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1. Introduction

1.1 The parabolic Anderson problem and its interpretation

The main object of our investigation is the solution u : R
+ × Z

d → R
+ to the Cauchy

problem for the heat equation with random time-dependent potential:




∂u

∂t
(t, x) = κ∆u(t, x) + ξ(t, x)u(t, x), (t, x) ∈ R

+ × Z
d,

u(0, x) = 1, x ∈ Z
d.

(1.1)

Here, κ ∈ R
+ is a diffusion constant and ∆ is the discrete Laplacian acting on f : Z

d → R

as

∆f(x) =
∑

y∼x

[f(y) − f(x)] ,

while

ξ(t) =
{

ξ(t, x) |x ∈ Z
d
}

, t ∈ R
+,

is an R-valued random field evolving over time that “drives” the equation. Problem (1.1) is
referred to as the parabolic Anderson model. It is the parabolic analogue of the Schrödinger
equation with a time-dependent random potential.

A popular heuristic interpretation of the model arises from population dynamics. In
this context the function u(t, x) describes the mean number of particles present at x at
time t when starting with one particle per site. Particles perform independent random
walks on Z

d with jump rate 2dκ and split into two at rate ξ if ξ > 0 (source) or die at
rate −ξ if ξ < 0 (sink).

If ξ is a nonnegative field, then we can interpret the problem in (1.1) also as a linearized
model of chemical reactions. In this case, the solution of the equation describes the
evolution of reactant particles under the influence of a catalyst medium ξ. More precisely,
u describes the expected number of reactant particles if its time evolution is governed by
the following rules:

(i) at time t = 0, each lattice site is occupied by one reactant;
(ii) reactants act independently of each other;
(iii) a reactant at x jumps to a neighboring site y at rate κ;
(iv) a reactant at x splits into two at rate ξ(t, x).

Another example is mathematical modeling in evolution theory. Considering a fixed size
population, one may describe its evolution by the Fisher-Eigen equation of population
genetics which is a version of (1.1). Hereby Z

d represents the space of phenotypes, ∆
describes mutation and ξ is the fitness. See e.g. [EEEF84, Sect. 2] for such an approach.

Characteristically for the parabolic Anderson model, the two terms on the right hand
side of equation (1.1) compete with each other. The diffusion induced by ∆ tends to make
u flat whereas ξ tends to make u bumpy. In the context of population dynamics, there is a
competition between individuals spreading out by diffusion and clumping around sources.

Studying problem (1.1), we distinguish between the quenched setting which describes the
almost sure behaviour of u conditioned on ξ, and the annealed setting, where we average
over ξ. The present paper deals with the annealed setting.
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The theory currently available for the model covers various forms of the potential ξ. In
the present paper we consider the case where ξ has the form

ξ(t, x) = δYt(x), (t, x) ∈ R
+ × Z

d, (1.2)

where (Yt)t≥0 is a random walk with generator ̺∆ starting at the origin and δy(x) is the
Kronecker symbol. The corresponding expectation will be denoted by 〈·〉. The parameter
̺ ∈ [0,∞) is the diffusion constant of the catalyst. In the context of chemical reactions, we
can interpret ξ as the reaction rate induced by a single catalyst particle, which performs
a random walk in Z

d with jump rate 2d̺. Reactants split into two at rate 1 if they are
at the same lattice site as the catalyst. Gärtner and den Hollander [GH04] have been
investigating this kind of problem with infinitely many independently moving catalysts
starting from a homogeneous Poisson field. We describe their results in Section 1.4.

For a general discussion of the parabolic Anderson model, the reader is referred to the
survey by Gärtner and König [GK05].

Our main tool for the analysis of the solution to the parabolic Anderson problem is the
Feynman-Kac formula. It states that a solution to the differential equation (1.1) with a
bounded initial datum u0 is given by

u(t, x) = E
X
x exp

{∫ t

0
ξ(t − s, Xs) ds

}
u0(Xt), (1.3)

where (Xs)s≥0 is a random walk on Z
d with generator κ∆ and expectation E

X
x when

starting at x .

1.2 Lyapunov exponents and intermittency

The aim of the present paper is to study the p-th moment Lyapunov exponent

λp = λp(κ, ̺) = lim
t→∞

1

t
log〈u(t, x)p〉 (1.4)

for p ∈ N as a function of the model parameters κ, ̺ ∈ [0,∞).

We will see in Theorem 1.2 below that the finite limit (1.4) exists for all p ∈ N and is
independent of x.

Definition 1.1 (Intermittency). For p ∈ N\ {1}, we call the parabolic Anderson problem
(1.1) p-intermittent, if the Lyapunov exponents satisfy the strict inequality

λp−1

p − 1
<

λp

p
. (1.5)

We say the system is fully intermittent, if the system is p-intermittent for all p ∈ N \ {1}.

Note that, by Hölder’s inequality, always λp−1/(p − 1) ≤ λp/p.

So far there exists no fully satisfactory rigorous mathematical definition of intermit-
tency. The above definition goes back to physicists (see e.g. [ZMRS88]) and is very much
in the spirit of [GM90] and [CM94]. Generally, intermittency corresponds to a very ir-
regular behaviour of the solution u. In the case of a nonnegative ergodic random field ξ,
intermittency corresponds to the fact that, as time evolves, the solution u exhibits very
high, but more and more widely spaced peaks absorbing its total mass. See [GM90, Sect.
1.1] or [GK05, Sect. 1.3] for a detailed interpretation of intermittency in this case.
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For our model, we will see that p-intermittency implies q-intermittency for all q > p.
We will find qualitatively different intermittency behaviour in dimension d = 1, 2 on the
one hand and d ≥ 3 on the other hand.

1.3 Results

From now on we stick to the parabolic Anderson problem (1.1) with the single catalyst
potential (1.2). Our first result establishes the existence of the limit (1.4) and provides a
spectral characterization of the Lyapunov exponents.

Given p ∈ N, let Bp denote the operator in ℓ2(Zpd) given by

Bpf(x1, . . . , xp) =
∑

e∈Z
d

|e|=1

[f(x1+e, . . . , xp+e)−f(x1, . . . , xp)], f ∈ ℓ2(Zpd), x1, . . . , xp ∈ Z
d,

(1.6)
and introduce the Hamilton operator

Hp := κ∆1 + · · · + κ∆p + ̺Bp + δ
(1)
0 + · · · + δ

(p)
0 (1.7)

on ℓ2(Zpd). Here ∆i is the discrete Laplacian acting on the i-th argument and

δ
(i)
0 (x1, . . . , xp) = 1 if xi = 0 and 0 else (i = 1, . . . , p). Note that B1 = ∆.

