The $G / M / 1$ Queue revisited

Ivo Adan ${ }^{1}$, Onno Boxma ${ }^{1}$, David Perry ${ }^{2}$
${ }^{1}$ EURANDOM and Department of Mathematics and Computer Science, Eindhoven University of Technology
${ }^{2}$ Department of Statistics, University of Haifa

1 Introduction

The $G / M / 1$ queue is one of the classical models of queueing theory. The goal of this paper is two-fold: (i) To introduce new derivations of some wellknown results, and (ii) to present some new results for the $G / M / 1$ queue and its variants. In particular, we pay attention to the $G / M / 1$ queue with a set-up time at the start of each busy period, to the $G / M / 1$ queue with exceptional first service time, and to the cycle maximum of the $G / M / 1$ queue. The main methods in the paper are (i) martingale techniques, (ii) transform techniques, and (iii) sample-path arguments, exploiting duality between the attained and virtual waiting time processes.

Treatments of the $G / M / 1$ queue may be found in several books on queueing theory; see, e.g., Asmussen [1], Cohen [2], Prabhu [9] and Takács [11]. Doshi [3] has studied the $G I / G / 1$ queue with vacations or set-up times. The decomposition result that he obtains for the waiting time distribution is quite involved in the case of set-up times; in the case of exponential service times and phase-type set-up times, we obtain more explicit decomposition results.

The paper is organized as follows. Below we describe the model and introduce some notation. Section 2 introduces the attained waiting time process of the $G / M / 1$ queue and relates it to the virtual waiting time process (or work process) of that same queue. In Section 3 the attained waiting time is shown to be exponentially distributed. A brief derivation of the idle period distribution is presented in Section 4, using a martingale approach. Sections 5 and 6 are devoted to the $G / M / 1$ queue with set-up times. We derive a decomposition result for the attained waiting time process, thus also retrieving a sojourn time decomposition result of Doshi [3]. Like in the case without set-up times, we use a martingale to derive an expression
for the Laplace-Stieltjes transform of the idle period distribution. Section 6 considers the case of Erlang set-up times. In Section 7 we study the $G / M / 1$ queue with exceptional first service time in a busy period. We obtain the joint distribution of the busy and idle period. For the case of the ordinary $G / M / 1$ queue, a known result (cf. [9]) is re-derived. The last section of the paper is devoted to a study of the cycle maximum in a busy period of the $G / M / 1$ queue. An approach based on the attained waiting time process is chosen for the steady-state case. In the case of overload, an approach based on the virtual waiting time process is employed to analyze the cycle maximum, given that the busy period is finite.

2 The $G / M / 1$ Queue

We consider the classical $G / M / 1$ queue. The times between successive arrivals are i.i.d. random variables S_{1}, S_{2}, \ldots, with distribution $G(\cdot)$, LaplaceStieltjes transform (LST) $G^{*}(\alpha)$ and mean $1 / \lambda$. The service requirements of the arriving customers are i.i.d. random variables Z_{1}, Z_{2}, \ldots, which are exponentially distributed with mean $1 / \mu$. All interarrival and service times are assumed to be independent. Service is in order of arrival. The traffic load is denoted by $\rho:=\lambda / \mu$. It is assumed that $\rho<1$ (unless stated otherwise).

Several derivations in this study are based on the sample path analysis of two dual compound processes; the so-called virtual waiting time ($V W T$) and the attained waiting time $(A W T)$ processes. Formally, let $\mathbf{N}=\{N(t)$: $t \geq 0\}$ and $\boldsymbol{\Lambda}=\{\Lambda(t): t \geq 0\}$ be counting processes such that for all $t \geq 0, n=0,1, \ldots$ and $m=0,1, \ldots:\{N(t) \geq n\}=\left\{Z_{1}+\ldots+Z_{n} \leq t\right\}$ and $\{\Lambda(t) \geq m\}=\left\{S_{1}+\ldots+S_{m} \leq t\right\}$. Obviously, \mathbf{N} is a Poisson process with rate μ and $\boldsymbol{\Lambda}$ is a renewal process whose inter-renewal distribution is $G(\cdot)$ with mean $1 / \lambda$. Now define the continuous time random walk $\mathbf{X}=\{X(t): t \geq 0\}$ such that $X(t)=t-\left(S_{1}+\ldots+S_{N(t)}\right)$ and $\mathbf{Y}=\{Y(t): t \geq 0\}$ such that $Y(t)=\left(Z_{1}+\ldots+Z_{A(t)}\right)-t$. Then construct the reflected processes $\mathbf{A}=\{A(t): t \geq 0\}$ and $\mathbf{V}=\{V(t): t \geq 0\}$, respectively, by

$$
A(t)=X(t)-\min _{0 \leq s<t} X(s) \text { and } V(t)=Y(t)-\min _{0 \leq s<t} Y(s) .
$$

Here \mathbf{A} is interpreted as the conditional $A W T$ process of the $G / M / 1$ queue in which the idle periods are deleted and the busy periods are glued together. The process \mathbf{V} is interpreted as the $V W T$ process (or the work process) of the same $G / M / 1$ queue. The processes \mathbf{V} and \mathbf{A} are dual processes with respect to waiting times. While $V(t)$ is interpreted as the time a customer would have to wait in line if he arrived at $t, A(t)$ is interpreted as the time already attained (or elapsed) since the arrival of the customer being served at t. In other words, while \mathbf{V} designates the waiting time of a virtual customer by looking forward in time (the customer is virtual in the sense that he did not arrive at t and thus, in practice, he contributed nothing to the work), A designates the waiting time of a real customer by looking backward in time. As a result, while the $V W T$ might be sometimes equal
to 0 , the $A W T$ cannot be 0 because the served customer "sees" at least himself in the system. By that interpretation, the steady state law of \mathbf{A} and that of \mathbf{V} must be closely related to each other. In fact, it can be shown by construction (see, e.g., Perry et al. [6]) that the steady state law of \mathbf{A} is equal to that of the conditional steady state law of \mathbf{V} given that the idle periods (the time periods in which $\mathbf{V}=0$) are deleted and the busy periods are glued together. Note that $\rho<1$ implies that both $X(t)$ and $Y(t)$ tend to $-\infty$ a.s., so that \mathbf{A} and \mathbf{V} are regenerative processes. Furthermore, the cycles associated with \mathbf{A} are the busy periods and those associated with \mathbf{V} are the busy cycles (the busy cycle is composed of busy period plus idle period). Also, it can be shown (see, e.g., Perry et al. [6]) that the stopping times $T=\inf \{t \geq 0: X(t) \leq 0\}$ and $\tau=\inf \{t \geq 0: Y(t)=0\}$ are the same random variables that represent the busy period of the same $G / M / 1$ queue.

