

PX = X
(
XT X

)−
XT ,

where
(
XT X

)− denotes the generalized inverse of XT X. Note that I − PX is the projection
on the orthoplement of the range of X, i.e, onto the space spanned by the columns in X̃ that
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are not in X. Define the vector W =
(
Y T A1Y, Y T A2Y, . . . , Y T AmY

)T and the matrix K by

K =


Tr (A1Γ1) Tr (A1Γ2) . . . Tr (A1Γm)
Tr (A2Γ1) Tr (A2Γ2) . . . Tr (A2Γm)

...
...

. . .
...

Tr (AmΓ1) Tr (AmΓ2) . . . Tr (AmΓm)

 .

If K is invertible then K−1W is an unbiased estimator for α = (α1, α2, . . . , αm)T .
For the case m = 2 Liao and Iyer (2000) propose a method to determine regular two-level

fractional factorial designs of resolution at least III that are A-optimal for estimating the
parameters α1 and α2 using this method.

4.3 Brenneman and Nair

Under model (1), Brenneman and Nair (2001) propose using a linear regression of the squared
residuals after estimating the location effects using ordinary least squares estimation. The
covariance matrix of the vector R of residuals is given by

Var (R) = Var ((I − PX) Y ) = (I − PX) Var (Y ) (I − PX) .

Given model (1) this matrix can be expressed in terms of the parameters α1, α2, . . . , αm by

Var (R) =
∑

1≤k≤m

αk (I − PX) Γk (I − PX) =
∑

1≤k≤m

αkAk,

with Ak defined as in (3). Let R? denote the vector of squared residuals. Since E (R) = 0
the model for the squared residuals is given by

E (R?) = diag (Var (R)) = Bα,

where
B =

(
diag (A1) : diag (A2) : . . . : diag (Am)

)
.

If B is full rank then an unbiased estimator for α is
(
BT B

)−1
BT R?.

For the case of a two-level full factorial design, let pk, 2 ≤ k ≤ m, denote the number
of pairs of columns xi and xj in X for which diag (Γk) = xi ◦ xj . By Ri we denote the ith
element of the vector R of residuals. Brenneman and Nair (2001) showed if 2 ≤ k ≤ m and
N > 2 (p− pk) then

1
N − 2 (p− pk)

 ∑
i:(diag (Γk))i=1

R2
i −

∑
i:(diag (Γk))i=−1

R2
i

 (4)

is an unbiased estimator for αk. Brenneman and Nair (2001) do not give an explicit expression
for the estimator of α1 that is obtained using their method. In Theorem A.1 we show that if
N > p the estimator for α1 obtained using a linear regression of the squared residuals is

1
N − p

∑
1≤i≤N

R2
i . (5)

When the design is a regular fraction then (4) and (5) can still be used. However, pk should
then be defined as the number of pairs of columns xi and xj in X for which diag (Γk) =
± xi ◦ xj . This result is stated in Theorem A.1.
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5 Proof of equivalence

In this section we show that the three methods of estimation described in Section 4 give the
same estimates for the dispersion parameters in model (1) for two-level full factorial designs
and regular fractions of these designs.

5.1 Two-level full factorial designs

Before we show equality of the estimators, we first give a lemma that we need in the proof.
Recall that the extended design matrix X̃ for a two-level full factorial design is the N × N
matrix that comes from extending the design matrix X with all columns corresponding to
the location effects that are not in the model. The columns in the extended design matrix X̃
of a full factorial design form a group with the Hadamard product ◦. The identity element in
this group is the vector of length N = 2n with each element equal to 1. We will denote this
identity element by e. The proof of the next lemma uses the group property and orthogonality
of the columns in X̃.

Lemma 5.1 Let xi and xj be columns in the extended design matrix X̃ of a two-level full
factorial design and let Γ denote a diagonal matrix with a column of X̃ as its diagonal, then
we have

xT
i Γxj =

{
N if diag (Γ) = xi ◦ xj

0 otherwise
.

