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2 SIDNEY RESNICK

1. Course Abstract

This is a survey of some of the mathematical, probabilistic and statistical tools used in
heavy tail analysis. Heavy tails are characteristic of phenomena where the probability of a
huge value is relatively big. Record breaking insurance losses, financial log-returns, file sizes
stored on a server, transmission rates of files are all examples of heavy tailed phenomena.
The modeling and statistics of such phenomena are tail dependent and much different than
classical modeling and statistical analysis which give primacy to central moments, averages
and the normal density, which has a wimpy, light tail. An organizing theme is that many limit
relations giving approximations can be viewed as applications of almost surely continuous
maps.

2. Introduction

Heavy tail analysis is an interesting and useful blend of mathematical analysis, probability
and stochastic processes and statistics. Heavy tail analysis is the study of systems whose
behavior is governed by large values which shock the system periodically. This is in contrast
to many stable systems whose behavior is determined largely by an averaging effect. In
heavy tailed analysis, typically the asymptotic behavior of descriptor variables is determined
by the large values or merely a single large value.

Roughly speaking, a random variable X has a heavy (right) tail if there exists a positive
parameter α > 0 such that

(2.1) P [X > x] ∼ x−α, x →∞.

(Note here we use the notation

f(x) ∼ g(x), x →∞
as shorthand for

lim
x→∞

f(x)

g(x)
= 1,

for two real functions f, g.) Examples of such random variables are those with Cauchy,
Pareto, t, F or stable distributions. Stationary stochastic processes, such as the ARCH,
GARCH, EGARCH etc, which have been proposed as models for financial returns have
marginal distributions satisfying (2.1). It turns out that (2.1) is not quite the right mathe-
matical setting for discussing heavy tails (that pride of place belongs to regular variation of
real functions) but we will get to that in due course.

Note the elementary observation that a heavy tailed random variable has a relatively
large probability of exhibiting a really large value, compared to random variables which
have exponentially bounded tails such as normal, Weibull, exponential or gamma random
variables. For a N(0, 1) normal random variable N , with density n(x), we have by Mill’s
ratio that

P [N > x] ∼ n(x)

x
∼ 1

x
√

2π
e−x2/2, x →∞,

which has much weaker tail weight than suggested by (2.1).
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There is a tendency to sometimes confuse the concept of a heavy tail distribution
with the concept of a distribution with infinite right support. (For a probability
distribution F , the support is the smallest closed set C such that F (C) = 1. For
the exponential distribution with no translation, the support is [0,∞) and for the
normal distribution, the support is R.) The distinction is simple and exemplified
by comparing a normally distributed random variable with one whose distribution
is Pareto. Both have positive probability of achieving a value bigger than any pre-
assigned threshold. However, the Pareto random variable has, for large thresholds,
a much bigger probability of exceeding the threshold. One cannot rule out heavy
tailed distributions by using the argument that everything in the world is bounded
unless one agrees to rule out all distributions with unbounded support.

Much of classical statistics is often based on averages and moments. Try to imagine a
statistical world where you do not rely on moments since if (2.1) holds, moments above the
α-th do not exist! This follows since

∫ ∞

0

xβ−1P [X > x]dx ≈
∫ ∞

0

xβ−1x−αdx

{
< ∞, if β < α,

= ∞, if β ≥ α,

where (in this case) ∫
f ≈

∫
g

means both integrals either converge or diverge together. Much stability theory in stochastic
modeling is expressed in terms of mean drifts but what if the means do not exist. Descriptor
variables in queueing theory are often in terms of means such as mean waiting time, mean
queue lengths and so on. What if such expectations are infinite?

Consider the following scenarios where heavy tailed analysis is used.
(i) Finance. It is empirically observed that “returns” possess several notable features,

sometimes called stylized facts . What is a “return”? Suppose {Si} is the stochastic process
representing the price of a speculative asset (stock, currency, derivative, commodity (corn,
coffee, etc)) at the ith measurement time. The return process is

R̃i := (Si − Si−1)/Si−1;

that is, the process giving the relative difference of prices. If the returns are small then the
differenced log-Price process approximates the return process

Ri := log Si − log Si−1 = log
Si

Si−1

= log

(
1 +

( Si

Si−1

− 1
))

∼ Si

Si−1

− 1 = R̃i

since for |x| small,

log(1 + x) ∼x
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by, say, L’Hospital’s rule. So instead of studying the returns {R̃i}, the differenced log-Price
process {Ri} is studied and henceforth we refer to {Ri} as the returns .

Empirically, either process is often seen to exhibit notable properties:

(1) Heavy tailed marginal distributions (but usually 2 < α so the mean and variance
exist);

(2) Little or no correlation. However by squaring or taking absolute values of the process
one gets a highly correlated, even long range dependent process.

(3) The process is dependent. (If the random variables were independent, so would the
squares be independent but squares are typically correlated.)

Hence one needs to model the data with a process which is stationary, has heavy tailed
marginal distributions and a dependence structure. This leads to the study of specialized
models in economics with lots of acronyms like ARCH and GARCH. Estimation of, say, the
marginal distribution’s shape parameter α are made more complex due to the fact that the
observations are not independent.

Classical Extreme Value Theory which subsumes heavy tail analysis uses techniques to
estimate value-at-risk or (VaR), which is an extreme quantile of the profit/loss density, once
the density is estimated.

Note, that given S0, there is a one-to-one correspondence between

{S0, S1, . . . , ST } and {S0, R1, . . . , RT }
since

T∑

t=1

Rt =(log S1 − log S0) + (log S2 − log S1)

+ · · ·+ (log ST − log ST−1)

= log ST − log S0 = log
ST

S0
,

so that

(2.2) ST = S0e
PT

t=1 Rt .

Why deal with returns rather than the price process?
(1) The returns are scale free and thus independent of the size of the investment.
(2) Returns have more attractive statistical properties than prices such as station-

arity. Econometric models sometimes yield non-stationary price models but
stationary returns.

To convince you this might make a difference to somebody, note that from 1970-
1995, the two worst losses world wide were Hurrricane Andrew (my wife’s cousin’s
yacht in Miami wound up on somebody’s roof 30 miles to the north) and the North-
ridge earthquake in California. Losses in 1992 dollars were $16,000 and $11,838
million dollars respectively. (Note the unit is “millions of dollars”.)

Why deal with log-returns rather than returns?
(1) Log returns are nicely additive over time. It is easier to construct models for

additive phenomena than multiplicative ones (such as 1+ R̃t = St/St−1). One
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can recover ST from log-returns by what is essentially an additive formula
(2.2). (Additive is good!) Also, the T -day return process

RT −R1 = log ST − log S0

is additive. (Additive is good!)
(2) Daily returns satisfy

St

St−1
− 1 ≥ −1,

and for statistical modeling, it is a bit unnatural to have the variable bounded
below by -1. For instance one could not model such a process using a normal
or two-sided stable density.

(3) Certain economic facts are easily expressed by means of log-returns. For ex-
ample, if St is the exchange rate of the US dollar against the British pound
and Rt = log(St/St−1), then 1/St is the exchange rate of pounds to dollars
and the return from the point of view of the British investor is

log
1/St

1/St−1
= log

St−1

St
= − log

St

St−1

which is minus the return for the American investor.
(4) The operations of taking logarithms and differencing are standard time series

tools for coercing a data set into looking stationary. Both operations, as
indicated, are easily undone. So there is a high degree of comfort with these
operations.
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Figure 1. Time series plot of S&P 500 data (left) and log(S&P500) (right).

Example 1 (Standard & Poors 500). We consider the data set fm-poors.dat in the package
Xtremes which gives the Standard & Poors 500 stock market index. The data is daily data
from July 1962 to December 1987 but of course does not include days when the market is
closed. In Figure 1 we display the time series plots of the actual data for the index and the
log of the data. Only a lunatic would conclude these two series were stationary. In the left
side of Figure 2 we exhibit the 6410 returns {Rt} of the data by differencing at lag 1 the
log(S&P) data. On the right side is the sample autocorrelation function. There is a biggish
lag 1 correlation but otherwise few spikes are outside the magic window.
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Figure 2. Time series plot of S&P 500 return data (left) and the autocorre-
lation function (right).
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Figure 3. i) The autocorrelation function of the squared returns (left). (ii)
The autocorrelation function of the absolute values of the returns. (right)

For a view of the stylized facts about these data, and to indicate the complexities of
the dependence structure, we exhibit the autocorrelation function of the squared returns
in Figure 3 (left) and on the right the autocorrelation function for the absolute value of
the returns. Though there is little correlation in the original series, the iid hypothesis is
obviously false.

One can compare the heaviness of the right and left tail of the marginal distribution of
the process {Rt} even if we do not believe that the process is iid. A reasonable assumption
seems to be that the data can be modelled by a stationary, uncorrelated process and we
hope the standard exploratory extreme value and heavy tailed methods developed for iid
processes still apply. We apply the QQ-plotting technique to the data. After playing a bit
with the number of upper order statistics used, we settled on k = 200 order statistics for
the positive values (upper tail) which gives the slope estimate of α̂ = 3.61. This is shown
in the left side of Figure 4. On the right side of Figure 4 is the comparable plot for the left
tail; here we applied the routine to abs(returns[returns¡0]); that is, to the absolute value of
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the negative data points in the log-return sample. After some experimentation, we obtained
an estimate α̂ = 3.138 using k = 150. Are the two tails symmetric which is a common
theoretical assumption? Unlikely!

(ii) Insurance and reinsurance. The general theme here is to model insurance claim sizes
and frequencies so that premium rates may be set intelligently and risk to the insurance
company quantified.

Smaller insurance companies sometimes pay for reinsurance or excess-of-loss (XL) insur-
ance to a bigger company like Lloyd’s of London. The excess claims over a certain contrac-
tually agreed threshhold is covered by the big insurance company. Such excess claims are by
definition very large so heavy tail analysis is a natural tool to apply. What premium should
the big insurance company charge to cover potential losses?

As an example of data you might encounter, consider the Danish data on large fire in-
surance losses McNeil (1997), Resnick (1997). Figure 5 gives a time series plot of the 2156
Danish data consisting of losses over one million Danish Krone (DKK) and the right hand
plot is the QQ plot of this data yielding a remarkably straight plot. The straight line plot
indicates the appropriateness of heavy tail analysis.

(iii) Data networks . A popular idealized data transmission model of a source destination
pair is an on/off model where constant rate transmissions alternate with off periods. The on
periods are random in length with a heavy tailed distribution and this leads to occasional large
transmission lengths. The model offers an explanation of perceived long range dependence
in measured traffic rates. A competing model which is marginally more elegant in our eyes
is the infinite source Poisson model to be discussed later along with all its warts.

Example 2. The Boston University study (Crovella and Bestavros (1995), Crovella and
Bestavros (1996a), Cunha et al. (1995)) suggests self-similarity of web traffic stems from
heavy tailed file sizes. This means that we treat files as being randomly selected from a
population and if X represents a randomly selected file size then the heavy tail hypothesis
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Figure 5. Danish Data (left) and QQ-plot.

means for large x > 0

(2.3) P [X > x] ∼ x−α, α > 0,

where α is a shape parameter that must be statistically estimated. The BU study reports an
overall estimate for a five month measurement period (see Cunha et al. (1995)) of α = 1.05.
However, there is considerable month-to-month variation in these estimates and, for instance,
the estimate for November 1994 in room 272 places α in the neighborhood of 0.66. Figure
6 gives the QQ and Hill plots (Beirlant et al. (1996), Hill (1975), Kratz and Resnick (1996),
Resnick and Stărică (1997)) of the file size data for the month of November in the Boston
University study. These are two graphical methods for estimating α and will be discussed
in more detail later.

Extensive traffic measurements of on periods are reported in Willinger et al. (1995) where
measured values of α were usually in the interval (1, 2). Studies of sizes of files accessed on
various servers by the Calgary study (Arlitt and Williamson (1996)), report estimates of α
from 0.4 to 0.6. So accumulating evidence already exists which suggests values of α outside
the range (1, 2) should be considered. Also, as user demands on the web grow and access
speeds increase, there may be a drift toward heavier file size distribution tails. However, this
is a hypothesis that is currently untested.
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3. A Crash Course on Regular Variation

The theory of regularly varying functions is the appropriate mathematical analysis tool
for proper discussion of heavy tail phenomena. We begin by reviewing some results from
analysis starting with uniform convergence.

3.1. Preliminaries from analysis.

3.1.1. Uniform convergence. If {fn, n ≥ 0} are real valued functions on R (or, in fact, any
metric space) then fn converges uniformly on A ⊂ R to f if

(3.1) sup
A
|f0(x)− fn(x)| → 0

as n → ∞. The definition would still make sense of the range of fn, n ≥ 0 were a metric
space but then |f0(x) − fn(x)| would need to be replaced by d(f0, fn), where d(·, ·) is the
metric. For functions on R, the phrase local uniform convergence means that (3.1) holds for
any compact interval A.

If Un, n ≥ 0 are non-decreasing real valued functions on R, then a useful fact is that if U0

is continuous and Un(x) → U0(x) as n → ∞ for all x, then Un → U locally uniformly; i.e.
for any a < b

sup
xε[a,b]

|Un(x)− U0(x)| → 0.

(See (Resnick, 1987, page 1).) One proof of this fact is outlined as follows: If U0 is continuous
on [a, b], then it is uniformly continuous. From the uniform convergence, for any x, there
is an interval-neighborhood Ox on which U0(·) oscillates by less than a given ε. This gives
an open cover of [a, b]. Compactness of [a, b] allows us to prune {Ox, x ∈ [a, b]} to obtain a
finite subcover {(ai, bi), i = 1, . . . , K}. Using this finite collection and the monotonicity of
the functions leads to the result: Given ε > 0, there exists some large N such that if n ≥ N
then

max
1≤i≤N

|Un(ai)− U0(ai)|
∨

Un(bi)− U0(bi)| < ε,

(by pointwise convergence). Observe that

(3.2) sup
x∈[a,b]

|Un(x)− U0(x)| ≤ max
1≤i≤N

sup
[ai,bi]

|Un(x)− U0(x)|.

For any x ∈ [ai, bi], we have by monotonicity

Un(x)− U0(x) ≤Un(bi)− U0(ai)

≤U0(bi) + ε− U0(ai), (by (3.2))

≤2ε,

with a similar lower bound. This is true for all i and hence we get uniform convergence on
[a, b].
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3.1.2. Inverses of monotone functions. Suppose H : R 7→ (a, b) is a non-decreasing function
on R with range (a, b), −∞ ≤ a < b ≤ ∞. With the convention that the infimum of an
empty set is +∞, we define the (left continuous) inverse H← : (a, b) 7→ R of H as

H←(y) = inf{s : H(s) ≥ y}.
In case the function H is right continuous we have the following interesting properties:

(3.3) A(y) := {s : H(s) ≥ y} is closed,

(3.4) H(H←(y)) ≥ y

(3.5) H←(y) ≤ t iff y ≤ H(t).

For (3.3), observe that if sn ∈ A(y) and sn ↓ s, then y ≤ H(sn) ↓ H(s) so H(s) ≥ y
and s ∈ A(y). If sn ↑ s and sn ∈ A(y), then y ≤ H(sn) ↑ H(s−) ≤ H(s) and H(s) ≥ y
so s ∈ A(y) again and A(y) is closed. Since A(y) is closed, inf A(y) ∈ A(y); that is,
H←(y) ∈ A(y) which means H(H←(y)) ≥ y. This gives (3.4). Lastly, (3.5) follows from the
definition of H←.

3.1.3. Convergence of monotone functions. For any function H denote

C(H) = {x ∈ R : H is finite and continuous at x}.
A sequence {Hn, n ≥ 0} of non-decreasing functions on R converges weakly to H0 if as
n →∞ we have

Hn(x) → H0(x),

for all x ∈ C(H0). We will denote this by Hn → H0 and no other form of convergence for
monotone functions will be relevant. If Fn, n ≥ 0 are non-defective distributions, then a
myriad of names give equivalent concepts: complete convergence, vague convergence, weak∗

convergence, narrow convergence. If Xn, n ≥ 0 are random variables and Xn has distribution
function Fn, n ≥ 0, then Xn ⇒ X0 means Fn → F0. For the proof of the following, see
(Billingsley, 1986, page 343), (Resnick, 1987, page 5), (Resnick, 1998, page 259).

Proposition 1. If Hn, n ≥ 0 are non-decreasing functions on R with range (a, b) and Hn →
H0, then H←

n → H←
0 in the sense that for t ∈ (a, b) ∩ C(H←

0 )

H←
n (t) → H←

0 (t).

3.1.4. Cauchy’s functional equation. Let k(x), x ∈ R be a function which satisfies

k(x + y) = k(x) + k(y), x, y ∈ R.

If k is measurable and bounded on a set of positive measure, then k(x) = cx for some c ∈ R.
(See Seneta (1976), (Bingham et al., 1987, page 4).)
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3.2. Regular variation: definition and first properties. An essential analytical tool
for dealing with heavy tails, long range dependence and domains of attraction is the theory
of regularly varying functions. This theory provides the correct mathematical framework for
considering things like Pareto tails and algebraic decay.

Roughly speaking, regularly varying functions are those functions which behave asymptot-
ically like power functions. We will deal currently only with real functions of a real variable.
Consideration of multivariate cases and probability concepts suggests recasting definitions
in terms of vague convergence of measures but we will consider this reformulation later.

Definition 1. A measurable function U : R+ 7→ R+ is regularly varying at ∞ with index
ρ ∈ R (written U ∈ RVρ) if for x > 0

lim
t→∞

U(tx)

U(t)
= xρ.

We call ρ the exponent of variation.

If ρ = 0 we call U slowly varying. Slowly varying functions are generically denoted by
L(x). If U ∈ RVρ, then U(x)/xρ ∈ RV0 and setting L(x) = U(x)/xρ we see it is always
possible to represent a ρ-varying function as xρL(x).

Examples. The canonical ρ-varying function is xρ. The functions log(1+x), log log(e+x)
are slowly varying, as is exp{(log x)α}, 0 < α < 1. Any function U such that limx→∞ U(x) =:
U(∞) exists finite is slowly varying. The following functions are not regularly varying:
ex, sin(x + 2). Note [log x] is slowly varying, but exp{[log x]} is not regularly varying.

In probability applications we are concerned with distributions whose tails are regularly
varying. Examples are

1− F (x) = x−α, x ≥ 1, α > 0,

and the extreme value distribution

Φα(x) = exp{−x−α}, x ≥ 0.

Φα(x) has the property
1− Φα(x) ∼ x−α as x →∞.

A stable law (to be discussed later) with index α, 0 < α < 2 has the property

1−G(x) ∼ cx−α, x →∞, c > 0.

The Cauchy density f(x) = (π(1 + x2))−1 has a distribution function F with the property

1− F (x) ∼ (πx)−1.

If N(x) is the standard normal df then 1 − N(x) is not regularly varying nor is the tail of
the Gumbel extreme value distribution 1− exp{−e−x}.

The definition of regular variation can be weakened slightly (cf Feller (1971), de Haan
(1970), Resnick (1987)).

Proposition 2. (i) A measurable function U : R+ 7→ R+ varies regularly if there exists a
function h such that for all x > 0

lim
t→∞

U(tx)/U(t) = h(x).
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In this case h(x) = xρ for some ρ ∈ R and U ∈ RVρ.
(ii) A monotone function U : R+ 7→ R+ varies regularly provided there are two sequences

{λn}, {an} of positive numbers satisfying

(3.6) an →∞, λn ∼ λn+1, n →∞,

and for all x > 0

(3.7) lim
n→∞

λnU(anx) =: χ(x) exists positive and finite.

In this case χ(x)/χ(1) = xρ and U ∈ RVρ for some ρ ∈ R.

We frequently refer to (3.7) as the sequential form of regular variation. For probability
purposes, it is the most useful. Typically U is a distribution tail, λn = n and an is a
distribution quantile.

Proof. (i) The function h is measurable since it is a limit of measurable functions. Then for
x > 0, y > 0

U(txy)

U(t)
=

U(txy)

U(tx)
· U(tx)

U(t)

and letting t →∞ gives

h(xy) = h(y)h(x).

So h satisfies the Hamel equation, which by change of variable can be converted to the
Cauchy equation. Therefore, the form of h is h(x) = xρ for some ρ ∈ R.

(ii) For concreteness assume U is nondecreasing. Assume (3.6) and (3.7) and we show
regular variation. Since an →∞, for each t there is a finite n(t) defined by

n(t) = inf{m : am+1 > t}

so that

an(t) ≤ t < an(t)+1.

Therefore by monotonicity for x > 0

(
λn(t)+1

λn(t)

)(
λn(t)U(an(t)x)

λn(t)+1U(an(t)+1)

)
≤ U(tx)

U(t)
≤

(
λn(t)

λn(t)+1

)(
λn(t)+1U(an(t)+1x)

λn(t)U(an(t))

)
.

Now let t →∞ and use (3.6) and (3.7) to get limt→∞
U(tx)
U(t)

= 1χ(x)
χ(1)

. Regular variation follows

from part (i). ¤

Remark 1. Proposition 2 (ii) remains true if we only assume (3.7) holds on a dense set.
This is relevant to the case where U is nondecreasing and λnU(anx) converges weakly.
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3.2.1. A maximal domain of attraction. Suppose {Xn, n ≥ 1} are iid with common distrib-
ution function F (x). The extreme is

Mn =
n∨

i=1

Xi = max{X1, . . . , Xn}.

One of the extreme value distributions is

Φα(x) := exp{−x−α}, x > 0, α > 0.

