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1 Introduction

The G/M/1 queue is one of the classical models of queueing theory. The
goal of this paper is two-fold: (i) To introduce new derivations of some well-
known results, and (ii) to present some new results for the G/M/1 queue
and its variants. In particular, we pay attention to the G/M/1 queue with
a set-up time at the start of each busy period, to the G/M/1 queue with
exceptional first service time, and to the cycle maximum of the G/M/1
queue. The main methods in the paper are (i) martingale techniques, (ii)
transform techniques, and (iii) sample-path arguments, exploiting duality
between the attained and virtual waiting time processes.

Treatments of the G/M/1 queue may be found in several books on queue-
ing theory; see, e.g., Asmussen [1], Cohen [2], Prabhu [9] and Takács [11].
Doshi [3] has studied the GI/G/1 queue with vacations or set-up times.
The decomposition result that he obtains for the waiting time distribution
is quite involved in the case of set-up times; in the case of exponential service
times and phase-type set-up times, we obtain more explicit decomposition
results.

The paper is organized as follows. Below we describe the model and
introduce some notation. Section 2 introduces the attained waiting time
process of the G/M/1 queue and relates it to the virtual waiting time process
(or work process) of that same queue. In Section 3 the attained waiting
time is shown to be exponentially distributed. A brief derivation of the idle
period distribution is presented in Section 4, using a martingale approach.
Sections 5 and 6 are devoted to the G/M/1 queue with set-up times. We
derive a decomposition result for the attained waiting time process, thus
also retrieving a sojourn time decomposition result of Doshi [3]. Like in
the case without set-up times, we use a martingale to derive an expression
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for the Laplace-Stieltjes transform of the idle period distribution. Section 6
considers the case of Erlang set-up times. In Section 7 we study the G/M/1
queue with exceptional first service time in a busy period. We obtain the
joint distribution of the busy and idle period. For the case of the ordinary
G/M/1 queue, a known result (cf. [9]) is re-derived. The last section of
the paper is devoted to a study of the cycle maximum in a busy period of
the G/M/1 queue. An approach based on the attained waiting time process
is chosen for the steady-state case. In the case of overload, an approach
based on the virtual waiting time process is employed to analyze the cycle
maximum, given that the busy period is finite.

2 The G/M/1 Queue

We consider the classical G/M/1 queue. The times between successive ar-
rivals are i.i.d. random variables S1, S2, . . . , with distribution G(·), Laplace-
Stieltjes transform (LST) G∗(α) and mean 1/λ. The service requirements
of the arriving customers are i.i.d. random variables Z1, Z2, . . . , which are
exponentially distributed with mean 1/µ. All interarrival and service times
are assumed to be independent. Service is in order of arrival. The traffic load
is denoted by ρ := λ/µ. It is assumed that ρ < 1 (unless stated otherwise).

Several derivations in this study are based on the sample path analysis
of two dual compound processes; the so-called virtual waiting time (V WT )
and the attained waiting time (AWT ) processes. Formally, let N = {N(t) :
t ≥ 0} and Λ = {Λ(t) : t ≥ 0} be counting processes such that for all
t ≥ 0, n = 0, 1, ... and m = 0, 1, ...: {N(t) ≥ n} = {Z1 + ... + Zn ≤ t} and
{Λ(t) ≥ m} = {S1+...+Sm ≤ t}. Obviously, N is a Poisson process with rate
µ and Λ is a renewal process whose inter-renewal distribution is G(·) with
mean 1/λ. Now define the continuous time random walk X = {X(t) : t ≥ 0}
such that X(t) = t − (S1 + ... + SN(t)) and Y = {Y (t) : t ≥ 0} such
that Y (t) = (Z1 + ... + ZΛ(t)) − t. Then construct the reflected processes
A = {A(t) : t ≥ 0} and V = {V (t) : t ≥ 0}, respectively, by

A(t) = X(t) − min
0≤s<t

X(s) and V (t) = Y (t) − min
0≤s<t

Y (s).