Proof If the diagonal of Γ equals the column xk of X̃, then

xT
i Γxj = (xi ◦ xk)

T xj =
{

N if xj = (xi ◦ xk)
0 otherwise

.

Since all elements of xi are non-zero we have

xj = xi ◦ xk ⇔ xi ◦ xj = xi ◦ xi ◦ xk = e ◦ xk = xk = diag (Γ) ,

which completes the proof. �

Our main theorem shows equivalence of the three estimation methods discussed in Section 4
when the design is a 2n full factorial design.

Theorem 5.2 Consider a full factorial design with design matrix and extended design matrix
given by X = (x1 : x2 : . . . : xp) and X̃ = (x1 : x2 : . . . : xN ), respectively. Let the matrices
Γ1,Γ2, . . . ,Γm be diagonal matrices with different columns of X̃ as their diagonal. Assume
that x1 is a vector of ones and that Γ1 = I. Then the estimation methods proposed by
(i) Wiklander (1998) and Wiklander and Holm (2003), (ii) Liao and Iyer (2000) and (iii)
Brenneman and Nair (2001) all give the same estimates for the parameters α1, α2, . . . , αm in
(1).

Proof We will first show equality of the estimators proposed by Wiklander (1998) and Liao
and Iyer (2000). Let q1, q2, . . . , qN denote the columns in the extended design matrix X̃ after
normalization, i.e., qi = xi√

N
for all i, and let the matrices Qij be defined as in (2). Since

{q1, q2, . . . , qN} is an orthonormal basis for RN it follows from Theorem 3.1 that {Qij | 1 ≤
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i ≤ j ≤ N} is an orthonormal basis for the inner product space (M, 〈·, ·〉). By Lemma 3.2 we
have that each matrix Γk has a unique representation of the form

Γk =
∑

1≤i≤j≤N

〈Γk, Qij〉Qij .

The coefficient of the matrix Qii, i = 1, . . . , N , in this representation equals

〈Γk, Qii〉 = Tr
(
Γkqiq

T
i

)
= qT

i Γkqi =
1
N

xT
i Γkxi = δk1.

The coefficients of matrix Qij where i 6= j are given by

〈Γk, Qij〉 =
1√
2
Tr

(
Γkqiq

T
j + Γkqjq

T
i

)
=
√

2qT
i Γkqj .

Using qi = xi√
N

and Lemma 5.1 we find

〈Γk, Qij〉 =
√

2
N

xT
i Γkxj =

{ √
2 if diag (Γk) = xi ◦ xj

0 otherwise
.

The matrix Γ1 can be expressed in terms of the matrices Qij in the following way

Γ1 =
∑

1≤i≤N

Qii. (6)

The matrix Γk, 2 ≤ k ≤ m, are given in terms of the matrices Qij by

Γk =
√

2
∑

Qij , (7)

where the summation is over all different pairs (i, j) for which 1 ≤ i ≤ j ≤ N and xi ◦ xj =
diag (Γk). Note that since x1, x2, . . . , xp are columns in X and the columns xp+1, xp+2, . . . , xN

of X̃ are orthogonal to span {x1, x2, . . . , xp} we have

(I − PX) Qij (I − PX) =
{

Qij if p + 1 ≤ i ≤ j ≤ N
0 otherwise

.

The matrix A1 defined in (3) is uniquely represented in terms of the matrices Qij by

A1 =
∑

p+1≤i≤N

Qii. (8)

Let Sk denote the set of all pairs (i, j) with p + 1 ≤ i ≤ j ≤ N for which xi ◦ xj = diag (Γk).
The matrices Ak, 2 ≤ k ≤ m, defined in (3) are uniquely represented by

Ak =
√

2
∑

(i,j)∈Sk

Qij . (9)

The elements of the matrix K are given by

Tr (AkΓj) = 〈Ak,Γj〉. (10)
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Let nk denote the number of elements in the set Sk. Substituting (6), (7), (8) and (9) into
(10) and using that the matrices Qij form an orthonormal set we find

Tr (AkΓj) =


N − p if j = k = 1

2nk if 2 ≤ j = k ≤ m
0 otherwise

.