The following theorem links the asymptotic behaviour of 〈u(t, x)p〉 as t → ∞ to the
ℓ2-spectrum Sp(Hp) of the operator Hp.

Theorem 1.2 (Existence and spectral characterization). Let κ, ̺ ≥ 0, κ + ̺ > 0. For

each p ∈ N, the Lyapunov exponent

λp = lim
t→∞

1

t
log 〈u(t, x)p〉

exists, is finite and independent of x ∈ Z
d, and

λp = sup Sp(Hp). (1.8)

In the case κ + ̺ = 0, this remains valid for x = 0.

We prove Theorem 1.2 in Section 2.

We are interested in deriving properties of λp = λp(κ, ̺) as a function of the parameters
κ and ̺. According to Theorem 1.2, this can be done by analyzing the spectrum Sp(Hp).
To this end we denote

Gd(µ) :=
(
(µ − ∆)−1δ0, δ0

)
ℓ2(Zd)

=

∫ ∞

0
e−µtpt(0) dt, (1.9)

where pt is the transition function of a random walk with generator ∆. We will further
abbreviate Gd := Gd(0). Hence, in dimension d = 1, 2, Gd = ∞, whereas for d ≥ 3,
Gd < ∞. Next we introduce the quantity

µ(κ) := sup Sp(κ∆ + δ0). (1.10)

It is well-known that the ℓ2-spectrum of κ∆ + δ0 has the form

Sp(κ∆ + δ0) = [−4dκ, 0] ∪ {µ(κ)} ,

where

µ(κ)

{
= 0, if κ ≥ Gd,

> 0, if κ < Gd.
(1.11)
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In the latter case, µ(κ) is the unique positive solution to Gd(µ) = κ. It is the princi-
pal eigenvalue of κ∆ + δ0, which is simple and corresponds to a positive eigenfunction.
Furthermore, µ(κ) is convex and non-increasing in κ (cf. e.g. [GH04, Lemma 1.3.1]).

The case p = 1 can be solved completely, since

H1 = (κ + ̺)∆ + δ0 (1.12)

and hence, by Theorem 1.2,

λ1(κ, ̺) = sup Sp(H1) = µ(κ + ̺). (1.13)

Combining this with (1.11), we obtain the following conclusion. In dimension d = 1, 2,
the first moment 〈u(t, x)〉 always grows exponentially fast, whereas in dimension d ≥ 3
we have exponential growth if κ + ̺ falls below the critical value Gd. Otherwise 〈u(t, x)〉
grows only subexponentially.

κ + ̺κ + ̺
Gd

λ1 λ1
d ≥ 3d = 1, 2

Figure 1. The qualitative behaviour of λ1.

Remark. The case of an arbitrary strength γ > 0 of the catalyst, where (1.2) is replaced
by

ξ(t, x) = γ δYt(x), (1.14)

can be reduced to γ = 1 by scaling. To see this, we consider the solution uκ,̺,γ to the
parabolic Anderson problem (1.1) with potential (1.14). It follows that uκ,̺,γ(t, x) and
uκ/γ,̺/γ,1(γt, x) have the same distribution. Consequently, the corresponding Lyapunov

exponent λp(κ, ̺, γ) = limt→∞ t−1 log〈uκ,̺,γ(t, x)p〉 satisfies

λp (κ, ̺, γ) = γ · λp

(
κ

γ
,
̺

γ
, 1

)
.

Because of this, we set λp(κ, ̺) = λp(κ, ̺, 1) and study the qualitative behaviour of the
Lyapunov exponents as a function of κ and ̺ only.

We next consider the case ̺ = 0 when the catalyst is fixed to its starting position 0.
Then the random field ξ is time-independent.

Lemma 1.3 (The case ̺ = 0). For all p ∈ N,

λp(κ, 0)

p
= µ(κ), κ ∈ [0,∞) . (1.15)

This result is specifically important for the analysis of λp for large p. The statement
of the lemma implies that in the setting of a fixed catalyst (̺ = 0) the system is not
intermittent for any p ∈ N. The proof uses a factorization of the spectrum of Hp for ̺ = 0
and will be given in Section 3.2. We will see that µ(κ) is an upper bound on λp(κ, ̺)/p.
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The case κ = 0 can be treated similarly. In the language of chemical kinetics, this
corresponds to fixed reactants waiting for the catalyst passing by.

Lemma 1.4 (The case κ = 0). For all p ∈ N,

λp(0, ̺)

p
= λ1(0, ̺/p) = µ(̺/p), ̺ ∈ [0,∞) . (1.16)

Using properties of µ, we summarize that in the case κ = 0, the system is p-intermittent
if and only if 0 < ̺ < p Gd. In particular, it is fully intermittent if 0 < ̺ < Gd.

As a main result for the general behaviour of λp(κ, ̺) we obtain the following theorem.

Theorem 1.5 (Properties of λp).

(i) For each p ∈ N, the function λp(κ, ̺), (κ, ̺) ∈ [0,∞)2, is continuous, convex,

non-increasing in κ and ̺, and

λp(κ, ̺) = 0 for κ ≥ Gd. (1.17)

(ii) For all κ, ̺ ∈ [0,∞),

λp(κ, ̺)

p
ր µ(κ) as p ր ∞. (1.18)

The proof of Theorem 1.5 is given in Section 3.3.

λ1

λ1

λ2/2

λ2/2

λ3/3

λ3/3

µ

Gd − ̺ Gd

λp/pλp/p

κ ̺

µ(κ)

Figure 2. The asymptotic behaviour of λp/p for large p in dimension
d ≥ 3. On the left the variation due to κ for fixed ̺ > 0 and on the right
the variation due to ̺ for fixed κ ∈ (0, Gd). If κ ≥ Gd, then all curves in
the right figure coincide with the horizontal axis.

Finally, we state our result on intermittency.