Here A is interpreted as the conditional AWT process of the G/M/1 queue
in which the idle periods are deleted and the busy periods are glued together.
The process V is interpreted as the V WT process (or the work process) of
the same G/M/1 queue. The processes V and A are dual processes with
respect to waiting times. While V (t) is interpreted as the time a customer
would have to wait in line if he arrived at t, A(t) is interpreted as the
time already attained (or elapsed) since the arrival of the customer being
served at t. In other words, while V designates the waiting time of a virtual
customer by looking forward in time (the customer is virtual in the sense
that he did not arrive at t and thus, in practice, he contributed nothing
to the work), A designates the waiting time of a real customer by looking
backward in time. As a result, while the V WT might be sometimes equal
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to 0, the AWT cannot be 0 because the served customer ”sees” at least
himself in the system. By that interpretation, the steady state law of A and
that of V must be closely related to each other. In fact, it can be shown
by construction (see, e.g., Perry et al. [6]) that the steady state law of A is
equal to that of the conditional steady state law of V given that the idle
periods (the time periods in which V = 0) are deleted and the busy periods
are glued together. Note that ρ < 1 implies that both X(t) and Y (t) tend
to −∞ a.s., so that A and V are regenerative processes. Furthermore, the
cycles associated with A are the busy periods and those associated with V

are the busy cycles (the busy cycle is composed of busy period plus idle
period). Also, it can be shown (see, e.g., Perry et al. [6]) that the stopping
times T = inf{t ≥ 0 : X(t) ≤ 0} and τ = inf{t ≥ 0 : Y (t) = 0} are the
same random variables that represent the busy period of the same G/M/1
queue.

Remark 1 A busy cycle generated by V is C = inf{t ≥ τ : V (t) > 0}.
Then, C −T and −A(T ) are also the same random variables that represent
the idle period. Also, while the sample path of V is continuous at τ and
V (τ−) = V (τ+) = 0, A(T ) is a point of discontinuity since by definition
A(T−) > 0 > A(T ) < A(T+) = 0.

3 Density of the Attained Waiting Time

We first study the AWT process A, showing that its steady state distri-
bution is exponential. We define the steady state random variable A =
limt→∞ A(t), where the latter limit is defined in terms of weak convergence.
Let fA(·) be the equilibrium density of A. A level-crossings argument shows
that it satisfies the following steady state equation:

fA(x) = µ

∫ ∞

x

[1 − G(w − x)]fA(w)dw. (1)

Rewrite this equation into:

fA(x) = µ

∫ ∞

0

[1 − G(y)]fA(y + x)dy. (2)

Differentiate to get

f ′
A(x) = µ

∫ ∞

0

[1 − G(y)]f ′
A(y + x)dy,

where f ′
A(·) is the derivative with respect to fA(·). We know that, for ρ < 1,

A has a unique density. Noticing that fA(x) and f ′
A(x) satisfy the same

equation, it follows that f ′
A(x) equals fA(x), up to a multiplicative constant.

Solving f ′
A(x) = ηfA(x) with

∫∞

0
fA(x)dx = 1 yields

fA(x) = ηe−ηx, x > 0. (3)
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Here η is implicitly defined as the unique solution, in (0, µ), of

η = µ[1 − G∗(η)]. (4)

The fact that η satisfies (4) follows by substitution of (3) in (2). The unique-
ness statement follows since G∗(0) = 1, G∗(∞) = 0 and G∗(α) is a monotone
decreasing convex function, combined with ρ < 1 (which implies that the
derivative of the right-hand side of (4) is 1/ρ > 1). We conclude that the
steady state law of the process A, i.e., the AWT process of the G/M/1
queue in which the idle periods are deleted, is exp(η).

Remark 2 The last result implies that the sojourn times of the G/M/1 queue
are also exp(η) distributed (the latter statement is a well-known result, see
[2] or [5]). To see this, note that the sojourn times are the peak values of
the AWT process. But these peak values occur at the arrival instants of the
Poisson process N. Hence, by PASTA, the limiting distribution of the peak
values of the AWT process equals the stationary distribution.

4 Martingale Approach for the Idle Period

We now turn to the idle period. In the G/M/1 queue, the busy period
and the idle period are not necessarily independent. Just for the sake of
convenience, the analysis is based on the random walk X̂ := −X. Consider
the process M = {M(t) : t ≥ 0}, where

M(t) = ϕ(α)

∫ t

0

e−αX̂(s)ds + e−αX̂(0) − e−αX̂(t), (5)

and ϕ(α) := α − µ[1 − G∗(α)] is the exponent of X̂. It is well-known that
M is a martingale (see Kella and Whitt [4]), and by applying the optional
sampling theorem for T (clearly, T is the same for both X̂ and X) to the
martingale M we see that EM(T ) = 0, thus obtaining the fundamental
identity (with the substitution X̂(0) = 0)

ϕ(α)E

(

∫ T

0

e−αX̂(s)ds

)

= −1 + E(e−αX̂(T )). (6)

We now can prove the following result (see also, e.g., p. 36 of Prabhu [9]).