Remark 1 A busy cycle generated by \mathbf{V} is $C=\inf \{t \geq \tau: V(t)>0\}$. Then, $C-T$ and $-A(T)$ are also the same random variables that represent the idle period. Also, while the sample path of \mathbf{V} is continuous at τ and $V(\tau-)=V(\tau+)=0, A(T)$ is a point of discontinuity since by definition $A(T-)>0>A(T)<A(T+)=0$.

3 Density of the Attained Waiting Time

We first study the $A W T$ process \mathbf{A}, showing that its steady state distribution is exponential. We define the steady state random variable $A=$ $\lim _{t \rightarrow \infty} A(t)$, where the latter limit is defined in terms of weak convergence. Let $f_{A}(\cdot)$ be the equilibrium density of \mathbf{A}. A level-crossings argument shows that it satisfies the following steady state equation:

$$
\begin{equation*}
f_{A}(x)=\mu \int_{x}^{\infty}[1-G(w-x)] f_{A}(w) \mathrm{d} w \tag{1}
\end{equation*}
$$

Rewrite this equation into:

$$
\begin{equation*}
f_{A}(x)=\mu \int_{0}^{\infty}[1-G(y)] f_{A}(y+x) \mathrm{d} y \tag{2}
\end{equation*}
$$

Differentiate to get

$$
f_{A}^{\prime}(x)=\mu \int_{0}^{\infty}[1-G(y)] f_{A}^{\prime}(y+x) \mathrm{d} y
$$

where $f_{A}^{\prime}(\cdot)$ is the derivative with respect to $f_{A}(\cdot)$. We know that, for $\rho<1$, A has a unique density. Noticing that $f_{A}(x)$ and $f_{A}^{\prime}(x)$ satisfy the same equation, it follows that $f_{A}^{\prime}(x)$ equals $f_{A}(x)$, up to a multiplicative constant. Solving $f_{A}^{\prime}(x)=\eta f_{A}(x)$ with $\int_{0}^{\infty} f_{A}(x) \mathrm{d} x=1$ yields

$$
\begin{equation*}
f_{A}(x)=\eta e^{-\eta x}, \quad x>0 \tag{3}
\end{equation*}
$$

Here η is implicitly defined as the unique solution, in $(0, \mu)$, of

$$
\begin{equation*}
\eta=\mu\left[1-G^{*}(\eta)\right] \tag{4}
\end{equation*}
$$

The fact that η satisfies (4) follows by substitution of (3) in (2). The uniqueness statement follows since $G^{*}(0)=1, G^{*}(\infty)=0$ and $G^{*}(\alpha)$ is a monotone decreasing convex function, combined with $\rho<1$ (which implies that the derivative of the right-hand side of (4) is $1 / \rho>1$). We conclude that the steady state law of the process A, i.e., the $A W T$ process of the $G / M / 1$ queue in which the idle periods are deleted, is $\exp (\eta)$.

Remark 2 The last result implies that the sojourn times of the $G / M / 1$ queue are also $\exp (\eta)$ distributed (the latter statement is a well-known result, see [2] or [5]). To see this, note that the sojourn times are the peak values of the $A W T$ process. But these peak values occur at the arrival instants of the Poisson process N. Hence, by PASTA, the limiting distribution of the peak values of the $A W T$ process equals the stationary distribution.

4 Martingale Approach for the Idle Period

We now turn to the idle period. In the $G / M / 1$ queue, the busy period and the idle period are not necessarily independent. Just for the sake of convenience, the analysis is based on the random walk $\hat{\mathbf{X}}:=-\mathbf{X}$. Consider the process $\mathbf{M}=\{M(t): t \geq 0\}$, where

$$
\begin{equation*}
M(t)=\varphi(\alpha) \int_{0}^{t} \mathrm{e}^{-\alpha \hat{X}(s)} \mathrm{d} s+\mathrm{e}^{-\alpha \hat{X}(0)}-e^{-\alpha \hat{X}(t)} \tag{5}
\end{equation*}
$$

and $\varphi(\alpha):=\alpha-\mu\left[1-G^{*}(\alpha)\right]$ is the exponent of $\hat{\mathbf{X}}$. It is well-known that \mathbf{M} is a martingale (see Kella and Whitt [4]), and by applying the optional sampling theorem for T (clearly, T is the same for both $\hat{\mathbf{X}}$ and \mathbf{X}) to the martingale \mathbf{M} we see that $E M(T)=0$, thus obtaining the fundamental identity (with the substitution $\hat{X}(0)=0$)

$$
\begin{equation*}
\varphi(\alpha) E\left(\int_{0}^{T} \mathrm{e}^{-\alpha \hat{X}(s)} \mathrm{d} s\right)=-1+E\left(\mathrm{e}^{-\alpha \hat{X}(T)}\right) \tag{6}
\end{equation*}
$$

We now can prove the following result (see also, e.g., p. 36 of Prabhu [9]).
Theorem 1 The LST of the idle period of the $G / M / 1$ queue is given by

$$
E e^{-\alpha I}=\frac{\eta-\mu\left[1-G^{*}(\alpha)\right]}{\eta-\alpha}
$$

Proof The fact that $\int_{0}^{T} \mathrm{e}^{-\alpha \hat{X}(s)} \mathrm{d} s=\int_{0}^{T} \mathrm{e}^{-\alpha \hat{A}(s)} \mathrm{d} s$ (where $\hat{\mathbf{A}}:=-\mathbf{A}$), follows immediately by the definition of T. We thus express (6) in terms of the process A:

$$
\begin{equation*}
\varphi(\alpha) E\left(\int_{0}^{T} \mathrm{e}^{\alpha A(s)} \mathrm{d} s\right)=-1+E\left(\mathrm{e}^{-\alpha \hat{A}(T)}\right) \tag{7}
\end{equation*}
$$

Using the theory of regenerative processes and the fact that $-A(T)=$ $\hat{A}(T)=I$, the idle period, we obtain:

$$
\begin{equation*}
E\left(\mathrm{e}^{-\alpha I}\right)=1+\varphi(\alpha) E T E\left(\mathrm{e}^{\alpha A}\right) \tag{8}
\end{equation*}
$$

Now use the fact that A is $\exp (\eta)$ distributed (cf. (3)), and that $E T=1 / \eta$. To see the latter result, note that level 0 is down-crossed by \mathbf{A} (alternatively, up-crossed by $\hat{\mathbf{A}}$) exactly once during the cycle T (the down-crossing occurs at T since $A(T-)>0>A(T))$. By level crossing theory, $f(0)$ is the rate of the long-run average number of down-crossings of level 0 . Thus, $E T=$ $1 / f(0)=1 / \eta$.