Hence, the matrix K is a diagonal matrix with (N − p, 2n2, 2n3, . . . , 2nm)T as its diagonal.
The estimator for α1 proposed by Liao and Iyer (2000) is

1
N − p

Y T A1Y. (11)

The estimator proposed for αk, 2 ≤ k ≤ m, is

1
2nk

Y T AkY. (12)

The equality of the estimators for α1 proposed by Liao and Iyer (2000) and Wiklander (1998)
follows from observing that

1
N − p

Y T A1Y =
1

N − p

∑
p+1≤i≤N

Y T QiiY =
1

N − p

∑
p+1≤i≤N

1
N

xT
i Y xT

i Y

=
1

N (N − p)

∑
p+1≤i≤N

NZiNZi =
1

N − p

∑
p+1≤i≤N

NZiZi.

(13)

The equality of estimators for αk, 2 ≤ k ≤ m, proposed follows from

1
2nk

Y T AkY =
1√
2nk

∑
(i,j)∈Sk

Y T QijY =
1

Nnk

∑
(i,j)∈Sk

xT
i Y xT

j Y

=
1

Nnk

∑
(i,j)∈Sk

NZiNZj =
1
nk

∑
(i,j)∈Sk

NZiZj .

(14)

Recall that the estimator for αk proposed by Wiklander (1998) and Wiklander and Holm
(2003) was the average of NZiZj over all (i, j) with p + 1 ≤ i ≤ j ≤ N and for which
diag (Γk) = xi ◦ xj , which is exactly the right-hand side of (13) and (14).

We will now show equality of the estimators proposed by Liao and Iyer (2000) and Brenneman
and Nair (2001). The estimator for αk, 2 ≤ k ≤ m, proposed by Brenneman and Nair (2001)
is given by

1
N − 2 (p− pk)

 ∑
i:(diag (Γk))i=1

R2
i −

∑
i:(diag (Γk))i=−1

R2
i

 , (15)

where pk, 2 ≤ k ≤ m, denotes the number of pairs of columns xi and xj in X for which
diag (Γk) = xi ◦ xj . By Ri we denote the ith element of the vector R of residuals. Note that
since Γk is a diagonal matrix we have ∑

i:(diag (Γk))i=1

R2
i −

∑
i:(diag (Γk))i=−1

R2
i

 = RT ΓkR. (16)
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Since the location effects are estimated using ordinary least squares we have that

R = (I − PX) Y. (17)

Substituting (16) and (17) into (15) we find that the proposed estimator equals

1
N − 2 (p− pk)

Y T (I − PX) Γk (I − PX) Y =
1

N − 2 (p− pk)
Y T AkY, (18)

with Ak given in (3). Note that there are N
2 pairs of columns xi and xj in X̃ such that

xi ◦ xj = diag (Γk). For pk of these pairs both xi and xj are in X (by the definition of pk).
For all other p − 2pk columns xi in X there exists a column xj , p + 1 ≤ j ≤ N, of X̃ such
that xi ◦ xj = diag (Γk). The number nk of columns xi and xj with p + 1 ≤ i ≤ j ≤ N
for which xi ◦ xj = diag (Γk) is, hence, N

2 − pk − (p− 2pk) = N
2 − (p− pk). Substitution of

N
2 − (p− pk) = nk into (18) gives

1
2nk

Y T AkY,

which equals (12). The estimator for α1 obtained using a linear regression of the squared
residuals is

1
N − p

∑
1≤i≤N

R2
i =

1
N − p

RT Γ1R =
1

N − p
Y T A1Y,

which equals (11). Hence, also the estimators proposed by Brenneman and Nair (2001) and
Liao and Iyer (2000) are equal for all k, 1 ≤ i ≤ k. �

