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Preface

These lecture notes cover the content of the short course on Symmetry Studies jointly spon-
sored by EURANDOM and the Euler Institute for Discrete Mathematics and its Applications
(EIDMA), held on the campus of the Eindhoven University of Technology, The Netherlands, in
the Spring of 2005.

Chapter 1 is dedicated to identifying the language and the basic components of structured data
and symmetries studies. It introduces examples defining and connecting the notions of symmetry,
classification and experimentation in the natural sciences.

Chapter 2 is an introduction to the theory of representation of finite groups written within
the context of developing the tools and techniques for the analysis of structured data.

Appendix A includes one of the workshops developed for the short course, with selected
comments and solutions. A number of computer routines for symbolic logic programs utilized in
the text appear in Appendix B. The content of these Notes was abstracted from selected chapters
of Structured Data - An Introduction to the Study of Symmetry in Applications, by M. Viana, to
appear in print elsewhere.

I am indebted to Professor Arjeh M. Cohen (Eindhoven University of Technology) who taught,
with great insight and enthusiasm, the algebraic aspects of the course. This event would not have
happened without the organizational effort of Mrs. Henny Houben (EIDMA) and the support and
coordination of Professors Alessandro Di Bucchianico and Henry Wynn (EURANDOM). Peter
van de Ven (EURANDOM) assisted with the current revision of these Notes. Many thanks!

Last, but not least, I acknowledge the friendly and warm atmosphere induced by all partici-
pants throughout that week (including those who did not belive that a Friday afternoon session
would really happen!). It was great fun!

Marlos A. G. Viana
The University of Illinois at Chicago

USA

February 02, 2006.
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CHAPTER 1

Symmetry, Classification and the Analysis of Structured

Data

Lecture Notes at EURANDOM - EIDMA, The Netherlands
March 14, 2005

Abstracted from M. Viana Structured Data - An Introduction to the Study of Symmetry in
Applications c©2005 by M. A. G. Viana

1.1. Introduction

George Pólya, in his introduction to mathematics and plausible reasoning, observes that
A great part of the naturalist’s work is aimed at describing and classifying the
objects that he observes. A good classification is important because it reduces
the observable variety to relative few clearly characterized and well ordered
types.

Pólya’s narrative introduces us directly to the practical aspect of partitioning a large number
of objects by exploring certain rules of equivalence among them. This is how symmetry will be
understood in the present text: as a set of rules with which we may describe certain commonalities,
invariants or regularities among objects or concepts. The classification of crystals, for example, is
based on symmetries in their molecular framework.

Included in the naturalist’s methods of description is the delicate notion of measuring some-
thing on these objects and recording their data, so that the classification of the objects may be
related to the classification or partitioning of their corresponding data. Pólya’s picture also in-
cludes the notion of interpreting, or characterizing, the resulting types of varieties. That is, the
naturalist has a better result when he can explain why certain varieties fall into the same type or
category.

This chapter is an introduction to the interplay among symmetry, classification and experi-
mental data, which is the driving motive underlying any symmetry study and is often present in
the basic sciences. Our purpose here is suggesting that the principles derived from such interplay
can lead to novel ways of looking at data, of planning experiments, and, potentially, of facilitating
contextual explanation. We will observe the intertwined presence of symmetry, classification and
experimental data in a number of classical examples from Chemistry, Biology and Physics. The
partition of disciplines, however, is only eventual. In fact, we strongly believe that the reader will
benefit from a synthetic reading of the material. Many principles and techniques will repeat across
different disciplines, and it is exactly that cross-section of knowledge that constitutes the higher
motivation and foundation of the proposed symmetry studies.

1.2. Symmetry and classification

In grade school we were amused (for a little while at least!) by drawings and games with

colorful patterns or motifs, such as

· · · u t u t u t u t u t u t u t u t u t u t u t · · ·
repeated periodically along an horizontal straight line. These bands can be classified according to
the distinct generating rules for capturing invariance, or regularity, such as horizontal translations,
vertical and horizontal line reflections, point reflections and rotations. Wallpaper, textile and

1



2 1. SYMMETRY, CLASSIFICATION AND THE ANALYSIS OF STRUCTURED DATA

tapestry designs explore these rules of invariance, or symmetry in two dimensions, adding the
technical difficulty of artistically and graphically designing these repeating motifs within the finite
boundaries of the work.

These planar transformations can be used to classify the fonts of the 26 capital letters
A, B, . . . , Z used in this typesetting into the five classes

{A,M,T,U,V,W,Y}, {B,C,D,E}, {N, S,Z}, {H, I,O,X}, {F,G, J,K,L,P,Q,R}

according to the set of symmetries best describing them. The fonts in the set {H, I, O, X}, for
example, are characterized by having horizontal (h), vertical (v) and point (o) symmetries. The
letter H and its transformed image v(H) under the vertical reflection coincide, that is v(H) = H.
We then say that the object H has the symmetry of the transformation v. Similarly, H has the
symmetry of the horizontal reflection, that is h(H) = H. Therefore, H must remain invariant
under the iterated action vh of these two symmetry transformations, that is (vh)(H) = v(h(H)) =
v(H) = H. Because the resulting composition of v and h is a point reflection (vh = o), we learn
that H has the symmetries of v, h and o. Clearly, in addition, H and any other letter remain
invariant when the identity symmetry transformation (indicated by 1), is applied to it. It turns
out that the set

S = {1, v, h, o}
of symmetry transformations, together with the operation of composition of transformations satisfy
the multiplication table

(1.1) S :

∗ 1 v h o

1 1 v h o

v v 1 o h

h h o 1 v

o o h v 1

,

and confer to the pair (S, ∗) the algebraic properties of a finite group, briefly: t ∗ t′ is in S for all
t, t′ in S, the existence of the identity element 1 satisfying t ∗ 1 = 1 ∗ t = t, the inverse t−1 ∈ S of
t ∈ S satisfying t ∗ t−1 = t−1 ∗ t = 1, and the associativity of ∗.

We then say that the set {H, I, O, X} has the symmetry of S = {1, v, h, o}. On the other hand,
the set {F, G, J, K, L, P, Q,R} has the symmetry of the identity transformation alone, whereas
{A, M, T, U, V, W, Y} has the symmetry of {1, v}.

Table (1.1) gives us the opportunity of introducing from the start the convention that the
(algebraic) product σ ∗ τ of the row element σ with the column element τ is to be understood as
the (analytic) composition τσ of the two transformations, that is σ ∗ τ = τσ. This convention
adopted from now on is meant to accommodate both interpretations as much as possible.

The linear transformations

{e1, e2}
r(t)−−→ {t(e1), t(e2)}, t ∈ S,

defined when the symmetries t in S are applied to the canonical basis {e1, e2} of V = R2, namely,

r(1) =
[
1 0
0 1

]
, r(v) =

[
−1 0
0 1

]
, r(h) =

[
1 0
0 −1

]
, r(o) =

[
−1 0
0 −1

]
,

provide an example of a linear representation of (S, ∗) in V. Note, for example, that

r(v ∗ o) = r(h) =
[
1 0
0 −1

]
=

[
−1 0
0 1

] [
−1 0
0 −1

]
= r(v)r(o),

and that in general,
r(t ∗ t′) = r(t)r(t′) for all t, t′ ∈ S.

This is the homomorphic property between multiplication in S and multiplication of linear trans-
formations in V, which is characteristic of such representations, to be studied in detail in Chapter
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2. Similarly, the transformations

{e1, ev, eh, eo}
ρ(t)−−→ {et∗1, et∗v, et∗h, et∗o}, t ∈ S,

define a linear representation

ρ(1) =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, ρ(v) =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




, ρ(h) =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




, ρ(o) =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




of (S, ∗) in V = R4.
The important point here for the data analyst is the fact that these linear representations

transfer the symmetries described by S to the vector space V of potential measurements.

1.3. Symmetry and measurement

Our text is limited to classical, structural measurements which are independent of the past
history of the system. Even at the particle level, measurements such as the atomic binding
energy, spin, magnetic moment or the difference in energy between the various stationary states
are structural properties. The position or the momentum of a particle, or a component of its
angular momentum are not structural. We are restricted to stationary measurements, which are
distinct from measurement of a probability. As a consequence of this assumption, we do not need
to include in our analysis of the data the interface between the observer and the observed, and
the recorded data coincide with the measurement.

Here is an example of assigning data to symmetries: The left hand matrix in (1.2) shows a
Sloan Chart developed for use in the Early Treatment Diabetic Retinopathy Study. Adjacent to
the chart is a table with the symmetry transformations of the individual fonts and their estimated
probability of being incorrectly identified. The Sloan Charts and the study of the individual Sloan
fonts appear in Ferris 3rd, Freidlin, Kassoff, Green and Milton (1993, Table 5).

(1.2)

C O H Z V

S Z N D C

V K C N R

K C R H N

Z K D V C

H V O R K

R H S O N

K S V R H

H N K C D

N D V K O

D H O S Z

V R N D O

C Z H K S

O R Z S K

Letter Symmetries Difficulty

Z 1, o 0.844

N 1, o 0.774

H 1, o, v, h 0.688

V 1, v 0.636

R 1 0.622

K 1 0.609

D 1, h 0.556

S 1, o 0.516

O 1, o, v, h 0.470

C 1, h 0.393

Fix the first line (COHZV) in the chart and to each symmetry transformation t in S = {1, v, h, o}
assign the number x(t) of letters in the selected line with the symmetry of t. Thus, x(1) = 5 and
x(v) = x(h) = x(o) = 3, so that

x′ = (5, 3, 3, 3)
is an example of data indexed by the S, and a point in the vector space V = R4. The representation
ρ of (S, ∗) in V introduced above then connects the symmetries in S with the data vector x ∈ V.
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It is precisely this connection that will facilitate, and often determine, the analysis of the data
x. Clearly, should the Sloan lines be selected at random, then x is a random vector subject to
statistical inference. The vector x is an example of data indexed by a particular structure- or,
simply, an example of structured data.

We will learn from the theory developed in the next chapter that the appropriate vector space
for displaying the summaries of any outcome associated with each line in the chart, such as its
mean line difficulty or contrast sensitivity, is determined by the invariants

x(1) + x(o) + x(v) + x(h), x(1) + x(o) − x(v) − x(h),

x(1) + x(v) − x(o) − x(h), x(1) + x(h) − x(o) − x(v).

1.4. A data structure induced by a molecular framework

In Chemistry, symmetry is often the link between the determination of certain structural
properties of molecules and their specific measurements such as the infra-red spectra, ultra-violet
spectra, dipole moments and optical activity. That is, symmetry is relevant to characterizing
regularities in experimental data. The fact that a symmetry operation, when applied to the
framework of a molecule moves it in a way that its final position is physically indistinguishable
from its initial position, implicitly says that the physical data extracted from the structure remain
constant after each attempt to alter the initial structure [See Bishop (1973, p. 10)]. This immunity
to change, characterized by certain invariant physical properties, can be used by the chemist to
classify elementary molecules. No matter how we turn the hydrogen molecule about a line of axial
symmetry joining the two nuclei, its electron density data read the same and reflect the fact that
the bond in the hydrogen atom has cylindrical symmetry. This illustrates, literally, Rosen’s (1995)
view of symmetry as the object’s immunity to change. Other transformations may, however, alter
the position of the molecular structure in space, so that the original compound and the transformed
one have the same molecular formula and different structure position. Such isomeric (consisting
of the same parts) compounds are called stereoisomers.