Theorem 1.6 (Intermittency). Let ̺ > 0. If 0 ≤ κ < Gd, then there exists p ∈ N \ {1}
such that the system is p-intermittent, whereas for κ ≥ Gd the system is not intermittent.

Furthermore, for κ + ̺ < Gd, the system shows full intermittency.

Except for the statement on full intermittency, this follows from our previous statements,
where we used that p-intermittency implies q-intermittency for q > p (cf. Sect. 3.1). A
complete proof of the theorem is given in Section 3.4.
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For completeness, we recall from Lemma 1.3 that, for ̺ = 0, all curves λp(κ, 0)/p
coincide with µ(κ) and thus the system is not intermittent. Taking into account that
Gd = ∞ in dimension d = 1, 2, we conclude from Theorem 1.6 that in these dimensions
the system shows full intermittency for all κ ∈ [0,∞), ̺ ∈ (0,∞).

1.4 Related work

There exists a wide variety of papers on the parabolic Anderson model with a time-inde-

pendent random field ξ, see the survey by Gärtner and König [GK05]. The theory for the
time-dependent parabolic Anderson model is less developed. Let us briefly mention the
annealed results obtained in [CM94], [KS03] and [GH04].

The monograph by Carmona and Molchanov [CM94] provides a complete analysis of
the moment Lyapunov exponents in the case of a white noise potential

ξ(t, x) = Ẇx(t), (t, x) ∈ R
+ × Z

d, (1.19)

with {(Wx(t))t≥0 |x ∈ Z
d} being a collection of independent Brownian motions and equa-

tion (1.1) treated in the Itô sense. They show that

λp = sup Sp (κ(∆1 + · · · + ∆p) + Vp) ,

where

Vp(x1, . . . , xp) =
∑

1≤j<k≤p

δ0(xj − xk), x1, . . . , xp ∈ Z
d.

The intermittency behaviour is similar to our model in Figure 2 due to the similar spectral
representation. The essential difference is that λp as a function of κ obeys λ1(κ) = 0,
because V1 = 0. Therefore the system is p-intermittent if and only if λp > 0. Furthermore,
they obtain a different behaviour for large p: λp/p → ∞ as p → ∞.

Kesten and Sidoravicius [KS03] consider a spatially homogenous system of two types
of particles, A (catalyst) and B (reactant), performing independent random walks on the
lattice, such that:

(i) B-particles split into two at a rate that is the number of A-particles present at
the same lattice site;

(ii) ̺ and κ are the diffusion constants of the A- and B-particles, respectively;
(iii) ν and 1 are the initial intensities of the A- and B-particles, respectively;
(iv) B-particles die at a rate δ > 0.

This corresponds to our model in (1.1) where the potential ξ is given by

ξ(t, x) =
∑

k

δ0(x − Yk(t)) − δ, (t, x) ∈ R
+ × Z

d,

with {Yk(t); t ≥ 0, k ∈ N} being a collection of independent random walks with generator
̺∆ starting from a homogeneous Poisson field with intensity ν ∈ R

+. Then, u(t, x) is
the average number of B-particles at site x at time t conditioned on the evolution of the
A-particles. The main focus of Kesten and Sidoravicius is on survival versus extinction.
They have shown that in dimension d = 1, 2, for any choice of the parameters, the average
number of B-particles per site tends to infinity faster than exponential. In dimension
d ≥ 3 with δ sufficiently large, the average number of B-particles per site tends to zero
exponentially fast.
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The qualitative behaviour of the moments is different from the above in the model
considered by Gärtner and den Hollander [GH04]. They show that there is a strongly
catalytic regime where the moments 〈u(t, 0)p〉 grow superexponentially fast. This is always
the case in dimension d = 1, 2, and also in dimension d ≥ 3 for ̺/p < Gd (independent of
κ). Otherwise, the finite moment Lyapunov exponents (1.4) exist. It is shown that their
intermittency behaviour as a function of κ is different for d = 3 and for d ≥ 4. For d = 3,
the moment Lyapunov exponents are expressed via the Polaron variational problem.

Our model (1.1) itself is similar to that by Gärtner and den Hollander, but our methods
and results are more closely related to those by Carmona and Molchanov. Their analysis
is triggered by the disturbed potential Vp, whereas in our model, we have disturbances of
the jump term caused by Bp. This leads to a qualitatively different behaviour of λp/p as
p → ∞ (see Figure 2). In particular, there exists a uniform upper bound µ.

The quenched Lyapunov exponent for variations of the model with the white noise
potential (1.19) has been studied in [CM95], [CMV96], [CMS02] and [KS03].

1.5 Open problems and extensions of the model

For p ∈ N, let

κp,cr(̺) := inf
{
κ ≥ 0

∣∣λp(κ, ̺) = 0
}

denote the critical value for κ above which λp(κ, ̺) vanishes. It is clear from our results
that

κp,cr(̺) ր Gd as p ր ∞,

but it is open whether κp,cr(̺) is strictly increasing in p for ̺ > 0.

Next, one can extend the setting to a multiple catalyst model with a finite number n of
catalyst particles. Then the potential ξ has the form

ξ(t, x) =
n∑

i=1

δ0

(
x − Y

(i)
t

)
, (t, x) ∈ R

+ × Z
d,

with Y (1), . . . , Y (n) being a collection of n independent random walks with generator ̺∆.
The degenerate cases κ = 0 and ̺ = 0 can be solved easily, but the general case is more
complex than the single catalyst setting. However, the Feynman-Kac formula applied to
the solution u(n) of (1.1) with n catalysts yields

〈u(n)(t, 0)〉 = E
X;Y 1,...,Y n

0;0,...,0 exp

{∫ t

0

n∑

i=1

δ0(Xs − Y i
t−s) ds

}
.

Hence the corresponding Lyapunov exponent λ
(n)
1 satisfies the equation

λ
(n)
1 (κ, ̺) = λ(1)

n (̺, κ)

(cf. (2.5) below). Note that the roles of κ and ̺ are exchanged. Again there exists an
operator replacing the role of Hp in our work, but the study of the upper boundary of its
spectrum may turn out to be more complex.