Remark 3 Of course, the LST of the idle period may also be obtained directly from Lindley's equation (see, e.g., Asmussen [1]),

$$
I=(S-A \mid S-A>0)
$$

where the generic random variable S denotes the inter-arrival time and A the sojourn time (which is $\exp (\eta)$).

5 Constant Set-Up Times

We now turn our attention to a $G / M / 1$ queue with a set-up time, R, at the beginning of each busy period. It appears to be convenient to start with the case of a deterministic set-up time $R=x$. Subsequently, for general set-up times, the results for the constant case may be integrated w.r.t. the distribution of the set-up time. The expressions obtained for general set-up times, however, turn out to be not very explicit. Consequently, the special case of an Erlang-distributed set-up time will be discussed separately in Section 6 (and yields more explicit results).

Consider the process $\mathbf{A}_{\mathbf{x}}=\left\{A_{x}(t): t \geq 0\right\}$, where

$$
A_{x}(t)=x+X(t)-\min _{0 \leq s<t}(x+X(s))
$$

with x some nonnegative constant. The process $\mathbf{A}_{\mathbf{x}}$ can be visualized as process \mathbf{A} that is lifted during each busy period of the original process. During the first busy period of the corresponding $G / M / 1$ queue without set-up time, it is lifted to level x, during the second one to level $x-I_{1}$, where I_{1} is the first idle period, during the third one to level $x-I_{1}-I_{2}$ and so on. Define $K=\inf \left\{k: x-I_{1}-I_{2}-\cdots-I_{k}<0\right\}$. That is, K is the number of negative ladder heights during the busy period $T_{x}=\inf \left\{t: A_{x}(t) \leq 0\right\}$.

Let $\mathbf{L}=\{L(t): t \geq 0\}$ denote the level process at which \mathbf{A} is lifted at time t, i.e., $L(t)$ is the value with which $A(t)$ is lifted, and let A_{x}, L and A denote the steady-state random variables associated with the processes $\mathbf{A}_{\mathbf{x}}, \mathbf{L}$ and \mathbf{A}, respectively (recall from (3) that A is $\exp (\eta)$). At time $t \geq 0, L(t)$ does not depend on the current busy period of $A(t)$, but only on the ones prior to the current one. Hence, $L(t)$ and $A(t)$ are independent, and thus (by letting t tend to infinity) we can conclude that:

Theorem $2 A_{x} \stackrel{\mathcal{D}}{=} A+L$, where A and L are independent.
Remark 4 Theorem 2 is also valid for general set-up times. In fact, it implies that the steady-state sojourn time in the $G / M / 1$ with set-up times can be decomposed as the sum of two independent random variables: the steadystate sojourn time in the $G / M / 1$ without set-up times and the steady-state level of lifting (cf. Remark 2).

To determine the steady-state distribution of $\mathbf{A}_{\mathbf{x}}$, we need to determine the distribution of \mathbf{L}. The expected number of busy periods in a cycle of \mathbf{L} that are lifted higher than y is equal to $1+m(x-y)$, where $m(t)$ denotes the renewal function of the process of idle periods $\left\{I_{n}\right\}$. Hence, we have

$$
\begin{equation*}
\operatorname{Pr}(L>y)=\frac{1+m(x-y)}{1+m(x)}, \quad 0 \leq y<x, \quad \operatorname{Pr}(L=x)=\frac{1}{1+m(x)} \tag{9}
\end{equation*}
$$

Note that L has probability mass at x. For example, in case that the interarrival times S_{i} are also exponential with parameter λ, we have $m(x)=\lambda x$, and then

$$
\operatorname{Pr}(L>y)=1-\frac{\lambda y}{1+\lambda x}, \quad 0 \leq y<x, \quad \operatorname{Pr}(L=x)=\frac{1}{1+\lambda x}
$$

The steady state law of \mathbf{A}_{x} is introduced in the following lemma.
Lemma 1

$$
E e^{-\alpha A_{x}}=\frac{\eta}{\eta+\alpha}\left[\frac{e^{-\alpha x} * m(x)+e^{-\alpha x}}{1+m(x)}\right]
$$

where "*" is the convolution sign.
Proof By Theorem 2,

$$
E e^{-\alpha A_{x}}=E e^{-\alpha A} E e^{-\alpha L}
$$

where from (3):

$$
E e^{-\alpha A}=\frac{\eta}{\eta+\alpha}
$$

Also, by (9),
$E e^{-\alpha L}=\int_{y=0}^{x} e^{-\alpha y} \operatorname{d} \operatorname{Pr}(L<y)+e^{-\alpha x} \operatorname{Pr}(L=x)=\frac{e^{-\alpha x} * m(x)+e^{-\alpha x}}{1+m(x)}$,
which completes the proof.

Remark 5 If the set-up time R has a general distribution, then one can easily get the LST of the steady-state distribution of the $A W T$ process by integrating the LST of A_{x} w.r.t. the set-up time distribution. Let the random variable A_{R} denote the AWT in steady-state. Then

$$
\begin{equation*}
E e^{-\alpha A_{R}}=\frac{\eta}{\eta+\alpha} \int_{0}^{\infty} \frac{e^{-\alpha x}+\mathrm{e}^{-\alpha x} * m(x)}{1+m(x)} \mathrm{d} \operatorname{Pr}(R \leq x) \tag{10}
\end{equation*}
$$

It should be observed, though, that the expression involves the renewal function $m(\cdot)$ of the idle periods of the $G / M / 1$ queue.

We now proceed to study the idle and busy period. Let I_{x} and T_{x} be the idle period and busy period, respectively, associated with \mathbf{A}_{x}.