A symmetry argument is sufficient to classify simple molecules according to their measurable
capacity of rotating the plane of polarization of a ray of light (optical activity). The fact that two
molecules are mirror-image symmetric and not superimposable characterizes their optical activity
data. This property, called chirality, or handedness, is observable in many other aspects of nature.
Typically, these molecules have many similar measurable physical properties, such as boiling point,
melting point or index of refraction. The chemist tells them apart by their response to polarized
light. One molecule may rotate the plane of polarization to the right whereas the fellow isomer
may rotate it to the left. Chiral is the Greek word for hands- which do not have superimposable
mirror images- hands are chiral objects. Again, symmetry establishes practical links between the
object and the experimental data and, as we will see in the sequence, these relationship can be
useful to the data analyst.

The symmetry transformations that leave the stable configuration of a molecule physically
indistinguishable, are generally known as point groups. The name indicates that at least one point
in the molecular framework remains fixed. For example, the following transformations in R3 are
represented here with the standard notation used by chemists:

(1) E: the identity operator;
(2) C2: a rotation by 180 deg around the z-axis;
(3) i: an inversion or point reflection through the origin (0, 0, 0);
(4) σh: a reflection on the xy-plane.
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These transformations, C2h = {E, C2, i, σh}, together with the operation of composition of trans-
formations, define the point group C2h. Its multiplication table is given by

(1.3) C2h :

∗ E C2 i σh

E E C2 i σh

C2 C2 E σh i

i i σh E C2

σh σh i C2 E

.

For example, the 180 deg rotation (C2) around the z-axis followed by an inversion (i) through the
origin is equivalent to a reflection on the xy-plane, that is, iC2 = σh. The planar structure of a
dichloroethene C2H2Cl2-trans molecule is among the molecules characterized by the symmetries
of the point group C2h.

The molecular framework of the dichloroethene molecule can be used as a data structure. To
see this, consider a rectangular parallelepiped with vertices {(±2,±1,±1)} expressed as the set of
labels

V = { abb, abB, aBb, aBB, Abb, AbB, ABb, ABB }.

For example, AbB is the label for the point (−2, 1,−1). Note that the labels in V transform
according to permutations in V under the action of each symmetry transformations of C2h, thus
determining a linear representation

V
%(t)−−→ {t(s); s ∈ V}, t ∈ C2h

of C2h in V = R8. Because the set V is interpreted as set of labels for experimental conditions, we
say that V is a structure, and that the vector

x = (x(s))s∈V ,

of experimental responses and a point in the data space V is the corresponding structured data.
The algebraic tools to be introduced later on in the sequence will identify a reduction of the

data space V into 4 two-dimensional subspaces V1, . . .V4 of V, with corresponding invariants

x(αbb) + x(αbB) + x(αBb) + x(αBB), x(αbb) − x(αbB) − x(αBb) + x(αBB),

x(αbb) − x(αbB) + x(αBb) − x(αBB), x(αbb) + x(αbB) − x(αBb) − x(αBB),

where α = a, A. This is only one of infinitely many such reductions, all isomorphic to each other.
Data analysts may recognize these invariants as two copies of a 2-factor factorial experiment,
indexed by the two regular faces, (2,±1,±1) and (−2,±1,±1), of the parallelepiped, and distin-
guished by the transposition (aA) of a and A. What makes the analogy work is the fact that the
molecular framework of the molecule is invariant under its point group. The connection between
point groups in molecular chemistry and factorial experiments thus suggests a strategy for dis-
covering additional forms of experimentation and plausible descriptors of the data based on the
derived invariants.

We conclude this section with the observation that

{e1, e2, e3}
R(t)−−−→ {t(e1), t(e2), t(e3)}, t ∈ C2h

defines a linear representation

R(E) =



1 0 0
0 1 0
0 0 1


 , R(C2) =



−1 0 0
0 −1 0
0 0 1


 , R(i) =



−1 0 0
0 −1 0
0 0 −1


 , R(σh) =




1 0 0
0 1 0
0 0 −1


 .
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of C2h in V = R3. Moreover, the reader may want to compare the two multiplication tables 1.1
and 1.3 and conclude that they are particular realizations of an abstract multiplication table

(1.4) G :

∗ 1 a b c

1 1 a b c

a a 1 c b

b b c 1 a

c c b a 1

,

defined among the symbols G = {1, a, b, c, d}. That is, they correspond to each other isomorphi-
cally. Consequently, the representations r and ρ of (S, ∗) and % and R of (C2h, ∗) are representations
of the group G, of dimensions 2, 4, 8 and 3 respectively.

1.5. A data structure induced by short DNA sequences

A biological sequence is a finite string of symbols from a finite alphabet (A) of residues, such
as the linear string

ctccttgggatattgatgatctgtagtgctacagaaaaattgtgggtcacagtctattat,

in which the symbols are letters in the alphabet A = {a, g, t, c}. Here the symbols represent
adenine (a), guanine (g), thymine (t) and cytosine (c) molecules in DNA (deoxyribonucleic acid)
sequences. The adjacency of two symbols in the linear string means that the two molecules are
chemically binded to each other. There are many more common alphabets, representing

• the nucleotides adenine (a), guanine (g), cytosine (c), uracil (u) in RNA (ribonucleic
acid) sequences: A = {a, g, t, u};

• the classes u = {a, g} of purine and y = {c, t} of pyrimidine residues: A = {u, y},
or the larger class of amino acids in protein sequences. The length of global or complete sequences,
in base pairs, ranges from 103 (single-stranded virus) to 109 (mammals). The standard code
then translates DNA triplets into specific amino acids. For example, the set V of DNA triplets
constitutes an example of a simple set of labels or indices for experimental and analytical studies
in molecular biology.

Similarly to the data structure induced by the molecular framework fixed by the point group
C2h, the structure

V = {ttt, ttc, tta, . . . , gga, ggg}
defined by these 64 simple sequences (s) in length of three written with a four-letter alphabet
A = {a, g, c, t}, is a structure indexing potential molecular constructs or measurements, x(s), such
as the triplet’s molecular weight or its frequency of occurrence in a larger, reference sequence.
Consequently, then,

x = (x(s))s∈V = (x(ttt), x(ttc), x(tta), . . . , x(gga), x(ggg)),

is a data vector indexed by the structure V, or, simply, a structured data. The structure may
be amalgamated, for example, by rewriting each word with the shorter alphabet A = {u, y} of
purine-pyrimidine residues. The new structure

V = {yyy, yyu, . . ., uuu}

of triplets of purine-pyrimidines has 24 = 16 points or labels, and

x = (x(yyy), x(yyu), . . . , x(uuu)),

are the corresponding structured data.
Here is another simple structured data in which is the structure is the set

V = {a, g, c, t}× {a, g, c, t}

of ordered pairs of DNA nucleotides. It has 4 × 4 = 16 points in it.
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Given two local DNA sequences

I = ttttcgctatggaacctgggatctttagtttgaaatgggagagcccattccgcctggaaaaaattagataaggtaag,

J = tttccgtcatggaacctggaatagttgctcaaaagtgggagcaaccgcttaggtttgaaaaaattagataagggcgg,

we measure, in each point (i, j) of V, the frequency x(i, j) with which the residue i in the sequence
I aligns with the residue j in sequence J along the two sequences. Here are the resulting structured
data:

i\j a c g t
a 17 2 4 0

c 3 5 1 3

g 3 1 15 1

t 1 4 2 15

.

We observe, in addition, that a sequence in length of ` is a function or mapping

s : L → A,

where L = {1, 2, . . . , `} is the set for the ordered positions in which the residues in the alphabet
A are located. The set of all such mappings is indicated by AL. For example,

(1.5) V =




aaa ggg ccc ttt aag aac aat gga

ggc ggt cca ccg cct tta ttg ttc

aga aca ata gag gcg gtg cac cgc

ctc tat tgt tct gaa caa taa agg

cgg tgg acc gcc tcc att gtt ctt

agc gac cga acg gca cag agt atg

tga gat gta tag act atc tca cat

cta tac gct gtc tcg cgt ctg tgc




is the set of all mappings s : {1, 2, 3} → {a, g, t, c} and a structure with which potential measure-
ments can be indexed.

Indicating by |A| the number of elements in the set A, we refer to the |A|` sequences in V
as |A|-sequences in length of `. Every binary sequence in length of four, with A = {u, y}, is a
mapping

s : {1, 2, 3, 4}→ {u, y}.

The structure V has 16 points, namely,

(1.6) V =




s 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2

s(1) y u y u u u y y y u u u y y y u

s(2) y u u y u u y u u y y u y y u y

s(3) y u u u y u u y u y u y y u y y

s(4) y u u u u y u u y u y y u y y y




.

The numbers in the first row are reference labels for each point in V, based on the fact that the
c` elements of V = CL can be indexed by the (base c) representation

(1.7) I(s) = 1 +
∑̀

j=1

(s(j) − 1)cj−1, s ∈ CL,

with C = {1, . . . , c} and L = {1, . . . , `}.
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1.6. Symmetries acting on a structure

In the previous sections we have illustrated the classification of objects using symmetry trans-
formations and the representation of these symmetries as linear transformations in the vector
space for the data observed on those objects. In this section we go one step further and reduce
the structure into sets of symmetrically equivalent points.

Indicate by S` the set of all permutations (one-to-one mappings) τ over a set with ` < ∞
elements. For example, the set S3 of all permutations of 3 symbols includes the identity transfor-
mation, indicated here by 1; three transpositions,

(12) =




1 → 2

2 → 1

3 → 3


 , (13) =




1 → 3

2 → 2

3 → 1


 , (23) =




1 → 1

2 → 3

3 → 2


 ,

and two cyclic permutations,

(123) =




1 → 2

2 → 3

3 → 1


 , (132) =




1 → 3

2 → 1

3 → 2


 .

In the notation introduced above, each permutation is written as a sequence of cycles, such as
(132) indicating 1 → 3 → 2 → 1. This is a cycle of length (or order) 3. In the notation, cycles of
length one are omitted. A transposition is a cycle of length 2. In summary, we write

S3 = {1, (12), (13), (23), (123), (132)}.

A subset of S3 is the set C3 of all cyclic permutations in length of 3, that is, C3 = {1, (123), (132)}.
The reader may want to evaluate the multiplication table of (S3, ∗), in analogy to Tables (1.1),
(1.3) or (1.4) and verify that (S3, ∗) is finite group. The order, or number of elements, of S3 is 6.
The order of C3 is 3. The reader may also identify the transformations in S3 with the symmetry
transformations of a regular triangle with vertices indexed by 1, 2, 3.