Theorem 1 The LST of the idle period of the G/M/1 queue is given by

Ee−αI =
η − µ[1 − G∗(α)]

η − α
.
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Proof The fact that
∫ T

0
e−αX̂(s)ds =

∫ T

0
e−αÂ(s)ds (where Â := −A), fol-

lows immediately by the definition of T . We thus express (6) in terms of the
process A:

ϕ(α)E

(

∫ T

0

eαA(s)ds

)

= −1 + E(e−αÂ(T )). (7)

Using the theory of regenerative processes and the fact that −A(T ) =
Â(T ) = I , the idle period, we obtain:

E(e−αI) = 1 + ϕ(α)ETE(eαA). (8)

Now use the fact that A is exp(η) distributed (cf. (3)), and that ET = 1/η.
To see the latter result, note that level 0 is down-crossed by A (alternatively,
up-crossed by Â) exactly once during the cycle T (the down-crossing occurs
at T since A(T−) > 0 > A(T )). By level crossing theory, f(0) is the rate
of the long-run average number of down-crossings of level 0. Thus, ET =
1/f(0) = 1/η.

Remark 3 Of course, the LST of the idle period may also be obtained di-
rectly from Lindley’s equation (see, e.g., Asmussen [1]),

I = (S − A|S − A > 0),

where the generic random variable S denotes the inter-arrival time and A
the sojourn time (which is exp(η)).

5 Constant Set-Up Times

We now turn our attention to a G/M/1 queue with a set-up time, R, at
the beginning of each busy period. It appears to be convenient to start with
the case of a deterministic set-up time R = x. Subsequently, for general
set-up times, the results for the constant case may be integrated w.r.t. the
distribution of the set-up time. The expressions obtained for general set-up
times, however, turn out to be not very explicit. Consequently, the special
case of an Erlang-distributed set-up time will be discussed separately in
Section 6 (and yields more explicit results).

Consider the process Ax={Ax(t) : t ≥ 0}, where

Ax(t) = x + X(t) − min
0≤s<t

(x + X(s)),

with x some nonnegative constant. The process Ax can be visualized as
process A that is lifted during each busy period of the original process.
During the first busy period of the corresponding G/M/1 queue without
set-up time, it is lifted to level x, during the second one to level x − I1,
where I1 is the first idle period, during the third one to level x− I1 − I2 and
so on. Define K = inf{k : x−I1−I2−· · ·−Ik < 0}. That is, K is the number
of negative ladder heights during the busy period Tx = inf{t : Ax(t) ≤ 0}.
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Let L = {L(t) : t ≥ 0} denote the level process at which A is lifted at time
t, i.e., L(t) is the value with which A(t) is lifted, and let Ax, L and A denote
the steady-state random variables associated with the processes Ax, L and
A, respectively (recall from (3) that A is exp(η)). At time t ≥ 0, L(t) does
not depend on the current busy period of A(t), but only on the ones prior to
the current one. Hence, L(t) and A(t) are independent, and thus (by letting
t tend to infinity) we can conclude that:

Theorem 2 Ax
D
= A + L, where A and L are independent.

Remark 4 Theorem 2 is also valid for general set-up times. In fact, it implies
that the steady-state sojourn time in the G/M/1 with set-up times can be
decomposed as the sum of two independent random variables: the steady-
state sojourn time in the G/M/1 without set-up times and the steady-state
level of lifting (cf. Remark 2).

To determine the steady-state distribution of Ax, we need to determine
the distribution of L. The expected number of busy periods in a cycle of L

that are lifted higher than y is equal to 1 + m(x − y), where m(t) denotes
the renewal function of the process of idle periods {In}. Hence, we have

Pr(L > y) =
1 + m(x − y)

1 + m(x)
, 0 ≤ y < x, Pr(L = x) =

1

1 + m(x)
.