What are conditions on F , called domain of attraction conditions , so that there exists an > 0
such that

(3.8) P [a−1
n Mn ≤ x] = F n(anx) → Φα(x)

weakly. How do you characterize the normalization sequence {an}?
Set x0 = sup{x : F (x) < 1} which is called the right end point of F . We first check

(3.8) implies x0 = ∞. Otherwise if x0 < ∞ we get from (3.8) that for x > 0, anx → x0;
i.e. an → x0x

−1. Since x > 0 is arbitrary we get an → 0 whence x0 = 0. But then for
x > 0, F n(anx) = 1, which violates (3.8). Hence x0 = ∞.

Furthermore an →∞ since otherwise on a subsequence n′, an′ ≤ K for some K < ∞ and

0 < Φα(1) = lim
n′→∞

F n′(an′) ≤ lim
n′→∞

F n′(K) = 0

since F (K) < 1 which is a contradiction.
In (3.8), take logarithms to get for x > 0, limn→∞ n(− log F (anx)) = x−α. Now use the

relation − log(1− z) ∼ z as z → 0 and (7) is equivalent to

(3.9) lim
n→∞

n(1− F (anx)) = x−α, x > 0.

From (3.9) and Proposition 2 we get

(3.10) 1− F (x) ∼ x−αL(x), x →∞,

for some α > 0 . To characterize {an} set U(x) = 1/(1− F (x)) and (3.9) is the same as

U(anx)/n → xα, x > 0

and inverting we find via Proposition 1 that

U←(ny)

an

→ y1/α, y > 0.

So U←(n) = (1/(1 − F ))←(n) ∼ an and this determines an by the convergence to types
theorem.(See Feller (1971), Resnick (1998, 1987).)

Conversely if (3.10) holds, define an = U←(n) as previously. Then

lim
n→∞

1− F (anx)

1− F (an)
= x−α
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and we recover (3.9) provided 1−F (an) ∼ n−1 or what is the same provided U(an) ∼ n i.e.,
U(U←(n)) ∼ n. Recall from (3.5), that z < U←(n) iff U(z) < n and setting z = U←(n)(1−ε)
and then z = U←(n)(1 + ε) we get

U(U←(n))

U(U←(n)(1 + ε))
≤ U(U←(n))

n
≤ U(U←(n))

U(U←(n)(1− ε))
.

Let n →∞, remembering U = 1/(1− F ) ∈ RVα. Then

(1 + ε)−α ≤ lim inf
n→∞

n−1U(U←(n)) ≤ lim sup
n→∞

U(U←(n)) ≤ (1− ε)−α

and since ε > 0 is arbitrary the desired result follows.

3.3. Regular variation: Deeper Results; Karamata’s Theorem. There are several
deeper results which give the theory power and utility: uniform convergence, Karamata’s
theorem which says a regularly varying function integrates the way you expect a power
function to integrate, and finally the Karamata representation theorem.

3.3.1. Uniform convergence. The first useful result is the uniform convergence theorem.

Proposition 3. If U ∈ RVρ for ρ ∈ R, then

lim
t→∞

U(tx)/U(t) = xρ

locally uniformly in x on (0,∞). If ρ < 0, then uniform convergence holds on intervals of
the form (b,∞), b > 0. If ρ > 0 uniform convergence holds on intervals (0, b] provided U is
bounded on (0, b] for all b > 0.

If U is monotone the result already follows from the discussion in Subsubsection 3.1.1,
since we have a family of monotone functions converging to a continuous limit. For detailed
discussion see Bingham et al. (1987), de Haan (1970), Geluk and de Haan (1987), Seneta
(1976).

3.3.2. Integration and Karamata’s theorem. The next set of results examines the integral
properties of regularly varying functions. For purposes of integration, a ρ-varying function
behaves roughly like xρ. We assume all functions are locally integrable and since we are
interested in behavior at ∞ we assume integrability on intervals including 0 as well.

Theorem 1 (Karamata’s Theorem). (a) Suppose ρ ≥ −1 and U ∈ RVρ. Then
∫ x

0
U(t)dt ∈

RVρ+1 and

(3.11) lim
x→∞

xU(x)∫ x

0
U(t)dt

= ρ + 1.

If ρ < −1 (or if ρ = −1 and
∫∞

x
U(s)ds < ∞) then U ∈ RVρ implies

∫∞
x

U(t)dt is finite,∫∞
x

U(t)dt ∈ RVρ+1 and

(3.12) lim
x→∞

xU(x)∫∞
x

U(t)dt
= −ρ− 1.
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(b) If U satisfies

(3.13) lim
x→∞

xU(x)∫ x

0
U(t)dt

= λ ∈ (0,∞)

then U ∈ RVλ−1. If
∫∞

x
U(t)dt < ∞ and

(3.14) lim
x→∞

xU(x)∫∞
x

U(t)dt
= λ ∈ (0,∞)

then U ∈ RV−λ−1.

What Theorem 1 emphasizes is that for the purposes of integration, the slowly varying
function can be passed from inside to outside the integral. For example the way to remember
and interpret (3.11) is to write U(x) = xρL(x) and then observe∫ x

0

U(t)dt =

∫ x

0

tρL(t)dt

and pass the L(t) in the integrand outside as a factor L(x) to get

∼L(x)

∫ x

0

tρdt = L(x)xρ+1/(ρ + 1)

=xxρL(x)/(ρ + 1) = xU(x)/(ρ + 1),

which is equivalent to the assertion (3.11).

Proof. (a). For certain values of ρ, uniform convergence suffices after writing say∫ x

0
U(s)ds

xU(x)
=

∫ x

0

U(sx)

U(x)
ds.

If we wish to proceed, using elementary concepts, consider the following approach, which
follows de Haan (1970).

If ρ > −1 we show
∫∞

0
U(t)dt = ∞. From U ∈ RVρ we have

lim
s→∞

U(2s)/U(s) = 2ρ > 2−1

since ρ > −1. Therefore there exists s0 such that s > s0 necessitates U(2s) > 2−1U(s). For
n with 2n > s0 we have

∫ 2n+2

2n+1

U(s)ds = 2

∫ 2n+1

2n

U(2s)ds >

∫ 2n+1

2n

U(s)ds

and so setting n0 = inf{n : 2n > s0} gives
∫ ∞

s0

U(s)ds ≥
∑

n:2n>s0

∫ 2n+2

2n+1

U(s)ds >
∑
n≥n0

∫ 2n0+2

2n0+1

U(s)ds = ∞.

Thus for ρ > −1, x > 0, and any N < ∞ we have
∫ t

0

U(sx)ds ∼
∫ t

N

U(sx)ds, t →∞,
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since U(sx) is a ρ-varying function of s. For fixed x and given ε, there exists N such that
for s > N

(1− ε)xρU(s) ≤ U(sx) ≤ (1 + ε)xρU(s)

and thus

lim sup
t→∞

∫ tx

0
U(s)ds∫ t

0
U(s)ds

= lim sup
t→∞

x
∫ t

0
U(sx)ds∫ t

0
U(s)ds

= lim sup
t→∞

x
∫ t

N
U(sx)ds∫ t

N
U(s)ds

≤ lim sup
t→∞

xρ+1(1 + ε)

∫ t

N
U(s)ds∫ t

N
U(s)ds

=(1 + ε)xρ+1.

An analogous argument applies for lim inf and thus we have proved∫ x

0

U(s)ds ∈ RVρ+1

when ρ > −1.
In case ρ = −1 then either

∫∞
0

U(s)ds < ∞ in which case
∫ x

0
U(s)ds ∈ RV−1+1 = RV0 or

else
∫∞
0

U(s)ds = ∞ and the previous argument is applicable. So we have checked that for

ρ ≥ −1,
∫ x

0
U(s)ds ∈ RVρ+1.

We now focus on proving (3.11) when U ∈ RVρ, ρ ≥ −1. As in the development leading
to (3.22), set

b(x) = xU(x)/

∫ x

0

U(t)dt

so that integrating b(x)/x leads to the representations
∫ x

0

U(s)ds =c exp

{∫ x

1

t−1b(t)dt

}

U(x) =cx−1b(x) exp

{∫ x

1

t−1b(t)dt

}
.(3.15)

We must show b(x) → ρ + 1. Observe first that

lim inf
x→∞

1/b(x) = lim inf
x→∞

∫ x

0
U(t)dt

xU(x)

= lim inf
x→∞

∫ 1

0

U(sx)

U(x)
ds.

Now make a change of variable s = x−1t and and by Fatou’s lemma this is

≥
∫ 1

0

lim inf
x→∞

(U(sx)/U(x))ds
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=

∫ 1

0

sρds =
1

ρ + 1

and we conclude

(3.16) lim sup
x→∞

b(x) ≤ ρ + 1.

If ρ = 1 then b(x) → 0 as desired, so now suppose ρ > −1.
We observe the following properties of b(x):

(i) b(x) is bounded on a semi-infinite neighborhood of ∞ (by (3.16)).
(ii) b is slowly varying since xU(x) ∈ RVρ+1 and

∫ x

0
U(s)ds ∈ RVρ+1.

(iii) We have

b(xt)− b(x) → 0

boundedly as x →∞.

The last statement follows since by slow variation

lim
x→∞

(b(xt)− b(x))/b(x) = 0

and the denominator is ultimately bounded.
From (iii) and dominated convergence

lim
x→∞

∫ s

1

t−1(b(xt)− b(x))dt = 0

and the left side may be rewritten to obtain

(3.17) lim
x→∞

{∫ s

1

t−1b(xt)dt− b(x) log s

}
= 0.

From (3.15)

c exp

{∫ x

1

t−1b(t)dt

}
=

∫ x

0

U(s)ds ∈ RVρ+1

and from the regular variation property

(ρ + 1) log s = lim
x→∞

log

{∫ xs

0
U(t)dt∫ x

0
U(t)dt

}

= lim
x→∞

∫ xs

x

t−1b(t)dt = lim
x→∞

∫ s

1

t−1b(xt)dt

and combining this with (3.17) leads to the desired conclusion that b(x) → ρ + 1.

(b). We suppose (3.13) holds and check U ∈ RVλ−1. Set

b(x) = xU(x)/

∫ x

0

U(t)dt

so that b(x) → λ. From (3.15)

U(x) = cx−1b(x) exp

∫ x

1

t−1b(t)dt

}
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= cb(x) exp

∫ x

1

t−1(b(t)− 1)dt

}

and since b(t) − 1 → λ − 1 we see that U satisfies the representation of a (λ − 1) varying
function. ¤
3.3.3. Karamata’s representation. Theorem 1 leads in a straightforward way to what has
been called the Karamata representation of a regularly varying function.

Corollary 1 (The Karamata Representation). (i) The function L is slowly varying iff L
can be represented as

(3.18) L(x) = c(x) exp

{∫ x

1

t−1ε(t)dt

}
, x > 0,

where c : R+ 7→ R+, ε : R+ 7→ R+ and

lim
x→∞

c(x) = c ∈ (0,∞),(3.19)

lim
t→∞

ε(t) = 0.(3.20)

(ii) A function U : R+ 7→ R+ is regularly varying with index ρ iff U has the representation

(3.21) U(x) = c(x) exp

{∫ x

1

t−1ρ(t)dt

}

where c(·) satisfies (3.19) and limt→∞ ρ(t) = ρ. (This is obtained from (i) by writing U(x) =
xρL(x) and using the representation for L.)

Proof. If L has a representation (3.18) then it must be slowly varying since for x > 1

lim
t→∞

L(tx)/L(t) = lim
t→∞

(c(tx)/c(t)) exp

{∫ tx

t

s−1ε(s)ds

}
.

Given ε, there exists t0 by (3.20) such that

−ε < ε(t) < ε, t ≥ t0,

so that

−ε log x = −ε

∫ tx

t

s−1ds ≤
∫ tx

t

s−1ε(s)ds ≤ ε

∫ tx

t

s−1ds = ε log x.

Therefore limt→∞
∫ tx

t
s−1ε(s)ds = 0 and limt→∞ L(tx)/L(t) = 1.

Conversely suppose L ∈ RV0. By Karamata’s theorem

b(x) := xL(x)/

∫ x

0

L(s)ds → 1

and x →∞. Note

L(x) = x−1b(x)

∫ x

0

L(s)ds.

Set ε(x) = b(x)− 1 so ε(x) → 0 and
∫ x

1

t−1ε(t)dt =

∫ x

1

(
L(t)/

∫ t

0

L(s)ds

)
dt− log x
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=

∫ x

1

d

(
log

∫ t

0

L(s)ds

)
− log x

= log

(
x−1

∫ x

0

L(s)ds/

∫ 1

0

L(s)ds

)

whence

exp

{∫ x

1

t−1ε(t)dt

}
=x−1

∫ x

0

L(s)ds/

∫ 1

0

L(s)ds

=L(x)/

(
b(x)

∫ 1

0

L(s)ds

)
,(3.22)

and the representation follows with

c(x) = b(x)

∫ 1

0

L(s)ds.

¤

3.3.4. Differentiation. The previous results describe the asymptotic properties of the indefi-
nite integral of a regularly varying function. We now describe what happens when a ρ-varying
function is differentiated.

Proposition 4. Suppose U : R+ 7→ R+ is absolutely continuous with density u so that

U(x) =

∫ x

0

u(t)dt.

(a) (Von Mises) If

(3.23) lim
x→∞

xu(x)/U(x) = ρ,

then U ∈ RVρ.
(b) (Landau, 1916) See also (de Haan, 1970, page 23, 109), Seneta (1976),Resnick (1987).

If U ∈ RVρ, ρ ∈ R, and u is monotone then (3.23) holds and if ρ 6= 0 then |u|(x) ∈ RVρ−1.

Proof. (a) Set
b(x) = xu(x)/U(x)

and as before we find

U(x) = U(1) exp

{∫ x

1

t−1b(t)dt

}

so that U satisfies the representation theorem for a ρ-varying function.
(b) Suppose u is nondecreasing. An analogous proof works in the case u is nonincreasing.

Let 0 < a < b and observe

(U(xb)− U(xa))/U(x) =

∫ xb

xa

u(y)dy/U(x).

By monotonicity we get

(3.24) u(xb)x(b− a)/U(x) ≥ (U(xb)− U(xa))/U(x) ≥ u(xa)x(b− a)/U(x).
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From (22) and the fact that U ∈ RVρ we conclude

(3.25) lim sup
x→∞

xu(xa)/U(x) ≤ (bρ − aρ)/(b− a)

for any b > a > 0. So let b ↓ a, which is tantamount to taking a derivative. Then (3.25)
becomes

(3.26) lim sup
x→∞

xu(xa)/U(x) ≤ ρaρ−1

for any a > 0. Similarly from the left-hand equality in (3.24) after letting a ↑ b we get

(3.27) lim inf
x→∞

xu(xb)/U(x) ≥ ρbρ−1

for any b > 0. Then (3.23) results by setting a = 1 in (3.26) and b = 1 in (3.27). ¤
3.4. Regular variation: Further properties. For the following list of properties, it is
convenient to define rapid variation or regular variation with index ∞. Say U : R+ 7→ R+ is
regularly varying with index ∞ (U ∈ RV∞) if for every x > 0

lim
t→∞

U(tx)

U(t)
= x∞ :=





0, if x < 1,

1, if x = 1,

∞, if x > 1.

Similarly U ∈ RV−∞ if

lim
t→∞

U(tx)

U(t)
= x−∞ :=





∞, if x < 1,

1, if x = 1,

0, if x > 1.

The following proposition collects useful properties of regularly varying functions. (See
de Haan (1970).)

Proposition 5. (i) If U ∈ RVρ, −∞ ≤ ρ ≤ ∞, then

lim
x→∞

log U(x)/ log x = ρ

so that

lim
x→∞

U(x) =

{
0, if ρ < 0,

∞, if ρ > 0.

(ii) (Potter bounds.) Suppose U ∈ RVρ, ρ ∈ R. Take ε > 0. Then there exists t0 such that
for x ≥ 1 and t ≥ t0

(3.28) (1− ε)xρ−ε <
U(tx)

U(t)
< (1 + ε)xρ+ε.

(iii) If U ∈ RVρ, ρ ∈ R, and {an}, {a′n} satisfy, 0 < an → ∞, 0 < an′ → ∞, and
an ∼ can′ , for 0 < c < ∞, then U(an) ∼ cρU(an′). If ρ 6= 0 the result also holds for c = 0 or
∞. Analogous results hold with sequences replaced by functions.

(iv) If U1 ∈ RVρ1 and U2 ∈ RVρ2 and limx→∞ U2(x) = ∞ then

U1 ◦ U2 ∈ RVρ1ρ2 .
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(v) Suppose U is nondecreasing, U(∞) = ∞, and U ∈ RVρ, 0 ≤ ρ ≤ ∞. Then

U← ∈ RVρ−1 .

(vi) Suppose U1, U2 are nondecreasing and ρ-varying, 0 < ρ < ∞. Then for 0 ≤ c ≤ ∞
U1(x) ∼ cU2(x), x →∞

iff

U←
1 (x) ∼ c−ρ−1

U←
2 (x), x →∞.

(vii) If U ∈ RVρ, ρ 6= 0, then there exists a function U∗ which is absolutely continuous,
strictly monotone, and

U(x) ∼ U(x)∗, x →∞.

Proof. (i) We give the proof for the case 0 < ρ < ∞. Suppose U has Karamata representation

U(x) = c(x) exp

∫ x

1

t−1ρ(t)dt

}

where c(x) → c > 0 and ρ(t) → ρ. Then

log U(x)/ log x = o(1) +

∫ x

1

t−1ρ(t)dt/

∫ x

1

t−1dt → ρ.

(ii) Using the Karamata representation

U(tx)/U(t) = (c(tx)/c(t)) exp

{∫ x

1

s−1ρ(ts)ds

}

and the result is apparent since we may pick t0 so that t > t0 implies ρ− ε < ρ(ts) < ρ + ε
for s > 1.

(iii) If c > 0 then from the uniform convergence property in Proposition 3

lim
n→∞

U(an)

U(an′)
= lim

n→∞
U(an′(an/an′))

U(an′)
= lim

t→∞
U(tc)

U(t)
= cρ.

(iv) Again by uniform convergence, for x > 0

lim
t→∞

U1(U2(tx))

U1(U2(t))
= lim

t→∞
U1(U2(t)(U2(tx)/U2(t)))

U1(U2(t))

= lim
y→∞

U1(yxρ2)

U1(y)
= xρ2ρ1 .

(v) Let Ut(x) = U(tx)/U(t) so that if U ∈ RVρ and U is nondecreasing then (0 < ρ < ∞)

Ut(x) → xρ, t →∞,

which implies by Proposition 1

U←
t (x) → xρ−1

, t →∞;

that it,

lim
t→∞

U←(xU(t))/t = xρ−1

.
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Therefore

lim
t→∞

U←(xU(U←(t)))/U←(t) = xρ−1

.

This limit holds locally uniformly since monotone functions are converging to a continuous
limit. Now U ◦ U←(t) ∼ t as t →∞, and if we replace x by xt/U ◦ U←(t) and use uniform
convergence we get

lim
t→∞

U←(tx)

U←(t)
= lim

t→∞
U←((xt/U ◦ U←(t))U ◦ U←(t))

U←(t)

= lim
t→∞

U←(xU ◦ U←(t))

U←(t)
= xρ−1

which makes U← ∈ RVρ−1 .
(vi) If c > 0, 0 < ρ < ∞ we have for x > 0

lim
t→∞

U1(tx)

U2(t)
= lim

t→∞
U1(tx)U2(tx)

U2(tx)U2(t)
= cxρ.

Inverting we find for y > 0

lim
t→∞

U←
1 (yU2(t))/t = (c−1y)ρ−1

and so

lim
t→∞

U←
1 (yU2 ◦ U←

2 (t))/U←
2 (t) = (c−1y)ρ−1

and since U2 ◦ U←
2 (t) ∼ t

lim
t→∞

U←
1 (yt)/U←

2 (t) = (c−1y)ρ−1

.

Set y = 1 to obtain the result.
(vii) For instance if U ∈ RVρ, ρ > 0 define

U∗(t) =

∫ t

1

s−1U(s)ds.

Then s−1U(s) ∈ RVρ−1 and by Karamata’s theorem

U(x)/U∗(x) → ρ.

U∗ is absolutely continuous and since U(x) → ∞ when ρ > 0, U∗ is ultimately strictly
increasing. ¤
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4. A Crash Course in Weak Convergence.

Many asymptotic properties of statistics in heavy tailed analysis are clearly understood
with a fairly high level interpretation which comes from the modern theory of weak conver-
gence of probability measures on metric spaces as originally promoted in Billingsley (1968)
and updated in Billingsley (1999).

4.1. Definitions. Let S be a complete, separable metric space with metric d and let S be
the Borel σ- algebra of subsets of S generated by open sets. Suppose (Ω,A,P) is a probability
space. A random element X in S is a measurable map from such a space (Ω,A) into (S,S).

With a random variable, a point ω ∈ Ω is mapped into a real valued member of R. With
a random element, a point ω ∈ Ω is mapped into a an element of the metric space S. Here
are some common examples of this paradigm.

Metric space S Random element X is a:

R random variable
Rd random vector
C[0,∞), the space of real valued, random process with
continuous functions on [0,∞) continuous paths
D[0,∞), the space of real valued, right continuous right continuous random process
functions on [0,∞) with finite left with jump discontinuities
limits existing on (0,∞)
Mp(E), the space of point measures stochastic point process on E
on a nice space E
M+(E), the space of Radon measures random measure on E
on a nice space E.

Table 1. Various metric spaces and random elements.

Given a sequence {Xn, n ≥ 0} of random elements of S, there is a corresponding sequence
of distributions on S,

Pn = P ◦X−1
n = P[Xn ∈ ·], n ≥ 0.

Pn is called the distribution of Xn. Then Xn converges weakly to X0 (written Xn ⇒ X0 or
Pn ⇒ P0) if whenever f ∈ C(S), the class of bounded, continuous real valued functions on
S, we have

Ef(Xn) =

∫

S
f(x)Pn(dx) → Ef(X0) =

∫

S
f(x)P0(dx).