2. Existence and Spectral Characterization of the Lyapunov Exponents

The aim of this section is to prove Theorem 1.2, which links the asymptotic behaviour of
〈u(t, x)p〉 as t → ∞ to the ℓ2-spectrum Sp(Hp) of the operator Hp.
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Let Xi
t (i = 1, . . . , p) and Yt be independent random walks on Z

d with generators κ∆
and ̺∆, respectively. Taking notation from (1.6)-(1.7), we note that κ∆1+· · ·+κ∆p+̺Bp

is the generator of a random walk on Z
pd having the form

(
Z1

t , . . . , Zp
t

)
:= (X1

t − Yt, . . . , X
p
t − Yt). (2.1)

Here Xi
t corresponds to a single jump caused by κ∆i, whereas Yt corresponds to “diagonal”

jumps caused by ̺Bp. Hence we obtain the Feynman-Kac representation of the ℓ2(Zpd)-
semigroup {etHp

| t ≥ 0} generated by Hp as

(
etHp

f
)
(z1, . . . , zp) = E

Z1,...,Zp

z1,...,zp
exp

{∫ t

0

p∑

i=1

δ0(Z
i
s) ds

}
f(Z1

t , . . . , Zp
t ). (2.2)

A natural start for the analysis of 〈u(t, x)p〉 is the Feynman-Kac formula (1.3) with
u0 ≡ 1. For the potential (1.2) we get

u(t, x) = E
X
x exp

{∫ t

0
δYt−s (Xs) ds

}
. (2.3)

Together with Fubini’s theorem we obtain

〈u(t, x)p〉 = E
X1,...,Xp;Y
x,...,x;0 exp

{∫ t

0

p∑

i=1

δYt−s(X
i
s) ds

}

=
∑

z∈Zd

E
X1,...,Xp;Y
x,...,x;0 exp

{∫ t

0

p∑

i=1

δ0(X
i
s − Yt−s) ds

}
δz(Yt),

where (X1
t , . . . , Xp

t , Yt)t≥0 is the joint process of the previously introduced independent

random walks X1
t , . . . , Xp

t , Yt and E
X1,...,Xp;Y
x1,...,xp;y denotes its expectation when starting at

(x1, . . . , xp; y). For convenience we abbreviate

At :=

∫ t

0

p∑

i=1

δ0(X
i
s − Ys) ds. (2.4)

A time reversion of Y yields

〈u(t, x)p〉 =
∑

z∈Zd

E
X1,...,Xp;Y
x,...,x;z exp {At} δ0(Yt). (2.5)

Proceeding from the representation formula (2.5), we prepare the proof of Theorem 1.2.
We first show that, although the random field ξ(t) is not spatially shift-invariant, the
moment Lyapunov exponents are independent of x.

Lemma 2.1. Let κ + ̺ > 0, and assume that the limit

lim
t→∞

1

t
log 〈u(t, 0)p〉 (2.6)

exists. Then, for all x ∈ Z
d,

lim
t→∞

1

t
log 〈u(t, x)p〉 = lim

t→∞

1

t
log 〈u(t, 0)p〉. (2.7)

Proof. Fix y1, y2 ∈ Z
d arbitrarily. We first consider the case κ > 0. We start with (2.5)

and only consider paths X1, . . . , Xp that start in y1 and are at y2 at time 1 and paths
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Y that are again at the starting site at time 1. Then we use the Markov-property (MP).
This yields

〈u(t, y1)
p〉 ≥

∑

z∈Zd

E
X1,...,Xp;Y
y1,...,y1;z δy2(X

1
1 ) · · · δy2(X

p
1 ) δz(Y1)

× exp

{∫ t

1

p∑

i=1

δ0(X
i
s − Ys) ds

}
δ0 (Yt)

(MP )
=

∑

z∈Zd

P
X1

y1
(X1

1 = y2) · · ·P
Xp

y1
(Xp

1 = y2) P
Y
z (Y1 = z)

×E
X1,...,Xp;Y
y2,...,y2;z exp

{∫ t−1

0

p∑

i=1

δ0(X
i
s − Ys) ds

}
δ0 (Yt−1) .

In the last step, we took into account that X1
t , . . . , Xp

t , Yt are independent. As X1
t , . . . , Xp

t

are identically distributed and P
Y
z (Y1 = z) ≥ e−2d̺,

〈u(t, y1)
p〉 ≥

[
P

X1

y1
(X1

1 = y2)
]p

e−2d̺〈u(t − 1, y2)
p〉.

Thus, for y1 = x, y2 = 0,

lim inf
t→∞

1

t
log 〈u(t, x)p〉 ≥ lim

t→∞

1

t
log 〈u(t, 0)p〉,

whereas, for y1 = 0, y2 = x,

lim
t→∞

1

t
log 〈u(t, 0)p〉 ≥ lim sup

t→∞

1

t
log 〈u(t, x)p〉.

Hence the limit limt→∞ t−1 log 〈u(t, x)p〉 exists and coincides with (2.6).

The case κ = 0 (and hence ̺ > 0) follows the same line of arguments. Since Xs ≡ x in
the Feynman-Kac representation (2.3),

u(t, y1)
p = exp

{
p

∫ t

0
δ0(y1 − Ys) ds

}
.

Consequently,

E
Y
0 u(t, y1)

p ≥ E
Y
0 exp

{
p

∫ t

1
δ0(y1 − Ys) ds

}
δ0(y1 − y2 − Y1)

(MP )
= P

Y
0 (Y1 = y1 − y2) E

Y
y1−y2

exp

{
p

∫ t−1

0
δ0(y1 − Ys) ds

}

= P
Y
0 (Y1 = y1 − y2) E

Y
0 exp

{
p

∫ t−1

0
δ0(y2 − Ys) ds

}
,

where the last line comes from the spatial shift y 7→ y − (y1 − y2). Therefore,

〈u(t, y1)
p〉 ≥ P

Y
0 (Y1 = y1 − y2) 〈u(t − 1, y2)

p〉,

and, after substituting 0 and x for y1 and y2 and taking limits as before, we are done. �

Given l > 0, let Ql := [−l, l]d ∩ Z
d. We need the following lemma to derive the upper

bound in the proof of Theorem 1.2. It states that on the right of (2.5) we can restrict to
paths that start and end in the finite box Qℓ(t) with

ℓ(t) := t log2 t. (2.8)
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Lemma 2.2. As t → ∞,

〈u(t, 0)p〉 = (1 + o(1))
∑

z∈Qℓ(t)