Lemma 2

$$
E e^{-\alpha I_{x}}=\frac{\alpha-\mu\left(1-G^{*}(\alpha)\right)}{E T_{x}} \frac{\eta}{\eta-\alpha}\left[\frac{e^{\alpha x} * m(x)+e^{\alpha x}}{1+m(x)}\right]+\mathrm{e}^{\alpha x}
$$

with

$$
\begin{equation*}
E T_{x}=\mu\left[\int_{0}^{\infty}(1-G(u)) d F_{A_{x}}(u)\right]^{-1} \tag{11}
\end{equation*}
$$

and where $F_{A_{x}}(\cdot)$ is the distribution whose LST is given in Lemma 1.
Proof Consider the process $\tilde{\mathbf{M}}=\{\tilde{M}(t): t \geq 0\}$ where

$$
\tilde{M}(t)=\tilde{\varphi}(\alpha) \int_{0}^{t} \mathrm{e}^{-\alpha(x+X(s))} \mathrm{d} s+\mathrm{e}^{-\alpha x}-e^{-\alpha(x+X(t))}
$$

and

$$
\tilde{\varphi}(\alpha)=-\left[\alpha+\mu\left(1-G^{*}(-\alpha)\right)\right]
$$

It is readily seen that $\tilde{\mathbf{M}}$ is a martingale and by applying the optional sampling theorem for $T_{x}=\inf \left\{t: A_{x}(t) \leq 0\right\}$ to the martingale $\tilde{\mathbf{M}}$ we see that

$$
\begin{equation*}
\tilde{\varphi}(\alpha) E\left(\int_{0}^{T_{x}} \mathrm{e}^{-\alpha A_{x}(s)} \mathrm{d} s\right)=-\mathrm{e}^{-\alpha x}+E\left(\mathrm{e}^{-\alpha A_{x}\left(T_{x}\right)}\right) \tag{12}
\end{equation*}
$$

By the theory of regenerative processes, the left hand side of (12) is

$$
\frac{\tilde{\varphi}(\alpha) E \mathrm{e}^{-\alpha A_{x}}}{E T_{x}}
$$

Also, $-A_{x}\left(T_{x}\right)$ can be interpreted as the idle period I_{x}. Thus from (12),

$$
\begin{align*}
E\left(\mathrm{e}^{\alpha I_{x}}\right) & =\frac{\tilde{\varphi}(\alpha) E \mathrm{e}^{-\alpha A_{x}}}{E T_{x}}+\mathrm{e}^{-\alpha x} \\
& =\frac{\tilde{\varphi}(\alpha)}{E T_{x}} \frac{\eta}{\eta+\alpha}\left[\frac{e^{-\alpha x} * m(x)+e^{-\alpha x}}{1+m(x)}\right]+\mathrm{e}^{-\alpha x} \tag{13}
\end{align*}
$$

where the second step follows by Lemma 1 . Finally, $E T_{x}$ is the reciprocal of the rate of down-crossings of level 0 by \mathbf{A}_{x}. Thus, by level crossing theory, (11) follows. Now replace α by $-\alpha$ in (13) and the result follows.

Remark 6 In order to obtain the LST of the idle period associated with a generally distributed set-up time R, we apply the law of total probability in (13) to get

$$
E\left(\mathrm{e}^{-\alpha I}\right)=\int_{0}^{\infty} E\left(\mathrm{e}^{-\alpha I_{x}}\right) \mathrm{d} \operatorname{Pr}(R \leq x)
$$

6 Erlang Set-up Times

In this section we consider the special case of Erlang distributed set-up times, i.e., the set-up time R is the sum of n exponentials with parameter ν. Then the $A W T$ process $\mathbf{A}_{\mathbf{R}}$ can be visualized as process \mathbf{A} that is lifted during each busy period by at least one and at most n exponentials. Let L_{m} denote the number of exponentials lifting \mathbf{A} during the m th busy period. Clearly, $\mathbf{L}=\left\{L_{m}, m=0,1,2, \ldots\right\}$ is a Markov chain with states $\{1, \ldots, n\}$ and the one-step transition probabilities $p_{i, j}$ are given by

$$
\begin{aligned}
p_{i, i-k} & =\operatorname{Pr}\left(X_{1}+\cdots+X_{k}<I<X_{1}+\cdots+X_{k+1}\right) \\
& =\frac{(-\nu)^{k}}{k!} I^{*(n)}(\nu), \quad k=0,1,2, \ldots, i-1 \\
p_{i, n} & =1-p_{i, i}-p_{i, i-1}-\cdots-p_{i, 1}
\end{aligned}
$$

where X_{1}, X_{2}, \ldots are independent exponentials, each with parameter ν, and $I^{*(k)}(\cdot)$ is the k th derivative of the LST of the idle period I associated with the $G / M / 1$ without set-up times (see Section 4). Here we used that

$$
\begin{aligned}
\operatorname{Pr}\left(I<X_{1}+\cdots+X_{k+1}\right) & =\int_{0}^{\infty} e^{-\nu x} \sum_{i=0}^{k} \frac{(\nu x)^{i}}{i!} \mathrm{d} \operatorname{Pr}(I \leq x) \\
& =\sum_{i=0}^{k} \frac{\nu^{i}}{i!} \int_{0}^{\infty} e^{-\nu x} x^{i} \mathrm{~d} \operatorname{Pr}(I \leq x) \\
& =\sum_{i=0}^{k} \frac{(-\nu)^{i}}{i!} I^{*(i)}(\nu) .
\end{aligned}
$$

Let π_{1}, \ldots, π_{n} denote the steady-state probabilities of \mathbf{L}. These probabilities can be easily calculated recursively: Let v_{k} be the expected number of visits to state k till the first return to state n, when starting in state n, so $v_{n}=1$ and

$$
v_{k}=\sum_{l=k+1}^{n} v_{l} p_{l, k}, \quad k=n-1, n-2, \ldots, 1
$$

Then the steady-state probabilities follow from normalization, i.e.,

$$
\pi_{k}=\frac{v_{k}}{v_{1}+\cdots+v_{n}}, \quad k=1, \ldots, n
$$

Hence, we have (see Theorem 2 and Remark 4),

$$
A_{R} \stackrel{\mathcal{D}}{=} A+L
$$

where

$$
L \stackrel{\mathcal{D}}{=} \begin{cases}X_{1}, & \text { w.p. } \pi_{1} \\ X_{1}+X_{2}, & \text { w.p. } \pi_{2} \\ \vdots & \\ X_{1}+\cdots+X_{n}, & \text { w.p. } \pi_{n}\end{cases}
$$

Remark 7 The above result can be easily extended to mixed Erlang set-up times. Suppose that, with probability $p_{i}, i=1, \ldots, n$, the set-up time R is the sum of i independent exponentials, each with parameter ν. Then the steady-state distribution of \mathbf{L} is given by

$$
\pi_{i}=\frac{\sum_{k=1}^{n} p_{k} \pi_{i}^{k} / \pi_{k}^{k}}{\sum_{k=1}^{n} p_{k} / \pi_{k}^{k}}, \quad i=1, \ldots, n
$$

where $\pi_{1}^{k}, \ldots, \pi_{k}^{k}$ denote the steady-state probabilities for Erlang- k distributed set-up times, with parameter ν.