Given a sequence s ∈ CL, a permutation τ in S` and a permutation σ ∈ Sc, then the composites

sτ−1 : L τ−1

−−→ L s−→ C, and sσ : L s−→ C σ−→ C

are also a sequences in length of ` in V (using the inverse permutation will be justified later). The
composition sτ−1 is called a composition on the left, whereas σs is a composition on the right. If,
say,

τ =




1 → 2

2 → 3

3 → 4

4 → 1




and s =




1 → a

2 → a

3 → g

4 → c




, then, sτ−1 =




1 → c

2 → a

3 → a

4 → g




.

The fact that the composition sτ−1 of a mapping s ∈ V and a permutation τ ∈ S` results in
another mapping in V leads to the construction of the sets of all mappings sharing the symmetries
defined by a given problem. These sets are called symmetry orbits, or simply orbits. Similarly,
two mappings are classified as equivalent (∼) when one is obtained from the other by composing it
with a symmetry permutation, that is, s ∼ f ⇐⇒ f = sτ−1. Consequently, equivalent mappings
define the same orbit. We write

Os = {sτ−1; τ ∈ S`}
to indicate the permutation orbit of a mapping s resulting from composing it with S` on the left.
Similarly, Os = {σs; σ ∈ Sc} is a permutation orbit, resulting from composing s with σ ∈ Sc on
the right.

When the symmetries of interest are the cyclic permutations, we obtain the corresponding
cyclic orbits. For example, starting with the sequence cgg in length of three and composing on
the left with all three cyclic permutations in C3 we obtain the orbit Ocgg = {cgg, gcg, ggc}.
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Similarly, starting with the sequence uuyuuy in length of six and composing on the left with
all six cyclic permutations in C6 we obtain the orbit Ouuyuuy = {uuyuuy, yuuyuu, uyuuyu}.

1.6.1. Permutation orbits for binary sequences in length of four. The mapping space
V of all binary sequences in length of four has 24 = 16 points, each representing one sequence, as
shown in Matrix (1.8). The numbers in the first row are identifiers for each sequence generated
from (1.7).

(1.8)




s 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2

s(1) y u y u u u y y y u u u y y y u

s(2) y u u y u u y u u y y u y y u y

s(3) y u u u y u u y u y u y y u y y

s(4) y u u u u y u u y u y y u y y y




.

Consider the left composition (sτ−1) of sequences in V with the symmetries in S4. The group S4

has 6 transpositions, 3 elements or order 2, 8 elements of order 3 and 6 elements of order 4. These
permutations are indicated in the first column of Matrix (1.9).

(1.9)

S4\s 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2

1 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2

(34) 1 16 15 14 8 12 13 7 11 6 10 4 5 9 3 2

(23) 1 16 15 12 14 8 11 13 7 10 4 6 9 3 5 2

(24) 1 16 15 8 12 14 7 11 13 4 6 10 3 5 9 2

(12) 1 16 14 15 12 8 13 10 6 11 7 4 9 5 2 3

(13) 1 16 12 14 15 8 10 11 4 13 6 7 9 2 3 5

(14) 1 16 8 14 12 15 6 4 7 10 13 11 2 5 3 9

(234) 1 16 15 12 8 14 11 7 13 4 10 6 3 9 5 2

(243) 1 16 15 8 14 12 7 13 11 6 4 10 5 3 9 2

(123) 1 16 14 12 15 8 10 13 6 11 4 7 9 2 5 3

(124) 1 16 14 8 12 15 6 10 13 4 7 11 2 5 9 3

(132) 1 16 12 15 14 8 11 10 4 13 7 6 9 3 2 5

(134) 1 16 12 14 8 15 10 4 11 6 13 7 2 9 3 5

(142) 1 16 8 15 12 14 7 4 6 11 13 10 3 5 2 9

(143) 1 16 8 14 15 12 6 7 4 13 10 11 5 2 3 9

(12)(34) 1 16 14 15 8 12 13 6 10 7 11 4 5 9 2 3

(13)(24) 1 16 12 8 15 14 4 11 10 7 6 13 3 2 9 5

(14)(23) 1 16 8 12 14 15 4 6 7 10 11 13 2 3 5 9

(1234) 1 16 14 12 8 15 10 6 13 4 11 7 2 9 5 3

(1243) 1 16 14 8 15 12 6 13 10 7 4 11 5 2 9 3

(1324) 1 16 12 8 14 15 4 10 11 6 7 13 2 3 9 5

(1342) 1 16 12 15 8 14 11 4 10 7 13 6 3 9 2 5

(1432) 1 16 8 15 14 12 7 6 4 13 11 10 5 3 2 9

(1423) 1 16 8 12 15 14 4 7 6 11 10 13 3 2 5 9

The sequences s ∈ V are identified in the first row by their labels shown in Matrix (1.8). The
resulting compositions sτ−1 are shown in the adjacent columns. For example, if

τ = (1234) =




1 → 2

2 → 3

3 → 4

4 → 1




, and s =




1 → u

2 → u

3 → y

4 → u




, then sτ−1 =




1 → u

2 → u

3 → u

4 → y




,
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so that the composition with τ−1 = (1432) takes the sequence uuyu (label 12) into the sequence
uuuy (label 8). In particular, these two sequences are in the same orbit.

The resulting orbits (indicating the sequences by their labels) may be expressed as

O0 = {1},
O1 = {9, 5, 3, 2},
O2 = {13, 11, 7, 10, 6, 4},
O3 = {15, 14, 12,8},
O4 = {16},

so that

(1.10) V = O0 ∪O1 ∪O2 ∪O3 ∪O4

forms a disjoint partition of V. We observe that the orbit Ok has exactly

|Ok| =
(

`

k

)

elements and is characterized by the number of purines (u) in the sequences, that is,

Ok = {s ∈ V; |s−1(u)| = k}, k = 0, . . . , 4.

The orbit volume |O| is a symmetry invariant in the resulting reduction. It stays constant regard-
less of how the purine-pyrimidine positions in the sequences are shuffled.

The reader may identify, in this example, all the steps described in Pólya’s reasoning, in-
troduced earlier on in the chapter, namely: description, classification and interpretation of the
objects of interest.

A good classification is important because it reduces the observable variety to
relative few clearly characterized and well ordered types.

The effect of composing V with S` on the left is that of removing the order of the positions-
equivalently, any two sequences are then equivalent, similar or indistinguishable, when they differ
only by reordering the position of the letters or residues. As a result, we obtain the space called
quotient space, in which the elements are the resulting 5 permutation orbits O0,O1, . . .O4. These
orbits are characterized by the number of, say, purines. That is, orbit Oi is composed of those
sequences with exactly i purines in it.

The remarkable aspect of this simple example, and its consequences for the planning and
analysis of experimental data, is the varied structural classifications that can be obtained from
the same initial set of labels by introducing different groups of symmetry and different actions.
Permutation groups can act on the set of positions, L = {1, 2, 3, 4}, and on the alphabet A = {u, y}
of residues. To each subgroup of S4 acting on the set L = {1, 2, 3, 4} of positions, a new partition
of V can be obtained, with a corresponding new partition in the data space. These techniques will
be fully explored in the sequence.

1.7. Symmetry and probability laws

Consider again the structure V of binary sequences in length of ` and let P indicate a proba-
bility model in the space V, where a group G of symmetries is identified. We say that P has the
symmetry of the group G if P is constant (uniform) over each one of the orbits of V. For example,
if

(1.11) P(s) = P(sτ−1)

for all sequences s in V and permutations τ in G = S`, then the probability law P should be constant
in the position-symmetry orbits. Because s is now a random variable, the purine-pyrimidine levels

(number of purines, number of pyrimidines) = (i, ` − i)

are also random, and consequently, the probability laws

(1.12) Li = (
i
`
,
` − i

`
), i = 0, 1, . . . , `,
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associated with the orbits described in (1.10) are also random. Here are the possible probability
laws for purine-pyrimidine levels from binary sequences in length of four:

L0 = (0, 1), L1 = (
1
4
,
3
4
), L2 = (

2
4
,
2
4
), L3 = (

3
4
,
1
4
), L4 = (1, 0).

The likelihood of each law is therefore determined by the probability of seeing a sequence which
is associated with the law- because all sequences in the orbit Oi lead to the law Li and conversely,
we see that Li occurs with probability P(Oi); shortly,

Probability of law Li = P(Oi).

Clearly, if the law P is such that all sequences are equally likely (P is said to be uniform), then
condition (1.11) is satisfied and

(1.13) Probability of law Li = P(Oi) =
|Oi|
|V| =

(
`
i

)

|V| .

We have, for binary sequences in length of four,

P(O0) =
1
16

, P(O1) =
4
16

, P(O2) =
6
16

, P(O3) =
4
16

, P(O4) =
1
16

,

so that the most likely distribution of purine-pyrimidine levels, under uniformly distributed se-
quences in V, is

L2 = (
1
2
,
1
2
).

Example 1.7.1 (Four-sequences in length of three). Let A = {a, c, g, t}. The space V of all
four-sequences in length of three has |V| = 43 = 64 sequences. The random variables generated
by equivalence of the positions are the frequencies of

(adenines, cytosines, guanines, thymines) = (fa, fc, fg, ft),

with fa + fc + fg + ft = 3. Consequently, the corresponding probability laws

Lλ = (
fa
3

,
fc
3

,
fg
3

,
ft
3

)

are also random. The index λ in Lλ indicates the corresponding orbit type, in analogy with
expression (1.12), in which O0 and O4 belong to class O40, O1 and O3 belong to the class O31

and O2 coincides with O22. We obtain these indices as the possible integer partitions of 3 in
length of 4, namely the nonnegative integers {n1, . . . , n4} with n1 ≥ n2 ≥ n3 ≥ n4 ≥ 0 satisfying
n1 + . . . + n4 = 3. Consequently, there are 3 types of orbits, namely O3000, O2100 and O1110, and
corresponding laws:

λ = 3000 → L3000 = (1, 0, 0, 0),

λ = 2100 → L2100 = (
2
3
,
1
3
, 0, 0),

λ = 1110 → L1110 = (
1
3
,
1
3
,
1
3
, 0).

Similarly to expression (1.13) we now obtain

Probability of a law type L3000 = P(O3000) =

(
3

3,0,0,0

)

|V| =
3!

3!0!0!0!
1
64

=
1
64

,

Probability of a law type L2100 = P(O2100) =

(
3

2,1,0,0

)

|V| =
3!

2!1!0!0!
1
64

=
3
64

,

Probability of a law type L1110 = P(O1110) =

(
3

1,1,1,0

)

|V|
=

3!
1!1!1!0!

1
64

=
6
64

,

so that, under the assumption that all 4-sequences in length of 3 are equally likely (uniform proba-
bility), the most probable distribution by levels of nucleotides comes from the class of distribution
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given by L1110, each of which has the highest probability, 6/64. Simple combinatorics show that
there are

4!
3!1!