(9)
Note that L has probability mass at x. For example, in case that the inter-
arrival times Si are also exponential with parameter λ, we have m(x) = λx,
and then

Pr(L > y) = 1 −
λy

1 + λx
, 0 ≤ y < x, Pr(L = x) =

1

1 + λx
.

The steady state law of Ax is introduced in the following lemma.

Lemma 1

Ee−αAx =
η

η + α

[

e−αx ∗ m(x) + e−αx

1 + m(x)

]

,

where ”∗” is the convolution sign.

Proof By Theorem 2,

Ee−αAx = Ee−αAEe−αL,

where from (3):

Ee−αA =
η

η + α
.

Also, by (9),

Ee−αL =

∫ x

y=0

e−αyd Pr(L < y) + e−αx Pr(L = x) =
e−αx ∗ m(x) + e−αx

1 + m(x)
,

which completes the proof.
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Remark 5 If the set-up time R has a general distribution, then one can
easily get the LST of the steady-state distribution of the AWT process
by integrating the LST of Ax w.r.t. the set-up time distribution. Let the
random variable AR denote the AWT in steady-state. Then

Ee−αAR =
η

η + α

∞
∫

0

e−αx + e−αx ∗ m(x)

1 + m(x)
d Pr(R ≤ x). (10)

It should be observed, though, that the expression involves the renewal
function m(·) of the idle periods of the G/M/1 queue.

We now proceed to study the idle and busy period. Let Ix and Tx be
the idle period and busy period, respectively, associated with Ax.

Lemma 2

Ee−αIx =
α − µ(1 − G∗(α))

ETx

η

η − α

[

eαx ∗ m(x) + eαx

1 + m(x)

]

+ eαx,

with

ETx = µ[

∞
∫

0

(1 − G(u))dFAx
(u)]−1, (11)

and where FAx
(·) is the distribution whose LST is given in Lemma 1.

Proof Consider the process M̃ = {M̃(t) : t ≥ 0} where

M̃(t) = ϕ̃(α)

∫ t

0

e−α(x+X(s))ds + e−αx − e−α(x+X(t))

and
ϕ̃(α) = −[α + µ(1 − G∗(−α))].

It is readily seen that M̃ is a martingale and by applying the optional
sampling theorem for Tx = inf{t : Ax(t) ≤ 0} to the martingale M̃ we see
that

ϕ̃(α)E

(

∫ Tx

0

e−αAx(s)ds

)

= −e−αx + E(e−αAx(Tx)). (12)

By the theory of regenerative processes, the left hand side of (12) is

ϕ̃(α)Ee−αAx

ETx
.

Also, −Ax(Tx) can be interpreted as the idle period Ix. Thus from (12),

E(eαIx) = ϕ̃(α)Ee−αAx

ETx
+ e−αx

= ϕ̃(α)
ETx

η
η+α

[

e−αx∗m(x)+e−αx

1+m(x)

]

+ e−αx,
(13)
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where the second step follows by Lemma 1. Finally, ETx is the reciprocal of
the rate of down-crossings of level 0 by Ax. Thus, by level crossing theory,
(11) follows. Now replace α by −α in (13) and the result follows.

Remark 6 In order to obtain the LST of the idle period associated with a
generally distributed set-up time R, we apply the law of total probability
in (13) to get

E(e−αI ) =

∞
∫

0

E(e−αIx)d Pr(R ≤ x).

6 Erlang Set-up Times

In this section we consider the special case of Erlang distributed set-up
times, i.e., the set-up time R is the sum of n exponentials with parameter
ν. Then the AWT process AR can be visualized as process A that is lifted
during each busy period by at least one and at most n exponentials. Let Lm

denote the number of exponentials lifting A during the mth busy period.
Clearly, L = {Lm, m = 0, 1, 2, . . .} is a Markov chain with states {1, . . . , n}
and the one-step transition probabilities pi,j are given by

pi,i−k = Pr(X1 + · · · + Xk < I < X1 + · · · + Xk+1)

=
(−ν)k

k!
I∗(n)(ν), k = 0, 1, 2, . . . , i − 1;

pi,n = 1 − pi,i − pi,i−1 − · · · − pi,1,

where X1, X2, . . . are independent exponentials, each with parameter ν, and
I∗(k)(·) is the kth derivative of the LST of the idle period I associated with
the G/M/1 without set-up times (see Section 4). Here we used that

Pr(I < X1 + · · · + Xk+1) =

∫ ∞

0

e−νx
k
∑

i=0

(νx)i

i!
d Pr(I ≤ x)

=

k
∑

i=0

νi

i!