5.2 Regular fractions of two-level factorial designs

The equivalence of the estimation methods proposed by Wiklander (1998), Liao and Iyer
(2000) and Brenneman and Nair (2001) can also be shown for regular fractions of two-level
factorial designs. Recall that the extended design matrix for a regular fraction is defined
as any non-unique matrix that results from extending the matrix X to a N × N matrix for
which the columns correspond to a maximal set of unconfounded effects. In the full factorial
case the columns in the extended design matrix form a group with respect to the Hadamard
product. For regular fractions the columns of an extended design matrix do not always have
this property. This is illustrated by the next example.

Example Consider the regular 23−1 fractional factorial design given in Table 1. The matrix
X consisting of the columns in the table is a N × N matrix with columns corresponding
to a maximal set of unconfounded effects. Hence, X̃ = X is an extended design matrix for
the design. Let xi denote the ith column in Table 1, then X̃ =

(
x1 : x2 : x3 : x4

)
.

For this extended design matrix we have that x2 ◦ x3 = −x4. Since −x4 is not a column in
the extended design matrix X̃, the columns x1, x2, x3 and x4 do not form a group with the
Hadamard product ◦.

We have shown that the columns of the extended design matrix for regular fractions in general
do not form a group with operation ◦. However, if X̃ is an extended design matrix for a regular
two-level fractional factorial design and xi and xj are columns in X̃ then either xi ◦ xj or
−xi ◦ xj is a column in X̃. We will use this property to proof that the three methods also
give the same estimators in regular fractions of two-level factorial designs. The next theorem
states the equivalence for regular two-level fractional factorial designs.
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Table 1: Fraction of the 23 factorial design with I = −ABC

Run I A B C

1 1 -1 -1 -1
2 1 1 -1 1
3 1 -1 1 1
4 1 1 1 -1

Theorem 5.3 Consider a regular two-level fractional factorial design with design matrix and
extended design matrix given by X = (x1 : x2 : . . . : xp) and X̃ = (x1 : x2 : . . . : xN ), respec-
tively. Let the matrices Γ1,Γ2, . . . ,Γm be a set of linearly independent matrices with columns
of X̃, possibly multiplied by −1, as their diagonal. Assume that x1 is a vector of ones and
that Γ1 = I. Then the estimation methods proposed by (i) Wiklander (1998) and Wiklander
and Holm (2003), (ii) Liao and Iyer (2000) and (iii) Brenneman and Nair (2001) all give
the same estimates for the parameters α1, α2, . . . , αm in (1).

Proof We will first show that the methods proposed by Wiklander (1998) and Liao and Iyer
(2000) yield the same estimates. Let q1, q2, . . . , qN denote the columns in the extended design
matrix X̃ and let matrices Qij be defined as in (2). Then we have

〈Γk, Qij〉 =


−
√

2 if diag (Γk) = −xi ◦ xj√
2 if diag (Γk) = xi ◦ xj

0 otherwise
.

The matrices Γk can be written in terms of matrices Qij as follows

Γk =
√

2
∑

+
Qij −

√
2

∑
−
Qij ,

where
∑

+ and
∑
− denote the sums over all pairs (i, j) , 1 ≤ i ≤ j ≤ N, for which xi ◦ xj =

diag (Γk) and xi ◦ xj = −diag (Γk), respectively. The matrices Ak can be written in terms of
the matrices Qij as follows

Ak =
√

2
∑

+,p+1
Qij −

√
2

∑
−,p+1

Qij ,

where
∑

+,p+1 and
∑
−,p+1 denote the sums over all pairs (i, j) , p + 1 ≤ i ≤ j ≤ N, for which

xi ◦ xj = diag (Γk) and xi ◦ xj = −diag (Γk), respectively. Let nk denote the number of pairs
(i, j) for which p + 1 ≤ i ≤ j ≤ N and xi ◦ xj = ±diag (Γk). The elements in the matrix K
are given by

Tr (AkΓj) =


N − p if j = k = 1

2nk if j = k ∈ {2, 3, . . . ,m}
0 otherwise

.