Recall that the definition of weak convergence of random variables in R is given in terms of
one dimensional distribution functions which does not generalize nicely to higher dimensions.
The definition in terms of integrals of test functions f ∈ C(S) is very flexible and well defined
for any metric space S.
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4.2. Basic properties of weak convergence.

4.2.1. Portmanteau Theorem. The basic Portmanteau Theorem ((Billingsley, 1968, page 11),
Billingsley (1999)) says the following are equivalent:

Xn ⇒ X0.(4.1)

lim
n→∞

P[Xn ∈ A] = P[X0 ∈ A], ∀A ∈ S such that P[X0 ∈ ∂A] = 0.(4.2)

Here ∂A denotes the boundary of the set A.

lim sup
n→∞

P[Xn ∈ F ] ≤ P[X0 ∈ F ], ∀ closed F ∈ S.(4.3)

lim inf
n→∞

P[Xn ∈ G] ≥ P[X0 ∈ G], ∀ open G ∈ S.(4.4)

Ef(Xn) → Ef(X0), for all f which are bounded and uniformly continuous.(4.5)

Although it may seem comfortable to express weak convergence of probability measures in
terms of sets, it is mathematically simplist to rely on integrals with respect to test functions
as given, for instance, in (4.5).

4.2.2. Skorohod’s theorem. A nice way to think about weak convergence is using Skorohod’s
theorem ((Billingsley, 1971, Proposition 0.2)) which, for certain purposes, allows one to
replace convergence in distribution with almost sure convergence. In a theory which relies
heavily on continuity, this is a big advantage. Almost sure convergence, being pointwise, is
very well suited to continuity arguments.

Let {Xn, n ≥ 0} be random elements of the metric space (S,S) and suppose the domain
of each Xn is (Ω,A,P). Let

([0, 1],B[0, 1],LEB(·))
be the usual probability space on [0, 1], where LEB(·) is Lebesgue measure or length. Skoro-
hod’s theorem says that Xn ⇒ X0 iff there exists random elements {X∗

n, n ≥ 0} in S defined
on the uniform probability space such that

Xn
d
= X∗

n, for each n ≥ 0,

and
X∗

n → X∗
0 a.s.

The second statement means

LEB
{

t ∈ [0, 1] : lim
n→∞

d(X∗
n(t), X∗

0 (t)) = 0
}

= 1.

Almost sure convergence always implies convergence in distribution so Skorohod’s theorem
provides a partial converse. To see why almost sure convergence implies weak convergence
is easy. With d(·, ·) as the metric on S we have d(Xn, X0) → 0 almost surely and for any
f ∈ C(S) we get by continuity that f(Xn) → f(X0), almost surely. Since f is bounded, by
dominated convergence we get Ef(Xn) → Ef(X0).

Recall that in one dimension, Skorohod’s theorem has an easy proof. If Xn ⇒ X0 and Xn

has distribution function Fn then

Fn → F0, n →∞.
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Thus, by Proposition 1, F←
n → F←

0 . Then with U , the identity function on [0, 1], (so that U
is uniformly distributed)

Xn
d
= F←

n (U) =: X∗
n, n ≥ 0,

and

LEB[X∗
n → X∗

0 ] =LEB{t ∈ [0, 1] : F←
n (t) → F←

n (t)]

≥LEB(C(F←
0 )

)
= 1,

since the set of discontinuities of the monotone function F←
0 (·) is countable, and hence has

Lebesgue measure 0.
The power of weak convergence theory comes from the fact that once a basic convergence

result has been proved, many corollaries emerge with little effort, often using only continuity.
Suppose (Si, di), i = 1, 2, are two metric spaces and h : S1 7→ S2 is continuous. If {Xn, n ≥ 0}
are random elements in (S1,S1) and Xn ⇒ X0 then h(Xn) ⇒ h(X0) as random elements in
(S2,S2).

To check this is easy: Let f2 ∈ C(S2) and we must show that Ef2(h(Xn)) → Ef2(h(X0)).
But f2(h(Xn)) = f2 ◦ h(Xn) and since f2 ◦ h ∈ C(S1), the result follows from the definition
of Xn ⇒ X0 in S1.

If {Xn} are random variables which converge, then letting h(x) = x2 or arctan x or . . .
yields additional convergences for free.

4.2.3. Continuous mapping theorem. In fact, the function h used in the previous paragraphs,
need not be continuous everywhere and in fact, many of the maps h we will wish to use are
definitely not continuous everywhere.

Theorem 2 (Continuous Mapping Theorem.). Let (Si, di), i = 1, 2, be two metric spaces
and suppose {Xn, n ≥ 0} are random elements of (S1,S1) and Xn ⇒ X0. For a function
h : S1 7→ S2, define the discontinuity set of h as

Dh := {s1 ∈ S1 : h is discontinuous at s1}.
If h satisfies

P[X0 ∈ Dh] = P[X0 ∈ {s1 ∈ S1 : h is discontinuous at s1}] = 0

then

h(Xn) ⇒ h(X0)

in S2.

Proof. For a traditional proof, see (Billingsley, 1968, page 30). This result is an immediate
consequence of Skorohod’s theorem. If Xn ⇒ X0 then there exist almost surely convergent
random elements of S1 defined on the unit interval, denoted X∗

n, such that

X∗
n

d
= Xn, n ≥ 0.

Then it follows that

LEB[h(X∗
n) → h(X∗

0 )] ≥LEB[X∗
0 /∈ Dh]
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where we denote by disc(h) the discontinuity set of h; that is, the complement of C(h). Since

X0
d
= X∗

0 we get the previous probability equal to

=P[X0 /∈ disc(h)] = 1

and therefore h(X∗
n) → h(X∗

0 ) almost surely. Since almost sure convergence implies conver-

gence in distribution h(X∗
n) ⇒ h(X∗

0 ). Since h(Xn)
d
= h(X∗

n), n ≥ 0, the result follows. ¤
4.2.4. Subsequences and Prohorov’s theorem. Often to prove weak convergence, subsequence
arguments are used and the following is useful. A family Π of probability measures on a
complete, separable metric space is relatively compact if every sequence {Pn} ⊂ Π contains
a weakly convergent subsequence. Relative compactness is theoretically useful but hard to
check in practice so we need a workable criterion. Call the family Π tight (and by abuse of
language we will refer to the corresponding random elements also as a tight family) if for
any ε, there exists a compact Kε ∈ S such that

P (Kε) > 1− ε, for all P ∈ Π.

This is the sort of condition that precludes probability mass from escaping from the state
space. Prohorov’s theorem (Billingsley (1968)) assures us that when S is separable and
complete, tightness of Π is the same as relative compactness. Tightness is checkable although
it is seldom easy.

4.3. Some useful metric spaces. It pays to spend a bit of time remembering details of
examples of metric spaces that will be useful. To standardize notation we set

F(S) = closed subsets of S,
G(S) = open subsets of S,
K(S) = compact subsets of S.

4.3.1. Rd, finite dimensional Euclidean space. We set

Rd := {(x1, . . . , xd) : xi ∈ R, i = 1, . . . , d} = R× R× · · · × R.

The metric is defined by

d(x,y) =

√√√√
d∑

i=1

(xi − yi)2,

for x,y ∈ Rd. Convergence of a sequence in this space is equivalent to componentwise
convergence.

Define an interval

(a, b] = {x ∈ Rd : ai < xi ≤ bi, i = 1, . . . , d}
A probability measure P on Rd is determined by its distribution function

F (x) := P (−∞,x]

and a sequence of probability measures {Pn, n ≥ 0} on Rd converges to P0 iff

Fn(x) → F0(x), ∀x ∈ C(F0).
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Note this says that a sequence of random vectors converges in distribution iff their distribu-
tion functions converge weakly. While this is concrete, it is seldom useful since multivariate
distribution functions are usually awkward to deal with in practice.

Also, recall K ∈ K(Rd) iff K is closed and bounded.

4.3.2. R∞, sequence space. Define

R∞ := {(x1, x2, . . . ) : xi ∈ R, i ≥ 1} = R× R× . . . .

The metric can be defined by

d(x,y) =
∞∑
i=1

(|xi − yi| ∧ 1)2−i,

for x, y ∈ Rd. This gives a complete, separable metric space where convergence of a family
of sequences means coordinatewise convergence which means

x(n) → x(0) iff xi(n) → xi(0), ∀i ≥ 1.

The topology G(R∞) can be generated by basic neighborhoods of the form

Nk(x) = {y :
d∨

i=1

|xi − yi| < ε},

as we vary d, the center x and ε.
A set A ⊂ R∞ is relatively compact iff every one-dimensional section is bounded; that is

iff for any i ≥ 1

{xi : x ∈ A} is bounded.

4.3.3. C[0, 1] and C[0,∞), continuous functions. The metric on C[0,M ], the space of real
valued continuous functions with domain [0,M ] is the uniform metric

dM(x(·), y(·)) = sup
0≤t≤M

|x(t)− y(t)| =: ‖x(·)− y(·)‖M .

and the metric on C[0,∞) is

d(x(·), y(·)) =
∞∑

n=1

dn(x, y) ∧ 1

2n

where we interpret dn(x, y) as the C[0, n] distance of x and y restricted to [0, n]. The metric
on C[0,∞) induces the topology of local uniform convergence.

For C[0, 1] (or C[0,M ]), we have that every function is uniformly continuous since a
continuous function on a compact set is always uniformly continuous. Uniform continuity
can be expressed by the modulus of continuity which is defined for x ∈ C[0, 1] by

ωx(δ) = sup
|t−s|<δ

|x(t)− x(s)|, 0 < δ < 1.

Then, uniform continuity means

lim
δ→0

ωx(δ) = 0.
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The Arzela-Ascoli theorem says a uniformly bounded equicontinuous family of functions
in C[0, 1] has a uniformly convergent subsequence; that is, this family is relatively compact
or has compact closure. Thus a set A ⊂ C[0, 1] is relatively compact iff

(i) A is uniformly bounded; that is,

(4.6) sup
0≤t≤1

sup
x∈K

|x(t)| < ∞,

and
(ii) A is equicontinuous; that is

lim
δ↓0

sup
x∈K

ωx(δ) = 0.

Since the functions in a compact family vary in a controlled way, (4.6) can be replaced by

(4.7) sup
x∈K

|x(0)| < ∞.

Compare this result with the compactness characterization in R∞ where compactness
meant each one-dimensional section was compact. Here, a continuous function is compact if
each one dimensional section is compact in a uniform way AND equicontinuity is present.

4.3.4. D[0, 1] and D[0,∞). Start by considering D[0, 1], the space of right continuous func-
tions on [0, 1) which have finite left limits on (0, 1]. Minor changes allow us to consider
D[0,M ] for any M > 0.

In the uniform topology, two functions x(·) and y(·) are close if their graphs are uniformly
close. In the Skorohod topology on D[0, 1], we consider x and y close if after deforming the
time scale of one of them, say y, the resulting graphs are close. Consider the following simple
example:

(4.8) xn(t) = 1[0, 1
2
+ 1

n
](t), x(t) = 1[0, 1

2
](t).

The uniform distance is always 1 but a time deformation allows us to consider the functions
to be close. (Various metrics and their applications to functions with jumps are considered
in detail in Whitt (2002).)

Define time deformations

Λ = {λ :[0, 1] 7→ [0, 1] : λ(0) = 0, λ(1) = 1,

λ(·) is continuous, strictly increasing, 1-1, onto.}(4.9)

Let e(t) ∈ Λ be the identity transformation and denote the uniform distance between x, y as

‖x− y‖ :=
1∨

t=0

|x(t)− y(t)|.

The Skorohod metric d(x, y) between two functions x, y ∈ D[0, 1] is

d(x, y) = inf{ε > 0 : ∃λ ∈ Λ, such that ‖λ− e‖ ∨ ‖x− y ◦ λ‖ ≤ ε},
= inf

λ∈Λ
‖λ− e‖ ∨ ‖x− y ◦ λ‖.

Simple consequences of the definitions:
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(1) Given a sequence {xn} of functions in D[0, 1], we have d(xn, x0) → 0, iff there exist
λn ∈ Λ and

(4.10) ‖λ− e‖ → 0, ‖xn ◦ λn − x0‖ → 0.

(2) From the definition, we always have

d(x, y) ≤ ‖x− y‖, x, y ∈ D[0, 1]

since one choice of λ is the identity but this may not give the infimum. Therefore,
uniform convergence always implies Skorohod convergence. The converse is very false;
see (4.8).

(3) If d(xn, x0) → 0 for xn,∈ D[0, 1], n ≥ 0, then for all t ∈ C(x0), we have pointwise
convergence

xn(t) → x0(t).

To see this suppose (4.10) holds. Then

‖λn − e‖ = ‖λ←n − e‖ → 0.

Thus

|xn(t)− x0(t)| ≤|xn(t)− x0 ◦ λ←n (t)|+ |x0 ◦ λ←n (t)− x0(t)|
≤‖xn ◦ λn − x0‖+ o(1),

since x is continuous at t and λ←n → e.
(4) If d(xn, x0) → 0 and x ∈ C[0, 1], then uniform convergence holds.

If (4.10) holds then as in item 3 we have for each t ∈ [0, 1]

|xn(t)− x0(t)| ≤ ‖xn ◦ λn − x0‖+ ‖x0 − x0 ◦ λn‖ → 0

and hence

‖xn(t)− x0(t)‖ → 0.

The space D[0,∞). Now we extend this metric to D[0,∞). For a function x ∈ D[0,∞)
write

rsx(t) = x(t), 0 ≤ t ≤ s,

for the restriction of x to the interval [0, s] and write

‖x‖s =
s∨

t=0

|x(t)|.

Let ds be the Skorohod metric on D[0, s] and define d∞, the Skorohod metric on D[0,∞) by

d∞(x, y) =

∫ ∞

0

e−s
(
ds(rsx, rsy) ∧ 1

)
ds.

The impact of this is that Skorohod convergence on D[0,∞) reduces to convergence on finite
intervals since d∞(xn, x0) → 0 iff for any s ∈ C(x0) we have ds(rsxn, rsx0) → 0.
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4.3.5. Radon measures and point measures; vague convergence. Suppose E is a nice space.
The technical meaning of nice is that E should be a locally compact topological space with
countable base but it is safe to think of E as a finite dimensional Euclidean space and we
may think of E as a subset of Rd. The case d = 1 is important but d > 1 is also very useful.
When it comes time to construct point processes, E will be the space where our points live.
We assume E comes with a σ-field E which can be the σ-field generated by the open sets or,
equivalently, the rectangles of E. So the important sets in E are built up from rectangles.

How can we model a random distribution of points in E? One way is to specify random
elements in E, say {Xn}, and then to say that a stochastic point process is the counting
function whose value at the region A ∈ E is the number of random elements {Xn} which fall
in A. This is intuitively appealing but has some technical drawbacks and it mathematically
preferable to focus on counting functions rather than points.

A measure µ : E 7→ [0,∞] is an assignment of positive numbers to sets in E such that

(1) µ(∅) = 0 and µ(A) ≥ 0, for all A ∈ E ,
(2) If {An, n ≥ 1} are mutually disjoint sets in E , then the σ-additivity property holds

µ(
∞⋃
i=1

Ai) =
∞∑
i=1

µ(Ai).

The measure µ is called Radon, if

µ(K) < ∞, ∀K ∈ K(E);

so that compact sets are known to have finite µ-mass. Knowing where the measure is required
to be finite helps us to keep track of infinities in a useful way and prevents illegal operations
like ∞−∞.

Define

(4.11) M+(E) = {µ : µ is a non-negative measure on Eand µ is Radon.}
The space M+(E) can be made into a complete separable metric space under what is called
the vague metric. For now, instead of describing the metric, we will describe the notion of
convergence the metric engenders.

The way we defined convergence of probability measures was by means of test functions.
We integrate a test function which is bounded and continuous on the metric space and if the
resulting sequence of numbers converges, then we have weak convergence. However, with
infinite measures in M+(E), we cannot just integrate a bounded function to get something
finite. However, we know our measures are also Radon and this suggests using functions
which vanish off of compact sets. So define

C+
K(E) = {f : E 7→ R+ : f is continuous with compact support.}

For a function to have compact support means that it vanishes off a compact set.
The notion of convergence in M+(E): If µn ∈ M+(E), for n ≥ 0, then µn converges vaguely

to µ0, written µn
v→ µ0, provided for all f ∈ C+

K(E) we have

µn(f) :=

∫

E
f(x)µn(dx) → µ0(f) :=

∫

E
f(x)µ0(dx),
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as n →∞.

Example 3 (Trivial but mildly illuminating example). Suppose E is some finite dimensional
Euclidean space and define for x ∈ E, and A ∈ E

εx(A) =

{
1, if x ∈ A,

0, if x ∈ Ac.

Then
µn := εxn

v→ µn := εx0 ,

in M+(E), iff
xn → x0

in the metric on E.
To see this, suppose that xn → x0 and f ∈ C+

K(E). Then

µn(f) = f(xn) → f(x0) = µ0(f),

since f is continuous and the points are converging. Conversely, suppose xn 6→ x0. Define
φ : R 7→ [0, 1] by

φ(t) =





1, if t < 0,

1− t, if 0 ≤ t ≤ 1,

0, if t > 1.

There exists {n′} such that d(xn′ , x0) > ε. Define

f(y) = φ(d(x0,y)/ε)

so that f ∈ CK(E). Then
|f(xn′)− f(x0)| = |0− 1| 6→ 0

and then we have µn(f) 6→ µ0(f).

Point measures . A point measure m is an element of M+(E) of the form

(4.12) m =
∑

i

εxi
.

Built into this definition is the understanding that m(·) is Radon: m(K) < ∞, for K ∈ K(E).
Think of {xi} as the atoms and m as the function which counts how many atoms fall in a
set. The set Mp(E) is the set of all Radon point measures satisfying (4.12). This turns out
to be a closed subset of M+(E).

More on M+(E) (and hence, more on Mp(E)): The vague topology on M+(E), open
sets: We can specify open sets, a topology (a system of open sets satisfying closure proper-
ties) and then a notion of “distance” in M+(E). Define a basis set to be a subset of M+(E)
of the form

(4.13) {µ ∈ M+(E) : µ(fi) ∈ (ai, bi), i = 1, . . . , k}
where fi ∈ C+

K(E) and 0 ≤ ai ≤ bi. Now imagine varying the choices of integer k, functions
f1, . . . , fk, and endpoints a1, . . . , ak; b1, . . . , bk. Unions of basis sets form the class of open
sets constituting the vague topology.
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The topology is metrizable as a complete, separable metric space and we can put a metric
d(·, ·) on the space which yields the same open sets. The metric “d” can be specified as
follows: There is some sequence of functions fi ∈ C+

K(E) and for µ1, µ2 ∈ M+(E)

(4.14) d(µ1, µ2) =
∞∑
i=1

|µ1(fi)− µ2(fi)| ∧ 1

2i
.

An interpretation: If µ ∈ M+(E), µ is determined by knowledge of {µ(f), f ∈ C+
K(E)).

This may seem reasonable and we will see why this is true shortly. Think of µ as an object
with components {µ(f), f ∈ C+

K(E). Think of µ(f) as the f th-component of µ. Then (4.14)
indicates, in fact, it is enough to have a countable set of components to determine µ and we
can think about µ being represented

(4.15) µ = {µ(fi), i ≥ 1}.
So there is an analogy with R∞.

This analogy makes plausible the following characterization of compactness: A subset
M ⊂ M+(E) is vaguely relatively compact iff

(4.16) sup
µεM

µ(f) < ∞, ∀f ∈ C+
K(E).

To show compactness implies (4.16) is easy and helps digest the concepts. Suppose M
is relatively compact. For f ∈ C+

K(E), define the projection onto the f -th component Tf :
M+(E) 7→ [0,∞) by

Tf (µ) = µ(f).

Then Tf is continuous since µn
v→ µ implies

Tf (µn) = µn(f) → µ(f) = Tf (µ).

For fixed f ∈ C+
K(E), we note

sup
µ∈M

µ(f) = sup
µ∈M

Tf (µ) = sup
µ∈M−

Tf (µ),

since the supremum of a continuous function on M must be the same as the supremum on
the closure M−.

If M is relatively compact, then the closure M− is compact. Since Tf is continuous on
M+(E), Tf (M

−) is a compact subset of [0,∞). (Continuous images of compact sets are
compact.) Compact sets in [0,∞) are bounded so

∞ > sup Tf (M
−) = sup{Tf (µ), µ ∈ M−} = sup

µ∈M−
{µ(f)}.

Why emphasize integrals of test functions rather than measures of sets? Proofs are a bit
easier with this formulation and it is easier to capitilize on continuity arguments. One can al-
ways formulate parallel definitions and concepts with sets using a variant of Urysohn’s lemma.
See (Dudley, 1989, page 47), (Simmons, 1963, page 135), Kallenberg (1983), (Resnick, 1987,
page 141).
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Lemma 1. (a) Suppose K ∈ K(E). There exists Kn ∈ K(E), Kn ↓ K and there exist
fn ∈ C+

K(E), with {fn} non-increasing such that

(4.17) 1K ≤ fn ≤ 1Kn ↓ 1K .

(b) Suppose G ∈ G(E), and G is relatively compact. There exist open, relatively compact
Gn ↑ G and fn ∈ C+

K(E), with {fn} non-decreasing such that

(4.18) 1G ≥ fn ≥ 1Gn ↑ 1G

From Lemma 1, comes a Portmanteau Theorem.

Theorem 3. Let µ, µn ∈ M+(E). The following are equivalent.

(i) µn
v→ µ.