∫ ∞

0

e−νxxid Pr(I ≤ x)

=

k
∑

i=0

(−ν)i

i!
I∗(i)(ν).

Let π1, . . . , πn denote the steady-state probabilities of L. These probabilities
can be easily calculated recursively: Let vk be the expected number of visits
to state k till the first return to state n, when starting in state n, so vn = 1
and

vk =

n
∑

l=k+1

vlpl,k, k = n − 1, n− 2, . . . , 1.
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Then the steady-state probabilities follow from normalization, i.e.,

πk =
vk

v1 + · · · + vn
, k = 1, . . . , n.

Hence, we have (see Theorem 2 and Remark 4),

AR
D
= A + L,

where

L
D
=



















X1, w.p. π1,
X1 + X2, w.p. π2,
...
X1 + · · · + Xn, w.p. πn.

Remark 7 The above result can be easily extended to mixed Erlang set-up
times. Suppose that, with probability pi, i = 1, . . . , n, the set-up time R is
the sum of i independent exponentials, each with parameter ν. Then the
steady-state distribution of L is given by

πi =

∑n
k=1 pkπk

i /πk
k

∑n
k=1 pk/πk

k

, i = 1, . . . , n,

where πk
1 , . . . , πk

k denote the steady-state probabilities for Erlang-k dis-
tributed set-up times, with parameter ν.

7 Joint Distribution of Busy and Idle Period

In this section we determine the LST of the joint distribution of the busy
period T and idle period I in the G/M/1 queue, for the case that the first
service time Z1 of the busy period is x. By integrating the result w.r.t. the
probability distribution of Z1, we subsequently also determine the LST of
the joint distribution of the busy period and idle period in the G/M/1 queue
with either set-up time or an exceptional first service time. Introduce, for
Re α1, α2 ≥ 0, x ≥ 0:

k(x, α1, α2) := E(e−α1T−α2I |Z1 = x), (14)

K(s, α1, α2) :=

∫ ∞

0

e−sxk(x, α1, α2)dx. (15)

Also introduce ŝ = ŝ(α1), the unique zero of 1 − µ
µ−sG∗(α1 + s) in the

righthalf α1-plane (see, e.g., Cohen [2], p. 226).

Theorem 3 For Re s, α1, α2 ≥ 0,

K(s, α1, α2) =
µ − s

µ − s − µG∗(α1 + s)
[
G∗(α1 + s) − G∗(α2)

α2 − α1 − s

−
µ

µ − s
G∗(α1 + s)

G∗(α1 + ŝ) − G∗(α2)

α2 − α1 − ŝ
]. (16)
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Proof Conditioning on the two possibilities that the first interarrival time
S1 ≥ x and S1 < x, we can write:

k(x, α1, α2) =

∫ ∞

t=x

e−α1xe−α2(t−x)dG(t)

+

∫ ∞

z=0

µe−µz

∫ x

t=0

e−α1tk(x − t + z, α1, α2)dG(t)dz. (17)

Taking the LT (Laplace Transform) w.r.t. x and changing integration orders
yields:

K(s, α1, α2) =

∫ ∞

x=0

e−(α1+s)x

∫ ∞

u=0

e−α2udG(x + u)dx

+ µ

∫ ∞

t=0

e−(α1+s)tdG(t)

∫ ∞

u=0

∫ ∞

z=0

e−sue−µzk(u + z, α1, α2)dudz

=
G∗(α1 + s) − G∗(α2)

α2 − α1 − s
+µG∗(α1 + s)

K(s, α1, α2) − K(µ, α1, α2)

µ − s
.(18)

Hence

K(s, α1, α2)[1 −
µ

µ − s
G∗(α1 + s)]

=
G∗(α1 + s) − G∗(α2)

α2 − α1 − s
−

µ

µ − s
G∗(α1 + s)K(µ, α1, α2). (19)

It remains to determine K(µ, α1, α2). A standard analyticity argument gives
(remember the definition of ŝ above):

K(µ, α1, α2) =
G∗(α1 + ŝ) − G∗(α2)

α2 − α1 − ŝ
, Re α1, α2 ≥ 0. (20)

Substitution in (19) finally gives the statement of the theorem.