The estimator for αk, 2 ≤ k ≤ m, proposed by Liao and Iyer (2000) is

1
2nk

Y T AkY.
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This estimator is equal to

1
nk

(∑
+,p+1

NZiZj −
∑

−,p+1
NZiZj

)
,

which is the estimator proposed by Wiklander (1998). The estimator for α1 proposed by Liao
and Iyer (2000) is

1
N − p

Y T A1Y.

This estimator is equal to
1

N − p

∑
p+1≤i≤N

NZ2
i ,

which is the estimator proposed by Wiklander (1998).

We will now show that the estimation methods proposed by Liao and Iyer (2000) and Bren-
neman and Nair (2001) are equal. The estimator for αk, k ∈ {2, 3, . . . ,m}, proposed by
Brenneman and Nair (2001) is given by

1
N − 2 (p− pk)

 ∑
i:(diag (Γk))i=1

R2
i −

∑
i:(diag (Γk))i=−1

R2
i

 =
1

N − 2 (p− pk)
Y T AkY, (19)

where pk, k ∈ {2, 3, . . . ,m}, denotes the number of pairs of columns xi and xj in X for which
diag (Γk) = ±xi ◦ xj . There are N

2 pairs of columns in X̃ for which xi ◦ xj = ±diag (Γk).
For all other p − 2pk columns xi in X there exists a column xj , p + 1 ≤ j ≤ N, of X̃ such
that xi ◦ xj = ±diag (Γk). The number nk of columns xi and xj with p + 1 ≤ i ≤ j ≤ N
for which xi ◦ xj = ±diag (Γk) is, hence, N

2 − pk − (p− 2pk) = N
2 − (p− pk). Substitution of

N
2 − (p− pk) = nk into (19) gives

1
2nk

Y T AkY,

which is the estimator proposed by Liao and Iyer (2000). The estimator for α1 obtained using
a linear regression of the squared residuals is given in Theorem A.1 and equals

1
N − p

∑
1≤i≤N

R2
i =

1
N − p

RT Γ1R =
1

N − p
Y T A1Y.

The expression on the right-hand side is the estimator for α1 proposed by Liao and Iyer
(2000). Hence, also the estimators proposed by Brenneman and Nair (2001) and Liao and
Iyer (2000) are equal for all k, 1 ≤ i ≤ k.

�

6 Concluding remarks

In the previous section we showed equivalence of the estimation methods proposed by Wik-
lander (1998), Wiklander and Holm (2003), Liao and Iyer (2000) and Brenneman and Nair
(2001) for estimating dispersion effects in two-level full factorial designs and regular fractions.
The use of methods proposed by Liao and Iyer (2000) and Brenneman and Nair (2001) is not

11



Table 2: A non-regular fraction of the 24 factorial design

Run A B C D

1 -1 -1 -1 -1
2 1 -1 -1 -1
3 -1 -1 1 -1
4 1 1 1 -1
5 -1 1 -1 1
6 1 1 -1 1
7 1 -1 1 1
8 -1 1 1 1

limited to factorial designs and regular fractions of these designs. The equivalence, however,
does not generalize to non-regular fractions of two-level factorial designs. This is shown by
the next example.

Example To illustrate that the estimators for the dispersion effects obtained with methods
proposed by Liao and Iyer (2000) and Brenneman and Nair (2001) may differ in non-regular
two-level factorial designs, we consider the non-regular fraction of the 24 factorial design given
in Table 2. We consider a main-effects model for the mean and assume that only the factor
A has a possible dispersion effect. Using the method proposed by Liao and Iyer (2000) we
find the following estimator for the dispersion effect associated with factor A

Y T



−0.125 −0.125 0.221 0.029 0.183 0.067 0.029 −0.279
−0.125 0.221 −0.067 −0.029 0.067 −0.163 −0.029 0.125

0.221 −0.067 −0.125 −0.029 −0.279 0.125 −0.029 0.183
0.029 −0.029 −0.029 0.029 0.029 −0.029 0.029 −0.029
0.183 0.067 −0.279 0.029 −0.125 −0.125 0.029 0.221
0.067 −0.163 0.125 −0.029 −0.125 0.221 −0.029 −0.067
0.029 −0.029 −0.029 0.029 0.029 −0.029 0.029 −0.029

−0.279 0.125 0.183 −0.029 0.221 −0.067 −0.029 −0.125


Y.