(ii) µn(B) → µ(B) for all relatively compact B satisfying µ(∂B) = 0.
(iii) For all K ∈ K(E) we have

lim sup
n→∞

µn(K) ≤ µ(K)

and for all G ∈ G which are relatively compact, we have

lim inf
n→∞

µn(G) ≥ µ(G).

5. Vague Convergence, Regular Variation and the Multivariate Case.

Regular variation of distribution tails can be reformulated in terms of vague convergence
and with this reformulation, the generalization to higher dimensions is effortless. We begin
by discussing the reformulation in one dimension.

5.0.6. Vague convergence on (0,∞].

Theorem 4. Suppose X1 is a non-negative random variable with distribution function F (x).
Set F̄ = 1− F. The following are equivalent:

(i) F̄ ∈ RV−α, α > 0.
(ii) There exists a sequence {bn}, with bn →∞ such that

lim
n→∞

nF̄ (bnx) = x−α, x > 0.

(iii) There exists a sequence {bn} with bn →∞ such that

(5.1) νn(·) := nP

[
X1

bn

∈ ·
]

v→ ν(·)

in M+

(
(0,∞]

)
, where ν(x,∞] = x−α.

Remark 2. (a) If any of (i), (ii) or (iii) is true we may always define

(5.2) b(t) =

(
1

1− F

)←
(t)

and set bn = b(n). Note if (i) holds, then

F̄ ∈ RV−α implies
1

1− F
∈ RVα implies b(·) =

(
1

1− F

)←
(·) ∈ RV1/α.
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(b) Note in (iii) that the space E = (0,∞] has 0 excluded and ∞ included. This is required
since we need neighborhoods of∞ to be relatively compact. Vague convergence only controls
set wise convergence on relatively compact sets (with no mass on the boundary). With the
usual topology on [0,∞) sets of the form (x,∞) are not bounded; yet consideration of
nF̄ (bnx) = nP [X1/bn > x] requires considering exactly such sets. We need some topology
which makes semi-infinite intervals compact. More on this later. If it helps, think of (0,∞]
as the homeomorphic stretching of (0, 1] or as the homeomorphic image of [0,∞) under the
map x 7→ 1/x which takes [0,∞) 7→ (0,∞]. A convenient way to handle this is by using the
one point uncompactification method to be discussed soon in Subsection 5.0.7.

(c) Preview of things to come: Note that if {Xj, j ≥ 1} is an iid sequence of non-negative
random variables with common distribution F , then the measure νn defined in (5.1)

νn(·) = E

(
n∑

i=1

εXi/b(n)(·)
)

is the mean measure of the empirical measure of the scaled sample. The convergence of
νn is equivalent to convergence of the sequence of empirical measures to a limiting Poisson
process.

Proof. The equivalence of (i) and (ii) is Part (ii) of Proposition 2.
(ii) → (iii). Let f ∈ C+

K((0,∞]) and we must show

νn(f) := nEf

(
X1

bn

)
=

∫
f(x)nP [

X1

bn

∈ dx] → ν(f).

Since f has compact support, the support of f is contained in (δ,∞] for some δ > 0. We
know

(5.3) νn(x,∞] → x−α = ν(x,∞], ∀x > 0.

On (δ,∞] define

(5.4) Pn(·) =
νn

νn(δ,∞]

so that Pn is a probability measure on (δ,∞]. Then for y ∈ (δ,∞]

Pn(y,∞) → P (y,∞] =
y−α

δ−α
.

In R, convergence of distribution functions (or tails) is equivalent to weak convergence so
{Pn} converges weakly to P . Since f is bounded and continuous on (δ,∞], we get from weak
convergence:

Pn(f) → P (f);

that is,
νn(f)

νn(δ,∞]
→ ν(f)

δ−α

and in light of (5.3), this implies
νn(f) → ν(f)

as required.
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(iii) → (ii). Since

νn
v→ ν,

we have

νn(x,∞] → ν(x,∞], ∀x > 0,

since (x,∞] is relatively compact and

ν(∂(x,∞]) = ν({x}) = 0.

¤

5.0.7. Topological clarification: The one point uncompactification. In reformulating the func-
tion theory concept of regularly varying functions into a measure theory concept, there is
continual need to deal with sets which are bounded away from 0. Such sets need to be
regarded as “bounded” in an appropriate topology so sequences of measures of such sets can
converge non-trivially. A convenient way to think about this is by means of something we
will call the one point un-compactification.

Let (X, T ) be a nice topological space; X is the set and T is the topology, that is a
collection of subsets of X designated as open satisfying

(i) Both ∅ ∈ T and X ∈ T .
(ii) The collection T is closed under finite intersections and arbitrary unions.

(For our purposes, X would be a subset of Euclidean space.) Consider a subset D ⊂ X and
define

X# = X \ D
and give X# the relative topology

T # = T
⋂
Dc = T

⋂
X#.

So a set is open in X# if it is an open subset of X intersected with X#.
What we need to understand is what are the compact sets of X#.

Proposition 6. Suppose, as usual, the compact subsets of X are denoted by K(X). Then

K(X#) = {K ∈ K(X) : K
⋂
D = ∅}

are the compact subsets of X#.

So the compact sets of X# are the original compact sets of X, provided they do not intersect
the piece D chopped away from X to form X#.

Specialize this to the one point un-compactification: Suppose E is a compact set and
e ∈ E. Give E\{e} the relative topology consisting of sets in E\{e} of the form G\{e},
where G ∈ G(E). The compact sets of E\{e} are those compact subsets K ⊂ E such that
e /∈ K.

So the one point un-compactification describes what are the compact sets when a compact
space is punctured by the removal of a point.

Consider the following special cases:
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(1) Suppose E is the compact set [0,∞]d = [0,∞], which we may consider as the stretch-
ing of [0, 1]d = [0,1] onto [0, ∞]. The compact sets of [0,∞] consist of any closed
set. The compact subsets of [0,∞] \ {0} are closed subsets of [0, ∞] bounded away
from 0.

(2) Suppose E is the compact set [−∞,∞]. The compact sets of [−∞, ∞] consist of
any closed set. The compact subsets of [−∞,∞]\{0} are closed subsets of [−∞, ∞]
bounded away from 0. This choice of E, and the associated space of Radon measures
M+(E) is needed for considering weak convergence of partial sums to multivariate
Lévy processes and for analyzing multivariate problems related to value at risk .

(3) As a last example of the use of Proposition 6 suppose E = [0,∞] \ {0} and define
the cone E0 by

E0 := {s ∈ E : For some 1 ≤ i < j ≤ d, s(i) ∧ s(j) > 0},
where we wrote the vector s = (s(1), . . . , s(d)). Here is an alternative description of
E0: For i = 1, . . . , d, define the basis vectors

ei = (0, . . . , 0, 1, 0, . . . , 0)

so that the axes originating at 0 are Li := {tei, t > 0}, i = 1, . . . , d. Then we also
have

E0 = E \
d⋃

i=1

Li.

If d = 2, we have E0 = (0,∞]2.
The relatively compact subsets of E0 are those sets bounded away from the axes

originating at 0. So G is relatively compact in E0 if for some δ > 0 we have that for
every x ∈ G, for some 1 ≤ i < j ≤ d, that x(i) ∧ x(j) > δ.

Such a space is useful in consideration of asymptotic independence.

Proof. (Proposition 6.) Begin by supposing

K ∈ K(X), K ∩ D = ∅,
and we show K ∈ K(X#). Let

{G#
γ = Gγ ∩ X#, γ ∈ Λ}

be some arbitrary cover of K by open subsets of X# where Gγ ∈ G(X) and Λ is some index
set. So

K ⊂
⋃
γ∈Λ

Gγ

⋂
X# ⊂

⋃
γ∈Λ

Gγ.

Since K ∈ K(X), there is a finite subcollection indexed by Λ′ ⊂ Λ such that K ⊂ ⋃
γ∈Λ′ Gγ.

Since K ∩ D = ∅,
K ⊂

⋃

γ∈Λ′
Gγ

⋂
X#.
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So, any cover of K by open subsets of X# has a finite subcover and thus K is compact in
X#. Thus

{K ∈ K(X) : K
⋂
D = ∅} ⊂ K(X#).

The converse is quite similar. ¤
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6. How to prove weak convergence?

Here is an outline of what it takes to prove weak convergence in 3 spaces of immediate
interest.

(1) In Rd, we can show random vectors {Xn, n ≥ 0} converge weakly

Xn ⇒ X0

by any of the following methods.
(a) Show convergence of the finite dimensional distributions

P[Xn ≤ x] → P[X0 ≤ x]

at continuity points of the limit. Sometimes this can even be done by showing
convergence of the joint densities when they exist.

(b) Show convergence of the characteristic functions

Eeit·Xn → Eeit·X0

for t ∈ Rd.
(c) Reduce the problem to one-dimension and prove

t ·Xn ⇒ t ·X0,

which works because of the previous item.
(d) If Xn ≥ 0, show Laplace transforms converge,

Ee−λ·Xn → Ee−λ·X0

for λ > 0.
(2) In R∞, random sequences {Xn, n ≥ 0} of the form

Xn = (X(1)
n , X(2)

n , . . . )

satisfy
Xn ⇒ X0

if we show for any d > 0 that

(X(1)
n , X(2)

n , . . . X(d)
n ) ⇒ (X

(1)
0 , X

(2)
0 , . . . X

(d)
0 )

in Rd.
(3) In M+(E), random measures {ξ(·), n ≥ 0} converge weakly

ξn ⇒ ξ0

iff for a family {hj}, with hj ∈ C+
K(E) we have

(ξn(hj), j ≥ 1) ⇒ (ξ0(hj), j ≥ 1)

in R∞.

7. The Tail Empirical Process and Hill’s Estimator

The following describes a one-dimensional result but after converting regular variation to
vague convergence, the result is really dimensionless.
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7.1. Tail empirical process. Suppose {Xj, j ≥ 1} is a stationary sequence. Suppose the
one-dimensional marginals F have regularly varying tails

(7.1) F̄ (x) := 1− F (x) = P[X1 > x] = x−αL(x), x →∞, α > 0,

and for convenience, assume the variables are non-negative. A useful scaling quantity is the
quantile function b(t) defined by

(7.2) b(t) =
( 1

1− F

)←
(t) = F←(1− 1

t
).

The tail empirical measure is defined as a random element of M+((0,∞]) by

(7.3) νn :=
1

k

∑
i=1

εXi/b(n
k
).

The new feature here is the presence of k, which represents the number of upper order
statistics that we think (guess) are relevent for estimating tail probabilities. Note that the
notation νn suppresses the dependence on k but that the k is critical. The tail empirical
measure is used in a variety of inference contexts but note that, as defined, it’s statistical use
needs to overcome the fact that in a data context where F is unknown, b(·) is also unknown.

Theorem 5. Suppose {Xj, j ≥ 1} are iid, non-negative random variables whose common
distribution has a tail which is regularly varying which implies

(7.4)
n

k
P[

X1

b(n/k)
∈ ·] v→ να

in M+((0,∞]) as n →∞ and k = k(n) →∞ with n/k →∞. Then in M+((0,∞])

(7.5) νn ⇒ να

where
να(x,∞] = x−α, x > 0, α > 0.

Proof. It suffices to show for a sequence hj ∈ C+
K(0,∞] that in R∞

(νn(hj), j ≥ 1) ⇒ να(hj), j ≥ 1}, (n →∞).

Convergence in R∞ reduces to convergence in Rk for any k so it suffices to show

(νn(hj), 1 ≤ j ≤ k) ⇒ (να(hj), 1 ≤ j ≤ k), (n →∞).

To show this, we can show the joint Laplace transforms converge: For λj > 0, j = 1, . . . , k,
we must show

Ee−
Pk

j=1 λjνn(hj) → Ee−
Pk

j=1 λjνα(hj).

However,
k∑

j=1

λjνn(hj) = νn(
k∑

j=1

λjhj)

and similarly for να substituted for νn. Note
∑k

j=1 λjhj ∈ C+
K(0,∞] so it suffices to show for

any h ∈ C+
K(0,∞] that

(7.6) Ee−νn(h) → Ee−να(h).
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The left side of (7.6) is

Ee−
1
k

Pn
j=1 h

(
Xj/b(n/k)

)
=

(
Ee−

1
k
h
(

X1/b(n/k)
))n

=
(
1−

∫

(0,∞]

(
1− e−

1
k
h(x)

)
P[

X1

b(n/k)
∈ dx]

)n

=
(
1−

∫
(0,∞]

(
1− e−

1
k
h(x)

)
nP[ X1

b(n/k)
∈ dx]

n

)n

→e−να(h),

since ∫

(0,∞]

(
1− e−

1
k
h(x)

)
nP[

X1

b(n/k)
∈ dx] ∼

∫

(0,∞]

h(x)
n

k
P[

X1

b(n/k)
∈ dx] → να(h).

¤
7.2. The Hill Estimator.

7.2.1. Introduction. The first steps in heavy tailed analysis are

• Decide that a heavy tailed model is appropriate, and then
• Estimate the tail index α.

Various graphical and estimation techniques exist to help accomplish these steps: QQ es-
timation and plotting, Hill estimation and plotting, Pickands estimation, extreme value
techniques, etc.

Consider the problem of estimating the index of regular variation when the tail proba-
bility P [X > x] of a random variable X has a distribution with regularly varying tail. A
popular estimator is the Hill estimator defined as follows. Assume for simplicity that obser-
vations X1, . . . , Xn are non-negative. For 1 ≤ i ≤ n, write X(i) for the ith largest value of
X1, X2, . . . , Xn. and then Hill’s estimator based on k upper order statistics is defined as:

(7.7) Hk,n :=
1

k

k∑
i=1

log
X(i)

X(k+1)

.

The theory is most developed for the case that {Xj, j ≥ 1} is iid but applications often do
not provide us with independent observations but rather with dependent, stationary data.
So attention needs to be paid to applying the Hill estimator in non-iid cases.

Suppose at a minimum that {Xn} is a sequence of random variables having the same
marginal distribution function F and where F̄ := 1 - F is regularly varying at ∞ and satisfies
(7.1). The quantile function (7.2) is b(t). The random measure νn given in (7.3) is a random
element of M+(0,∞] and is assumed to be a consistent estimator (in the vague topology)
of the measure να ∈ M+(0,∞], provided n → ∞, and k/n → 0. However, because b(·) is

unknown, b(n/k) will be estimated by a consistent estimator, b̂(n/k) to be specified, and we
will denote

(7.8) ν̂n =:
1

k

n∑
i=1

εXi/b̂(n/k),



HEAVY TAIL ANALYSIS 43

the estimator when b(n/k) is replaced by an estimator b̂(n/k).
We know from Theorems 5 that (7.5) is satisfied if {Xj} is iid with common distribution

F where 1− F ∈ RV−α.

7.2.2. Random measures and the consistency of the Hill estimator. Consistency of the tail
empirical measure given in (7.5) imply consistency of the Hill estimator for 1/α.

Theorem 6. If (7.5) holds then, as n →∞, k →∞ and k/n → 0,

Hk,n
P→ 1

α
.

Proof. The proof proceeds by a series of steps.

Step 1. Consistency of the empirical measure given in (7.5) implies

(7.9)
X(k)

b(n/k)

P→ 1,

as n → ∞, k → ∞ and k/n → 0. This allows us to consider X(k) as a consistent estimator
of b(n/k).

To see this, write

P [|X(k)

b(n
k
)
− 1| > ε] =P [X(k) > (1 + ε)b(

n

k
)] + P [X(k) < (1− ε)b(

n

k
))]

≤P [
1

k

n∑
i=1

εXi/b(n
k
)(1 + ε,∞] ≥ 1) + P [

1

k

n∑
i=1

εXi/b(n
k
) [1− ε,∞] < 1].

But (7.5) implies that

1

k

k∑
i=1

εXi/b(n
k
)(1 + ε,∞]

P→ (1 + ε)−α < 1,

and

1

k

k∑
i=1

εXi/b(n
k
)[1− ε,∞]

P→ (1− ε)−α > 1

and therefore (7.9) follows. ¤
Appendix : In fact, more is true. We have that (7.5) implies

(7.10)
X(dkte)
b(n/k)

P→ t−1/α, in D(0,∞],

where dkte is the smallest integer greater than or equal to kt. To prove this more muscular
version (7.10), proceed as follows: The map from M+

(
(0,∞]

) 7→ D[0,∞) defined by

µ 7→ µ(t−1,∞], t ≥ 0,
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is continuous at measures µ such that µ(t,∞] is continuous, strictly decreasing in t. So we
have from (7.5)

(7.11) νn(t−1,∞]
P→ tα, t ≥ 0,

in D[0,∞). This implies (see the Lemma below) that functional inverses also converge in
probability

(7.12)
(
νn

(
(·)−1,∞])←

(t)
P→ t1/α, t ≥ 0,

in D[0,∞). We now unpack the inverse and see what we get:
(
νn(()−1,∞]

)←
(t) = inf{s : νn(s−1,∞] ≥ t}

= inf{s :
n∑

i=1

εXi/b(n/k)(s
−1,∞] ≥ kt}

= inf{y−1 :
n∑

i=1

εXi/b(n/k)(y,∞] ≥ kt}

=
(
sup{y :

n∑
i=1

εXi/b(n/k)(y,∞] ≥ kt}
)−1

=
(X(dkte)

b(n/k)

)−1

.

So (X(dkte)
b(n/k)

)−1

⇒ t1/α

in D(0,∞] and therefore, we conclude

X(dkte)
b(n/k)

P→ t−1/α

in D(0,∞].
The justification for the inversion step comes from the following simple lemma.

Lemma 2. (a) If xn ∈ D[0,∞) is non-decreasing, xn(0) = 0 and xn → x0 in D[0,∞) where
x0 is continuous,strictly increasing, then

x←n → x←0
locally uniformly and in D[0,∞).

(b) Suppose ξn is a stochastic process with non-decreasing paths in D[0,∞) such that
ξn(0) = 0, and

(7.13) ξn
P→ ξ0,

in D[0,∞), and almost all paths of ξ0 are continuous, strictly increasing, then

(7.14) ξ←n
P→ ξ←0 .



HEAVY TAIL ANALYSIS 45

Proof of Lemma 2. (a) We have

x←n (t) → x←0 (t)

pointwise by inversion. This gives monotone functions converging to a continuous limit and
hence convergence is locally uniform. Local uniform convergence implies convergence in the
Skorohod metric.

(b) Let d(·, ·) be the Skorohod metric on D[0,∞) and (7.13) says

(7.15) d(ξn, ξ0)
P→ 0

and we need to show

(7.16) d(ξ←n , ξ←0 )
P→ 0.

Use the subsequence characterization of convergence in probability: given a subsequence
{n′′}, it suffices to find a further subsequence {n′} ⊂ {n′′} such that

d(ξ←n′ , ξ
←
0 )

a.s.→ 0.

From (7.15), pick {n′} such that

d(ξn′ , ξ0)
a.s.→ 0.

Then for almost all ω
ξn′(t, ω) → ξ0(t, ω), ∀t ≥ 0,

and so by inverting of the monotone functions

ξ←n′ (t, ω) → ξ←0 (t, ω), ∀t ≥ 0.

Since ξ←n′ (t, ω) is monotone in t and ξ←0 (t, ω) is continuous in t, the convergence is locally
uniform in t as required. ¤

Henceforth, set

b̂(n/k) = X(k).

Step 2. The following results from (7.5): In M+(0,∞],

(7.17) ν̂n
P→ ν,

as n → ∞, k → ∞ and k/n → 0. This is proven with a scaling argument. We need the
following simple lemma from the theory of weak convergence.

Lemma 3. Let E and E′ be two complete separable metric spaces and suppose {ξn, n ≥ 0}
and {ηn, n ≥ 1} are random elements of E and E′ respectively defined on the same probability
space. Suppose

ξn ⇒ ξ0

in E and

ηn
P→ e′0

where e′0 is a fixed point of E′; that is, e′0 is non-random. Then jointly in E× E′ we have

(ξn, ηn) ⇒ (ξ0, e
′
0),

as n →∞.
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Proof. Let f : E × E′ be bounded and continuous and without loss of generality suppose f
is uniformly continuous. Write

|E(f(ξn, ηn)−Ef(ξ0, e
′
0)|

≤|E(f(ξn, ηn)− Ef(ξn, e′0)|+ |E(f(ξn, e
′
0)− Ef(ξ0, e

′
0)|

=I + II.

Now II → 0 since f(·, e′0) is bounded and continuous on E and ξn ⇒ ξ0. For I we note for
any δ > 0,

I ≤E|(f(ξn, ηn)− f(ξn, e
′
0)|1[|ηn−e′0|≤δ] + E|(f(ξn, ηn)− f(ξn, e′0)|1[|ηn−e′0|≥δ]

=Ia + Ib.

We have

Ia ≤ sup
‖x−y‖≤δ

|f(x)− f(y)|

(where ‖·‖ should be interpreted as the metric on E×E′) which is small by uniform continuity
of f and

Ib ≤ (const)P [|ηn − e′0| > δ] → 0.

¤

We now proceed with the scaling argument to confirm (7.17). Define the operator:

T : M+(E)× (0,∞) 7→ M+(E)

by

T (µ, x)(A) = µ(xA).

From (7.5) and Lemma 3 we get joint weak convergence

(7.18) (νn,
X(k)

b(n
k
)
) ⇒ (να, 1)

in M+(0,∞]× (0,∞). Since

ν̂n(·) = νn

(
X(k)

b(n
k
)
·
)

= T

(
νn,

X(k)

b(n
k
)

)
,

the conclusion will follow by the continuous mapping theorem, provided we prove the conti-
nuity of the operator T at (να, 1). In fact, we prove the continuity of the operator at (να, x)

where x > 0. Towards this goal, let µn
v→ να and xn → x, where µn ∈ M+(0,∞], xn,

x ∈ (0,∞). It suffices to show for any f ∈ C+
K(0,∞] that

(7.19)

∫

(0,∞]

f(t)µn(xndt) =

∫

(0,∞]

f(y/xn)µn(dy) →
∫

(0,∞]

f(y/x)να(dy).