7 Joint Distribution of Busy and Idle Period

In this section we determine the LST of the joint distribution of the busy period T and idle period I in the $G / M / 1$ queue, for the case that the first service time Z_{1} of the busy period is x. By integrating the result w.r.t. the probability distribution of Z_{1}, we subsequently also determine the LST of the joint distribution of the busy period and idle period in the $G / M / 1$ queue with either set-up time or an exceptional first service time. Introduce, for $\operatorname{Re} \alpha_{1}, \alpha_{2} \geq 0, x \geq 0$:

$$
\begin{align*}
k\left(x, \alpha_{1}, \alpha_{2}\right) & :=E\left(\mathrm{e}^{-\alpha_{1} T-\alpha_{2} I} \mid Z_{1}=x\right) \tag{14}\\
K\left(s, \alpha_{1}, \alpha_{2}\right) & :=\int_{0}^{\infty} \mathrm{e}^{-s x} k\left(x, \alpha_{1}, \alpha_{2}\right) \mathrm{d} x \tag{15}
\end{align*}
$$

Also introduce $\hat{s}=\hat{s}\left(\alpha_{1}\right)$, the unique zero of $1-\frac{\mu}{\mu-s} G^{*}\left(\alpha_{1}+s\right)$ in the righthalf α_{1}-plane (see, e.g., Cohen [2], p. 226).

Theorem 3 For $\operatorname{Re} s, \alpha_{1}, \alpha_{2} \geq 0$,

$$
\begin{align*}
K\left(s, \alpha_{1}, \alpha_{2}\right) & =\frac{\mu-s}{\mu-s-\mu G^{*}\left(\alpha_{1}+s\right)}\left[\frac{G^{*}\left(\alpha_{1}+s\right)-G^{*}\left(\alpha_{2}\right)}{\alpha_{2}-\alpha_{1}-s}\right. \\
& \left.-\frac{\mu}{\mu-s} G^{*}\left(\alpha_{1}+s\right) \frac{G^{*}\left(\alpha_{1}+\hat{s}\right)-G^{*}\left(\alpha_{2}\right)}{\alpha_{2}-\alpha_{1}-\hat{s}}\right] \tag{16}
\end{align*}
$$

Proof Conditioning on the two possibilities that the first interarrival time $S_{1} \geq x$ and $S_{1}<x$, we can write:

$$
\begin{align*}
k\left(x, \alpha_{1}, \alpha_{2}\right) & =\int_{t=x}^{\infty} \mathrm{e}^{-\alpha_{1} x} \mathrm{e}^{-\alpha_{2}(t-x)} \mathrm{d} G(t) \\
& +\int_{z=0}^{\infty} \mu \mathrm{e}^{-\mu z} \int_{t=0}^{x} \mathrm{e}^{-\alpha_{1} t} k\left(x-t+z, \alpha_{1}, \alpha_{2}\right) \mathrm{d} G(t) \mathrm{d} z \tag{17}
\end{align*}
$$

Taking the LT (Laplace Transform) w.r.t. x and changing integration orders yields:

$$
\begin{align*}
& K\left(s, \alpha_{1}, \alpha_{2}\right)=\int_{x=0}^{\infty} \mathrm{e}^{-\left(\alpha_{1}+s\right) x} \int_{u=0}^{\infty} \mathrm{e}^{-\alpha_{2} u} \mathrm{~d} G(x+u) \mathrm{d} x \\
+ & \mu \int_{t=0}^{\infty} \mathrm{e}^{-\left(\alpha_{1}+s\right) t} \mathrm{~d} G(t) \int_{u=0}^{\infty} \int_{z=0}^{\infty} \mathrm{e}^{-s u} \mathrm{e}^{-\mu z} k\left(u+z, \alpha_{1}, \alpha_{2}\right) \mathrm{d} u \mathrm{~d} z \\
= & \frac{G^{*}\left(\alpha_{1}+s\right)-G^{*}\left(\alpha_{2}\right)}{\alpha_{2}-\alpha_{1}-s}+\mu G^{*}\left(\alpha_{1}+s\right) \frac{K\left(s, \alpha_{1}, \alpha_{2}\right)-K\left(\mu, \alpha_{1}, \alpha_{2}\right)}{\mu-s} . \tag{18}
\end{align*}
$$

Hence

$$
\begin{align*}
& K\left(s, \alpha_{1}, \alpha_{2}\right)\left[1-\frac{\mu}{\mu-s} G^{*}\left(\alpha_{1}+s\right)\right] \\
= & \frac{G^{*}\left(\alpha_{1}+s\right)-G^{*}\left(\alpha_{2}\right)}{\alpha_{2}-\alpha_{1}-s}-\frac{\mu}{\mu-s} G^{*}\left(\alpha_{1}+s\right) K\left(\mu, \alpha_{1}, \alpha_{2}\right) \tag{19}
\end{align*}
$$

It remains to determine $K\left(\mu, \alpha_{1}, \alpha_{2}\right)$. A standard analyticity argument gives (remember the definition of \hat{s} above):

$$
\begin{equation*}
K\left(\mu, \alpha_{1}, \alpha_{2}\right)=\frac{G^{*}\left(\alpha_{1}+\hat{s}\right)-G^{*}\left(\alpha_{2}\right)}{\alpha_{2}-\alpha_{1}-\hat{s}}, \quad \operatorname{Re} \alpha_{1}, \alpha_{2} \geq 0 \tag{20}
\end{equation*}
$$

Substitution in (19) finally gives the statement of the theorem.
Remark 8 Determination of $k\left(x, \alpha_{1}, \alpha_{2}\right)$.
In principle, one can invert $K\left(s, \alpha_{1}, \alpha_{2}\right)$ to obtain $k\left(x, \alpha_{1}, \alpha_{2}\right)$. Rewrite (16) as follows (s should be such that the sum converges):

$$
\begin{align*}
K\left(s, \alpha_{1}, \alpha_{2}\right) & =\sum_{j=0}^{\infty}\left(\frac{\mu}{\mu-s}\right)^{j}\left(G^{*}\left(\alpha_{1}+s\right)\right)^{j}\left[\frac{G^{*}\left(\alpha_{1}+s\right)-G^{*}\left(\alpha_{2}\right)}{\alpha_{2}-\alpha_{1}-s}\right. \\
& \left.-\frac{\mu}{\mu-s} G^{*}\left(\alpha_{1}+s\right) \frac{G^{*}\left(\alpha_{1}+\hat{s}\right)-G^{*}\left(\alpha_{2}\right)}{\alpha_{2}-\alpha_{1}-\hat{s}}\right] \tag{21}
\end{align*}
$$