E
X1,...,Xp;Y
0,...,0;z exp{At} δ0(Yt) 1l(X1

t ,...,Xp
t )∈Qp

ℓ(t)
. (2.9)

Proof. It will be sufficient to check that

r(t) :=

∑
z∈Zd E

X1,...,Xp;Y
0,...,0;z eAt δ0(Yt) −

∑
z∈Qℓ(t)

E
X1,...,Xp;Y
0,...,0;z eAt δ0(Yt) 1l(X1

t ,...,Xp
t )∈Qp

ℓ(t)∑
z∈Zd E

X1,...,Xp;Y
0,...,0;z eAt δ0(Yt)

tends to 0 as t → ∞. Obviously, r(t) ≥ 0. Splitting the first sum as
∑

z∈Zd =∑
z /∈Qℓ(t)

+
∑

z∈Qℓ(t)
and then using that 1 ≤ eAt ≤ ept, we obtain

r(t) ≤ ept

∑
z /∈Qℓ(t)

E
X1,...,Xp;Y
0,...,0;z δ0(Yt) +

∑
z∈Qℓ(t)

E
X1,...,Xp;Y
0,...,0;z δ0(Yt) 1l(X1

t ,...,Xp
t )/∈Qp

ℓ(t)

E
X1,...,Xp;Y
0,...,0;0 δ0(Yt)

≤ ept

∑
z /∈Qℓ(t)

P
Y
z (Yt = 0) + P

X1,...,Xp

0,...,0

(
(X1

t , . . . , Xp
t ) /∈ Qp

ℓ(t)

)

PY
0 (Yt = 0)

= ept
P

Y
0

(
Yt /∈ Qℓ(t)

)
+ P

X1,...,Xp

0,...,0

(
(X1

t , . . . , Xp
t ) /∈ Qp

ℓ(t)

)

PY
0 (Yt = 0)

(2.10)

In the last two transformations we used again a time reversal for Y . For sufficiently large
values of t and our choice of ℓ(t),

P0

(
Yt /∈ Qℓ(t)

)
≤ e−ℓ(t)

(cf. [GM90, Lemma 4.3]). The same is true for X1, . . . , Xp instead of Y . On the other
hand, the transition function of a simple random walk decays at most polynomial in time.
Hence, on the right hand side of (2.10), the numerator is superexponentially decreasing,
but the denominator is (at most) polynomial decreasing. This yields limt→∞ r(t) = 0. �

The next lemma is needed to derive the lower bound in the proof of Theorem 1.2.
Roughly speaking, it ensures that paths ending outside the finite box Qℓ(t) are asymptot-
ically negligible. It can be seen as a counterpart to Lemma 2.2 with a somewhat modified
choice of indicators.

Lemma 2.3. As t → ∞,

∑

y∈Qℓ(t)

E
X1,...,Xp;Y
0,...,0;0 exp{At} δy(X

1
t ) · · · δy(X

p
t ) δy(Yt) (2.11)

= (1 + o(1))
∑

y∈Zd

E
X1,...,Xp;Y
0,...,0;0 exp{At} δy(X

1
t ) · · · δy(X

p
t ) δy(Yt).

Proof. The proof is similar to that of the previous lemma. We have to show that

r(t) :=

∑
y/∈Qℓ(t)

E
X1,...,Xp;Y
0,...,0;0 exp{At} δy(X

1
t ) · · · δy(X

p
t ) δy(Yt)

∑
y∈Zd E

X1,...,Xp;Y
0,...,0;0 exp{At} δy(X1

t ) · · · δy(X
p
t ) δy(Yt)
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tends to 0 as t → ∞. Again, because of 1 ≤ eAt ≤ ept, we obtain

0 ≤ r(t) ≤ ept
P

X1,...,Xp

0,...,0

(
(X1

t , . . . , Xp
t ) /∈ Qp

ℓ(t)

)
P

Y
0

(
Yt /∈ Qℓ(t)

)

P
X1,...,Xp

0,...,0

(
X1

t = 0, . . . , Xp
t = 0

)
PY

0 (Yt = 0)
.

The expression on the right converges to zero as t → ∞ by the same arguments as in the
previous proof. �

Now we have collected all ingredients for the proof of Theorem 1.2.

Proof of Theorem 1.2. The proof will be split into two parts:

(i) lim sup
t→∞

1

t
log〈u(t, 0)p〉 ≤ sup Sp(Hp), (2.12)

(ii) lim inf
t→∞

1

t
log〈u(t, 0)p〉 ≥ sup Sp(Hp). (2.13)

This together with Lemma 2.1 then proves Theorem 1.2.

(i) Upper bound. Since 1l(X1
t ,...,Xp

t )∈Qp
ℓ(t)

· δ0(Yt) ≤ 1l(X1
t −Yt,...,X

p
t −Yt)∈Qp

ℓ(t)
, we conclude

from Lemma 2.2 that

〈u(t, 0)p〉 ≤ (1 + o(1))
∑

z∈Qℓ(t)

E
X1,...,Xp;Y
0,...,0;z exp{At} 1l(X1

t −Yt,...,X
p
t −Yt)∈Qp

ℓ(t)
.

Now we apply the transformation (2.1) and the semigroup (2.2) to obtain

〈u(t, 0)p〉 ≤ (1 + o(1))
∑

z∈Qℓ(t)

E
Z1,...,Zp

z,...,z exp

{∫ t

0

p∑

i=1

δ0(Z
i
s) ds

}
1l(Z1

t ,...,Zp
t )∈Qp

ℓ(t)

≤ (1 + o(1))
∑

z1,...,zp∈Qℓ(t)

E
Z1,...,Zp

z1,...,zp
exp

{∫ t

0

p∑

i=1

δ0(Z
i
s) ds

}
1l(Z1

t ,...,Zp
t )∈Qp

ℓ(t)
.