= 4

orbits of type λ = 1110, namely

(1.14) (
1
3
,
1
3
,
1
3
, 0), (

1
3
,
1
3
, 0,

1
3
), (

1
3
, 0,

1
3
,
1
3
), (0,

1
3
,
1
3
,
1
3
).

These are the most probable probability laws describing the nucleotide levels. See also Exercise
1.15. �

1.7.1. Exchangeability. Consider an urn with 5 distinct marbles numbered 1, 2, 3, 4,5, each
one of color, say, yellow (y) or green (g). The possible urn configurations may be considered as
non-observable events whereas the color or the number of a marble drawn from the urn are
observable events. The urn compositions are represented by the structure V = CL of all mappings
s defined in L = {1, 2, 3, 4,5} with values in C = {y, g}. Here it is natural to classify the possible
configurations by the number of, say, yellow marbles. That is, making the marbles distinguishable
by color only. This classification, as we now know, follows from letting the permutations in S5 act
on the structure V according to the rule

ϕ(τ, s) = sτ−1

and counting two configurations s and f as equivalent when there is a permutation τ connecting
(via f = sτ−1) the two mappings. The resulting classes of equivalent mappings are exactly the
sets of urn compositions with 0, 1, . . . , 5 yellow marbles, and the exchangeable probability laws
in V are convex combinations of those laws assigning equal or uniform probability to equivalent
members.

A probability law w in CL is exchangeable if w(s) = w(sτ−1) for all τ ∈ S`. Consequently, a
probability law is exchangeable if it is a constant function in each of the left permutation orbits.
A probability law w in C∞ is exchangeable if w is exchangeable for all finite `.

In its simplest form, De Finetti’s Theorem states that to every exchangeable probability law
w there corresponds a distribution F, concentrated in [0, 1], such that, for all 0 < `, for all s ∈ CL,
the representation,

w(s) =
∫ 1

0

θk(1 − θ)`−kF(dθ)

holds, where k is the number of ones in s.
All finite binary sequences have the same structure, and finite forms of exchangeability can

be defined, with the resulting finite-type De Finetti theorems.

1.7.2. Partial exchangeability. Consider again the urn with 5 distinct marbles with the
added information that marbles 1, 2 and 3 are larger in volume than marbles 4 and 5. The
size-related or partial exchangeability erases the number-labels within each one of the two groups
separately. The equivalent mappings representative of partially exchangeable sequences arise from
the structure product of V1 = LC

1 and V2 = LC
2 , where L1 = {1, 2, 3} and L2 = {4, 5}. Two

mappings (s, f) and (u, v) in V1 × V2 are equivalent when there are permutations τ in S3 and σ
in S2 such that (s, f) = (uτ−1, vσ−1). The resulting classes of similar mappings are exactly the
sets of configurations with k1 yellow smaller marbles and k2 yellow larger marbles, k1 = 0, 1, 2, 3,
k2 = 0, 1, 2. If we indicate by |Oi| the size of the equivalence class (under the corresponding
partial symmetry) for marbles of the same size, then the partially exchangeable probability laws
are convex combinations of laws assigning equal or uniform probability 1/(|O1||O2|) to equivalent
members.

1.7.3. Bilateral exchangeability. Indicate the left eye by OS and the right eye by OD,
and let L = {OS, OD}. Also, let C = {1, 0}, where 1 stands for the condition that the eye is
examined with lense refraction, and 0 stands for the condition that the eye is examined without
lense refraction. At each point s in the mapping space V = CL we annotate a numerical expression
of the resulting visual acuity x(s) ∈ V, or some frequency data related to the acuity response from
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a group of subjects. The hypothesis that the visual acuity response of the visual system due to
lense refracting is indifferent to left-right indexing is described by making the permutations in S2

act on V by (τ, s) 7→ sτ−1. Similarly to the previous examples, this action simplifies or factors the
original structure V (with 4 labels) into 3 equivalency classes, or orbits O1,O2,O3, namely:

(1) O1 bilateral refraction, with 1 label,
(2) O2 monocular refraction, with 2 labels,
(3) O3 without refraction, with 1 label.

These orbits in V, in turn, define the corresponding summaries and analysis in the data space V.
This structure is applicable to any bilateral biological system.

1.8. Symmetry and classification in classical mechanics

In physics as in chemistry, we find that certain physical properties of a system remain un-
changed under certain transformations of such system. Riley, Hobson and Bence (2002) observe
that

If a physical system is such that after application of a particular symmetry
transformation the final system is indistinguishable from the original system
then its behavior, and hence the functions that describe its behavior, must
have the corresponding property of invariance when subject to the same trans-
formations.

The study of these transformations is a study of the symmetries of the system. More generally,
as Bacry (1963) shows, the study of the symmetries of a physical system often suggests the study
of the symmetries of certain physical laws and theories, and not infrequently, leads to symmetry-
related principles, such as Kepler’s Law of planetary motion (a planet covers equal elliptic areas
in equal times in its trajectory, relative to a focal point), the principle of time-reversal invariance
or the Relativity Principle.

The following quote is from von Mises (1957, p.200), with the notation partially adapted.
The theory studies the distributions of a certain number ` of molecules over f positions in the
velocity space under the assumption that all possible f` distributions have the same probability.
Given two molecules A and B, and three different positions a,b,c then the number of different
distributions is 9, since each of the three positions of A, namely Aa,Ab,Ac can be combined with
each of B. According to the classical theory, all these distributions, as random events, have the
same probability, 1/9.

A new theory, first suggested by the Indian physicist Bose1, and developed by
Einstein, chooses another assumption regarding the equal probabilities. Instead
of considering single molecules and assuming that each molecule can occupy all
positions in the velocity space with equal probability, the new theory starts
with the concept of repartition. This is given by the number of molecules at
each place of the velocity space, without paying attention to the individual
molecules. From this point of view, only six ‘partitions’ are possible for two
molecules on three places, namely, both molecules may be together at a, at b,
or at c, or they may be separated, one at a and one at b, one at a and one at c,
or one at b and one at c. According to the Bose-Einstein theory, each of these
six cases has the same probability, 1/6. In the classical theory, each of these
three possibilities would have the probability of 1/9, each of the other three,
however, 2/9, because, in assuming individual molecules, each of the last three
possibilities can be realized in two different ways: A can be in a, and B in b, or
vice versa, B can be in a, and A in b.

1Satyendranath Bose, Born: 1 Jan 1894 in Calcutta, India Died: 4 Feb 1974 in Calcutta, India
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The Italian physicist Fermi2 advanced still another hypothesis. He postu-
lated that only such distributions are possible- and possess equal probabilities-
in which all molecules occupy different places. In our example of two molecules
and three positions, there would only be three possibilities, each having the
probability 1/3; i.e., one molecule in a and one in b; one in a and one in c; one
in b and one in c.

The arguments in von Mises’ narrative can be expressed with the language of a symmetry study
as follows: Let L = {A, B}, C = {a, b, c} and V the set of all mappings s : L → C, that is,

V =




s 1 2 3 4 5 6 7 8 9

s(A) a b c a b a c b c

s(B) a b c b a c a c b


 .

Under the Maxwell-Boltzmann (MB) model, it is assumed that all points or configurations in the
space V are equally likely, or uniformly distributed, that is:

P(s) =
1
|V| =

1
9
, for all s ∈ V.

The volume |V| = c` of V is called the Maxwell-Boltzmann statistic.
Under the Bose-Einstein (BE) model, it is assumed that all points in the quotient space V/S2

of V by the action sτ−1 of shuffling the molecules’ labels (in L = {A, B}) are uniformly distributed.
Thus, in the BE model, the uniform probability applies to the set of orbits of V obtained by label
symmetry. The following matrix summarizes the action sτ−1 of S2 on V:

(1.15)




σ\s 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9

(12) 1 2 3 5 4 7 6 9 8


 ,

so that the six orbits in the quotient space V/S2 are

O11 = {1}, O12 = {2}, O13 = {3}, O21 = {4, 5}, O22 = {6, 7}, O23 = {8, 9},

each one of these having probability of 1/6. A probability law in V/S2 such as

P(s) =

{
1/6 when s ∈ {O11,O12,O13},
1/12 when s ∈ {O21,O22,O23},

would be consistent with the assumptions of the BE model. The Bose-Einstein statistic is the
number (

c + ` − 1
`

)

of distinct orbits in the quotient space. In the example, there are
(
4
2

)
= 6 distinct orbits.

The Fermi-Dirac (FD) model assumes that only the injective mappings

VI ≡




s 4 5 6 7 8 9

s(A) a b a c b c

s(B) b a c a c b


 ⊂ V

are admissible representations of the physical system, and that a uniform probability law is assigned
to the resulting orbits in the quotient space of VI by the action sτ−1 of shuffling the molecules’

2Enrico Fermi was born in Rome on 29th September, 1901. The Nobel Prize for Physics was awarded to Fermi
for his work on the artificial radioactivity produced by neutrons, and for nuclear reactions brought about by slow

neutrons. He died in Chicago on 29th November, 1954.
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labels. Therefore, starting with



σ\s 4 5 6 7 8 9

1 4 5 6 7 8 9

(12) 5 4 7 6 9 8


 ,

we obtain the three orbits O1 = {4, 5}, O2 = {6, 7}, O3 = {8, 9} in the quotient space VI/S2.
To each of these, a probability of 1/3 is assigned. In the present example, a probability law in
VI/S2 given by

P(s) =

{
1/6 when s ∈ {O1,O2,O3},
0 otherwise ,

would be consistent with the assumptions of the FD model. The Fermi-Dirac statistic is the
number

(
c
`

)
of distinct orbits in the quotient space. In the example, we observed

(
3
2

)
= 3 distinct

orbits.
Table 1.1 summarizes the domain of the uniform law in each of the models discussed above.

Table 1.1. Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac Probabilities.

Model Domain of the Uniform Law Probability
Maxwell-Boltzmann V 1/c`

Bose-Einstein V/G 1/
(
c+`−1

`

)

Fermi-Dirac VI/G 1/
(
c
`

)

1.8.1. Macrostates and microstates in thermodynamics. Consider six numbered molecules
indexed by the set L = {1, 2, 3, 4, 5, 6}and four energy levels, indicated by the set E = {E1, E2, E3, E4}.
The energy configurations are mappings

s : L → E ,

so that there is a total of |E||L| = 46 = 4096 accessible microstates. We pass from microstates to
measurable macrostates by dividing the space by similarities that result among the molecules when
their identifying labels are erased. This is in analogy to erasing the position of the nucleotides
in a four-sequence in length of six, as discussed in Example 1.7.1. Algebraically, this is obtained
by letting the permutations in S6 act on (by shuffling) the molecule labels in the set L. The
composition rule is sτ−1. The resulting classes Oλ of orbits are then the energy macrostates
realized by the system. Here, λ indicates the possible integer partitions (n1, n2, n3, n4) of 6, that
is, n1, n2, n3 and n4 are non negative integers such that 6 = n1+n2+n3+n4 with n1 ≥ n2 ≥ n3 ≥ n4.
The resulting classes, their volume |Oλ|, usually indicated by Ωλ in the thermodynamics context,
and their number Qλ of quantal states are:




λ Ωλ Qλ Ωλ × Qλ

6000 1 4 4

5100 6 12 72

4200 15 12 180

4110 30 12 360

3300 20 6 120

3210 60 24 1440

3111 120 4 480

2220 90 4 360

2211 180 6 1080
total 522 84 4096




.
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There are Q = 6 quantal states associated with the most probable (Ω = 180) orbit type, λ = 2211.
Also note that

∑

λ

Qλ =
(
|E|+ |L| − 1

|L|

)
=

(
9
6

)
= 84

is the Bose-Einstein statistic.