Remark 8 Determination of k(x, α1, α2).
In principle, one can invert K(s, α1, α2) to obtain k(x, α1, α2). Rewrite (16)
as follows (s should be such that the sum converges):

K(s, α1, α2) =

∞
∑

j=0

(
µ

µ − s
)j(G∗(α1 + s))j [

G∗(α1 + s) − G∗(α2)

α2 − α1 − s

−
µ

µ − s
G∗(α1 + s)

G∗(α1 + ŝ) − G∗(α2)

α2 − α1 − ŝ
]. (21)

Now observe that

G∗(α1 + s) = G∗(α1)

∫ ∞

x=0

e−sx[
e−α1xdG(x)

∫∞

0
e−α1ydG(y)

],

which equals the product of G∗(α1) and the LST of Pr(S1 < x|S1 < E1),
with E1 exponentially distributed with mean 1/α1. The first part of the
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righthand side of (21) can now be inverted term by term (care should be
taken of the fact that K(s, α1, α2) is an LT, and not an LST, w.r.t. x).
The term between square brackets in (21) is easier to invert; notice that
the first term in the righthand side of (17) is the inverse of (G∗(α1 + s) −
G∗(α2))/(α2−α1−s). Of course, for specific choices of the interarrival time
distribution, like the Erlang distribution, it is a rather straightforward task
to obtain k(x, α1, α2) by inversion of the expression in (16).

Remark 9 The LST of the joint distribution of busy and idle period.
It should be noted that µK(µ, α1, α2) is the LST of the joint distribution of
the busy period T and idle period I in the ordinary G/M/1 queue, in which
also the first service time Z1 is exp(µ) distributed. The result agrees with
Formula (47) on p. 57 of Prabhu [10]. Taking α1 = α2 yields the LST of the
busy cycle length in the G/M/1 queue. Next suppose that the first service

time Z1 is hyperexponentially distributed, with density
∑k

i=1 piνie
−νix. In

that case,

E(e−α1T−α2I ) =

k
∑

i=1

piνiK(νi, α1, α2). (22)

Finally suppose that the first service time Z1 is Erlang-k distributed, with
parameter ν. Then it is easily verified that

E(e−α1T−α2I) =
(−1)k−1νk

(k − 1)!

dk−1

dsk−1
K(s, α1, α2)|s=ν . (23)

8 Cycle Maximum

In this section we introduce two approaches for analysis of the cycle max-
imum of the G/M/1 queue; the first is based on the AWT , the second on
the V WT . We refer to Cohen [2], Section III.7.5, for an expression for this
cycle maximum in the form of a contour integral. That is a result for ρ ≤ 1.
In Subsection 8.2 we consider the case ρ > 1.

8.1 AWT Approach

Recall that X(t) = t− (S1 +S2 + ...+SΛ(t)) and T = inf{t : X(t) ≤ 0}. Let
M = max0≤t≤T X(t). In this section we compute the law of M , the cycle
maximum of the busy cycle.

Theorem 4

Pr(M > x) =
e−ηx(1 − Ee−ηI)

1 − e−ηxEe−ηIx
,

where Ee−ηI is given in Theorem 1 and Ee−ηIx is given in Lemma 2 above
with α replacing η.
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Proof

Pr(A > x) = Pr( max
0≤t<∞

X(t) > x)

= Pr({ max
0≤t<T

X(t) > x} ∪ { max
T≤t<∞

X(t) > x})

= Pr( max
0≤t<T

X(t) > x) + Pr( max
T≤t<∞

X(t) > x)

−Pr({ max
0≤t<T

X(t) > x} ∩ { max
T≤t<∞

X(t) > x})

= Pr(M > x) + Pr( max
0≤t<∞

X(t) > x + I)

−Pr( max
T≤t<∞

X(t) > x | max
0≤t<T

X(t) > x) Pr( max
0≤t<T

X(t) > x)

= Pr(M > x) + Pr(A > x + I)

−Pr( max
T≤t<∞

X(t) > x | max
0≤t<T

X(t) > x] Pr[M > x).

(24)
Define the stopping time Tx = inf{t : X(t) = x}. Given the event {max0≤t<T X(t) >
x} occurred, it follows by the strong Markov property at Tx that

Pr( max
T≤t<∞

X(t) > x | max
0≤t<T

X(t) > x) = Pr( max
0≤t<∞

X(t) > x + Ix)

= Pr(A > x + Ix).