= (1 + o(1))
(
etHp

1lQp
ℓ(t)

, 1lQp
ℓ(t)

)
, (2.14)

where (·, ·) denotes the inner product in ℓ2(Zpd) with corresponding norm ‖ · ‖. Set
µ := sup Sp(Hp) and let {Eλ; λ ≤ µ} denote the family of spectral projectors associated
with the bounded and self-adjoint operator Hp. Using the spectral representation

etHp
=

∫

(−∞,µ]

etλ dEλ,

we find that
(
etHp

1lQℓ(t)
, 1lQℓ(t)

)
=

∫

(−∞,µ]

etλ d
(
Eλ1lQp

ℓ(t)
, 1lQp

ℓ(t)

)

≤ etµ

∫

(−∞,µ]

d
∥∥∥Eλ1lQp

ℓ(t)

∥∥∥
2

= etµ ‖1lQp
ℓ(t)

‖2. (2.15)

Combining (2.14) and (2.15) we get

〈u(t, 0)p〉 ≤ (1 + o(1)) etµ |Qp
ℓ(t)|.
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Since |Qp
ℓ(t)| increases only polynomial, this yields the upper bound (2.12).

(ii) Lower bound. Restricting the expectation on the right of (2.5) to paths of X1, . . . ,
Xp, Y starting and ending at 0, we get

〈u(t, 0)p〉 ≥ E
X1,...,Xp;Y
0,...,0;0 eAt δ0(X

1
t ) · · · δ0(X

p
t ) δ0(Yt)

=
∑

x1,...,xp,y∈Zd

E
X1,...,Xp;Y
0,...,0;0 eAt/2 δx1(X

1
t/2) · · · δxp(X

p
t/2) δy(Yt/2)

× eAt−At/2 δ0(X
1
t ) · · · δ0(X

p
t ) δ0(Yt). (2.16)

An application of the Markov property at time t/2 transforms the expression on the right
of (2.16) into

∑

x1,...,xp,y∈Zd

E
X1,...,Xp;Y
0,...,0;0 eAt/2 δx1(X

1
t/2) · · · δxp(X

p
t/2) δy(Yt/2)

× E
X1,...,Xp;Y
x1,...,xp;y eAt/2 δ0(X

1
t/2) · · · δ0(X

p
t/2) δ0(Yt/2).

After a time reversion in the second line, we may bound this expression from below by
∑

x1,...,xp,

y∈Z
d

(
E

X1,...,Xp;Y
0,...,0;0 eAt/2 δx1(X

1
t/2) · · · δxp(X

p
t/2) δy(Yt/2)

)2

≥
∑

y∈Qℓ(t)

(
E

X1,...,Xp;Y
0,...,0;0 eAt/2 δy(X

1
t/2) · · · δy(X

p
t/2) δy(Yt/2)

)2
.

Using the inequality

n∑

i=1

x2
i ≥

1

n

(
n∑

i=1

xi

)2

, x1, . . . , xn ∈ R,

and Lemma 2.3, the last expression can further be bounded from below by

1

|Qℓ(t)|


 ∑

y∈Qℓ(t)

E
X1,...,Xp;Y
0,...,0;0 eAt/2 δy(X

1
t/2) · · · δy(X

p
t/2) δy(Yt/2)




2

=
1 + o(1)

|Qℓ(t)|


∑

y∈Zd

E
X1,...,Xp;Y
0,...,0;0 eAt/2 δy(X

1
t/2) · · · δy(X

p
t/2) δy(Yt/2)




2

,

=
1 + o(1)

|Qℓ(t)|

(
E

X1,...,Xp;Y
0,...,0;0 eAt/2 δ0(X

1
t/2 − Yt/2) · · · δ0(X

p
t/2 − Yt/2)

)2
.

As before, applying the transformation (2.1) and collecting the above bounds, we arrive
at

〈u(t, 0)p〉 ≥
1 + o(1)

|Qℓ(t)|

(
E

Z1,...,Zp

0,...,0 exp

{∫ t/2

0

p∑

i=1

δ0(Z
i
s) ds

}
δ0(Z

1
t/2) · · · δ0(Z

p
t/2)

)2

. (2.17)

Again, expressing (2.17) with the help of the semigroup (2.2), we obtain

〈u(t, 0)p〉 ≥
1 + o(1)

|Qℓ(t)|

(
e(t/2)Hp

δ0, δ0

)2
. (2.18)
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In order to find a lower bound for the expression on the right of (2.18), we restrict the
ℓ2-operator Hp to a finite box with Dirichlet boundary condition and apply the Perron-
Frobenius theory for nonnegative irreducible matrices. This is done as follows.

By killing the process (Z1
t , . . . , Zp

t ) upon leaving the box Qp
n = [−n, n]pd ∩ Z

pd, we get
a new semigroup in ℓ2(Qp

n) with generator Hp
n acting on f ∈ ℓ2(Qp

n) as

(
etHp

nf
)

(z1, . . . , zp) = E
Z1,...,Zp

z1,...,zp
exp

{∫ t

0

p∑

i=1

δ0(Z
i
s) ds

}
f(Z1

t , . . . , Zp
t ) 1lτQ>t, (2.19)

where (z1, . . . , zp) ∈ Qp
n and τQ := inf{t| (Z1

t , . . . , Zp
t ) /∈ Qp

n} denotes the first exit time
from the box Qp

n. Accordingly, for all f ∈ ℓ2(Qp
n),

Hp
nf(z1, . . . , zp) = Hpf̂n(z1, . . . , zp), (z1, . . . , zp) ∈ Qp

n, (2.20)

where

f̂n =

{
f on Qp

n,

0 on Z
pd \ Qp

n.

Furthermore, for any ε > 0, Hp
n + (2dκ + ε) I is a positive operator that obeys the pre-

requisites of the Perron-Frobenius theorem. Hereby I is the identical operator. Hence
there exists a strictly positive eigenfunction vn with ‖vn‖ = 1, corresponding to the largest
eigenvalue of Hp

n + (2dκ + ε) I having multiplicity 1. Then vn is also an eigenfunction to

the largest eigenvalue µn of Hp
n and an eigenfunction to the largest eigenvalue e(t/2) µn of

e(t/2)Hp
n having multiplicity 1. Denote by {En

λ ; λ ≤ µn} the family of spectral projectors
associated with the operator Hp

n. Using again the spectral representation, we obtain
(
e(t/2)Hp

nδ0, δ0

)
= e(t/2)µn (vn, δ0)

2 +

∫

(−∞,µn)

e(t/2)λd (En
λδ0, δ0)

≥ e(t/2)µnvn(0)2.