1.8.2. Boltzmann’s Entropy Theorem. In Boltzmann model all particles are considered
to be distinguishable, so that a uniform probability can be assigned to the ensemble. However,
the passage from the accessible microstates to macrostates is equivalent to obtaining a partition of
the ensemble V of accessible microstates into orbits of symmetry realized by the symmetric group
acting on V according to the composition rule sτ−1. It is an important observation that the mean
energy level

(1.16) E =
1
`

∑

i

Eifi,

where fi = |s−1(Ei)| indicates the number of molecules at the energy level Ei, of any configura-
tion in V, is an invariant under the composition rule sτ−1 and, therefore, depends only on the
orbit (macrostate) realized by the configuration. Boltzmann reasoned that the molecule-energy
configurations in V evolved from least probable configurations to most probable configurations,
so that the quest for describing the equilibrium energy distribution in the ensemble requires the
determination of the most likely configurations in V. This, in turn, requires the determination of
the macrostate (orbit) with the largest volume Ω, conditioned on the fact that mean energy of the
isolated ensemble must remain constant. Given a configuration s with f1 particles at the energy
level E1, f2 particles at the level E2, f3 particles at the level E3, etc, its orbit Os has volume

(1.17) |Os| =
`!

f1!f2!f3! . . .
.

We have then a well-defined mathematical problem: find the macrostate identified by f1, f2, . . .
which maximizes (1.17) for a given mean energy level E . The solution is fi = ` P(Ei) , where

(1.18) P(Ei) =
e−βEi

∑
j e

−βEj

is the Maxwell-Boltzmann canonical distribution. It describes the most likely energy distribution
of the ensemble. For reference, its classical derivation is outlined in the Appendix. Similar
calculations can be obtained for the models of Fermi-Dirac and Bose-Einstein.

We conclude this example noting that the constrained minimization of
∑

fi ln fi is equivalent
to the constrained maximization of

H = −
∑

i

fi
`

ln(
fi
`
)

which is the entropy of the probability law associated with the orbit of f1, f2, f3, . . .. The entropy,
usually indicated by S in thermodynamics, is a physical characteristic (such as temperature, mass)
of the gas and at the same time, a measure of uniformity in its thermodynamical probability
law. The canonical distribution corresponds to an ensemble configured to its maximum entropy.
Boltzmann’s statistical expression

S = k ln Ω

for the equilibrium entropy relates the equilibrium or limit number of accessible microstates, Ω,
and k, the (known now as) Boltzmann constant 1.3807 × 10−23 K J/molecule. A volume of gas,
left to itself, will almost always be found in the state of the most probable distribution.
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1.8.3. Maxwell-Boltzmann Law for velocities in a perfect gas. In this example we
outline the classical derivation of Maxwell-Boltzmann Law. In the context of the orbit method,
Maxwell’s assumptions e.g., Ruhla (1989, Ch.4) led to the searching of a probability law, indi-
cated here by F, for the random velocity vector (v) satisfying the following conditions: First, the
component-velocities are statistically independent and identically distributed, so that the law F
should have the form

F(v) = f(vx)f(vy)f(vz),

where f indicated the common probability law for the component-velocities. The isotropic con-
dition states that F should be invariant under all central rotations, indicated here by U, in the
three-dimensional Euclidian space R3. Denoting by SO(3, R) the collection of all such rotations,
we write the isotropic condition as,

(1.19) F(Uv) = F(v), for all U ∈ SO(3, R).

Note the analogy between the isotropic condition and the invariance condition described by Ex-
pression (1.11). These two conditions lead to the probability law which has the form

(1.20) F(v) = A3e−µ||v||2 ,

where v = ||v|| =
√

v2
x + v2

y + v2
z is the speed in the velocity vector v. The constants are deter-

mined from additional physical considerations. The orbits Ov in the quotient space are exactly
those velocity vectors v in R3 with common speed v.

1.9. Canonical decompositions

In the previous sections we have illustrated the classification of objects using symmetry trans-
formations, the representation of these symmetries as linear transformations in the vector space
for the data observed on those objects, and the reduction (Section 1.6) of the structure into sets of
symmetrically equivalent points. The formal connection between those basic steps and the context
of statistical inference depends of the notion of canonical projections or decompositions, studied in
detail in the following chapter. Canonical projections appear in many fundamental and practical
terms in Chemistry and Physics.

To illustrate, recall that the symmetry among the molecules, imposed by the Bose-Einstein
argument described in Section 1.8, led to the classification of the points in V into six orbits

O11 = {1}, O12 = {2}, O13 = {3}, O21 = {4, 5}, O22 = {6, 7}, O23 = {8, 9},

derived from the action 


σ\s 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9

(12) 1 2 3 5 4 7 6 9 8




sτ−1 of S2 on V. We observe that the action
[

σ\s 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9

]

of the identity permutation on V can be represented by the identity matrix I in R9. We write
ρ(1) = I. Similarly, the action

[
σ\s 1 2 3 4 5 6 7 8 9

(12) 1 2 3 5 4 7 6 9 8

]

of the permutation t = (12) on V can be linearly represented by

ρ(t) = Diag (1, 1, 1,

[
0 1
1 0

]
,

[
0 1
1 0

] [
0 1
1 0

]
).
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This is the same principle described earlier on in the chapter to represent the action of the point
group C2h on the framework of the dichloroethene molecule. The evaluation of

P1 = [ρ(1) + ρ(t)]/2 =
1
2
Diag (2, 2, 2,

[
1 1
1 1

]
,

[
1 1
1 1

]
,

[
1 1
1 1

]
),

and

P2 = [ρ(1) − ρ(t)]/2 =
1
2
Diag (0, 0, 0,

[
1 −1

−1 1

]
,

[
1 −1

−1 1

]
,

[
1 −1

−1 1

]
)

shows that

(1.21) P2
1 = P1, P2

2 = P2, and P1P2 = 0,

thus showing that P1 and P2 are (commuting) projections onto orthogonal subspaces V1 and V2

of V = R9 with

(1.22) I = P1 + P2 .

Equivalently, V reduces into the direct sum V1 ⊕ V2 of subspaces of dimensions d1 = tr P1 = 6
and d2 = tr P2 = 3, respectively.

When properties (1.21) are verified, the decomposition (1.22) is called a canonical decompo-
sition and P1 and P2 are the canonical projections associated with the action of G on V. These
decompositions play a fundamental part in all symmetry studies. The study of their derivations
and properties is the primary aim of Chapter 2.

An important application of all canonical reductions is the computation and interpretation of
vectors that transform according to certain basic properties (called irreducible representations) of
the group of symmetries. In the present example, that means that for any vector x ∈ V, the new
vector y1 = P1x transforms according to the one-dimensional identity (or symmetric) representa-
tion of S2, whereas y2 = P2x transforms according to another one-dimensional representation of
S2, namely one that assigns 1 to the identity and −1 to the transposition (this representation is
called the sign or anti-symmetric representation, and will be introduced in Chapter 2).

In quantum chemistry these projections play a central role in determining whether a chemical
bonding can take place in a molecule. The bonding, points Riley et al. (2002, p.948), is strongly
dependent upon whether the wavefunction of the two atoms forming a bond transform according
to the same (irreducible) representation. Typically, these reductions take place in a infinite dimen-
sion Hilbert space H, in such way that the invariant subspaces in the reduction of H define the
properties of the quantum system. Consequently, properties are identified with the corresponding
(Hermitian) projections. For example, the projections I and 0 correspond to the sure property and
the impossible property, whereas the projection I−P corresponds to the negation of the property
associated with P. The properties associated with two commuting projections P and Q are said
to be compatible, in which case the projection PQ = QP represents the conjunction of P and Q,
whereas the projection PQ+P(I−Q)+(I−P)Q = P+Q−PQ is associated with the disjunction
of the two properties. If, in addition, PQ = 0, the properties are compatible, mutually exclusive,
and the disjunction is given by the sum P + Q. See, for example Omnès (1994) or Faris (1996)
for a review of Omnès’ work.

Unit vectors y in the Hilbert space are associated with the states of the system, and determine a
mathematical specification of probabilities for all properties. These probabilities are obtained from
the fact that associated to each set of mutually exclusive properties P1, . . . ,Ph whose disjunction
is sure, that is,

I = P1 + . . .Ph ,

there is a decomposition
1 = ||y||2 = y′y = y′P1y + . . .y′Phy

which is interpreted as a probability distribution among the corresponding properties P1, . . . ,Ph.
Each state y ∈ H then provides a probabilistic description,

y → (y′P1y, . . . , y′Phy) = (||P1y||2, . . . , ||Phy||2),
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of the system3. In the present analogy with I = P1 + P2, a unitary state y is associated with the
probability distribution

P(P1) = ||P1y||2 = y2
1 + y2

2 + y2
3 +

1
4
(y4 + y5)2 +

1
4
(y6 + y7)2 +

1
4
(y8 + y9)2,

P(P2) = ||P2y||2 =
1
4
(y4 − y5)2 +

1
4
(y6 − y7)2 +

1
4
(y8 − y9)2.

Moreover, we observe that

P1y = (y1, y2, y3,
y4 + y5

2
,
y4 + y5

2
,
y6 + y7

2
,
y6 + y7

2
,
y8 + y9

2
,
y8 + y9

2
),

and
P2y = (0, 0, 0,

y4 − y5

2
,
y5 − y4

2
,
y6 − y7

2
,
y7 − y6

2
,
y8 − y9

2
,
y9 − y8

2
),

identify 9 one-dimensional subspaces associated with the symmetry operation erasing the identity
of the particles:

±y1, ±y2, ±y3, ±(y4 + y5), ±(y6 + y7), ±(y8 + y9),
derived from P1 and

±(y4 − y5), ±(y6 − y7), ±(y8 − y9),
derived from P2. It is important to observe that, although these projections P1 and P2 lead to
these subspaces, there is no a priori reason to single out any particular bases for those subspaces.
In fact, there are infinitely many such (stable) subspaces, all equivalent to each other in a way
that will be made precise in Chapter 2. The number (two in this example) of canonical subspaces,
on the other hand, is a constant and depends only on the group of symmetries (S2 in this case).