Now observe that

$$
G^{*}\left(\alpha_{1}+s\right)=G^{*}\left(\alpha_{1}\right) \int_{x=0}^{\infty} \mathrm{e}^{-s x}\left[\frac{\mathrm{e}^{-\alpha_{1} x} \mathrm{~d} G(x)}{\int_{0}^{\infty} \mathrm{e}^{-\alpha_{1} y} \mathrm{~d} G(y)}\right]
$$

which equals the product of $G^{*}\left(\alpha_{1}\right)$ and the LST of $\operatorname{Pr}\left(S_{1}<x \mid S_{1}<E_{1}\right)$, with E_{1} exponentially distributed with mean $1 / \alpha_{1}$. The first part of the
righthand side of (21) can now be inverted term by term (care should be taken of the fact that $K\left(s, \alpha_{1}, \alpha_{2}\right)$ is an LT, and not an LST, w.r.t. x). The term between square brackets in (21) is easier to invert; notice that the first term in the righthand side of (17) is the inverse of $\left(G^{*}\left(\alpha_{1}+s\right)\right.$ $\left.G^{*}\left(\alpha_{2}\right)\right) /\left(\alpha_{2}-\alpha_{1}-s\right)$. Of course, for specific choices of the interarrival time distribution, like the Erlang distribution, it is a rather straightforward task to obtain $k\left(x, \alpha_{1}, \alpha_{2}\right)$ by inversion of the expression in (16).

Remark 9 The LST of the joint distribution of busy and idle period.
It should be noted that $\mu K\left(\mu, \alpha_{1}, \alpha_{2}\right)$ is the LST of the joint distribution of the busy period T and idle period I in the ordinary $G / M / 1$ queue, in which also the first service time Z_{1} is $\exp (\mu)$ distributed. The result agrees with Formula (47) on p. 57 of Prabhu [10]. Taking $\alpha_{1}=\alpha_{2}$ yields the LST of the busy cycle length in the $G / M / 1$ queue. Next suppose that the first service time Z_{1} is hyperexponentially distributed, with density $\sum_{i=1}^{k} p_{i} \nu_{i} \mathrm{e}^{-\nu_{i} x}$. In that case,

$$
\begin{equation*}
E\left(\mathrm{e}^{-\alpha_{1} T-\alpha_{2} I}\right)=\sum_{i=1}^{k} p_{i} \nu_{i} K\left(\nu_{i}, \alpha_{1}, \alpha_{2}\right) . \tag{22}
\end{equation*}
$$

Finally suppose that the first service time Z_{1} is Erlang- k distributed, with parameter ν. Then it is easily verified that

$$
\begin{equation*}
E\left(\mathrm{e}^{-\alpha_{1} T-\alpha_{2} I}\right)=\left.\frac{(-1)^{k-1} \nu^{k}}{(k-1)!} \frac{d^{k-1}}{d s^{k-1}} K\left(s, \alpha_{1}, \alpha_{2}\right)\right|_{s=\nu} \tag{23}
\end{equation*}
$$

8 Cycle Maximum

In this section we introduce two approaches for analysis of the cycle maximum of the $G / M / 1$ queue; the first is based on the $A W T$, the second on the $V W T$. We refer to Cohen [2], Section III.7.5, for an expression for this cycle maximum in the form of a contour integral. That is a result for $\rho \leq 1$. In Subsection 8.2 we consider the case $\rho>1$.

8.1 AWT Approach

Recall that $X(t)=t-\left(S_{1}+S_{2}+\ldots+S_{A(t)}\right)$ and $T=\inf \{t: X(t) \leq 0\}$. Let $M=\max _{0 \leq t \leq T} X(t)$. In this section we compute the law of M, the cycle maximum of the busy cycle.

Theorem 4

$$
\operatorname{Pr}(M>x)=\frac{e^{-\eta x}\left(1-E e^{-\eta I}\right)}{1-e^{-\eta x} E e^{-\eta I_{x}}},
$$

where $E e^{-\eta I}$ is given in Theorem 1 and $E e^{-\eta I_{x}}$ is given in Lemma 2 above with α replacing η.

Proof

$$
\begin{align*}
\operatorname{Pr}(A>x)= & \operatorname{Pr}\left(\max _{0 \leq t<\infty} X(t)>x\right) \\
= & \operatorname{Pr}\left(\left\{\max _{0 \leq t<T} X(t)>x\right\} \cup\left\{\max _{T \leq t<\infty} X(t)>x\right\}\right) \\
= & \operatorname{Pr}\left(\max _{0 \leq t<T} X(t)>x\right)+\operatorname{Pr}\left(\max _{T \leq t<\infty} X(t)>x\right) \\
& -\operatorname{Pr}\left(\left\{\max _{0 \leq t<T} X(t)>x\right\} \cap\left\{\max _{T \leq t<\infty} X(t)>x\right\}\right) \\
= & \operatorname{Pr}(M>x)+\operatorname{Pr}\left(\max _{0 \leq t<\infty} X(t)>x+I\right) \\
& -\operatorname{Pr}\left(\max _{T \leq t<\infty} X(t)>x \mid \max _{0 \leq t<T} X(t)>x\right) \operatorname{Pr}\left(\max _{0 \leq t<T} X(t)>x\right) \\
= & \operatorname{Pr}(M>x)+\operatorname{Pr}(A>x+I) \\
& -\operatorname{Pr}\left(\max _{T \leq t<\infty} X(t)>x \mid \max _{0 \leq t<T} X(t)>x\right] \operatorname{Pr}[M>x) \tag{24}
\end{align*}
$$

Define the stopping time $T_{x}=\inf \{t: X(t)=x\}$. Given the event $\left\{\max _{0 \leq t<T} X(t)>\right.$ $x\}$ occurred, it follows by the strong Markov property at T_{x} that

$$
\begin{aligned}
\operatorname{Pr}\left(\max _{T \leq t<\infty} X(t)>x \mid \max _{0 \leq t<T} X(t)>x\right) & =\operatorname{Pr}\left(\max _{0 \leq t<\infty} X(t)>x+I_{x}\right) \\
& =\quad \operatorname{Pr}\left(A>x+I_{x}\right) .
\end{aligned}
$$

Thus, we obtain in (24):

$$
e^{-\eta x}=\operatorname{Pr}(M>x)+e^{-\eta x} E e^{-\eta I}-\operatorname{Pr}(M>x) e^{-\eta x} E e^{-\eta I_{x}},
$$

and the theorem follows.