Write

|
∫

(0,∞]

f(y/xn)µn(dy)−
∫

(0,∞]

f(y/x)να(dy)|
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≤|
∫

(0,∞]

f(y/xn)µn(dy)−
∫

(0,∞]

f(y/x)µn(dy)|

+ |
∫

(0,∞]

f(y/x)µn(dy)−
∫

(0,∞]

f(y/x)να(dy)|

≤
∫

(0,∞]

|f(y/xn)− f(y/x)|µn(dy) + o(1)

where the second difference goes to 0 because f( ·
x
) ∈ C+

K(0,∞]. To see that the first
difference can be made small, note the supports of f( ·

x
) and f( ·

xn
) for large n are contained

in [δ0,∞] for some δ0. Since f is continuous with compact support, f is uniformly continuous
on (0,∞]. To get an idea what this means, metrize (0,∞] by the metric (s, t ∈ (0,∞])

d(s, t) = |s−1 − t−1|
and then uniform continuity means

sup
d(u,v)<δ

|f(u)− f(v)| δ↓0→ 0.

Then

d(y/xn, y/x) = y−1|xn − x| < δ

if y > δ0 and n is large and therefore for any ε > 0 we can make

sup
y≥δ0

|f(y/xn)− f(y/x)| < ε.

Since µn(δ0,∞] is bounded, this completes the proof of continuity of the scaling map. ¤
Step 3. Integrate the tails of the measures against x−1dx. The integral functional is

continuous on [1,M ] for any M and so it is only on [M,∞] that care must be exercised. By
the second converging together theorem (a variant of Slutsky’s theorem–see below) we must
show

(7.20) lim
M→∞

lim sup
n→∞

P [

∫ ∞

M

ν̂n(x,∞]x−1dx > δ] = 0.

Set b̂(n/k) = X(k). Decompose the probability as

P [

∫ ∞

M

ν̂n(x,∞]x−1dx > δ] ≤P [

∫ ∞

M

ν̂n(x,∞]x−1dx > δ,
b̂(n/k)

b(n/k)
∈ (1− η, 1 + η)]

+ P [

∫ ∞

M

ν̂n(x,∞]x−1dx > δ,
b̂(n/k)

b(n/k)
/∈ (1− η, 1 + η)]

=I + II.

Note

II ≤ P [| b̂(n/k)

b(n/k)
− 1| > η] → 0
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by (7.9). We have that I is bounded above by

P [

∫ ∞

M

νn((1− η)x,∞]x−1dx > δ] = P [

∫ ∞

M(1−η)

νn(x,∞]x−1dx > δ]

and the above probability has a Chebychev bound

δ−1E
(∫ ∞

M(1−η)

νn(x,∞]x−1dx
)

= δ−1

∫ ∞

M(1−η)

n

k
P [X1 > b(n/k)x]x−1dx

n→∞→ δ−1

∫ ∞

M(1−η)

x−α−1dx = (const)M−α

M→∞→ 0.

¤
Step 4. We have proven that∫ ∞

1

ν̂n(x,∞]x−1dx
P→

∫ ∞

1

να(x,∞]x−1dx = 1/α.

So
∫∞

1
ν̂n(x,∞]x−1dx is a consistent estimator of 1/α and we just need to see that this is

indeed the Hill estimator as defined in (7.7). This is done as follows:
∫ ∞

1

ν̂n(x,∞]x−1dx =

∫ ∞

1

1

k

n∑
i=1

εXi/b̂(n/k)(x,∞]x−1dx

=
1

k

n∑
i=1

∫ Xi/b̂(n/k)∨1

1

x−1dx

which is equivalent to Hk,n defined in (7.7). ¤

7.2.3. Appendix: The second converging together theorem. This simple result provides a
framework when approximations or truncations must be employed.

Proposition 7. Supppose {Xn,M} are random elements of the metric space (S,S) with
metric d(·, ·) and defined on the same probability space. The family {Xn,M} satisfies

(1) As n →∞
Xn,M ⇒ X∞,M ,

for each fixed M .
(2) As M →∞

X∞,M ⇒ X∞,∞.

(3) For some random elements {Yn} we have

lim
M→∞

lim sup
n→∞

P[d(Xn,M , Yn) > η] = 0, ∀η > 0.
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Then

Yn ⇒ X∞,∞.

7.2.4. The Hill estimator in practice. In practice, the Hill estimator is used as follows: We
make the Hill plot , of

{(k, H−1
k,n), 1 ≤ k ≤ n}

and hope the graph looks stable so you can pick out a value of α.
Sometimes this works beautifully and sometimes the plots are not very revealing. Consider

Figure 7 which shows two cases where the procedure is heart-warming. The top row are time
series plots. The top left plot is 4045 simulated observations from a Pareto distribution with
α = 1 and the top right plot is 4045 telephone call holding times indexed according to the
time of initiation of the call. Both plots are scaled by division by 1000. The range of the
Pareto data is (1.0001, 10206.477) and the range of the call holding data is (2288,11714735).
The bottom two plots are Hill plots {(k,H−1

k,n), 1 ≤ k ≤ 4045}, the bottom left plot being for
the Pareto sample and the bottom right plot for the call holding times. After settling down,
both Hill plots are gratifyingly stable and are in a tight neighborhood. The Hill plot for
the Pareto seems to estimate α = 1 correctly and the estimate in the call holding example
seems to be between .9 and 1. (So in this case, not only does the variance not exist but the
mean appears to be infinite as well.) The Hill plots could be modified to include a confidence
interval based on the asymptotic normality of the Hill estimator. McNeil’s Hillplot function
does just this.

The Hill plot is not always so revealing. Consider Figure 8, one of many Hill Horror Plots.
The left plot is for a simulation of size 10,000 from a symmetric α–stable distribution with
α = 1.7. One would have to be paranormal to discern the correct answer of 1.7 from the
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Figure 7. Time series and Hill plots for Pareto (left) and call holding (right) data.
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Figure 8. A Hill Horror Plot.

plot. The middle plot is for a simulated iid sample of size 10,000, called perturb, from the
distribution tail

1− F (x) ∼ x−1(log x)10, x →∞,

so that α = 1. The plot exhibits extreme bias and comes nowhere close to indicating
the correct answer of 1. The problem, of course, is that the Hill estimator is designed
for the Pareto distribution and thus does not know how to interpret information correctly
from the factor (log x)10 and merely readjusts its estimate of α based on this factor rather
than identifying the logarithmic perturbation. The third plot is 783 real data called packet
representing inter-arrival times of packets to a server in a network. The problem here is that
the graph is volatile and it is not easy to decide what the estimate should be. The sample
size may just be too small.

A summary of difficulties when using the Hill estimator include:

(1) One must get a point estimate from a graph? What value of k should one use?
(2) The graph may exhibit considerable volatility and/or the true answer may be hidden

in the graph.
(3) The Hill estimate has optimality properties only when the underlying distribution is

close to Pareto. If the distribution is far from Pareto, there may be outrageous error,
even for sample sizes like 1,000,000.

(4) The Hill estimator is not location invariant. A shift in location does not theoretically
affect the tail index but may throw the Hill estimate way off.

The lack of location invariance means the Hill estimator can be surprisingly sensitive to
changes in location. Figure 9 illustrates this. The top plots are time series plots of 5000
iid Pareto observations where the true α = 1. The two right plots on top have the Pareto
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Figure 9. Lack of location invariance.

observations shifted by 1 and then 2. The bottom two plots are the corresponding Hill plots.
Shifting by larger and larger amounts soon produces a completely useless plot.

For point 1, several previous studies advocate choosing k to minimize the asymptotic mean
squared error of Hill’s estimator (Hall (1982), Peng (1998)). In certain cases, the asymptotic
form of this optimal k can be expressed but such a form requires one to know the distribution
rather explicitly and it is not clear how much value one gets from an asymptotic formula.
There are adaptive methods and bootstrap techniques which try to overcome these problems;
it remains to be seen if they will enter the research community’s toolbox.

For point 2, there are simple smoothing techniques which always help to overcome the
volatility of the plot and plotting on a different scale frequently overcomes the difficulty
associated with the stable example. These techniques are discussed in the next paragraph.

7.2.5. Variant 1. The smooHill plot. The Hill plot often exhibits extreme volatility which
makes finding a stable regime in the plot more guesswork than science and to counteract
this, Resnick and Stărică (1997) developed a smoothing technique yielding the smooHill plot:
Pick an integer u (usually 2 or 3) and define

smooHk,n =
1

(u− 1)k

uk∑

j=k+1

Hj,n.

In the iid case, when a second order regular variation condition holds, the asymptotic variance
of smooHk,n is less than that of the Hill estimator, namely:

1

α2

2

u
(1− log u

u
).
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Figure 10. Stable, α = 1.7

7.2.6. Variant 2: Alt plotting; Changing the scale. As an alternative to the Hill plot, it is
sometimes useful to display the information provided by the Hill or smooHill estimation as

{(θ, H−1
dnθe,n), 0 ≤ θ ≤ 1, }

and similarly for the smooHill plot where we write dye for the smallest integer greater or
equal to y ≥ 0. We call such plots the alternative Hill plot abbreviated AltHill and the
alternative smoothed Hill plot abbreviated AltsmooHill. The alternative display is sometimes
revealing since the initial order statistics get shown more clearly and cover a bigger portion
of the displayed space. Unless the distribution is Pareto, the AltHill plot spends more of
the display space in a small neighborhood of α than the conventional Hill plot (Drees et al.
(2000)).

Figure 10 compares several Hill plots for 5000 observations from a stable distribution with
α = 1.7. Plotting on the usual scale is not revealing and the alt plot is more informative.

A Hill plot was given on page 9 for file lengths downloaded in BU web sessions in November
1994 in a particular lab under study. The Danish fire insurance data was introduced on page
8. In Figure 11, we have a Hill and SmooHill plot of the Danish data.

7.2.7. Software routines. Splus or R is a convenient environment for graphical analysis. We
will give some routines that have been found useful for heavy tailed analysis. These have
been written in the Splus environment but should run in R.

Other software that may be helpful comes from the extreme value world. Alexander
McNeil (www.math.ethz.ch/∼mcneil/software.html) has a very professional compilation of
Splus routines for performing extreme value analysis which can be adapted to heavy tailed
analysis. A version will now marketed as part of the Finmetrics module by Mathsoft but I
believe McNeil will continue to offer the software on his web site.
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Figure 11. Hill and smooHill plots for Danish data.

Stuart Coles also has notes explaining his Splus routines linked to
http://www.stats.bris.ac.uk/∼masgc/. His routines are used in his new extreme values book
Coles (2001). There is an excellent menu driven program called XTREMES constructed
under the leadership of Rolf Reiss, Siegen, with an accompanying book (Reiss and Thomas
(2001)) and more information is available at www.xtremes.math.uni-siegen.de.

1. Hillalpha(x) where x=name of dataset produces the Hill plot for estimating α.

function(x)

{

ordered <- rev(sort(x))

ordered <- ordered[ordered[] > 0]

n <- length(ordered)

loggs <- log(ordered)

hill <- cumsum(loggs[1:(n - 1)])/(1:(n - 1)) - loggs[2:n]

hill <- 1/(hill)

plot(1:length(hill), hill, type = "l",

xlab = "number of order statistics",

ylab = "Hill estimate of alpha")

}

2. twoHill(x) where x=name of dataset; produces the Hill and altHill plots side by side.
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function(x)

{

par(mfrow = c(1, 2))

ordered <- rev(sort(x))

ordered <- ordered[ordered[] > 0]

n <- length(ordered)

loggs <- log(ordered)

hill <- cumsum(loggs[1:(n - 1)])/(1:(n - 1)) - loggs[2:n]

hill <- 1/hill

plot(1:length(hill), hill, type = "l", xlab =

"number of order statistics", ylab =

"Hill estimate of alpha", main = "Hill plot")

s <- log(1:length(hill))/log(length(x))

plot(s, hill, type = "l", xlab = "theta", ylab =

"Hill estimate of alpha", main = "AltHill")

par(mfrow = c(1, 1))

}

3. threeHill(x) where x=name of the data set, l1=percent of the plots to cut off on the
left to make the graph scale in an informative way; 0 is a possible value. u1=percent
of the plots to cut off on the left to make the graph scale in an informative way; 1 is
a possible value. r=amount of smoothing.

function(x, l1, u1, r)

{

par(mfrow = c(1, 3))

ordered <- rev(sort(x))

ordered <- ordered[ordered[] > 0]

n <- length(ordered)

loggs <- log(ordered)

hill <- cumsum(loggs[1:(n - 1)])/(1:(n - 1)) - loggs[2:n]

hill <- 1/hill

plot((n^l1):(n^u1), hill[(n^l1):(n^u1)], type = "l",

xlab="number of order statistics",

ylab="Hill estimate of alpha",

main = "Hill plot")

s <- vector(mode = "numeric", length = (u1 - l1) * 100 + 1)

f <- vector(mode = "numeric", length = (u1 - l1) * 100 + 1)

for(i in (l1 * 1000):(u1 * 1000)) {

a <- n^(i/1000)

f[i - l1 * 1000 + 1] <- hill[a]

s[i - l1 * 1000 + 1] <- i/1000

}

plot(s, f, type = "l", xlab = "theta", ylab =

"Hill estimate of alpha", main = "AltHill")
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hill1 <- 1/hill

u2 <- (log(n))^(-1) * (u1 * log(n) - log(r))

s <- vector(mode = "numeric", length = (u1 - l1) * 100 + 1)

f <- vector(mode = "numeric", length = (u1 - l1) * 100 + 1)

f1 <- vector(mode = "numeric", length = (u2 - l1) * 100 + 1

)

for(i in (l1 * 1000):(u2 * 1000)) {

a <- n^(i/1000)

f[i - l1 * 1000 + 1] <- hill[a]

s[i - l1 * 1000 + 1] <- i/1000

f1[i - l1 * 1000 + 1] <- 1/mean(hill1[a:(a * r)])

}

for(i in (u2 * 1000):(u1 * 1000)) {

a <- n^(i/1000)

f[i - l1 * 1000 + 1] <- hill[a]

f1[i - l1 * 1000 + 1] <- NA

s[i - l1 * 1000 + 1] <- i/1000

}

plot(s, f1, type = "l", xlab = "theta",

ylab ="Hill estimate of alpha",

main = "AltsmooHill")

par(mfrow = c(1, 1))

}

7.3. Some alternative estimators from extreme value theory. Suppose {Zn, n ≥ 1}
is iid with common distribution F . The distribution F is in the domain of attraction of the
extreme value distribution Gγ, written F ∈ D(Gγ), if there exist a(n) > 0, b(n) ∈ R such
that

(7.21) nP[Z1 > a(n)x + b(n)] → − log Gγ(x) = (1 + γx)−1/γ, γ ∈ R, 1 + γx > 0.

Call

Eγ = {x : 1 + γx > 0}.
For γ = 0, we interpret − log Gγ(x) = e−x. Note

Eγ =





(− 1
γ
,∞], if γ > 0,

(−∞,∞], if γ = 0,

(−∞, 1
|γ| , if γ < 0.

The heavy tailed case corresponds to γ > 0 and then γ = 1/α.
Note (7.21) is a vague convergence statement about mean measures converging and we

therefore have on M+(Eγ)

(7.22)
1

k

n∑
i=1

εZi−b(n/k)

a(n/k)

⇒ ν(γ),
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where ν(γ)(x,∞] = − log Gγ(x). Repeating the procedure that yielded (7.10) gives the equiv-
alent statement

(7.23)
Z(dk/ye) − b(n/k)

a(n/k)
→ yγ − 1

γ
, 0 ≤ y < ∞,

in D[0,∞).

7.3.1. The Pickands estimator. The Pickands estimator (Dekkers and de Haan (1989), Pickands
(1975), Peng (1998)) like the de Haan moment estimator, is a semiparametric estimator of γ
when we only assume F ∈ D(Gγ). It uses differences of quantiles. The Pickands estimator
of γ based on using k upper order statistics from a sample of size n is

(7.24) γ̂
(Pickands)
k,n =

( 1

log 2

)
log

(
Z(k) − Z(2k)

Z(2k) − Z(4k)

)
.

Properties of the Pickands estimator.

(1) The Pickands estimator is a consistent estimator for γ ∈ R and does not require the
assumption γ > 0 as does the Hill estimator. The consistency holds as n → ∞,
k →∞ and n/k →∞.

We can check consistency easily using (7.23). We have

Z(k) − Z(2k)

Z(2k) − Z(4k)

=

(Z(k)−b(n/k))

a(n/k)
− (Z(2k)−b(n/k))

a(n/k)

(Z(2k)−b(n/k))

a(n/k)
− (Z(4k)−b(n/k))

a(n/k)

P→
( 0− γ−1

(
(1

2
)γ − 1

)

γ−1
(
(1

2
)γ − 1

)− γ−1
(
(1

4
)γ − 1

)
)

=2γ.

Taking logarithms and dividing by log 2 gives convergence in probability of the esti-
mator to γ.

(2) Usually (under conditions which are uncheckable in practice), if k →∞, and k/n → 0
we have asymptotic normality

√
k(γ̂

(Pickands)
k,n − γ) ⇒ N(0, v(γ))

where

v(γ) =
γ2(22γ+1 + 1)

(2(2γ − 1) log 2)2
.

More on asymptotic normality later.
(3) Unlike the Hill estimator, the Pickands estimator is location invariant. It is also scale

invariant.
(4) Good plots may require a large sample of the order of several thousand.
(5) In terms of asymptotic mean squared error, the Pickands estimator sometimes is

preferred over the moment estimator and Hill estimator (where comparable because
you know γ > 0) and sometimes not. See Peng (1998).
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(6) One can make a Pickands plot consisting of the points {(k, γ̂
(Pickands)
k,n ), 1 ≤ k < n/4}.

Choice of k and volatility of the plots are issues as they were with the Hill and
moments estimators.

Consider Figure 12 which is the Pickands estimator applied to 10,000 simulated Pareto
random variables with α = 1. The Pickands plot on the left picks up the correct value of
α = 1 quite well. In contrast to the degradation in the Hill plots when the data was shifted
(recall Figure 9), the Pickands plot is unaffected.
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Figure 12. Pickands plots of 10,000 simulated Pareto random variables with
α = 1 (left) and with the same data but multiplied by 50 and shifted by 50.

Earlier, we had found α ≈ 1.4 for the Danish data. The plot in Figure 13 is not very
informative even after accounting for the relation between α and γ and taking reciprocals
1/1.4 = 0.71.

One more example where the Pickands plot does better. Consider returns on the BMW
share prices. Recall from Section 2 that to get returns, we take the time series of the BMW
share prices, take logarithms and difference at lag 1. On the left in Figure 14 is the full set
of BMW returns and on the right are the positive returns.

The Pickands estimator does pretty well with the positive returns as shown in Figure 15,
the Pickands plot of the positive BMW returns.

The plots were produced with the Splus function Pickands :

function(x)

{

ordered <- rev(sort(x))

n <- length(ordered)

ordered2k <- ordered[seq(2, (n/4), by = 2)]

ordered4k <- ordered[seq(4, (n/4), by = 4)]
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Figure 13. Pickands plots of the Danish.all data (left) where the estimate of
γ ≈ 0.71 was obtained from other methods.
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Figure 14. BMW returns (left) and positive returns (right).

l <- length(ordered4k)

gammak <- (1/log(2)) * log((ordered[1:l] - ordered2k[1:l])/(

ordered2k[1:l] - ordered4k[1:l]))

plot(1:length(gammak), gammak, type = "l", xlab =

"number of order statistics", ylab =
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Figure 15. Pickands plot of the positive BMW returns.

"Pickands estimate of gamma")
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8. Asymptotic Normality of the Tail Empirical Measure

As in Section 7.1, suppose {Xj, j ≥ 1} are iid, non-negative random variables with common
distribution F (x), where F̄ ∈ RV−α for α > 0. Continue with the notation in (7.1), (7.2),
and (7.3). Define the tail empirical process,

Wn(y) =
√

k
(1

k

n∑
i=1

εXi/b(n/k)(y
−1/α,∞]− n

k
F̄ (b(n/k)y−1/α)

)
(8.1)

=
√

k
(
νn(y−1/α,∞]− E(νn(y−1/α,∞])

)
.

Theorem 7. If (7.1), (7.2), and (7.3) hold, then in D[0,∞)

Wn ⇒ W

where W is Brownian motion on [0,∞).

Remark 3. Note, because of regular variation, as n →∞, k/n → 0,

(8.2) Eνn(y−1/α,∞] =
n

k
F̄ (b(n/k)y−1/α) → (

y−1/α
)−α

= y.

For applications to such things as the asymptotic normality of the Hill estimator and other
estimators derived from the tail empirical measure, we would prefer the centering in (8.1)
be y. However, to make this substitution in (8.1) requires knowing or assuming

(8.3) lim
n→∞

√
k
(n

k
F̄ (b(n/k)y−1/α)− y

)

exists finite. This is one of the origins for the need of second order regular variation.

Proof. The proof requires several steps:
Step 1: Donsker theorem. Suppose {ξj, j ≥ 1} are iid, E(ξj) = 0, and Var(ξj) = 1.

Then in D[0,∞),
[n·]∑
i=1

ξi√
n
⇒ W.