The projections on one-dimensional subspaces are pure states. A further consequence of the
symmetries imposed to the system is observed from the fact that these subspaces are characteristic
of exactly the two types of one-dimensional representations: those associated with P1 are sym-
metric, that is, ρ(τ )P1y = P1y for all τ ∈ S2; and those associated with P2 are anti-symmetric,
that is,

ρ(τ )P2y =

{
P2y if τ = 1

− P2y if τ = (12).
As will become clear in the sequence, the usual arithmetic mean and the deviations from the
mean are the (only) two symmetry invariants, of dimensions 1 and n− 1 respectively, that appear
naturally when the data are indexed by V = {1, . . . , n} and the symmetries are all the permutations
of the indices in V. This is the case, of course, that we are familiar with in univariate statistical
sampling x1, x2, . . . , xn.

In general, if there are h canonical projections, then the identity operator, I, in the data space
V decomposes as I = P1 + P2 + . . . + Ph, where PiPj = 0 for ı 6= j and P2

i = Pi, i = 1, . . . , h. It
then follows that the basic partition

||x||2 = (x|x) = (x|P1x) + (x|P2x) + . . . + (x|Phx)

of the sum of squares for a particular inner product (·|·) of interest (e.g., Euclidean, Hermitian,
symplectic) can be obtained. In the sampling case mentioned above, the canonical decomposition
is simply ∑

j

x2
j = nx2 +

∑

j

(xi − x)2,

a consequence of the fact that in this case I = A+Q for exactly two non-zero canonical projections

A =
1
n

ee′, Q = I − A,

where ee′ is the n × n matrix of ones. The reduction I = A + Q satisfies A2 = A, Q2 = Q and
AQ = QA = 0. Moreover, A projects V = Rn into a subspace Va of dimension dim Va = tr A = 1
generated by e = e1 + . . . + en = (1, 1, . . . , 1) ∈ V, whereas Q projects V into an irreducible
subspace Vq in dimension n − 1, the orthogonal complement of Va in V.

3The notation y′Py has the interpretation of the < y,Py > under the appropriate inner product in H
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The invariants Px and Qx are respectively the arithmetic mean and the deviations from the
mean. In general, for (large-sample) normally distributed data, the Fisher-Cochran theory for the
probability distribution of quadratic forms leads to varied forms of analyses of variance, within
which parametric hypotheses of the form Hj : µ′Pjµ = 0 based on the expected value µ of x can
be defined and interpreted within a given scientific context.

It is certainly less obvious that the same principle of canonical decomposition when applied to
symmetry studies of bilateral systems (eyes, ears, hemispheres) would show that the decomposition

A =
1
2
Aintraclass +

1
2
(s21 − s22)

[
1 0
0 −1

]

for the sample covariance matrix A obtains, thus saying that matrix A is an intraclass matrix if
and only if the second component in the decomposition vanishes, that it, when the equality s21 = s22
of the variances in the left and right sides of the mechanism holds.

We remark, consequently, that symmetry studies are characterized by a formal and systematic
algebraic statistical framework within which properties of the mechanisms under consideration
can be suggested (by invariant-related hypotheses) and studied (by statistical inference). The
systematic, step-by-step nature of the algebraic component of the argument is clearly remarked
in Serre (1977, p.22). The canonical projections are the key elements leading to the explicit
calculation and interpretation of the invariants P1x,P2x, . . . in the data, which, once available,
would be the basis for designing the corresponding symmetry studies.

Appendix -Maxwell-Boltzmann canonical distribution

Using Stirling’s approximation ln t! ≡ t ln t − t, we have,

ln |Os| = ln `! −
∑

ln fi = ` ln ` − ` −
∑

(fi ln fi − fi) = ` ln ` −
∑

fi ln fi.

Equivalently, then, we seek to minimize
∑

fi ln fi subject to (1.16). These two conditions lead to

(` +
∑

i

ln fi)dfi = 0,
∑

i

Eidfi = 0.

A sufficient condition for the existence of a solution (using Lagrange multipliers argument) is that
there are constants α and β satisfying

∑
i(Ei + α + β ln fi)dfi = 0, in which case the solutions take

the form fi = αe−βEi . The condition
∑

i fi = ` implies α = `/
∑

i e
−βEi , so that

(1.23) fi = `
e−βEi

∑
j e

−βEj
.

The value of β follows from the condition 1
`

∑
i fiEi = E . That is, β is a solution of

∑
i e

−βEiEi∑
j e

−βEj
= E .

From (1.23) we then obtain Maxwell-Boltzmann canonical distribution shown in equation (1.18).

Further reading

In his text on symmetry and science, Joseph Rosen (1995) characterizes symmetry as immu-
nity to a possible change. His book includes an accessible introduction to the mathematics of
symmetry and leads to the formulation of his Symmetry Principle. See also Rosen (1975).
The classical introductory work of Hermann Weyl (1952) includes the notions of bilateral, trans-

latory, rotational, ornamental and crystal symmetry.

A thing that is symmetrical ... if there is something that you can do to it, so
that after you have finished doing it, it still looks the same as it did before you
did it.
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Hermann Weyl was born on Nov 9th, 1885 in Elmshorn, Germany, and died on Dec 8th, 1955
in Zürich, Switzerland. He was a student of Hilbert at Göttingen, and from 1933 until he re-
tired in 1952 he worked at the Institute for Advanced Study at Princeton. From 1923-38 he
evolved the concept of continuous groups using matrix representations and its applications to
quantum mechanics. Weyl (1950) is the English translation of the original text Gruppentheorie
und Quantenmechanik, first published in 1931. Weyl (1953) is a revised and supplemented edition
of his 1939 publication on the invariants and representations of the classical groups. Weyl, along
with Wigner’s Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspek-
tren (Braunschweig: Vieweg, 1931) and van der Waerden’s Die gruppentheorietische Methode in
der Quantenmechanik (Berlin: Springer, 1932) pioneered the methods of group representation to
quantum mechanics- the three W’s of quantum mechanics. The English translation of Wigner’s
work by J. J. Griffin appeared in 1959 under the title Group theory and its application to quantum
mechanics and atomic spectra, Academic Press, New York.

The notion of points as labels identifying potential events appears in modern-day physics, in
contrast to Newton’s views in which points are essentially indistinguishable. A comment in that
direction is found in Cartier (2001).

George Pólya, an American mathematician of Hungarian origin, was born in Budapest, Hun-
gary, on December 13, 1887, and died in Palo Alto, USA on September 7, 1985. He worked on
a variety of mathematical topics, including series, number theory, combinatorics, and probability.
During the first decades of the 1900’s he had the company of many leading mathematicians such
as Klein, Carathéodory, Hilbert, Runge, Landau, Weyl, Hecke, Courant and Toeplitz. Geometric
symmetry and the enumeration of symmetry classes of objects was a major area of interest for
Pólya over many years. He added to the understanding of the 17 plane crystallographic groups in
1924 by illustrating each with tilings of the plane. Pólya’s work using generating functions and
permutation groups to enumerate isomers in organic chemistry was of fundamental importance. In
1978, at the age of 91, he taught a course on combinatorics in the Computer Science Department
at Stanford.

The delicate and fascinating theory of measurement by von Neumann and its classical/quantum
interpretations are discussed in great detail in the work of Omnès (1994, pp. 60,72). Measure-
ments are sharper judgments, and judgments are broader measurements, remarks de Finetti (1972,
p.165).

The text by Martin Aigner (1979) on Combinatorial Theory has a comprehensive discussion
on symmetry operations on the set of functions on finite sets.

Vibrational spectroscopy is a perfect example illustrating the objective connection between
symmetry and observable measurements. The reader may refer to Harris and Bertolucci (1978),
where the authors review the classical symmetry operations applied to molecules and their resulting
classification according to the symmetries of point groups. The algebraic methods introduced later
on in the sequence are an integral part of the contemporary language with which the theory of
vibrational spectroscopy can be explained.

Erwin Schrödinger was born on August 12, 1887, in Vienna. His great discovery, the wave
equation in quantum mechanics, was made during the first half of 1926. A colleague of Hermann
Weyl and Peter Debye, he was greatly interested in Boltzmann’s probability theory. For this work
on the atomic spectra as an eigenvalue problem he shared with Dirac the Nobel Prize for 1933.
Schrödinger’s (1967) text What is Life? The Physical Aspects of the Living Cell remains a classic,
objective reading on the connections among physics, chemistry, biology and life. Of particular
interest is his account of the role of symmetry on molecular stability and transitions between
stationary states, e.g., pp. 49-55. He died on the 4th of January, 1961, in Vienna, after a long
illness.

The reader may consult Snedecor and Cochran (1989) for the basic notions of classical sta-
tistical inference, including the analysis of variance. The statistical aspects of quadratic forms
(needed for the second-order analysis associated with the canonical projections) are developed, for
example, in Rao (1973), Eaton (1983), Searle (1971), Muirhead (1982). , , ,
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The characterization of cyclic symmetries in the study of purine and pyrimidine contents of
local nucleotide sequences for evolution of human immunodeficiency virus type 1 is present in the
work of Doi (1991) on evolutionary molecular biology.

The literature on the many aspects of symmetry in science and methodology is overly extensive.
It ranges from studies considering the role of symmetry in beauty and evolution, e.g., Enquist
and Arak (1994), anatomic symmetry between fellow eyes, e.g., Pauleikhoff, Wormald, Wright,
Wessing and Bird (1992), parallel visual processes in symmetry perception in normal vision, e.g.,
Wagemans (1999), symmetry discrimination, e.g., Szlyk, Seiple and Xie (1995), Szlyk, Rock and
Fisher (1995), visual signaling by asymmetry, e.g., Swaddle (1999), Tyler (1996), to the works
of Graf and Schachman (1996) on random circular permutations of genes and polypeptide chains
and of Hellige (1993) on hemispherical asymmetry.

Symmetry-related considerations appear in many aspects of statistics: Symmetry and the
covariance structure of symmetrically dependent ordered observations, e.g., Lee and Viana (1999),
Viana and Olkin (2000), Lee (1998). ; Invariant measures in groups and their uses in statistics
e.g., Wijsman (1990). ; Invariance in factorial models, McCullagh (2000), quotient spaces and
statistical models, McCullagh (1999); symmetry models and structured data Dawid (1988), Bailey
(1991); Algebraic statistics, e.g., Pistone, Riccomagno and Wynn (2000).

A connection between the notions of symmetry and prior (to experiment) predictions or state-
ments is described in Weyl (1952, p.126) where he argues that all a priori statements in physics
have their origin in symmetry. If conditions which uniquely determine their effect possess cer-
tain symmetries, then the effect will exhibit the same symmetry. This is also Rosen’s symmetry
principle (Rosen (1995)). For example, equal weights balance in scales of equal arms, concluded
Archimedes a priori; in casting dice which are perfect cubes, each side is perceived as equally likely.
In contrast, the law of equilibrium for scales with arms of different lengths can only be settled by
experience or by physical principles based on experience.