The method proposed by Brenneman and Nair (2001) gives the following estimator for the
same dispersion effect

Y T



−0.125 −0.125 0.246 0.004 0.134 0.116 0.004 −0.254
−0.125 0.246 −0.116 −0.004 0.116 −0.237 −0.004 0.125

0.246 −0.116 −0.125 −0.004 −0.254 0.125 −0.004 0.134
0.004 −0.004 −0.004 0.004 0.004 −0.004 0.004 −0.004
0.134 0.116 −0.254 0.004 −0.125 −0.125 0.004 0.246
0.116 −0.237 0.125 −0.004 −0.125 0.246 −0.004 −0.116
0.004 −0.004 −0.004 0.004 0.004 −0.004 0.004 −0.004

−0.254 0.125 0.134 −0.004 0.246 −0.116 −0.004 −0.125


Y.

The entries of both matrices were first computed exactly and only replaced by numerical values
in the end. Given symmetric matrices A and B we have that the statement Y T AY = Y T BY
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is true for all Y ∈ RN if and only if A = B. Since some of the entries in the matrices differ, the
equality of the estimators obtained using the two methods does not hold for general Y ∈ RN .

A Details of the Brenneman and Nair estimation method

Brenneman and Nair (2001) propose a linear regression of the squared residuals for estimating
the dispersion effects in two-level factorial designs. In their paper they give an expression for
the estimators for α2, α3, . . . , αm when the design is a two-level full factorial design. They
do not give expressions for the estimator for α1 in case of a full factorial design and the
estimators for α1, α2, . . . , αm when the design is a regular two-level fractional factorial design.
In this section we deduce expressions for the estimators of α1, α2, . . . , αm obtained using the
method proposed by Brenneman and Nair (2001) for cases in which the design is a two-level
full factorial design or a regular fraction of such a design.

Let for 1 ≤ i ≤ m the matrices Ai be defined by Ai = (I − PX) Γi (I − PX). The
unbiased estimator for α = (α1, α2, . . . , αm)T proposed by Brenneman and Nair (2001) is(
BT B

)−1
BT R? where R? denotes the vector of squared residuals and the matrix B is given

by
B =

(
diag (A1) : diag (A2) : . . . : diag (Am)

)
.

The expressions for the estimators in terms of the squared residuals are given in the next
theorem.

Theorem A.1 Consider a full two-level factorial design or a regular two-level fractional
factorial design with design matrix and extended design matrix given by X = (x1 : x2 : . . . : xp)
and X̃ = (x1 : x2 : . . . : xN ), respectively. Let the matrices Γ1,Γ2, . . . ,Γm be a set of linearly
independent matrices with columns of X̃, possibly multiplied by −1, as their diagonal. If
p < N and 2 (p− pk) < N , for all k, 2 ≤ k ≤ N , then the estimators for the dispersion
parameters in (1) proposed by Brenneman and Nair (2001) are given by

1
N−p

∑
1≤j≤N R2

j if i = 1

1
N−2(p−pi)

(∑
j:(diag (Γi))j=1 R2

j −
∑

j:(diag (Γi))j=−1 R2
j

)
if 2 ≤ i ≤ m

,

where pk denotes the number of pairs of columns in the design matrix X for which diag (Γi) =
± xj ◦ xk

Proof Using that PX and Γk, 1 ≤ k ≤ m, are symmetric matrices we find that

diag (Ak) = diag (Γk)− 2diag (ΓkPX) + diag (PXΓkPX) .