Step 2: Vervaat’s lemma. See Vervaat (1972b) or Vervaat (1972a). Suppose xn ∈
D[0,∞) and x∞ ∈ C[0,∞) and xn are non-decreasing. If cn →∞ and

cn(xn(t)− t) → x∞(t), (n →∞)

locally uniformly, then also

cn(x←n (t)− t) → −x∞(t), (n →∞)

locally uniformly.
From Skorohod’s theorem, we get the following stochastic processes version: Suppose Xn

is a sequence of D[0,∞) valued random elements and X∞ has continuous paths. If Xn has
non-decreasing paths and if cn →∞, then

cn(Xn(t)− t) ⇒ X∞(t), (n →∞)

in D[0,∞) implies
cn(X←

n (t)− t) ⇒ −X∞(t), (n →∞)
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in D[0,∞). In fact, we also have (e(t) = t)

(8.4)
(
cn(Xn(·)− e, cn(X←

n (·)− e
)
⇒ (X∞(·), X←

∞ (·)),
in D[0,∞)×D[0,∞).

Step 3: Renewal theory. Suppose {Yn, n ≥ 1} are iid, non-negative random variables
with E(Yj) = µ, and Var(Yj) = σ2. Set Sn =

∑n
i=1 Yi. Then Donsker’s theorem says

S[nt] − [nt]µ

σ
√

n
⇒ W (t)

in D[0,∞). Since for any M > 0

sup
0≤t≤M

|ntµ− [nt]µ|√
n

→ 0,

it is also true that in D[0,∞)
S[nt] − ntµ

σ
√

n
⇒ W (t)

or by dividing numerator and denominator by nµ

cn(Xn(t)− t) :=

(
S[nt]

nµ
− t

)

σn−1/2/µ
⇒ W (t).

This implies the result for X←
n and we need to evaluate this process:

X←
n (t) = inf{s : Xn(s) ≥ t}

= inf{s : S[ns]/nµ ≥ t} = inf{s : S[ns] ≥ tnµ}
= inf{ j

n
: Sj ≥ tnµ} =

1

n
N(tnµ),

some version of the renewal function. For later use, note that N(t) differs at most by 1 from

(8.5)
∞∑
i=1

1[Sj≤t].

The conclusion from Vervaat is
√

n
µ

σ

( 1

n
N(nµt)− t

)
⇒ W (t)

or changing variables s = µt

√
n

µ

σ

( 1

n
N(ns)− s

µ

)
⇒ W (

s

µ
)

d
=

1√
µ

W (s).

The conclusion:

(8.6)
√

n
µ3/2

σ

( 1

n
N(ns)− s

µ

)
⇒ W (s),

in D[0,∞).
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Special case: The Poisson process. Let

Γn = E1 + · · ·+ En

be a sum of n iid standard exponential random variables. In this case µ = σ = 1 and

(8.7)
√

k
(1

k
N(ks)− s

)
⇒ W (s), (k →∞),

in D[0,∞).
Step 4: Approximation. Review the relation of N(t) with the quantity in (8.5). We

claim, as n →∞, and k/n → 0, for any T > 0,

(8.8) sup
0≤s≤T

√
k
∣∣∣1
k

∞∑
i=1

1[Γi≤ks] − 1

k

n∑
i=1

1[Γi≤ks]

∣∣∣ P→ 0.

The idea is that Γi is localized about its mean and any term with i too far from k is unlikely.
The result says that i > n gives a term which is negligible. More formally, the difference in
(8.8) is

sup
0≤s≤T

1√
k

∞∑
i=n+1

1[Γi≤ks] ≤ 1√
k

∞∑
i=n+1

1[Γi≤kT ]

=
1√
k

∞∑
i=1

1[Γn+Γ′i≤kT ] (Γ′i =
i∑

l=1

El+n).

Now for any δ > 0,

P [
1√
k

∞∑
i=1

1[Γn+Γ′i≤kT ] > δ] ≤P [Γn ≤ kT ] = P [
Γn

n
≤ k

n
T ]

and since k/n → 0, for any η > 0 we ultimately have this last term bounded by

≤P [
Γn

n
≤ 1− η] → 0,

by the weak law of large numbers.
Combining (8.8), the definition of N , and (8.7) we get the conclusion

(8.9)
√

k
(1

k

n∑
i=1

1[Γi≤ks] − s
)
⇒ W (s) (k →∞, k/n → 0),

in D[0,∞).
Step 5: Time change. For s ≥ 0, define

φn(s) =
n

k
F̄

(
b(n/k)s−1/α

)Γn+1

n

so that from regular variation and the weak law of large numbers,

(8.10) sup
0≤s≤T

|φn(s)− s| P→ 0
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for any T > 0. Therefore, joint convergence ensues

(√
k
(1

k

n∑
i=1

1[Γi≤k·] − (·), φn(·)
)
⇒ (W, e), (e(t) = t)

in D[0,∞)×D[0,∞) and applying composition we arrive at

(8.11)
√

k
(1

k

n∑
i=1

1[Γi≤kφn(s)] − φn(s)
)
⇒ W (s)

in D[0,∞).
Step 6: Probability integral transform. The Γ’s have the property that

( Γ1

Γn+1

, . . .
Γn

Γn+1

)
d
=

(
1− Γn

Γn+1

, . . . , 1− Γ1

Γn+1

))
d
= (U(1:n), . . . , U(n:n))

where

U(1:n) ≤ · · · ≤ U(n:n))

are the order statistics in increasing order of n iid U(0, 1) random variables U1, . . . , Un.
Observe from (8.11),

1

k

n∑
i=1

1[Γi≤kφn(s)] =
1

k

n∑
i=1

1
[
Γi
k
≤ 1

k
F̄ (b(n/k)s−1/α)Γn+1]

=
1

k

n∑
i=1

1
[

Γi
Γn+1

≤F̄ (b(n/k)s−1/α)]

=
1

k

n∑
i=1

1
[F (b(n/k)s−1/α)≤1− Γi

Γn+1
]
=

1

k

n∑
i=1

1
[b(n/k)s−1/α≤F←

(
1− Γi

Γn+1

)
]

d
=

1

k

n∑
i=1

1
[b(n/k)s−1/α≤F←

(
U(i:n)

)
]
=

1

k

n∑
i=1

1[b(n/k)s−1/α≤F←(Ui)]

d
=

1

k

n∑
i=1

1
[b(n/k)s−1/α≤Xi

)
]
=

1

k

n∑
i=1

1
[

Xi
b(n/k)

≥s−1/α]
= νn[s−1/α,∞].

Also,

√
k sup

0≤s≤T

∣∣∣n
k
F̄

(
b(n/k)s−1/α

)Γn+1

n
−n

k
F̄ (b(n/k)s−1/α

∣∣∣

= sup
0≤s≤T

n

k
F̄ (b(n/k)s−1/α)

√
k
∣∣∣Γn+1

n
− 1

∣∣∣

=O(1)

√
k

n

∣∣∣Γn+1 − n√
n

∣∣∣ = O(1)o(1)Op(1),

from the central limit theorem, and this
P→ 0.

This proves the result since the last statement removes the difference between φn(s) and
E

(
νn[s−1/α,∞]

)
. ¤

From this result we can recover Theorem 5 page 41 and its consequences.
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8.1. Asymptotic normality of the Hill estimator. For this section it is convenient to
assume (8.3) and, in fact, we assume for simplicity

(8.12) lim
n→∞

√
k
(n

k
F̄ (b(n/k)y−1/α)− y

)
= 0

uniformly for x > x0. (The uniformity is not an extra assumption but this requires proof.)
With (8.12), we can modify the result of Theorem 7 to

(8.13) W#
n (y) =

√
k
(1

k

n∑
i=1

1[Xi/b(n/k)>y−1/α] − y
)

=:
√

k(Vn(y)− y) ⇒ W (y),

in D[0,∞). Therefore, from Vervaat’s lemma,

(8.14)
√

k(V ←
n (y)− y) =

√
k

(( Xdkye
b(n/k)

)−α

− y

)
⇒ −W (y).

In fact we have joint convergence

(8.15)

(√
k
(
Vn(·)− e

)
,
√

k
(
V ←

n (·)− e
)
,
( X(k)

b(n/k)

)−α
)
⇒ (W,−W, 1)

in D[0,∞)×D[0,∞)× R. Apply the map,

(x1(·), x2(·), k) 7→ (x1(k·), x2(1)e)

to get
(√

k
(1

k

n∑
i=1

1
[

Xi
b(n/k)

>
X(k)

b(n/k)
y−1/α]

−( X(k)

b(n/k)

)−α
y
)
,
√

k
( X(k)

b(n/k)

)−α
y−y

))
⇒ (

W (y),−yW (1)
)
.

Add the components to get,

(8.16)
√

k
(1

k

n∑
i=1

1
[

Xi
b(n/k)

>
X(k)

b(n/k)
y−1/α]

− y
)
⇒ W (y)− yW (1).

This removes the unknown function b(n/k). The limit is Brownian bridge.
Apply the map (needs justification by means of the Second converging together theorem,

Proposition 7 on page 48)

x(·) 7→
∫ 1

0

x(s)
ds

αs
.

The result is

(8.17)
√

k(Hk,n − 1

α
) ⇒ 1

α
[

∫ 1

0

W (s)
ds

s
−W (1)].

Lemma 4. The random variable ∫ 1

0

W (s)
ds

s
−W (1)

is N(0, 1).
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Proof. The integral is a Gaussian random variable (it is a limit of linear combinations of
Gaussian random variables) so we just calculate the variance: We use

E(W (s)W (t)) = s ∧ t.

Then

E[

∫ 1

0

W (s)
ds

s
−W (1)]2 =E

(∫ 1

0

·ds

∫ 1

0

du− 2

∫ 1

0

W (s)W (1)
ds

s
+ W (1)2

)

=2

∫∫

0≤s<u≤1

(s ∧ u
ds

s

du

u
− 2

∫ 1

0

s
ds

s
+ 1

=2

∫ 1

u=0

(∫ u

s=0

s
ds

s

)du

u
− 2 + 1 = 1.

¤
Conclusion: With regular variation and the 2nd order condition,

√
(Hk,n − 1

α
) ⇒ N(0,

1

α2
).

9. More on Point Processes.

We continue to explore the role that point processes plays both as modeling elements and
as a transform that allows us to understand regular variation in a dimensionless way.

9.1. The Poisson process. Let N be a point process with nice (locally compact, countable
base) state space E. Suppose E is a class of reasonable subsets of E; that is, the Borel σ-
algebra of subsets of E generated by the open sets in E.

Definition 2. N is a Poisson process with mean measure µ or synonomously a Poisson
random measure (PRM(µ)) if

(1) For A ∈ E

P [N(A) = k] =

{
e−µ(A)(µ(A))k

k!
, if µ(A) < ∞

0, if µ(A) = ∞.

(2) If A1, . . . , Ak are disjoint subsets of E in E , then N(A1), . . . , N(Ak) are independent
random variables.

So N is Poisson if the random number of points in a set A is Poisson distributed with
parameter µ(A) and the number of points in disjoint regions are independent random vari-
ables.

Property 2 is called complete randomness . When E = R it is called the independent
increments property since we have for any t1 < t2 < · · · < tk that (N((ti, ti+1]), 1 = 1, . . . , k−
1) are independent random variables. When the mean measure is a multiple of Lebesgue
measure (ie, length when E = [0,∞) or R, area when E = R2, volume when E = R3, etc) we
call the process homogeneous. Thus in the homogeneous case, there is a parameter λ > 0
such that for any A we have N(A) Poisson distributed with mean EN(A) = λ|A| where |A|
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is the Lebesgue measure of A. When E = [0,∞) the parameter λ is called the rate of the
(homogeneous) Poisson process.

9.1.1. Transformations of Poisson processes. Useful results are connected with a circle of
ideas about what happens to a Poisson process under various types of transformations. The
first result, though very elementary, is enormously useful in understanding inhomogeneity.
To prepare for this result, suppose

∑
n εXn is a Poisson process with state space E and mean

measure µ. Suppose T is some transformation with domain E and range E′, where E′ is
another nice space; that is,

T : E 7→ E′.
The function T defines a set mapping of subsets of E′ to subsets of E, defined for A′ ⊂ E′ by

T−1(A′) = {e ∈ E : T (e) ∈ A′}.
Thus T−1(A′) is the pre-image of A′ under T ; that is, it is the set of points of E which T
maps into A′.

As an example, suppose E = (0,∞), E′ = (−∞,∞), T (x) = log x. If a < b and A′ = (a, b)
we have

T−1((a, b)) ={x > 0 : T (x) ∈ (a, b)} = {x > 0 : log x ∈ (a, b)}
{x > 0 : x ∈ (ea, eb)}.

Given the measures N,µ defined on subsets of E, we may use T to define induced measures
N ′, µ′ on subsets of E′. For A′ ⊂ E ′ define

N ′(A′) = N(T−1(A′)), µ′(A′) = µ(T−1(A′)).

So to get the measure of A′, we map A′ back into E and take the measure of the pre-image
under T . Also, if N has points {Xn}, then N ′ has points {X ′

n} = {T (Xn)} since for A′ ⊂ E′

N ′(A′) =N(T−1(A′)) =
∑

n

εXn(T−1(A′))

=
∑

n

1[Xn∈T−1(A′)] =
∑

n

1[T (Xn)∈A′] =
∑

n

εT (Xn)(A
′).

The next result asserts that if N is a Poisson process with mean measure µ and with
points {Xn} living in the state space E, then N ′ = N(T−1(·)) is a Poisson process process
with mean measure µ′ and with points {T (Xn)} living in the state space E′.

Proposition 8. Suppose
T : E 7→ E′

is a mapping of one Euclidean space E into another E′ such that if K ′ ∈ K(E′) is compact in
E′ then so is T−1K ′ := {e ∈ E : Te ∈ K ′} ∈ K(E). If N is PRM(µ) on E then N ′ := N ◦T−1

is PRM(µ′) on E′ where µ′ := µ ◦ T−1.

Remember that if N has the representation

N =
∑

n

εXn
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then
N ′ =

∑
n

εTXn

so this result says that if you shift the points of a Poisson process around you still get a
Poisson process.

Proof. We have

P [N ′(B′) = k] = P [N(T−1(B′)) = k] = p(k, µ(T−1(B′)))

so N ′ has Poisson distributions. It is easy to check the independence property since if
B′

1, . . . , B
′
m are disjoint then so are T−1(B′

1), . . . , T
−1(Bm) whence

(N ′(B′
1), . . . , N

′(B′
m)) =

(
N(T−1(B′

1), . . . , N(T−1(B′
m)

)

are independent. Thus the postulates 1 and 2 of a Poisson process are satisfied. ¤
Examples: Consider 3 easy three examples. For each, let N =

∑∞
n=1 εΓn be a homogeneous

Poisson process with rate λ = 1 on the state space E = [0,∞). The mean measure µ is
Lebesgue measure so that µ(A) = |A| and in particular µ([0, t]) = t.

(1) If Tx = x2 then
∑

n εΓ2
n

is PRM and the mean measure µ′ is given by

µ′[0, t] = µ{x : Tx ≤ t} = µ[0,
√

t] =
√

t.

Note that µ′ has a density

α(t) =
d

dt

√
t =

1

2
t−1/2.

(2) If T : E 7→ E × E via Tx = (x, x2) then
∑

n εTΓn =
∑

n ε(Γn,Γ2
n) is Poisson on E × E.

The mean measure concentrates on the graph {(x, x2) : x ≥ 0}.
(3) If

∑
n εΓn is homogeneous Poisson on [0,∞) then

∑
n εΓ−1

n
is Poisson on (0,∞] with

mean measure µ′ given by (x > 0)

µ′(x,∞] = µ{t ≥ 0 : t−1 ≥ x} = µ[0, x−1) = x−1.

Note that the bounded sets of E′ are those sets bounded away from 0; ie the bounded
sets are neighborhoods of ∞. µ′ has a density

α(t) = − d

dt
t−1 = t−2.

Poisson processes with this mean measure µ′ are particularly important in extreme value
theory and in the theory of stable processes. It is easy to see the connection with extreme
value theory: Given N ′ =

∑
n εX′

n
, the Poisson process on (0,∞] with mean measure µ′,

define
Y =

∨
n

X ′
n.

So Y is simply the biggest point of the Poisson process. The distribution of Y is easily
computed: For x > 0

P [Y ≤ x] =P [
∨
n

X ′
n ≤ x]
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=P [N ′((x,∞]) = 0]

=e−µ′((x,∞])

=e−x−1

which is one of the classical extreme value distributions.
To see the connection with stable laws, it is simplest to look at a variant of the above

construction: Let 0 < α < 1 and define the Poisson process

N# =
∞∑

n=1

ε
Γ
−1/α
n

.

The mean measure of N# is µ# and since N# is constructed from the transformation T (x) =
x−1/α we have that

µ#((x,∞]) = x−α.

Define the random variable

X =
∞∑

n=1

Γ−1/α.

This is a stable random variable with index α. It is easy to see the series converges because
Γn ∼ n as n →∞ by the law of large numbers. Since 1/α > 1, convergence of series defining
X follows by comparison with the series

∑
n n−1/α.

A similar construction can be used to define stable random variables with indices 1 ≤ α < 2
but the terms Γ

−1/α
n must be centered before summing in order to guarantee convergence of

the infinite series of random variables. This will be considered in more detail later when we
discuss Lévy processes.

9.1.2. Augmentation. Given a Poisson process, under certain circumstances it is possible to
enlarge the dimension of the points and retain the Poisson structure. One way to do this was
given in example 2 of the previous section, but the enlargement of dimension was illusory
since the points concentrated on a graph {(x, x2) : x > 0}. The result presented here allows
independent components to be added to the points of the Poisson process. This proves very
useful in a variety of applications.

Proposition 9. Suppose {Xn} are random elements of a Euclidean space E1 such that
∑

n

εXn

is PRM(µ). Suppose {Jn} are iid random elements of a second Euclidean space E2 with
common probability distribution F (·) and suppose the Poisson process and the sequence {Jn}
are defined on the same probability space and are independent. Then the point process on
E1 × E2 ∑

n

ε(Xn,Jn)

is PRM with mean measure µ × F (·) meaning that if Ai ⊂ Ei, i = 1, 2 are Borel sets, then
µ× F (A1 × A2) = µ× F ({(e1, e2) : e1 ∈ A1, e2 ∈ A2}) = µ(A1)F (A2).
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Often this procedure is described by saying we give to point Xn the mark Jn. Think about
a picture where the points of the original Poisson process {Xn} appear on the horizontal
axis and the marked points appear in the E1 × E2 plane.

The proof is deferred. For now, note the mean measure is correct since for a rectangle set
of the form A1 × A2 = {(e1, e2) : e1 ∈ A1 ⊂ E1, e2 ∈ A2 ⊂ E2} we have

E
∑

n

ε(Xn,Jn)(A1 × A2) =
∑

n

P [(Xn, Jn) ∈ A1 × A2]

=
∑

n

P [Xn ∈ A1]P [Jn ∈ A2]

since {Jn} is independent of the Poisson process. Since {Jn} are iid random variables this
is the same as

=
∑

n

P [Xn ∈ A1]P [J1 ∈ A2]

=E(
∑

n

εXn(A1))P [J1 ∈ A2]

=µ(A1)P [J1 ∈ A2].

10. The Infinite Node Poisson Model.

The infinite node Poisson model is a simple (probably too simple) model which enjoyed
early success in explaining long range dependence in measured internet traffic. The expla-
nation is simple probability based on properties of a Poisson process.

10.1. Background. The story begins around 1993 with the publication of what is now
known as the Bellcore study (Duffy et al. (1993), Leland et al. (1993b), Willinger et al.
(1995)). Traditional queueing models had thrived on assumptions of exponentially bounded
tails, Poisson inputs and lots of independence. Collected network data studied at what was
then Bellcore (now Telcordia) exhibited properties which were inconsistent with traditional
queueing models. These anomalies were also found in world wide web downloads in the
Boston University study (Crovella and Bestavros (1995, 1996a,b, 1997), Crovella et al. (1999,
1996), Cunha et al. (1995)). The unusual properties found in the data traces included:

• self-similarity (ss) and long-range dependence (LRD) of various transmission rates:
– packet counts per unit time,
– www bits/time.

• heavy tails of quantities such as
– file sizes,
– transmission rates,
– transmission durations,
– CPU job completion times,
– call lengths

The Bellcore study in early 90’s resulted in a paradigm shift worthy of a sociological study
to understand the frenzy to jump on and off various bandwagons but after some resistence
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to the presence of long range dependence, there was widespread acceptance of the statement
that packet counts per unit time exhibit self similarity and long range dependence. Research
goals then shifted from detection of the phenomena to greater understanding of the causes.
The challenges were:

• Explain the origins and effects of long-range dependence and self-similarity.
• Understand some connections between self-similarity, long range dependence and

heavy tails. Use these connections for finding an explanation for the perceived long
range dependence in traffic measurements.

• Begin to understand the effect of network protocols and architecture on traffic. The
simplist models, such as the featured infinite source Poisson model, pretend protocols
and controls are absent. This is an ambitious goal.

• Say something useful for the purposes of capacity planning.

10.2. The infinite node Poisson model. Attempts to explain long range dependence and
self-similarity in traffic rates centered around the paradigm: heavy tailed file sizes cause LRD
in network traffic. Specific models must be used to explain this and the two most effective
and simple models were:

• Superposition of on/off processes (Heath et al. (1997, 1998), Jelenković and
Lazar (1998), Mikosch et al. (2002), Mikosch and Stegeman (1999), Parulekar and
Makowski (1996a), Stegeman (1998), Taqqu et al. (1997), Willinger et al. (1995)).
This is described as follows: imagine a source/destination pair. The source sends at
unit rate for a random length of time to the destination and then is silent or inactive
for a random period. Then the source sends again and when finished is silent. And
so on. So the transmission schedule of the source follows an alternating renewal or
on/off structure. Now imagine the traffic generated by many source/destination pairs
being superimposed and this yields the overall traffic.