Exercises

Exercise 1.1. Use the planar transformations {1, v, h, r, o} to classify the 26 letter symbols
A, B, . . . , Z and describe the resulting types based on their symmetry groups. Pólya (1954, p.89).

Exercise 1.2. Starting with the list {t, v, h, r} of symmetry transformations introduced above,
classify the following equations Pólya (1954, p.89):

y = x2, y2 = x, y = x3, x2 + 2y2 = 1, y = x + x4.

Exercise 1.3. The following are some elementary Euclidean (symmetry) transformations in
3-dimensional space:

(1) Displacements: I + D, where D is a diagonal matrix and I is the identity matrix;

(2) Rotation by θ deg around the z axis: Rθ =




cos θ −sin θ 0
sin θ cos θ 0

0 0 1


 ;

(3) Plane reflection (fixing the xy plane):




1 0 0
0 1 0
0 0 −1


 ;

(4) Line inversion (fixing the z axis):




−1 0 0
0 −1 0
0 0 1


 ;

(5) Glide (fixing the xy plane):




1 + a 0 0
0 1 + b 0
0 0 −1


 ;

(6) Screw (fixing the z axis): R(θ) +




0 0 0
0 0 0
0 0 c


;

(7) Spacial dilation: ρI;
(8) Plane and line projections.
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For any two of these Euclidean transformations T1 and T2, classify the resulting product transfor-
mation T1T2 and its commutativity (Is T1T2 − T2T1 = 0?). Determine, for each transformation
T, the existence of its inverse transformation.

Exercise 1.4. Determine the group of symmetries of the parallelepiped with vertices located
at (±a,±b,±c) ∈ R3 when:

(1) a 6= b 6= c;
(2) a = b 6= c;
(3) a = b = c.

You may assume a > 0, b > 0, c > 0.

Exercise 1.5. The following are the basic transformations used to describe a molecular struc-
tural symmetries. The notation is that used in the chemistry literature:

(1) Cn: an axial (clockwise) rotation of 360/n deg. A molecule with a Cn rotational axis can
be rotated 360/n deg along that axis. Cm

n indicates the m-fold (or iterated) rotation and
is equivalent to a rotation by m × 360/n deg;

(2) i: point symmetry or center of inversion;
(3) σh: a reflection on a plane orthogonal to the principal rotational axis (the Cn axis with

largest n);
(4) σv: a reflection on a plane containing the principal rotational axis;
(5) σd: a reflection in a plane of symmetry containing the principal rotational axis and

bisecting the angle between two 2-fold axes of symmetry (C2) which are orthogonal to
the principal axis;

(6) Sn: an improper rotation or n-fold alternating axis of symmetry: this is a combination
of a n-fold rotation and a reflection on a plane of symmetry orthogonal to the rotation
axis.

Consider the point group C3 = {E, C3, C2
3} and its realization in which the axis of rotation is

e3 = (0, 0, 1). Calculate the multiplication table for C3.

Exercise 1.6. Following the notation of Exercise 1.5, determine the multiplication table for
the point group D2 = {E, C2,1, C2,2, C2,3}. The rotation axes of D2 are orthogonal, so that you
may consider the realization in which the axes of C2,j are e1, e2 and e3.

Exercise 1.7. Following the notation of Exercise 1.5, determine the multiplication table for
the point group C4v = {E, C4, C2

4, C3
4, σd,1, σd,2, σv,1, σv,2}. You may consider the realization in

which the axis of rotation for C4 is e3 and the reflection planes σv,1, σv,2, σd,1 and σd,2 are defined
by

(1) σv,1: e1 and e3;
(2) σv,2: e2 and e3;
(3) σd,1: e1 + e2 and e3;
(4) σd,2: e1 − e2 and e3.

Exercise 1.8. Following the notation of Exercise 1.5, consider the point group

D2h = {E, C21, C22, C23, σh1, σh2, σh3, i}

and the realization in which the axis of rotation for C2j are e1, e2 and e3 and the reflection plane
defining σhj is the plane orthogonal to ej through the origin (0, 0, 0). Show that the multiplication
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table of D2h is given by
D2h 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8

2 = C21 2 1 4 3 6 5 8 7

3 = C22 3 4 1 2 7 8 5 6

4 = C23 4 3 2 1 8 7 6 5

5 = σh1 5 6 7 8 1 2 3 4

6 = σh2 6 5 8 7 2 1 4 3

7 = σh3 7 8 5 6 3 4 1 2

8 = i 8 7 6 5 4 3 2 1

.

Exercise 1.9. Based on the linear representation of C2h discussed in this chapter, construct
a linear representation for the point groups defined in Exercises 1.5, 1.6, 1.7, and 1.8 above.

Exercise 1.10. Explain why a molecule which has the symmetry of the point group Sn, e.g.,
Exercise 1.5, is always superimposable on its mirror image.

Exercise 1.11. Refer to the point group C2h, given by Matrix (1.3), and show that
(1) The only subspace of R3 left invariant by its action is the null {0} subspace;
(2) Conclude that the C2H2Cl2-trans molecule, which has the symmetry of C2h, cannot have

a dipole moment vector4;
(3) Explain why that a molecule with the symmetry of a point reflection (i) cannot have a

dipole moment vector.

Exercise 1.12. The ammonia molecule, NH3, has the symmetry of a tetrahedral structure
with one salient vertex for the nitrogen atom. Conclude that the ammonia has a dipole moment
vector.

Exercise 1.13. In molecular biology, the work of Doi (1991) on the evolutionary strategy of
the HIV-1 virus defines the cyclic orbit of short nucleotides sequences. For example,

Ouyyu = {uyyu, uuyy, yuuy, yyuu}
is the cyclic orbit of the purine (u)-pyrimidine (y) sequence {uyyu}, obtained by cyclically moving
the position of the residues in the sequence (position-symmetry). The frequency diversity in each
cyclic orbit is the ratio

max
s∈Of

x(s)/ min
s∈Of

x(s)

between the within-orbit largest and the smallest of the observed frequencies x(s). The frequencies
x(s) are calculated within a given fixed region of interest, such as conservative or hyper variable
regions, which may lead to different interpretations of the virus’ evolutionary strategies. Calculate
the frequency diversity of f = {uyyy} relative to the reference sequence

uuyuyuuyyyuuuyuyuuuyuyuyuyuuuuuyyyuyuyuuuyyyyyyuyuyuyuy.

Exercise 1.14. Consider the space V of binary sequences in length of ` = 4, described by
Tables (1.6) and (1.9). With the notation of Example 1.6.1, note that

Pk(s) =

{
1/

(
`
k

)
if s ∈ Ok

0 if s ∈ Ok

, s ∈ V,

is a uniform probability law for orbit Ok, k = 0, . . . , `, characterized by those binary sequences
with exactly k entries equal to 1. Then,

(1) show that P =
∑`

k=0 γkPk, where
∑

k γk = 1, γk ≥ 0, is a probability law in V;

4The electric dipole moment vector is a physical property of the molecule representing its net electric charge,

pointing from the center of the negative charge to the center of the positive charge.
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(2) show that P is left-invariant, that is, P(sτ−1) = P(s) for all τ ∈ S` and s ∈ V;
(3) conversely, show that all left invariant probability laws in V are linear convex combina-

tions of locally (within-orbit) uniform laws.

Exercise 1.15. Following Exercise 1.14, show that there are only three types of position-
symmetry orbits, Oλ, namely O40, O31 and O22, corresponding to the integer partitions λ = 40,
λ = 31 and λ = 22 of 4 in length of 2. Consequently, verify that

Probability of law type L40 = P(O40) =

(
4

4,0

)

|V|
=

4!
4!0

1
16

=
1
16

,

Probability of law type L31 = P(O31) =

(
4

3,1

)

|V| =
4!

3!1!
1
16

=
1
4
,

Probability of law type L22 = P(O22) =

(
4

2,2

)

|V| =
4!

2!2!
1
16

=
6
16

.

Moreover, there are
(

2
1,1

)
= 2 orbits of type λ = 40 or type λ = 31 and

(
2

2,0

)
= 1 orbit of type

λ = 22.

Exercise 1.16. Following Exercise 1.14, let Γ = {sk = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0); k = 0, . . . , `}.

(1) Show that Γ ∩Ok = {sk}, k = 0, . . . , `. That is, Γ is a cross-section in V;
(2) If x is a scalar function defined in V and P is a probability law in V, show that

∑

s∈V

x(s)P(s) =
∑

s∈Γ

∑

τ∈G

x(sτ−1)P(sτ−1)/|Ok|

Exercise 1.17. Suppose that the energy level E of a system is determined by the equation

E(nx, ny, nz) =
n2

x

a
+

n2
y

b
+

n2
z

c
,

where nx, ny, nz ∈ {1, 2, 3} and a, b, c are (real positive) constants of the system.
(1) Determine all energy levels of the system in each one of the following cases:

(a) a = 1/5, b = 1/2, c = 1/4;
(b) a = b = 1/5, c = 1/4;
(c) a = b = c = 1/5.

(2) What is the role of symmetry in determining the number of energy levels?

Exercise 1.18. The area of the parallelogram determined by the vectors v′ = (r1, p1) and
w′ = (r2, p2) in R2 is given by the absolute value of the symmetric bilinear form

(v, w) = det
[
r1 r2
p1 p2

]
= r1p2 − r2p1,

or, equivalently, (v, w) = v′
[

0 1
−1 0

]
w. Let

Sp(2, R) = {non-singular 2 × 2 real matrices A; (Av, Aw) = (v, w)}.

That is, Sp(2, R) is the set of (symmetry) transformations leaving the form (., .) invariant. Show
that Sp(2, R) is a subgroup of the group GL(2, R) of non-singular real 2× 2 matrices. In Physics,
r and p have the interpretation of position and momentum, respectively, of a particle constrained
to move on a line. The set of vectors (r, p) ∈ R2 define the particle’s phase space. Its geometry,
determined by the standard form (., .), is called symplectic geometry and Sp(2, R) is the (real)
symplectic group. It respects the geometry of the phase space and is one of the classic isometry
groups.

Exercise 1.19. If an object of mass m is moving in the xy plane according to

r(t) = ut cos(t + α), vt sin(t + α), 0),
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evaluate its momentum p = mdr/dt and show that the angular momentum r×p remains invariant
under rotations in the xy plane around the z axis. Also show that the trajectories of constant
angular momentum are elliptic orbits in the xy plane.

Exercise 1.20. Moments of the canonical distribution. Show that the mean E , and variance
var (E), of the canonical distribution can be expressed in terms of the partition function Z =∑

j e
−βEj as

E = −∂ lnZ
∂β

, var (E) =
∂2 ln Z
∂β2

.