Thus, we obtain in (24):

e−ηx = Pr(M > x) + e−ηxEe−ηI − Pr(M > x)e−ηxEe−ηIx ,

and the theorem follows.

8.2 The Case ρ > 1; V WT Approach

Recall that the Si are i.i.d., random variables with distribution G(·) and
mean 1/λ. Similarly, the Zj are i.i.d., random variables such that Zj v

exp(µ). Also, N is a Poisson process with rate µ and Λ is a renewal pro-
cess with interrenewal mean 1/λ. In the present subsection we assume
that ρ := (λ/µ) > 1 and study the cycle maximum in a busy period of
the overloaded G/M/1 queue. Indeed, the distribution of the maximum
is improper. However, the conditional distribution of the cycle maximum
given that the busy period is finite is a proper distribution. Formally, let
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Z v exp(µ) be a random variable independent of the process Y (recall that
Y (t) = (Z1 + ... + ZΛ(t)) − t) and define the stopping times

T−
Z = inf{t : Y (t) = −Z}

and

T+
Z = inf{t : Y (t) ≥ 0}.

Note that T−
Z can be interpreted as the busy period of the G/M/1 queue

(with inter-arrival distribution G(·) and service rate µ) and the random
variable

M = max
0≤t≤T−

Z

(Z + Y (t))

is the cycle maximum.
To compute the law of M we use the following argument. Let t be a

record time for {Z +Y (t) : 0 ≤ t ≤ T−
Z } and assume that a is the last record

value prior to t. That means that Z + Y (t−) < a, Z + Y (t) > a and by the
lack of memory property of the exponential jumps (Z +Y (t)−a) v exp(µ).
Hence, for every x > a, the failure rate function of that record value at
x (that occurred at t) is µ and the event {M ≤ x} (which means that
{M = x}) occurs if and only if the record value at t is the last record value
in [0, T−

Z ]. The latter event occurs with probability Pr(T−
x < T+

x ).
The argument introduced above is used as the main tool in proving

theorem 5 below. But before we introduce the theorem we need the next
two lemmas. These lemmas can also be retrieved from Section III.5.8 of
Cohen [2], but we believe that the method of proof that is presented below
is of independent interest.

Lemma 3 Let VM/G/1 = {VM/G/1(t) : t ≥ 0} be the work process of the
M/G/1 queue with arrival rate µ and service time distribution G(·) and
assume that ρ := λ/µ > 1. Given that the first service in the busy period is
a, we define θa(0, a+x) as the probability that during a busy period VM/G/1

reaches level 0 before level a+x (for x = 0, one should read here θa(0, a+)).
Then

θa(0, a + x) =
F (x)

F (a + x)
, (25)

where F (·) is the steady state distribution of VM/G/1. That is, F (·) is the
distribution whose LST is given by

F ∗(α) =
(1 − ρ−1)α

α − µ[1 − G∗(α)]
. (26)

Proof First note that ρ > 1 implies that VM/G/1 possesses a stationary

distribution. Recall that −X(t) := X̃(t) = S1 + S2 + ... + SN(t) − t where

N(t) is a Poisson process with rate µ. Also let La = inf{t > 0 : a+X̃(t) = 0}
and M̃a = max0≤t≤La

{a + X̃(t)}. La can be interpreted as the busy period
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and M̃a as the cycle maximum of the V WT in the M/G/1 queue given that
the first service of that busy period is a. Then

F (x) = Pr(max0≤t<∞ X̃(t) ≤ x)

= Pr(max0≤t<∞(a + X̃(t)) ≤ a + x)

= Pr(max0≤t<Ta
(a + X̃(t)) ≤ a + x) Pr(maxTa≤t<∞(a + X̃(t)) ≤ a + x)

= Pr(M̃a ≤ a + x)F (a + x)

= θa(0, a + x)F (a + x).

In particular, it follows by Lemma 3 that

θa(0, a) =
1 − ρ−1

F (a)
. (27)

Lemma 4 below is based on the duality between the M/G/1 and the
G/M/1 queues. Consider the V WT of the G/M/1 queue with inter-arrival
distribution G(·) and service rate µ in which the first service of the busy
period is x. Also, consider the V WT of the M/G/1 queue with arrival rate
µ and service distribution G(·) in which the first service of the busy period
is x.