• The infinite source Poisson model, sometimes called the M/G/∞ input
model ( Guerin et al. (2003), Heath et al. (1999), Jelenković and Lazar (1996),
Jelenković and Lazar (1999), Mikosch et al. (2002), Parulekar and Makowski (1996b),
Resnick and Rootzén (2000), Resnick and van den Berg (2000)). Imagine infinitely
many potential users connected to a single server which processes work at constant
rate r. At a Poisson time point, some user begins transmitting work to the server
at constant (ugh!) rate which, without loss of generality, we take to be rate 1. The
length of the transmission is random with heavy tailed distribution. The length of
the transmission may be considered to be the size of the file needing transmission.

Both models have their adherents and the two models are asymptotically equivalent in a
manner nobody (to date) has made fully transparent. We will focus on the infinite source
Poisson model.

Some good news about the model:

• It is somewhat flexible and certainly simple.
• Since each node transmits at unit rate, the overall transmission rate at time t is simply

the number of active users N(t) at t. From classical M/G/∞ queueing theory, we
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know N(t) is a Poisson random variable with mean λµon where λ is the rate parameter
of the Poisson process and µon is the mean file size or mean transmission length.

• The length of each transmission is random and heavy tailed.
• The model offers a very simple explanation of long range dependence being caused

by heavy tailed file sizes.
• The model predicts traffic aggregated over users and accumulated over time [0, T ] is

approximated by either a Gaussian process (fractional Brownian motion or FBM) or a
heavy tailed stable Lévy motion (Mikosch et al. (2002)). Thus the two approximations
are very different in character but at least both are self-similar.

Some less good news about the model:

• The model does not fit collected data traces all that well.
– The constant transmission rate assumption is clearly wrong. Each of us knows

from personal experience that downloads and uploads do not proceed at constant
rate.

– Not all times of transmissions are Poisson. Identifying Poisson time points in the
data can be problematic. Some are machine triggered and these will certainly
not be Poisson. While network engineers rightly believe in the invariant that
behavior associated with humans acting independently can be modeled as a
Poisson process, it is highly unlikely that, for example, subsidiary downloads
triggered by going to the CNN website (imagine the calls to DoubleClick’s ads)
would follow a Poisson pattern.

• There is no hope that this simple model can successfully match fine time scale be-
havior observed below, say, 100 milliseconds. Below this time scale threshhold, ob-
servational studies speculate that traffic exhibits multifractal characteristics.

• The model does not take into account admission and congestion controls such as
TCP. How can one incorporate a complex object like a control mechanism into an
informative probability model?

10.3. Long range dependence. A stationary L2 sequence {ξn, n ≥ 1} possesses long-range
dependence (lrd) if

(10.1) Cov(ξn, ξn+h) ∼ h−βL(h), h →∞
for 0 < β < 1 and L(·) slowly varying (Beran (1992)). Set γ(h) = Cov(ξn, ξn+h) and
ρ(h) = γ(h)/γ(0) for the covariance and correlation functions of the stationary process {ξn}.
There is no universal agreement about terminology and sometimes long range dependence
is taken to mean that covariances are not summable:

∑
h |γ(h)| = ∞, whereas short range

dependence means
∑

h |γ(h)| < ∞. Traditional time series models such as ARMA models
have covariances which go to zero geometrically fast as a function of the lag h.

Long-range dependence, like the property of heavy tails, has acquired a mystical, almost
religious, significance and generated controversy. Researchers argue over whether it exists,
whether it matters if it exists or not, or whether analysts have been fooled into mistak-
ing some other phenomena like shifting levels, undetected trend (Künsch (1986)) or non-
stationarity for long range dependence. Discussions about this have been going on since (at
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least) the mid 70’s in hydrology (Bhattacharya et al. (1983), Boes (1988), Boes and Salas-
La Cruz (1973), Brockwell et al. (1982), Salas and Boes (1974, 1978), Salas et al. (1979)),
in finance (Mikosch and Stărică (2003), Mikosch and Stărică (1999)) and in data network
modeling (Cao et al. (2001a,b), Duffield et al. (1994), Garrett and Willinger (1994), Hey-
man and Lakshman (1996), Leland et al. (1993a), Park and Willinger (2000)). Think of it
as one more modeling decision that needs to be made. Since long range dependence is an
asymptotic property, models that possess long range dependence presumably have different
asymptotic properties than those models where long range dependence is absent although
even this is sometimes disputed.
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Figure 16. Time series plots for Company X data. Top: full data set. Mid-
dle: First 10,000 data. Bottom: last 20,000 observations.

10.3.1. Simple minded detection of long range dependence using the sample acf. The most
common, ubiquitous, quick and dirty method to detect long range dependence (assuming
you are convinced the data comes from a stationary process) is to graph the sample acf
{ρ(h), h = 1, 2, . . . , N} where N is a large number but not a significant proportion of the
whole sample size.

The plot should not decline rapidly. Classical time series data that one encounters in
ARMA (Box-Jenkins) modeling exercises has a sample acf which is essentially zero after a
few lags and acf plots of financial or teletraffic data are often in stark contrast.
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Figure 17. Sample autocorrelation plot for Company X data for 2000 lags.

Example 4 (Company X). This trace is packet counts per 100 milliseconds=1/10 second
for Financial Company X’s wide area network link including USA–UK traffic. It consists of
288,009 observations corresponding to 8 hours of collection from 9am–5pm. Figure 16 shows
time series plots. The top plot of the whole data set does not raise any alarms about lack
of stationarity but this is partly due to the muddy plotting resulting from the abundance
of data. The middle plot shows the first 10,000 and the bottom plot displays the last
20,000. With reduced data size, the last two plots raise some question whether stationarity
is appropriate but this has not been pursued.

Figure 17 shows the acf plot for 2000 lags. There is little hurry for the plot to approach
zero. (Don’t try to model this with ARMA.)

10.4. The infinite node Poisson model. Understanding the connection between heavy
tails and long range dependence requires a context. For the simplist explanations one can
choose either the superposition of on/off processes or the infinite node Poisson model and
our preference is for the latter. which is sometimes called the M/G/∞ input model.

In this model, there are potentially an infinite number of sources capable of sending work
to the server. Imagine that transmission sources turn on and initiate sessions or connections
at Poisson time points {Γk} with rate λ. The lengths of sessions {Ln} are iid non-negative
random variables with common distribution Fon and during a session, work is transmitted
to the server at constant rate. As a normalization, we assume the transmission rate is 1.
Assume

(10.2) 1− Fon(t) := F̄on(t) = t−αL(t), t →∞;
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that is,

lim
t→∞

F̄on(tx)

F̄on(t)
= x−α, x > 0.

In practice, empirical estimates of α usually range between 1 and 2 (Leland et al. (1994),
Willinger et al. (1995)). However, studies of file sizes sometimes report measurements of
α < 1 (Arlitt and Williamson (1996), Resnick and Rootzén (2000)). The assumption of a
fixed unit transmission rate is one of the more unrealistic aspects of the model which accords
neither with anyones personal experience nor with measurement studies. For the present, in
the interests of simplicity and for tractability, the fixed transmission rate will be assumed.

We will assume 1 < α < 2, so that the variance of Fon is infinite but

µon = E(L1) =

∫ ∞

0

F̄on(t)dt < ∞.

The processes of primary interest for describing this system are the following:

N(t) = number of sessions in progress at t(10.3)

= number of busy servers in the M/G/∞ model

=
∞∑

k=1

1[Γk≤t<Γk+Lk]

and

A(t) =

∫ t

0

N(s)ds = cumulative input in [0, t],(10.4)

r =release rate or the rate at which the server works off the offered load.

Note that expressing A(t) as an integral gives N(t) the interpretation of “instantaneous
input rate at time t”. So realizations of N(t) correspond to data traces of “packet counts
per unit time”. So we seek within the model an explanation of why {N(t)} possesses long
range dependence.

Stability requires us to assume that the long term input rate should be less that the output
rate so we require

λµon < r.

This means the content or buffer level process {X(t), t ≥ 0} which satisfies

dX(t) = N(t)dt− r1[X(t)>0]dt,

is regenerative with finite mean regeneration times and achieves a stationary distribution.

10.5. Connection between heavy tails and long range dependence. The common
explanation for long range dependence in the total transmission rate by the system is that
high variability causes long range dependence where we understand high variability means
heavy tails. The long range dependence resulting from the heavy tailed distribution Fon can
be easily seen for the infinite node Poisson model.
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Figure 18. The region B

Assume that 1 < α < 2. To make our argument transparent, we consider the following
background. For each t, N(t) is a Poisson random variable. Why? When 1 < α < 2, N(·)
has a stationary version on R, the whole real line. Assume

∑

k

εΓk
= PRM(λdt)

is a homogeneous Poisson random measure on R, with rate λ. Then using augmentation

(10.5) M :=
∑

k

ε(Γk,Lk) = PRM(λdt× Fon)

is a two dimensional Poisson random measure on R×[0,∞) with mean measure λdt×Fon(dx)
and

N(t) =
∑

k

1[Γk≤t<Γk+Lk]

=M({(s, l) : s ≤ t < s + l} = M(B)

is Poisson because it is the two dimensional Poisson process M evaluated on the region B.
See the gorgeous Figure 18. Note B is the region in the (s, l)-plane to the left of the vertical
line through t and above the −45 degree line through (t, 0). The mean of M(B) is

E
(
M({(s, l) : s ≤ t < s + l}

)
=

∫∫

{(s,l):s≤t<s+l}
λdsFon(dl)

=

∫ t

s=−∞
F̄on(t− s)λds = λµon.(10.6)
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Understanding the relation between {N(t)} and the random measure M allows us to easily
compute the covariance function. Refer to Figure 2. Recall that N(t) corresponds to points
to the left of the vertical through (t, 0) and above the −45-degree line through (t, 0) with a
similar interpretation for N(t + s). The process {N(t), t ∈ R} is stationary with covariance
function

Cov(N(t), N(t + s))

=Cov
(
M(A1) + M(A2),M(A2) + M(A3)

)

and because M(A1) and M(A3) are independent, the previous expression reduces to

=Cov
(
M(A2),M(A2)

)
= Var

(
M(A2)

)
.

For a Poisson random variable, the mean and the variance are equal and therefore the above
equals

=E
(
M(A2)

)
=

∫∫
u≤t

u+l>t+s

λduFon(dl)

=

∫ t

u=−∞
λF̄on(t + s− u) du

=λ

∫ ∞

s

F̄on(v)dv ∼ csF̄on(s) ∼ cs−(α−1)L(s).

Note the use of Karamata’s theorem to evaluate the asymptotic form of the integral of the
regularly varying tail.

To summarize, we find that

Cov(N(t), N(t + s)) =λ

∫ ∞

s

F̄on(v)dv

=(const)s−(α−1)L(s)

=(const)sF̄on(s), s →∞.(10.7)

The slow decay of the covariance as a function of the lag s characterizes long range de-
pendence.
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H. Künsch. Discrimination between monotonic trends and long range dependence. J. Applied
Probability, 23:1025–1030, 1986.

W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the self-similar nature of Ethernet
traffic. ACM/SIGCOMM Computer Communications Review, pages 183–193, 1993a.

W. Leland, M. Taqqu, W. Willinger, and D. Wilson. Statistical analysis of high time-
resolution ethernet Lan traffic measurements. In Proceedings of the 25th Symposium on
the Interface between Statistics and Computer Science, pages 146– 155, 1993b.

W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the self-similar nature of Ethernet
traffic (extended version). IEEE/ACM Transactions on Networking, 2:1–15, 1994.



HEAVY TAIL ANALYSIS 79

T. Mikosch, S. Resnick, H. Rootzén, and A. Stegeman. Is network traffic approximated by
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11. The Laplace functional.

The Laplace functional is a transform technique which is useful for manipulating distri-
butions of random measures and point processes. When applied to Poisson processes and
empirical measures, algebraic manipulations become familiar to ones used with either char-
acteristic functions or Laplace transforms applied to sums of iid random variables.

Continue to assume the state space of the random measures or point processes is the nice
space E. For a non-negative, bounded measureable function f : E 7→ R+ and for µ ∈ M+(E),
we continue to use the notation

µ(f) =

∫

x∈E

f(x)dµ(x).

For a point measure m =
∑

i εxi
, this is

m(f) =

∫

x∈E
f(x)m(dx) =

∑
i

f(xi).

If we think of f ranging over all the non-negative bounded functions, m(f) yields all the
information contained in m; certainly we learn about the value of m on each set A ∈ E since
we can always set f = 1A. So integrals of measures with respect to arbitrary test functions
contain as much information as evaluating the measures on arbitrary sets.

Definition 3 (Laplace functional). Suppose B+ are the non-negative, bounded, measurable
functions from E 7→ R+ and let

ξ : (Ω,A,P) 7→ (M+(E),M+(E))

be a random measure. The Laplace functional of ξ is the non-negative function on B+ given
by

Ψξ(f) = E exp{−ξ(f)} =

∫

Ω

exp{−N(ω, f)dP(ω) =

∫

M+(E)

exp{−m(f)P ◦N−1(dm).

Note if P is a probability measure on Mp(E), its Laplace functional is
∫

Mp(E)

exp{−m(f)P (dm), f ∈ B+.

Proposition 10. The Laplace functional of ξ uniquely determines the distribution of ξ,
namely P ◦ ξ−1 on M+(E)).

Proof. The topology (and hence the Borel σ-algebra on M+(E) is generated by basic open
sets of the form

{µ ∈ M+(E) : µ(fi) ∈ Ii; i = 1, . . . , k},
where fi ∈ C+

K(E) and Ii are bounded open intervals. (Review page 33. ) This class of sets
is closed under finite intersection and hence is a Π-system generating the σ-algebra. So from
(Resnick, 1998, page 38) is suffices to show that P ◦ ξ−1 is uniquely determined on this class
by the Laplace functional.
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For f =
∑k

i=1 λifi, with λi > 0, we have

ψξ(f) = Ee−ξ(f) = Ee−
Pk

i=1 λiξ(fi).

So ψξ determines the joint distribution of the random vector

(ξ(f1), . . . , ξ(fk))

and hence
P ◦ ξ−1{µ : µ(fi) ∈ Ii, i = 1, . . . , k} = P[(ξ(f1), . . . , ξ(fk)) ∈ ·]

is determined, as required. ¤

11.1. The Laplace functional of the Poisson process. Recall Definition 2 of the Poisson
process and the two parts 1 and 2 of the definition.

The Poisson process can be identified by the characteristic form of its Laplace functional
as discussed next.

Theorem 8 (Laplace functional of PRM). The distribution of PRM(µ) is uniquely deter-
mined by 1 and 2 in Definition 2. Furthermore, the point process N is PRM(µ) iff its Laplace
functional is of the form

(11.1) ΨN(f) = exp{−
∫

E
(1− e−f(x))µ(dx)}, f ∈ B+.

So PRM(µ) can be identified by the characteristic form of its Laplace functional.

Proof. We first show (1) and (2) imply (11.1). If f = λ1A where λ > 0 then because
N(f) = λN(A) and N(A) is Poisson with parameter µ(A) we get

ΨN(f) =E
(
e−λN(A)

)
= exp{(e−λ − 1)µ(A)}

= exp{−
∫

E

(1− e−f(x))µ(dx)}

which is the correct form given in (11.1).
Next suppose f has a somewhat more complex form

f =
k∑

i=1

λi1Ai

where λi ≥ 0, Ai ∈ E , 1 ≤ i ≤ k and A1, . . . , Ak are disjoint. Then

ΨN(f) =E

(
exp

{
−

k∑
i=1

λiN(Ai)

})

=
k∏

i=1

E
(
exp{−λiN(Ai)}

)
from independence

=
k∏

i=1

exp

{
−

∫

E
(1− e−λi1Ai

(x))µ(dx)

}
from the previous step
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= exp

{∫

E

k∑
i=1

(1− e−λi1Ai
(x))µ(dx)

}

= exp

{∫

E
(1− e−

Pk
i=1 λi1Ai

(x))µ(dx)

}

= exp

{∫

E
(1− e−f(x))µ(dx)

}

which again verifies (11.1).
Now the last step is to take general f ∈ B+ and verify (11.1) for such f . We may

approximate f from below by simple fn of the form just considered. We may take for
instance

fn(x) =
n2n∑
i=1

i− 1

2n
1[ i−1

2n , i
2n )(f(x)) + n1[n,∞)(f(x))

so that

0 ≤ fn(x) ↑ f(x).

By monotone convergence N(fn) ↑ N(f) and since e−f ≤ 1 we get by dominated convergence
that

ΨN(f) = lim
n→∞

ΨN(fn).

We have from the previous step that

ΨN(fn) = exp

{
−

∫

E
(1− e−fn(x))µ(dx)

}
.

Since

1− e−fn ↑ 1− e−f

we conclude by monotone convergence that∫

E
(1− e−fn(x)µ(dx) ↑

∫

E
(1− e−f(x)µ(dx)

and thus we conclude (11.1) holds for any f ∈ B+. Since the distribution of N is uniquely
determined by ΨN we have shown that 1 and 2 in Definition 2 determine the distribution of
N .

Conversely if the Laplace functional of N is given by (11.1) then N(A) must be Poisson
distributed with parameter µ(A) for any A ∈ E which is readily checked by substituting
f = λ1A in (11.1) to get a Laplace transform of a Poisson distribution. Furthermore if

A1, . . . , Ak are disjoint sets in E and f =
∑k

i=1 λi1Ai
then substituting in (11.1) gives

Ee−
Pk

i=1 λiN(Ai) = exp

{
−

∫

E
(1− e−

Pk
i=1 λi1Ai )dµ

}

= exp

{
−

∫

E

k∑
i=1

(1− e−λi1Ai )dµ

}
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=
k∏

i=1

exp{−(1− e−λi)µ(Ai)}

=
k∏

i=1

Ee−λiN(Ai)

and so the joint Laplace transform of (N(Ai), 1 ≤ i ≤ k) factors into a product of Laplace
transforms and this shows independence. ¤

11.1.1. Application: A general construction of the Poisson process. When E = [0,∞), we
know the renewal theory construction yields a Poisson process with Lebesgue measure as
the mean measure. Here is a general scheme for constructing a Poisson process with mean
measure µ.

Start by supposing that µ(E) < ∞. Define the probability measure F

F (dx) = µ(dx)/µ(E)

on E . Let {Xn, n ≥ 1} be iid random elements of E with common distribution F and let ν
be independent of {Xn} with a Poisson distribution with parameter µ(E). Define

N =

{∑ν
i=1 εXi

, if ν ≥ 1

0, if ν = 0.

We claim N is PRM(µ). Verify this by computing the Laplace functional of N :

ΨN(f) =Ee−
Pν

i=1 f(Xi)

=
∞∑

j=0

Ee−
Pj

i=1 f(Xi)P [ν = j]

=
∞∑

j=0

(
Ee−f(X1)

)j
P [ν = j]

= exp
{
µ(E)(Ee−f(X1) − 1)

}

= exp

{
−µ(E)

(
1−

∫

E
e−f(x)µ(dx)

µ(E)

)}

= exp

{
−

∫

E

(
1− e−f(x)

)
µ(dx)

}
.

The Laplace functional has the correct form and hence N is indeed PRM(µ). Note that
what the construction does is to toss points at random into E according to distribution
µ(dx)/µ(E); the number of points tossed is Poisson with parameter µ(E).

When the condition µ(E) < ∞ fails, we proceed as follows to make a minor modification
in the foregoing construction: Decompose E into disjoint bits E1,E2, . . . so that E = ∪iEi

and µ(Ei) < ∞ for each i. Let µi(dx) = µ(dx)1Ei
(x) and let Ni be PRM(µi) on E (do the
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construction just outlined) and arrange things so the collection {Ni} is independent. Define
N :=

∑
i Ni and N is PRM(µ) since

ΨN(f) =
∏

i

ΨNi
(f)

=
∏

i

exp

{
−

∫

Ei

(
1− e−f(x)

)
µi(dx)

}

= exp

{
−

∑
i

∫

E

(
1− e−f(x)

)
µi(dx)

}

= exp

{
−

∫

E

(
1− e−f(x)

) ∑
i

µi(dx)

}

= exp

{
−

∫

E

(
1− e−f(x)

)
µ(dx)

}

since
∑

i µi = µ. This completes the construction.

11.2. Weak convergence of point processes and random measures. We now discuss
weak convergence in M+(E) and specialize to give criterion for weak convergence to a Poisson
process.

11.2.1. Basic criterion via Laplace functionals. Since M+(E) can be metrized as a complete
separable metric space, the theory of weak convergence applies. A useful criterion for our
purposes is in terms of Laplace functionals.

Theorem 9 (Convergence criterion). Let {ξn, n ≥ 0} be random elements of M+(E). Then

ξn ⇒ ξ0 in Mp(E),

iff

(11.2) ψξn(f) = Ee−ξn(f) → Ee−ξ0(f) = ψξ0(f), ∀f ∈ C+
K(E).

So weak convergence is characterized by convergence of Laplace functionals on C+
K(E).

Proof. Here is the proof of the easy half of the equivalence. Suppose ξn ⇒ ξ0 in M+(E).
The map M+(E) 7→ [0,∞) defined by µ 7→ µ(f) is continuous, so the continuous mapping
theorem gives ξn(f) ⇒ ξ0(f) in R. Thus

e−ξn(f) ⇒ e−ξ0(f),

and by Lebesque’s dominated convergence theorem

Ee−ξn(f) → Ee−ξ0(f)

as required.
To prove weak convergence, it suffices (see page 40) to prove for a given sequence hj ∈

C+
K(E) that

(ξn(hj), j ≥ 1) ⇒ (ξ0(hj), j ≥ 1)



HEAVY TAIL ANALYSIS 85

in R∞, for which it suffices to show for any k

(ξn(hj), 1 ≤ j ≤ k) ⇒ (ξ0(hj), 1 ≤ j ≤ k)

in Rk. Taking Laplace transforms, it suffices to show

Ee−
Pk

i=1 λiξn(hi) = Ee−ξn(
Pk

i=1 λihi) → Ee−
Pk

i=1 λiξ0(hi) = Ee−ξ(
Pk

i=1 λihi).