Since vn(0) is positive, the above inequality implies that

lim inf
t→∞

1

t
log
(
e(t/2)Hp

nδ0, δ0

)
≥

µn

2
. (2.21)

We combine the inequalities (2.18) and (2.21) with the semigroups (2.2) and (2.19) to
obtain for all n ∈ N that

lim inf
t→∞

1

t
log 〈u(t, 0)p〉 ≥ lim inf

t→∞

1

t
log

{
1 + o(1)

|Qℓ(t)|

(
e(t/2)Hp

δ0, δ0

)2
}

= 2 lim inf
t→∞

1

t
log
(
e(t/2)Hp

δ0, δ0

)

≥ 2 lim inf
t→∞

1

t
log
(
e(t/2)Hp

nδ0, δ0

)

≥ µn.

It remains to show that

lim
n→∞

µn = µ.

By the Rayleigh-Ritz formula for µn and (2.20),

µn = sup
f∈ℓ2(Qp

n), ‖f‖=1

(Hp
nf, f) = sup

f∈ℓ2(Zpd), ‖f‖=1
supp(f)⊂Qp

n

(Hpf, f) . (2.22)
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Here supp(f) denotes the support of f . We see from (2.22) that µn is nondecreasing in
n. Let f ∈ ℓ2(Zpd). Then f1lQp

n
→ f in the norm sense and, since Hp is a bounded linear

operator,
(
Hp(f1lQp

n
), f1lQp

n

)
→ (Hpf, f). This validates

sup
‖f‖=1

(Hpf, f) = sup
‖f‖=1

|supp(f)|<∞

(Hpf, f) .

Together with (2.22), we obtain the desired equality

µ = sup
‖f‖=1

(Hpf, f) = sup
n∈N

sup
‖f‖=1

supp(f)⊂Qp
n

(Hpf, f)

= sup
n∈N

µn = lim
n→∞

µn.

This completes the proof. �

3. Analysis of the Lyapunov Exponents and Intermittency

In this section we study the behaviour of λp for varying p ∈ N under the influence of the
system parameters κ and ̺ and analyse the intermittency behaviour of the system to prove
Theorems 1.5 and 1.6. In Section 3.1 we prove some standard statements that hold quite
generally for any (nonnegative) version of the potential ξ. In Section 3.2 we prove some
preliminary results for the degenerate cases ̺ = 0 and κ = 0, being of crucial importance
for Section 3.3, where we prove Theorem 1.5. Finally, Section 3.4 is devoted to the proof
of Theorem 1.6.

3.1 General relations between Lyapunov exponents

In this section we study the general situation where we assume that ξ is any nonnegative
potential and that the Lyapunov exponents (1.4) for x = 0 exist for all p ∈ N.

Lemma 3.1 (General properties of Lyapunov exponents).

(i) For all p ∈ N,
λp

p
≤

λp+1

p + 1
;

(ii) the mapping p 7→ λp is convex, i.e., for all p, q ∈ N and α ∈ (0, 1) with αp + (1 −
α)q ∈ N,

λαp+(1−α)q ≤ αλp + (1 − α)λq;

(iii) if λp/p < λp+1/(p + 1) for some p ∈ N, then λq/q < λq+1/(q + 1) for all q ∈ N

with q > p.

Proof.

(i) The first assertion is obvious from the moment inequality

〈u(t, x)p〉
1
p ≤ 〈u(t, x)p+1〉

1
p+1

and the definition (1.4) of the Lyapunov exponents.

(ii) Let α ∈ (0, 1) and p, q, αp + (1 − α)q ∈ N. By Hölder’s inequality,

〈u(t, x)αp+(1−α)q〉 ≤ 〈u(t, x)p〉α 〈u(t, x)q〉1−α.

This implies the desired inequality.
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(iii) It is sufficient to show the assertion for q = p+1. We proceed indirectly by assuming
that λp/p < λp+1/(p + 1) but λp+1/(p + 1) = λp+2/(p + 2). Then, by assertion (ii),

λp+1 ≤
1

2
λp +

1

2
λp+2 <

1

2

(
p

p + 1
λp+1 +

p + 2

p + 1
λp+1

)
= λp+1,

which is a contradiction. �

Remark. We had to restrict the convexity to those α ∈ (0, 1) with αp + (1 − α)q ∈ N,
because we only know existence of λp for p ∈ N.

3.2 The degenerate cases κ = 0 and ̺ = 0

We now return to the case that the random potential ξ has the form (1.2). We will first
prove Lemma 1.3 treating the degenerate case ̺ = 0.

Proof of Lemma 1.3. Let ̺ = 0. Then, by (1.7), H1 = κ∆ + δ0 and

Hp =

p∑

i=1

I ⊗ · · · ⊗ I︸ ︷︷ ︸
i − 1 times

⊗ H1 ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
p − i times

.

Consequently,

Sp(Hp) =

p∑

i=1

Sp(H1),

where
∑

refers to the addition of sets (cf. Reed-Simon [RS72, Thm. VIII.33]). Together
with Theorem 1.2, this yields λp(κ, 0) = p λ1(κ, 0) = p µ(κ). �

We now consider the case κ = 0.

Proof of Lemma 1.4. Note that, for α > 0, Y α
t := Yαt, is a random walk with generator

α̺∆. Let κ = 0 and fix p ∈ N arbitrarily. Then we apply the Feynman-Kac formula (1.3)
with Xs = 0 for all s to obtain

u(t, 0)p = exp

{
p

∫ t

0
δ0(Ys) ds

}

= exp

{∫ pt

0
δ0(Ys/p) ds

}

= exp

{∫ pt

0
δ0(Y

1/p
s ) ds

}

which, by Theorem 1.2, leads to

λp(0, ̺) = p lim
t→∞

1

pt
log

〈
exp

{∫ pt

0
δ0(Y

1/p
s ) ds

}〉

= p λ1(0, ̺/p)

= p µ(̺/p),

where the last line comes from (1.13). �

3.3 Properties of the Lyapunov exponents λp(κ, ̺)

In this subsection we will prove Theorem 1.5.
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Proof of Theorem 1.5. (i) Fix p ∈ N. With the help of Theorem 1.2 and the Rayleigh-
Ritz-Formula we can write

λp(κ, ̺) = sup Sp (Hp) = sup
f∈ℓ2(Zpd)
‖f‖=1

(Hpf, f)

= sup
f∈ℓ2(Zpd)
‖f‖=1

[
κ
(
(∆1 + · · · + ∆p)f, f

)
+ ̺
(
Bpf, f

)
+
(
(δ

(1)
0 + · · · + δ

(p)
0 )f, f

)]
.