8.2 The Case $\rho>1$; VWT Approach

Recall that the S_{i} are i.i.d., random variables with distribution $G(\cdot)$ and mean $1 / \lambda$. Similarly, the Z_{j} are i.i.d., random variables such that $Z_{j} \backsim$ $\exp (\mu)$. Also, \mathbf{N} is a Poisson process with rate μ and $\boldsymbol{\Lambda}$ is a renewal process with interrenewal mean $1 / \lambda$. In the present subsection we assume that $\rho:=(\lambda / \mu)>1$ and study the cycle maximum in a busy period of the overloaded $G / M / 1$ queue. Indeed, the distribution of the maximum is improper. However, the conditional distribution of the cycle maximum given that the busy period is finite is a proper distribution. Formally, let
$Z \backsim \exp (\mu)$ be a random variable independent of the process \mathbf{Y} (recall that $\left.Y(t)=\left(Z_{1}+\ldots+Z_{\Lambda(t)}\right)-t\right)$ and define the stopping times

$$
T_{Z}^{-}=\inf \{t: Y(t)=-Z\}
$$

and

$$
T_{Z}^{+}=\inf \{t: Y(t) \geq 0\}
$$

Note that T_{Z}^{-}can be interpreted as the busy period of the $G / M / 1$ queue (with inter-arrival distribution $G(\cdot)$ and service rate μ) and the random variable

$$
M=\max _{0 \leq t \leq T_{Z}^{-}}(Z+Y(t))
$$

is the cycle maximum.
To compute the law of M we use the following argument. Let t be a record time for $\left\{Z+Y(t): 0 \leq t \leq T_{Z}^{-}\right\}$and assume that a is the last record value prior to t. That means that $Z+Y(t-)<a, Z+Y(t)>a$ and by the lack of memory property of the exponential jumps $(Z+Y(t)-a) \sim \exp (\mu)$. Hence, for every $x>a$, the failure rate function of that record value at x (that occurred at t) is μ and the event $\{M \leq x\}$ (which means that $\{M=x\}$) occurs if and only if the record value at t is the last record value in $\left[0, T_{Z}^{-}\right]$. The latter event occurs with probability $\operatorname{Pr}\left(T_{x}^{-}<T_{x}^{+}\right)$.

The argument introduced above is used as the main tool in proving theorem 5 below. But before we introduce the theorem we need the next two lemmas. These lemmas can also be retrieved from Section III.5.8 of Cohen [2], but we believe that the method of proof that is presented below is of independent interest.

Lemma 3 Let $\mathbf{V}_{M / G / 1}=\left\{V_{M / G / 1}(t): t \geq 0\right\}$ be the work process of the $M / G / 1$ queue with arrival rate μ and service time distribution $G(\cdot)$ and assume that $\rho:=\lambda / \mu>1$. Given that the first service in the busy period is a, we define $\theta_{a}(0, a+x)$ as the probability that during a busy period $\mathbf{V}_{M / G / 1}$ reaches level 0 before level $a+x$ (for $x=0$, one should read here $\theta_{a}(0, a+)$). Then

$$
\begin{equation*}
\theta_{a}(0, a+x)=\frac{F(x)}{F(a+x)} \tag{25}
\end{equation*}
$$

where $F(\cdot)$ is the steady state distribution of $\mathbf{V}_{M / G / 1}$. That is, $F(\cdot)$ is the distribution whose LST is given by

$$
\begin{equation*}
F^{*}(\alpha)=\frac{\left(1-\rho^{-1}\right) \alpha}{\alpha-\mu\left[1-G^{*}(\alpha)\right]} \tag{26}
\end{equation*}
$$

Proof First note that $\rho>1$ implies that $\mathbf{V}_{M / G / 1}$ possesses a stationary distribution. Recall that $-X(t):=\tilde{X}(t)=S_{1}+S_{2}+\ldots+S_{N(t)}-t$ where $N(t) \underset{\sim}{\text { is a Poisson process with rate } \mu}$. Also let $L_{a}=\inf \{t>0: a+\tilde{X}(t)=0\}$ and $\tilde{M}_{a}=\max _{0 \leq t \leq L_{a}}\{a+\tilde{X}(t)\} . L_{a}$ can be interpreted as the busy period
and \tilde{M}_{a} as the cycle maximum of the $V W T$ in the $M / G / 1$ queue given that the first service of that busy period is a. Then

$$
\begin{aligned}
F(x) & =\operatorname{Pr}\left(\max _{0 \leq t<\infty} \tilde{X}(t) \leq x\right) \\
& =\operatorname{Pr}\left(\max _{0 \leq t<\infty}(a+\tilde{X}(t)) \leq a+x\right) \\
& =\operatorname{Pr}\left(\max _{0 \leq t<T_{a}}(a+\tilde{X}(t)) \leq a+x\right) \operatorname{Pr}\left(\max _{T_{a} \leq t<\infty}(a+\tilde{X}(t)) \leq a+x\right) \\
& =\operatorname{Pr}\left(\tilde{M}_{a} \leq a+x\right) F(a+x) \\
& =\theta_{a}(0, a+x) F(a+x) .
\end{aligned}
$$

In particular, it follows by Lemma 3 that

$$
\begin{equation*}
\theta_{a}(0, a)=\frac{1-\rho^{-1}}{F(a)} \tag{27}
\end{equation*}
$$

Lemma 4 below is based on the duality between the $M / G / 1$ and the $G / M / 1$ queues. Consider the $V W T$ of the $G / M / 1$ queue with inter-arrival distribution $G(\cdot)$ and service rate μ in which the first service of the busy period is x. Also, consider the $V W T$ of the $M / G / 1$ queue with arrival rate μ and service distribution $G(\cdot)$ in which the first service of the busy period is x.