Hence showing

ψξn(h) → ψξ0(h)

for any h ∈ C+
K(E) is sufficient. ¤

11.2.2. Example: Convergence of Poisson processes. As a further application of the conver-
gence criterion in Theorem 9 we have the following.

Corollary 2 (Convergence of PRM’s). Suppose for each n ≥ 0 that Nn is PRM(µn) on E.
Then as n →∞,

Nn ⇒ N0,

iff

µn
v→ µ0

in M+(E).

Proof. Use the convergence criterion in terms of convergence of Laplace functionals given in
Theorem 9. We have from the form of the Laplace functional of a PRM that Nn ⇒ N0 iff
for any f ∈ C+

K(E) that

exp{−
∫

E

(
1− e−f(e)

)
µn(de)} → exp{−

∫

E

(
1− e−f(e)

)
µ0(de)}.

This means that for any g ∈ C+
K(E) which is bounded by 1 we have

µn(g) → µ0(g).

Since any function h ∈ C+
K(E) is bounded, dividing by supe∈E h(e) gives a function bounded

by 1 and the desired result follows. ¤

11.3. Basic convergences of empirical measures. We now give two criteria for con-
vergence. One gives necessary and sufficient conditions for empirical measures of scaled
observations to converge to a Poisson random measure limit and the other discusses con-
vergence to a constant limit measure. The first is the basis for manipulating iid random
variables with regularly varying tails by means of the Poisson transform and the second is
the basis for consistency of estimates of heavy tailed parameters.

Theorem 10 (Basic convergence). Suppose that for each n ≥ 1 we have {Xn,j, j ≥ 1} is a
sequence of iid random elements of (E, E). Let ξ be PRM(µ) on Mp(E).

(i) We have

(11.3)
n∑

j=1

εXn,j
⇒ ξ = PRM(µ)
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on Mp(E), iff

(11.4) nP[Xn,1 ∈ ·] = E

(
n∑

j=1

εXn,j
(·)

)
v→ µ

in M+(E).
(ii) Suppose additionally that 0 < an ↑ ∞. Then for a measure µ ∈ M+(E) we have

(11.5)
1

an

n∑
j=1

εXn,j
⇒ µ

on M+(E) iff

(11.6)
n

an

P [Xn,1 ∈ ·] = E

(
1

an

n∑
j=1

εXn,j
(·)

)
v→ µ

in M+(E).

Remark 4. Note that part (ii) has already been used in Section 7.1 and proven in a super-
ficially more specific context on page 41 in Theorem 5 in connection with the tail empirical
measure.

Proof. (i) We compute Laplace functionals and show they converge: For f ∈ C+
K(E),

Ee−
Pn

j=1 εXn,j
(f) =Ee−

Pn
j=1 f(Xn,j) =

(
Ee−f(Xn,1)

)n

=

(
1− E(n(1− e−f(Xn,1)))

n

)n

=

(
1−

∫
E(1− e−f(x))nP [Xn,1 ∈ dx]

n

)n

and this converges to

exp{
∫

E
(1− e−f(x))µ(dx)},

the Laplace functional of PRM (µ), iff
∫

E
(1− e−f(x))nP [Xn,1 ∈ dx] →

∫

E
(1− e−f(x))µ(dx).

and this last statement is equivalent to vague convergence in (11.4).
(ii) Here again we prove the result by showing Laplace functionals converge. We compute

the Laplace functional for the quantity on the left side of (11.5):

Ee−
1

an

Pn
i=1 εXn,1

(f) =
(
Ee−

1
an

f(Xn,1)
)n

=

(
1−

∫
E
(
1− e−

1
an

f(x)
)
nP[Xn,1 ∈ dx]

n

)n
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and we claim this converges to e−µ(f), the Laplace functional of µ, iff

(11.7)

∫

E
(1− e−

1
an

f(x))nP [Xn,1 ∈ dx] → µ(f).

We show (11.7) is equivalent to (11.6) as follows: Suppose (11.6) holds. On the one hand,
∫

E
(1− e−f(x)/an)nP[Xn,1 ∈ dx] ≤

∫

E
f(x)

n

an

P [Xn,1 ∈ dx] → µ(f)

so

lim sup
n→∞

∫

E
(1− e−f(x)/an)nP [Xn,1 ∈ dx] ≤ µ(f).

On the other hand∫

E
(1− e−f(x)/an)nP [Xn,1 ∈ dx]

≥
∫

E
f(x)

n

an

P [Xn,1 ∈ dx]−
∫

E

f 2(x)

2an

n

an

P [Xn,1 ∈ dx]

=I + II.

Now I → µ(f) from (11.6) and since f 2 ∈ C+
K(E) we have

II ∼ µ(f 2)

2an

→ 0

since an ↑ ∞. So

lim inf
n→∞

∫

E
(1− e−f(x)/an)nP [Xn,1 ∈ dx] ≥ µ(f)

providing the other half of the sandwich.
Conversely, let g ∈ C+

K(E), and suppose g ≤ 1. Supposing (11.7) is true, we get

g/an ≥ 1− e−g/an

leading to

lim inf
n→∞

∫

E
g(x)

n

an

P [Xn,1 ∈ dx] ≥ µ(f)

and
g

an

− g2

2a2
n

≤ 1− e−g/an

so

lim sup
n→∞

∫

E

(
g(x)

an

− g2(x)

2a2
n

)
nP[Xn,1 ∈ dx] ≤ µ(f).

As before, we may show ∫

E

g2(x)

2a2
n

nP [Xn,1 ∈ dx] → 0.

¤



88 SIDNEY RESNICK

11.4. Regular variation and Poisson convergence. Recall from Theorem 4, that regular
variation of a distribution tail is equivalent to vague convergence of induced measures. Using
the Basic Convergence Theorem 10, we will see that regular variation of distribution tails is
equivalent to weak convergence of a sequence of associated empirical measures with proper
scaling to a limiting Poisson random measure. This, in effect, provides a transform method
for dealing with regular variation.

The specialization of Theorem 10 to regular variation is given next.

Theorem 11. Suppose that {Zn, n ≥ 1} are iid, non-negative random variables with common
distribution F . As usual, we define

(
1

1− F
)←(t) = F←(1− 1

t
) =: b(t).

The following are equivalent.

(1) F̄ ∈ RV−α.
(2) There exists an →∞ such that

lim
n→∞

nF̄ (anx) = x−α, x > 0.

(3) There exists an →∞ such that

(11.8) nP
[
Z1

an

∈ ·
]

v→ ν

on M+

(
(0,∞]

)
, where ν(x,∞] = x−α, x > 0.

(4) There exists a sequence an →∞ such that Mp

(
(0,∞]

)
we have

(11.9)
n∑

i=1

εZi/an ⇒ PRM(ν)

If any of 2, 3 or 4 hold, we may always choose an = b(n).
Any of 1,2, 3, 4 imply that for any sequence k = k(n) →∞ such that n/k →∞ we have

(5) In M+

(
(0,∞]

)

(11.10)
1

k

n∑
i=1

εZi/b(n
k ) ⇒ ν

and 5 is equivalent to any of 1–4, provided k(·) satisfies

k(n) ∼ k(n + 1).

As we will see, this result is basically dimensionless and indicates what a good definition
of multivariate regular variation should be.

Proof. The equivalence of 1–3 is exactly Theorem 4. The equivalence of 3 and 4 is the Basic
Convergence Theorem 10 with

Xn,i = Zi/an.
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Consider 5. From the Basic Convergence Theorem 10 part (ii), (11.10) equivalent to

(11.11)
n

k
P

[
Z1

b(n/k)
∈ ·

]
v→ ν.

The relation (11.11) certainly follows from, say, 1, and if k(n) ∼ k(n + 1) we may mimic the
proof of the equivalence of the sequential version of regular variation to the actual definition
in Part (ii) of Proposition 2. ¤

We will refer to the equivalence of regular variation of F̄ to (11.9) as the Poisson transform
or the point process method .

11.4.1. Preservation of weak convergence under mappings. Consider two state spaces E1 and
E2 with a mapping T : E1 7→ E2 taking one into the other. A measure µ ∈ M+(E1) has an

image T̂ (µ) ∈ M+(E2) given by the map

T̂ (µ) = µ ◦ T−1.

If T is a continuous point transformation, is T̂ : M+(E1) 7→ M+(E2) continuous? (Maybe!)
Note, if m ∈ Mp(E) is a point measure of the form

∑
i εxi

, then

T̂ (m) = m ◦ T−1 =
∑

i

εT (xi).

So if T operates on the state space where the points live then T̂m is the induced point
measure after mapping the points of the original point measure. A restriction is needed
without which continuity of T does not guarantee continuity of T̂ .

Proposition 11. Suppose T : E1 7→ E2 is a continuous function such that

(11.12) T−1(K2) ∈ K(E1), ∀K2 ∈ K(E2),

that is,

T−1
(
K(E2)

)
⊂ K(E1).

Then

(a) If µn
v→ µ0 in M+(E1), we have also that

T̂ µn = µn ◦ T−1 v→ µn ◦ T−1 = T̂ µn.

(b) If for each n ≥ 0 we have

Nn =
∑

j

ε
X

(n)
n

are random elements of M+(E1) such that

Nn ⇒ N0,

in Mp(E1), then also

T̂Nn =
∑

j

ε
T (X

(n)
n )

⇒
∑

j

ε
T (X

(0)
n )

= T̂N0

in Mp(E2).
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Proof. (a) Suppose µn
v→ µ0. Let f2 ∈ C+

K(E2) and we must show

(11.13) µn ◦ T−1(f2) → µ0 ◦ T−1(f2).

Unpack the notation:

µn ◦ T−1(f2) =

∫

E2

f2(e2)µn ◦ T−1(de2)

and using the change of variable formula or transformation theorem for integrals ((Resnick,
1998, page 135)), this is

=

∫

E1

f2(T (e1))µn(de1).

Now f2 and T are both continuous so f2 ◦ T is continuous. Since f2 ∈ C+
K(E2), there exists

K2 ∈ K(E2) such that f2(e2) = 0, if e2 /∈ K2. So

f(T (e1)) = 0, if T (e1) /∈ K2,

that is,

f(T (e1)) = 0, if e1 /∈ T−1(K2).

From the hypothesis (11.12), T−1(K2) ∈ K(E1). So, this says f2 ◦ T is null off a compact

set. Thus f2 ◦ T ∈ C+
K(E1), and since µn

v→ µ0 in M+(E1), we have

∫

E1

f2(T (e1))µn(de1) →
∫

E1

f2(T (e1))µ0(de1),

which gives (11.13).
(b) For f2 ∈ C+

K(E2), it is enough to show

(11.14) E
(
e−Nn◦T−1(f2)

)
→ E

(
e−N0◦T−1(f2)

)
.

Again, we unpack the notation

E
(
e−Nn◦T−1(f2)

)
= E

(
e−Nn(f2◦T )

)

by the transformation theorem. As in (a), f2 ◦T ∈ C+
K(E1) and Nn ⇒ N0 imply convergence

on C+
K(E1) of the Laplace functionals. Thus

E(e−Nn(f2◦T ) → E(e−N0(f2◦T ) = E(e−N0◦T−1(f2)

which is (11.14). ¤
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11.4.2. Example: Sums of components of a random vector. Given a random vector Z =
(Z1, . . . , Zd of iid non-negative components whose common distribution has a regularly vary-
ing tail F ,

(11.15) 1− F (x) ∼ x−αL(x), x →∞.

What happens if we sum the components of Z? For t ∈ Rd, define as usual

t ·Z =
d∑

i=1

t(i)Z(i).

Proposition 12. Suppose (11.15) holds. Then for t > 0,

P[t ·Z > x] ∼
d∑

i=1

(t(i))αx−α ∼
d∑

i=1

(t(i))αP [Z(1) > x], x →∞.

Proof. Suppose d = 2 and t = 1. Let

b(t) =

(
1

1− F

)←
(t)

and let να be the measure on (0,∞] such that να(x,∞] = x−α. First we claim

nP [
( Z1

b(n)
,

Z2

b(n)

)
∈ ·] v→ να × ε{0} + ε{0} × να =: µ(0),

on E := [0,∞]2 \ {0}. (The limit measure on the punctured plane is concentrating all mass
on the axes.) To see this note for x > 0, y > 0,

nP [
Z1

b(n)
> x,

Z2

b(n)
> y] = nF̄ (b(n)x)F̄ (b(n)y) ∼ x−α · 0 = 0,

so the limit has no mass in the interior. Likewise,

nP [
Z1

b(n)
> x,

Z2

b(n)
≥ 0] → x−α,

so while there is no mass in the interior, there must certainly be mass on the axes.
Now let Z1, . . . , Zn be iid copies of the vector (Z1, Z2). From Basic Convergence Theorem

10, we get
n∑

i=1

εZi/b(n)(·) ⇒ PRM(µ(0)).

Define T : E 7→ (0,∞] by T (x, y) = x + y. Then applying Proposition 11 (the compactness
condition must be checked)

n∑
i=1

εT (Zi/b(n))(·) =
n∑

i=1

ε(Zi(1)+Zi(2))/b(n))(·) ⇒ PRM(µ(0) ◦ T−1) = PRM(2να).

Again applying Basic Convergence Theorem 10, we get the regular variation of the distrib-
ution of the tail sum. ¤

For a traditional proof, see Feller (1971).
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11.4.3. Application:Products; Breiman’s theorem. Here we take a random variable Z and
multiply by a scalar random variable with a relatively thin tail and prove a result by Breiman
(1965).

Proposition 13. Suppose Z is a non-negative random variable satisfying (11.15) or

nP[
Z

bn

∈ ·] v→ να.

We further suppose that Y ≥ 0 is a random variable with a moment greater than α. This is
equivalent to the existence of ε > 0, such that

(11.16) E(Y α(1+2ε)) < ∞.

Then

nP[
Y Z

bn

∈ ·] v→ E(Y α)να

so that

lim
x→∞

P[Y Z > x]

P[Z > x]
= E(Y α).

Proof. Suppose {Zn, n ≥ 1} are iid copies of Z. The regular variation condition is equivalent
to

n∑
i=1

εZi/bn ⇒
∑

k

εjk
= PRM(να),

in Mp((0,∞]). Now let {Yj} be iid copies of Y which are independent of {Zn} as well as
independent of {jk}. It follows that

(11.17)
n∑

i=1

ε(Zi/bn,Yi) ⇒
∑

k

ε(jk,Yk) = PRM(να × P[Y ∈ ·])

in Mp((0,∞]× (0,∞)). The reason (11.17) is true is that by Theorem 10 it suffices to check
that the mean measures converge which easily follows from independence:

nP[(
Z1

bn

, Y1) ∈ ·] = nP[
Z1

bn

∈ ·]× P[Y1 ∈ ·] v→ να × P[Y1 ∈ ·].

Define the product map Tp : (0,∞]× (0,∞) 7→ (0,∞] by Tp(z, y) = yz. The compactness
condition fails! However, after a truncation of the state space and a Slutsky type argument,
we get Breiman’s result. Pretending all is well and applying Tp to (11.17) we get

n∑
i=1

εTp(Zi/bn,Yi) ⇒
∑

k

εTp(jk,Yk) = PRM(να × P[Y ∈ ·]) ◦ T−1
p ).

Check that

να × P[Y ∈ ·]) ◦ T−1
p (x,∞] =να × P[Y ∈ ·]){(u, y) : uy > x}

=

∫∫

{(u,y):uy>x}
να(du)P[Y ∈ dy]
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=

∫

y>0

(∫

u>x/y

να(du)
)
P[Y ∈ dy] =

∫

y>0

(x/y)−αP[Y ∈ dy]

=EY α · x−α.

Finish with another application of the Basic Convergence Theorem. ¤
For more detail, see Resnick (1986).

11.4.4. Application: Karamata tauberian theorem for Laplace transforms. Suppose U : [0,∞) 7→
[0,∞) is non-decreasing. We define the Laplace transform of U , or the measure associated
with U , by

(11.18) Û(λ) :=

∫ ∞

0

e−λxU(dx).

Theorem 12. For 0 < ρ < ∞, we have

U(t) ∈ RVρ, t →∞,

iff
Û(1/t) ∈ RVρ, t →∞,

and then
Û(1/t) ∼ U(t)Γ(ρ + 1), t →∞.

Proof. Let b(t) = U←(t) and suppose U ∈ RVρ, ρ > 0. Then define Ut(x) = t−1U(b(t)x) and
U0(x) = xρ, x ≥ 0 and

(11.19) Ut → U0, n →∞.

For t ≥ 0, let Nt =
∑

k ε
j
(t)
k

be PRM(Ut) on [0,∞), and from (11.19) we have

Nt ⇒ N0, in Mp([0,∞)).

If {Ek, k ≥ 1} are iid unit exponential random variables independent of all the {Nt}, then
for each t,

N+
t =

∑

k

ε
(j

(t)
k ,Ek)

= PRM (Ut(dy)e−sds)

(from augmentation) on the state space [0,∞)× (0,∞). Then

(11.20) N+
t ⇒ N+

0 , in Mp([0,∞)× (0,∞)).

Now define the map Tr : [0,∞) × (0,∞) 7→ [0,∞) by Tr(y, s) = y/s. If we did not have
to worry (but we do!) about whether inverse images of compact sets are compact, we could
proceed as follows: Apply the map to the points of the convergence of (11.20) and we get
a new sequence of Poisson processes converge and hence so do their mean measures. In
particular we get

E
(
N+

t ◦ T−1
r ([0, x])

)
→ E

(
N+

0 ◦ T−1
r ([0, x])

)
,

since the Poisson random measures converge. Now

E
(
N+

t ◦ T−1
r ([0, x])

)
=

∫∫

{(y,s):0≤ y
s
≤x}

Ut(dy)e−sdx
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=

∫ ∞

y=0

(∫

s≥y/x

e−sds
)
Ut(dy)

=

∫ ∞

y=0

e−y/xUt(dy) = Ût(
1

x
)

=t−1Û(
1

b(t)x
).

Likewise

E
(
N+

0 ◦ T−1
r ([0, x])

)
=

∫ ∞

0

e−y/xρyρ−1dy

=ρxρ

∫ ∞

0

e−ssρ−1ds = ρxρΓ(ρ)

=xρΓ(ρ + 1).

Therefore setting x = 1,

lim
t→∞

t−1Û(
1

U←(t)
) = lim

s→∞
Û(1

s
)

U(s)
→ Γ(ρ + 1).

¤
For more detail, see Resnick (1991).

11.5. Did it achieve total heaviosity? (Alvie (Woody Allen) to Annie (Diane
Keaton) in Annie Hall). This was a brief introduction and there are almost infinitely
other topics that could be discussed. A sampling:

(1) The multivariate case. If Z ∈ Rd is a d-dimensional random vector, which for conve-
nience we suppose has non-negative components, we say that the distribution of Z
has a multivariate regularly varying tail (in standard form) if there exists b(t) →∞
such that

tP[
Z

b(t)
∈ ·] v→ ν

in M+

(
[0,∞]d \ {0}). Here ν is a limit measure. After a polar coordinate transfor-

mation

ν{x : ‖x‖ > r,
x

‖x‖ ∈ Λ} = r−αS(Λ),

for r > 0, α > 0, and S a finite measure on the unit sphere with respect to the
selected norm.

Some questions:
(a) How do you specify the dependence structure of the random vector? (Correla-

tions are no good and may not even exist.)
(b) The stated definition assumes components of the random vector are tail equiva-

lent; that is, they have essentially the same tail. This doesn’t happen in practice.
How to we broaden the theory so it has applicability?

(c) How is the limit measure ν or the angular measure S estimated?
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(d) How do you account for the effect of asymptotic independence on inference pro-
cedures?

(2) Limit theory for reasonably conventional functionals.
(a) The Poisson transform (11.9) has an easy extension where a time component

is added: Suppose {Zi} are iid, non-negative random variables with common
distribution F with a regularly varying tail. Then (11.9) extends to

(11.21)
∞∑
i=1

ε( k
n

,
Zi
bn

) ⇒ N∞ := PRM(Leb× να).

(b) Define
T∨ : Mp([0,∞)× (0,∞]) 7→ D[0,∞)

by

T∨
(∑

i

ε(ti,ji)

)
=

∨
ti≤t

ji =: Y (t).

Apply T∨ to (11.21) and use the continuous mapping theorem to get in D[0,∞)

[nt]∨
i=1

Zi

b(n)
⇒ Y (t),

and for x > 0

P [Y (t) ≤ x] =P [N∞([0, t]× (x,∞]) = 0]

= exp{−Leb× να[0, t]× (x,∞]}
=e−tx−α

= (Φα(x))t.

(c) Define the map

TΣ,δ : Mp([0,∞)× (0,∞] 7→ D[0,∞)

by

TΣ,δ

(∑

k

ε(tk,jk)

) ∑
tk≤t

jk1|jk|>δ.

Apply this to (11.21). The limit is a compound Poisson process. If 0 < α < 2,
then after centering and letting δ → 0, we get the invariance principle for partial
sum processes converging to a stable Lévy motion. The result is dimensionless
and easily extends to higher dimensional sums.

(3) Queueing and Data network applications.
(a) The infinite source Poisson model, or the superposition of on/off processes give

cumulative input that is approximated either by stable Lévy motion or fractional
Brownian motion or . . . . This assumes heavy tailed durations for unit rate in-
puts. Generalizations to where input rates are random depending on the session
are possible.

(b) Heavy traffic limit theorems are possible when the n-th customer arrives with a
heavy tailed amount of work.
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