(3.1)

Hence, as a supremum of linear functions of κ and ̺, λp(κ, ̺) is convex and lower semicon-
tinuous. Since every finite convex function on [0,∞)2 is upper semicontinuous, we get the
desired continuity. Monotonicity follows directly, because the first two inner products in
(3.1) are nonpositive. It remains to show that λp vanishes if κ ≥ Gd. By monotonicity and
Lemma 1.3, 0 ≤ λp(κ, ̺) ≤ λp(κ, 0) = p µ(κ), but the right hand side equals 0 if κ ≥ Gd,
by (1.11).

(ii) Fix κ, ̺ ≥ 0 arbitrarily. By Lemma 3.1, λp(κ, ̺)/p is nondecreasing in p. As in (i),
Theorem 1.2 and the Rayleigh-Ritz formula yield

λp(κ, ̺) = sup
f∈ℓ2(Zpd)
‖f‖=1

[(
(κ∆1 + · · · + κ∆p + δ

(1)
0 + · · · + δ

(p)
0 )f, f

)
+ (̺Bpf, f)

]
. (3.2)

On the other hand, by Lemma 1.3,

p µ(κ) = λp(κ, 0) = sup
f∈ℓ2(Zpd)
‖f‖=1

(
(κ∆1 + · · · + κ∆p + δ

(1)
0 + · · · + δ

(p)
0 )f, f

)
. (3.3)

From (3.2) and (3.3) we conclude that
∣∣∣∣
λp(κ, ̺)

p
− µ(κ)

∣∣∣∣ ≤
̺

p
sup

f∈ℓ2(Zpd)
‖f‖=1

∣∣∣(Bpf, f)
∣∣∣. (3.4)

Hence, to prove the convergence (1.18), it suffices to show that the supremum on the
right stays bounded as p → ∞. We write ei for the i-th unit vector in Z

d. For arbitrary
f ∈ ℓ2(Zpd), we obtain

Bpf(x1, . . . , xp) =
d∑

i=1

[f(x1 + ei, . . . , xp + ei) − f(x1, . . . , xp)]

+

d∑

i=1

[f(x1 − ei, . . . , xp − ei) − f(x1, . . . , xp)] .

Using a spatial shift in the second line we can compute the Dirichlet form associated with
the operator Bp:

− (Bpf, f) =
d∑

i=1

∑

x1,...,xp∈Zd

[f(x1 + ei, . . . , xp + ei) − f(x1, . . . , xp)]
2. (3.5)
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In particular, (Bpf, f) ≤ 0. Using the inequality (a − b)2 ≤ 2a2 + 2b2 we conclude from
(3.5) that

sup
‖f‖=1

|(Bpf, f)| ≤ 4d,

and we are done. �

3.4 Intermittency

Finally, we want to analyse the intermittency behaviour of the system by proving Theorem
1.6. To this end, we need the following lemma.

Lemma 3.2. If ̺ > 0 and κ + ̺ < Gd, then λ2/2 > λ1, i.e., the system shows full

intermittency.

Proof. Since λ1(κ, ̺) = µ(κ+̺) and κ+̺ < Gd, λ1 is positive and the largest eigenvalue of
the operator H1 = (κ+̺)∆+δ0 corresponding to a positive eigenfunction v with ‖v‖ = 1.
Then (v ⊗ v)(x, y) = v(x) v(y) is an eigenfunction of the operator

H̃2 = H1 ⊗H1 = (κ + ̺)(∆1 + ∆2) + (δ
(1)
0 + δ

(2)
0 ).

corresponding to the eigenvalue 2λ1. Using the Rayleigh-Ritz formula, we conclude that

λ2 − 2λ1 = sup Sp(H2) − sup Sp(H̃2)

= sup
‖f‖=1

(
H2f, f

)
−
(
H̃2 v ⊗ v, v ⊗ v

)

≥
((

H2 − H̃2
)

v ⊗ v, v ⊗ v
)

.

But ((
H2 − H̃2

)
v ⊗ v, v ⊗ v

)

= ̺
((

B2 − ∆1 − ∆2

)
v ⊗ v, v ⊗ v

)

= 2̺
∑

x,y∈Zd

d∑

i=1

[v(x)v(y + ei) − v(x)v(y)] [v(x − ei)v(y) − v(x)v(y)]

= 2̺
∑

x,y∈Zd

d∑

i=1

v(x) [v(x − ei) − v(x)] v(y) [v(y + ei) − v(y)]

= ̺
∑

x,y∈Zd

d∑

i=1

[v(x − ei) − v(x)]2 [v(y + ei) − v(y)]2

= ̺
d∑

i=1


∑

x∈Zd

[v(x − ei) − v(x)]2




2

.

Assume that the above expression vanishes. Then v is constant. Since v ∈ ℓ2(Zd), this
implies v ≡ 0, which contradicts ‖v‖ = 1. Therefore, λ2 − 2λ1 > 0. �

Proof of Theorem 1.6. Let ̺ > 0. We first consider the case κ + ̺ < Gd. Then λ2/2 > λ1

by Lemma 3.2. Hence, λp+1/(p + 1) > λp/p for all p ∈ N by Lemma 3.1, and the system
is fully intermittent.
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Next, consider the case Gd − ̺ ≤ κ < Gd. By Theorem 1.2 and (1.11), we see that in
this case λ1(κ, ̺) = µ(κ + ̺) = 0, whereas µ(κ) > 0. Theorem 1.5 yields the convergence
λp(κ, ̺)/p ր µ(κ) as p → ∞. Hence, there exists p ∈ N such that λp(κ, ̺) > 0. Set
p∗ := min {p ∈ N|λp(κ, ̺) > 0}. Then the system is p∗-intermittent.

It remains the case κ ≥ Gd. Then λ1(κ, ̺) = λ2(κ, ̺) = · · · = 0 by Theorem 1.5 (i), and
the system is not intermittent. �
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[GK05] J. Gärtner and W. König (2005) The parabolic Anderson model. In: J.-D. Deuschel and

A. Greven (Eds.), Interacting Stochastic Systems, 153–179, Springer.
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