Note that diag (ΓkPX) can be written as

diag (ΓkPX) = diag (Γk) ◦ diag (PX) =
1
N

diag (Γk) ◦ diag
(
XXT

)
=

p

N
diag (Γk)

To find a different expression for diag (PXΓkPX) observe that

XT ΓkX =


(diag ( Γk )◦x1)

T x1 (diag ( Γk )◦x1)
T x2 · · · (diag ( Γk )◦x1)

T xp

(diag ( Γk )◦x2)
T x1 (diag ( Γk )◦x2)

T x2 · · · (diag ( Γk )◦x2)
T xp

...
...

. . .
...

(diag ( Γk )◦xp)
T x1 (diag ( Γk )◦xp)

T x2 · · · (diag ( Γk )◦xp)
T xp

 .
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The elements of XT ΓkX are given by

(
XT ΓkX

)
ij

= (diag (Γk) ◦ xi)
T xj =


−N if xi ◦ xj = −diag (Γk)

N if xi ◦ xj = diag (Γk)
0 otherwise

.

Note that each row and each column of M has at most one non-zero element. We find that
X

(
XT ΓiX

)
= (c1 : c2 : . . . : cp) where

cj =


−Nxi if xi ◦ xj = −diag (Γk)

Nxi if xi ◦ xj = diag (Γk)
0 otherwise

.

As a consequence, (
X

(
XT ΓkX

)
XT

)
``

=
∑

(cj)` (xj)` , (20)

where the summation is over all j for which there exits an i, 1 ≤ j ≤ p, such that xi ◦ xj =
± diag (Γk). For j satisfying this condition and the corresponding i,

(cj)` (xj)` = N (xj ◦ diag (Γk))` (xj)` = N (xj)` diag (Γk)` (xj)` = Ndiag (Γk)` .

Since all p columns xi in X satisfy xi ◦ xi = diag (Γ1),(
X

(
XT Γ1X

)
XT

)
``

= Np (diag (Γ1))` .

The number of pairs xi and xj of columns in X that satisfy diag (Γk) = xi ◦xj equals pk and
since each of these pairs appears twice in the sum in (20) we find for k such that 2 ≤ k ≤ m,(

X
(
XT ΓkX

)
XT

)
``

= 2Npk (diag (Γk))` .

Hence, we have found that

diag (PXΓkPX) =
1

N2
diag

(
XXT ΓkXXT

)
=

{ p
N diag (Γ1) if k = 1

2pk
N diag (Γk) if 2 ≤ k ≤ m

.

The diagonals of matrix Ak is a multiple of the diagonal of the matrix Γk, in particular,

diag (Ak) =

{ N−p
N diag (Γ1) if k = 1

N−2(p−pk)
N diag (Γk) if 2 ≤ k ≤ m

.

The conditions p < N and 2 (p− pk) < N , imply that none of the columns diag (Ak) , 1 ≤
k ≤ m, in B equals zero. Since the columns of this matrix B are all multiples of different
diagonals of the matrices Γi, 1 ≤ i ≤ m, the matrix B is orthogonal. The matrix

(
BT B

)−1
BT

is

(
BT B

)−1
BT =


1

N−p

(
diag (Γ1)

T
)

1
N−2(p−p2)

(
diag (Γ2)

T
)

...
1

N−2(p−pm)

(
diag (Γm)T

)

 .
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The estimator for α1 proposed by Brenneman and Nair (2001) is the first element of
(
BT B

)−1
BT R?

and is given by
1

N − p

∑
1≤i≤N

R2
i .

The estimator for the dispersion effect αk, 2 ≤ k ≤ m, is given by

1
N − 2 (p− pk)

 ∑
i:(diag (Γk))i=1

R2
i −

∑
i:(diag (Γk))i=−1

R2
i

 .

This completes the proof. �
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