Lemma 4

$$
\operatorname{Pr}\left(T_{x}^{-}<T_{x}^{+}\right)=1-\frac{F * G(x)}{F(x)}
$$

where the LST associated with $F(\cdot)$ is given in (26).
Proof Consider a sample path of the stopped process $\{x+Y(t): 0 \leq t \leq$ $\left.T_{x}^{-}\right\}$(see Fig. 1(a)). This stopped process represents the $V W T$ of a $G / M / 1$ queue during a busy period whose first service time is x. Now construct the risk stopped process $\left\{R(t): 0 \leq t \leq T_{x}^{-}\right\}$where $R(t)=-Y(t)$ (see Fig. 1(b)). That is, $R(t)$ starts at level 0 and is stopped immediately after it upcrosses level x. Now construct the process $\mathbf{U}=\{U(t): t \geq 0\}$ from $\left\{R(t): 0 \leq t \leq T_{x}^{-}\right\}$as follows: First, replace every negative jump in Fig. $1(b)$ by a linearly decreasing piece of trajectory with slope -1 on an interval whose length is equal to the negative jump size. Second, replace the increasing pieces of $R(t)$ between negative jumps by positive jumps whose sizes are equal to the linear increments (the process is shown in Fig. 1(c)). Clearly, the event $\left\{T_{x}^{-}<T_{x}^{+}\right\}$occurs if and only if level 0 is not downcrossed before level x is upcrossed by $\left\{x+Y(t): 0 \leq t \leq T_{x}^{-}\right\}$. By construction of $R(t)$ the latter event occurs if and only if level x is upcrossed before level 0 is downcrossed by $\left\{R(t): 0 \leq t \leq T_{x}^{-}\right\}$. Finally, by construction the latter event occurs if and only if level x is upcrossed before level 0 is downcrossed

Fig. 1 The stopped process $\left\{x+Y(t): 0 \leq t \leq T_{x}^{-}\right\}$in (a), the risk stopped process $\left\{R(t): 0 \leq t \leq T_{x}^{-}\right\}$in (b) and the process $\mathbf{U}=\{U(t): t \geq 0\}$ in (c).
by U. By this duality it can be seen that \mathbf{U} represents the work process of the $M / G / 1$ queue until the first upcrossing above level x (see also [7]). In order for the process \mathbf{U} to upcross level x before downcrossing level 0 we condition on the size of the first jump. If the first jump is greater than x, level x is upcrossed at time 0 . The latter event occurs with probability $1-G(x)$. If the first jump is $a<x$, then level x is upcrossed before level 0 is downcrossed with probability $1-\theta_{a}(0, x)$. Applying this argument we obtain

$$
\begin{equation*}
\operatorname{Pr}\left(T_{x}^{-}<T_{x}^{+}\right)=1-G(x)+\int_{0}^{x}\left[1-\theta_{a}(0, x)\right] d G(a) . \tag{28}
\end{equation*}
$$

Now replace x by $x-a$ in (25) and substitute in (28). The proof is complete after some elementary algebra.

We are now in a position to introduce the main result of this section.

Theorem 5

$$
\operatorname{Pr}(M \leq x \mid T<\infty)=\rho\left[1-e^{-\mu \int_{0}^{x}\left(1-\frac{F * G(y)}{F(y)}\right) d y}\right]=\rho-\frac{\rho-1}{F(x)}
$$

Proof The jumps of the $V W T$ in the $G / M / 1$ queue are $\exp (\mu)$. As mentioned before, $\mu d x$ is the infinitesimal probability that an arbitrary record value of the $V W T$ lands in $[x, x+d x)$. But x is the maximum of the $V W T$ if and only if the latter record value is the last record value in the busy
period, and the probability of that event is $\operatorname{Pr}\left(T_{x}^{-}<T_{x}^{+}\right)$. Multiplying, we conclude that the hazard rate function of M is

$$
r(x)=\mu \operatorname{Pr}\left(T_{x}^{-}<T_{x}^{+}\right)
$$

The first result of the theorem follows by Lemma 4, also observing that $\operatorname{Pr}(T<\infty)=1 / \rho$ (cf. [2], p. 217). The second result of the theorem is obtained as follows. Consider the steady-state work process in the $M / G / 1$ queue with arrival rate μ and service time distribution $G(\cdot)$ (this steadystate law exists since $1 / \rho=\mu / \lambda<1$). It follows from the integro-differential equation of Takacs for the $M / G / 1$ work process (cf. [2], p. 263) that

$$
f(x)=\mu[F(x)-F * G(x)], \quad x>0
$$

where F is the steady-state law of the work process and $f(x)$ is the density of $F(x), x>0$. We can now write:

$$
\operatorname{Pr}(M \leq x \mid T<\infty)=\rho\left[1-\mathrm{e}^{-\int_{0}^{x} \frac{f(y)}{F(y)} \mathrm{d} y}\right]=\rho\left[1-\mathrm{e}^{-\ln F(x)+D}\right]
$$

The result follows by normalization.
Remark 10 It should be observed, using (27), that $\operatorname{Pr}(M \leq x \mid T<\infty)=$ $\rho\left[1-\theta_{x}(0, x)\right]$, or $\operatorname{Pr}(M>x)=\theta_{x}(0, x)$. The latter result also follows from the construction in Figure 1.

References

1. S. Asmussen, Applied Probability and Queues (2nd edition, Springer-Verlag, New York 2003).
2. J.W. Cohen, The Single Server Queue (North-Holland Publ. Cy., Amsterdam 1982).
3. B.T. Doshi, A note on stochastic decomposition in a $G I / G / 1$ queue with vacations or set-up times. J. Appl. Probab. 22 (1985), 419-428.
4. O. Kella and W. Whitt, Useful martingales for stochastic storage processes with Lévy input. J. Appl. Probab. 29 (1992), 396-403.
5. R. Núñez Queija, Note on the GI/GI/1 queue with LCFS-PR observed at arbitrary times. Prob. Eng. Inf. Sci. 15 (2001), 179-187.
6. D. Perry, W. Stadje and S. Zacks, Contributions to the theory of first-exit times of some compound processes in queueing theory. Queueing Systems 33 (1999), 369-379.
7. D. Perry and W. Stadje, Duality of dams via mountain processes. Operations Research Letters 31 (2003), 451-458.
8. D. Perry, W. Stadje and S. Zacks, Busy period analysis for $M / G / 1$ and $G / M / 1-$ type queues with restricted accessibility. Operations Research Letters 27 (2000), 163-174.
9. N.U. Prabhu, Queues and Inventories (Wiley, New York 1965).
10. N.U. Prabhu, Stochastic Storage Processes (Springer-Verlag, New York 1988).
11. L. Takács, Introduction to the Theory of Queues (Oxford University Press, New York 1962).
12. E.C. Titchmarsh, The Theory of Functions (2nd edition; Oxford University Press, London 1968).