Lemma 4

Pr(T−
x < T+

x ) = 1 −
F ∗ G(x)

F (x)

where the LST associated with F (·) is given in (26).

Proof Consider a sample path of the stopped process {x + Y (t) : 0 ≤ t ≤
T−

x } (see Fig. 1(a)). This stopped process represents the V WT of a G/M/1
queue during a busy period whose first service time is x. Now construct
the risk stopped process {R(t) : 0 ≤ t ≤ T−

x } where R(t) = −Y (t) (see
Fig. 1(b)). That is, R(t) starts at level 0 and is stopped immediately after
it upcrosses level x. Now construct the process U = {U(t) : t ≥ 0} from
{R(t) : 0 ≤ t ≤ T−

x } as follows: First, replace every negative jump in
Fig. 1(b) by a linearly decreasing piece of trajectory with slope −1 on an
interval whose length is equal to the negative jump size. Second, replace the
increasing pieces of R(t) between negative jumps by positive jumps whose
sizes are equal to the linear increments (the process is shown in Fig. 1(c)).
Clearly, the event {T−

x < T+
x } occurs if and only if level 0 is not downcrossed

before level x is upcrossed by {x + Y (t) : 0 ≤ t ≤ T−
x }. By construction of

R(t) the latter event occurs if and only if level x is upcrossed before level 0
is downcrossed by {R(t) : 0 ≤ t ≤ T−

x }. Finally, by construction the latter
event occurs if and only if level x is upcrossed before level 0 is downcrossed
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Fig. 1 The stopped process {x + Y (t) : 0 ≤ t ≤ T−

x
} in (a), the risk stopped

process {R(t) : 0 ≤ t ≤ T−

x
} in (b) and the process U = {U(t) : t ≥ 0} in (c).

by U. By this duality it can be seen that U represents the work process
of the M/G/1 queue until the first upcrossing above level x (see also [7]).
In order for the process U to upcross level x before downcrossing level 0
we condition on the size of the first jump. If the first jump is greater than
x, level x is upcrossed at time 0. The latter event occurs with probability
1 − G(x). If the first jump is a < x, then level x is upcrossed before level
0 is downcrossed with probability 1− θa(0, x). Applying this argument we
obtain

Pr(T−
x < T+

x ) = 1 − G(x) +

x
∫

0

[1 − θa(0, x)]dG(a). (28)

Now replace x by x−a in (25) and substitute in (28). The proof is complete
after some elementary algebra.

We are now in a position to introduce the main result of this section.

Theorem 5

Pr(M ≤ x|T < ∞) = ρ[1 − e
−µ

x
∫

0

(1−F∗G(y)
F (y)

)dy
] = ρ −

ρ − 1

F (x)
.

Proof The jumps of the V WT in the G/M/1 queue are exp(µ). As men-
tioned before, µdx is the infinitesimal probability that an arbitrary record
value of the V WT lands in [x, x + dx). But x is the maximum of the V WT
if and only if the latter record value is the last record value in the busy
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period, and the probability of that event is Pr(T−
x < T+

x ). Multiplying, we
conclude that the hazard rate function of M is

r(x) = µ Pr(T−
x < T+

x ).

The first result of the theorem follows by Lemma 4, also observing that
Pr(T < ∞) = 1/ρ (cf. [2], p. 217). The second result of the theorem is
obtained as follows. Consider the steady-state work process in the M/G/1
queue with arrival rate µ and service time distribution G(·) (this steady-
state law exists since 1/ρ = µ/λ < 1). It follows from the integro-differential
equation of Takacs for the M/G/1 work process (cf. [2], p. 263) that

f(x) = µ[F (x) − F ∗ G(x)], x > 0,

where F is the steady-state law of the work process and f(x) is the density
of F (x), x > 0. We can now write:

Pr(M ≤ x|T < ∞) = ρ[1 − e−
∫

x

0
f(y)
F (y) dy] = ρ[1− e−lnF (x)+D].

The result follows by normalization.

Remark 10 It should be observed, using (27), that Pr(M ≤ x|T < ∞) =
ρ[1− θx(0, x)], or Pr(M > x) = θx(0, x). The latter result also follows from
the construction in Figure 1.
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