Exercise 1.21. The diagram of a basic Wheatstone bridge5 circuit, shown in Figure 1.1,
contains four resistances {r1, r2, r3, r4}, a constant voltage input Vin, and a voltage Vg, related by

Figure 1.1. Wheatstone bridge circuit

Vg =
r1r3 − r2r4

(r1 + r2)(r3 + r4)
Vin.

Given a fixed set of resistors for which Vg 6= 0, consider the set

K = {1, (12)(34), (13)(24), (14)(23)}
of permutations of the index set {1, 2, 3, 4} and define the function

x(τ ) =
rτ1rτ3 − rτ2rτ4

(rτ1 + rτ2)(rτ3 + rτ4)
, τ ∈ K.

Assume that Vin = 1 so that x(τ ) is then the voltage measurement Vg when the resistors in the
bridge are permuted according to τ ∈ K.

(1) Show that K, together with the operation of composition of functions, is a group, and
conclude that x is an example of a scalar function indexed by a finite group;

(2) Show that x can be written as x(τ ) = χ(τ )x(1), where χ(τ ) ∈ {1,−1} and satisfies

χ(τσ) = χ(τ )χ(σ)

for all τ, σ in K. Interpret χ as a one-dimensional representation of K.

Exercise 1.22. Let V indicate the structure defined as the set of all 2×2 matrices with entries
in {0, 1}. There are 16 points in V, called incidence or relation matrices. Let W indicate the space
of all mappings from {a, b} to {0, 1}, with a 6= b. Show that there is a one-to-one correspondence
between V and W × W. Study the orbits of V under the different actions of S2 on W × W.

Exercise 1.23. A relation r in a set A is any subset of A × A. The composition q ? r of
relations r and q in A is defined as the set of all pairs (x, z) in A × A such that (x, y) ∈ q and
(y, z) ∈ r for some z ∈ A. Clearly, any relation in A can be written as a incidence matrix. Indicate
by Mr the incidence matrix corresponding to the relation r in A.

Show that Mq?r = Mq • Mr, where here • indicates matrix multiplication under Boolean
arithmetic (usual multiplication rule and addition rule modified with 1 + 1 = 1);

5e.g., wttp://www.efunda.com/designstandards/sensors/methods/.
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Given a permutation τ in A, indicate by ρ(τ ) the permutation matrix associated with τ . Show
that ρ(τ ) • Mr is an incidence matrix for all permutation τ in A and all relation r in A;

If ϕ(τ, r) = ρ(τ ) • Mr, show that

ϕ(τ, ϕ(σ, r)) = ϕ(τσ, r),

thus showing that ϕ is an action of the group of permutations on the structure of all relations in
A.

Exercise 1.24. For ω1 and ω2 probability laws in V = S`, define the convolution ω1 ? ω2 of
ω1 and ω2 by

ω1 ? ω2 : s 7→
∑

t∈V

ω1(ts−1)ω2(t), s ∈ V.

Show that ω1 ? ω2 is a probability law in V. Is ? associative and commutative? Describe the
convolution law when V is restricted to cyclic permutations.

Exercise 1.25. Following Exercise 1.24, given a probability law ω in S`, define ω′ by ω′(s) =
ω(s−1). Show that ω′ is a probability law in CL, and study the properties of the symmetrized law
ω ? ω′. Show that the symmetrized uniform law is the triangular law.

Exercise 1.26. Given x : CL 7→ R, the (left) symmetrized version x of x is the map

x(s) =
1

| G |
∑

η∈G

x(sτ−1).

Let w be a probability law in V = CL which is permutation symmetric. Then, relative to w, show
that E(x) = E(x), when the action sτ−1 is transitive (that is, the action generates a single orbit,
equal to V), and otherwise,

E(x) =
∑

i

E(x | Oi)Pw(Oi),

where Oi are the distinct orbits generated by the action sτ−1. Hint: refer to Matrix (1.9).
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2.1. Introduction

This chapter is an introduction to the elements of linear representations of finite groups that
have potential interest to the analysis of structured data. In Chapter 1 we have discussed a number
of examples introducing a structure V, such as the mapping space, a group G of symmetries, and
a rule ϕ for composing the symmetries (τ ) with the elements s ∈ V. In addition, at each point s
of V we measure something, obtaining the data vector x = (x(s))s∈V , a point in the data space
V = Rv. The structured data x, y, . . .∈ V are data indexed by V.

Matrix (2.1) describes the frequencies with which the 16 binary sequences in lenght of four
appear in 10 subsequent 200 bp-long regions of BRUCG isolate of the Human Immunodeficiency
Virus Type I. The entire virus has a 9229 bp long nucleotide sequence. To locate the sequence in
the National Center for Biotechnology Information 1 data base, use the accession number K02013.

(2.1)

region 1 2 3 4 5 6 7 8 9 10

yyyy 5 8 3 5 7 8 5 25 16 6

uuuu 52 29 36 35 30 34 44 35 37 17

yuuu 18 16 20 16 20 20 16 18 17 17

uyuu 12 16 19 14 20 14 15 11 16 14

uuyu 15 14 21 17 21 12 13 10 16 12

uuuy 17 16 20 16 20 19 16 18 17 17

yyuu 16 11 11 10 10 14 12 15 11 15

yuyu 6 12 9 11 6 8 8 2 4 10

yuuy 10 11 9 8 10 8 11 8 10 11

uyyu 11 14 10 11 8 12 14 10 11 15

uyuy 9 10 11 14 7 6 6 1 4 9

uuyy 12 14 8 8 8 15 14 16 11 16

yyyu 5 6 5 7 8 8 6 10 7 10

yyuy 1 9 4 8 7 7 7 5 7 10

yuyu 4 6 7 11 8 5 5 4 7 9

uyyy 5 6 5 7 8 8 6 10 7 10

1http://www.ncbi.nlm.nih.gov/

29
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Here the symbols {u, y} represent the classes of purines {a, g} and pyrimidines {c, t}, respectively,
translated from the original sequence written with the {a, g, c, t} alphabet.

(2.2)

s(1) y u y u u u y y y u u u y y y u

s(2) y u u y u u y u u y y u y y u y

s(3) y u u u y u u y u y u y y u y y

s(4) y u u u u y u u y u y y u y y y

label → 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2 |fix|

µ = 1111
1 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2 16

µ = 2110
(34) 1 16 15 14 8 12 13 7 11 6 10 4 5 9 3 2 8

(23) 1 16 15 12 14 8 11 13 7 10 4 6 9 3 5 2 8

(24) 1 16 15 8 12 14 7 11 13 4 6 10 3 5 9 2 8

(12) 1 16 14 15 12 8 13 10 6 11 7 4 9 5 2 3 8

(13) 1 16 12 14 15 8 10 11 4 13 6 7 9 2 3 5 8

(14) 1 16 8 14 12 15 6 4 7 10 13 11 2 5 3 9 8

µ = 3100
(234) 1 16 15 12 8 14 11 7 13 4 10 6 3 9 5 2 4

(243) 1 16 15 8 14 12 7 13 11 6 4 10 5 3 9 2 4

(123) 1 16 14 12 15 8 10 13 6 11 4 7 9 2 5 3 4

(124) 1 16 14 8 12 15 6 10 13 4 7 11 2 5 9 3 4

(132) 1 16 12 15 14 8 11 10 4 13 7 6 9 3 2 5 4

(134) 1 16 12 14 8 15 10 4 11 6 13 7 2 9 3 5 4

(142) 1 16 8 15 12 14 7 4 6 11 13 10 3 5 2 9 4

(143) 1 16 8 14 15 12 6 7 4 13 10 11 5 2 3 9 4

µ = 2200
(12)(34) 1 16 14 15 8 12 13 6 10 7 11 4 5 9 2 3 4

(13)(24) 1 16 12 8 15 14 4 11 10 7 6 13 3 2 9 5 4

(14)(23) 1 16 8 12 14 15 4 6 7 10 11 13 2 3 5 9 4

µ = 4000
(1234) 1 16 14 12 8 15 10 6 13 4 11 7 2 9 5 3 2

(1243) 1 16 14 8 15 12 6 13 10 7 4 11 5 2 9 3 2

(1324) 1 16 12 8 14 15 4 10 11 6 7 13 2 3 9 5 2

(1342) 1 16 12 15 8 14 11 4 10 7 13 6 3 9 2 5 2

(1432) 1 16 8 15 14 12 7 6 4 13 11 10 5 3 2 9 2

(1423) 1 16 8 12 15 14 4 7 6 11 10 13 3 2 5 9 2

|Gs| 24 24 6 6 6 6 4 4 4 4 4 4 6 6 6 6

.

These 16 sequences, introduced earlier on in Section 1.6.1 of Chapter 1, identify the structure V
of interest as the mapping space all binary sequences in length of four, upon which the group S4

acts on the position of the letters.
The structured data are the frequencies x(s) with which the points s ∈ V appear in each 200-

bp long region of the isolate, as shown in the columns of Matrix (2.1). Figures 2.1, 2.2, 2.3 and
2.4 show the relative frequency distributions of these 16 words along the 45 adjacent 200-bp long
regions of the isolate. Figure 2.1 includes the two single-element orbits. The range, (0 − 0.3), of
the y-axis is common to all graphs. The x-axis indicates the number of the consecutive 45 regions.

With the language introduced in the previous chapter, each column in Matrix 2.1 is a data
vector in V = R16 indexed by V. The symmetry transformations act on s ∈ V according to sτ−1
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determining the location symmetry orbits, summarized in Table 2.2. For example, when τ = (234)
and s = yyuu (label 13) we have sτ−1 = yuyu (label 11). We will refer to Matrix (2.2) several
times over again to illustrate many aspects of interest to the analysis of structured data. The
symbols λ, Gs and |fix| in Matrix (2.2) will be defined later on in the chapter.

In this chapter we will introduce the algebraic elements necessary for the analysis of structured
data as introduced in Section 1.9 of Chapter 1. These elements will determine the canonical pro-
jections in the data space V and their invariants as determined by the structure V, the symmetries
of interest, and the way with which those symmetries act on V.

Figure 2.1. Distribution of yyyy and uuuu along the BRU isolate.

Figure 2.2. Distribution of the words in the position symmetry orbit Oyuuu

along the BRU isolate.
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Figure 2.3. Distribution of the words in the position symmetry orbit Oyuyu

along the BRU isolate.

Figure 2.4. Distribution of the words in the position symmetry orbit Oyyyu

along the BRU isolate.

2.2. Permutations, groups and homomorphisms

Recall, from Section 1.6 in Chapter 1, that we indicate by CL the set of all mappings s defined
on L with values in C, where S and L are finite sets, and by SL the set of all bijective mappings, or
permutations, defined on the set L. In particular, when L = {1, 2, . . ., `}, we write S` to indicate



2.2. PERMUTATIONS, GROUPS AND HOMOMORPHISMS 33

these `! permutations. In S3, the 3! = 6 permutations are indicated with the notation

(12) ≡




1 → 2
2 → 1
3 → 3


 , (13) ≡




1 → 3
2 → 3
3 → 1


 , (23) ≡




1 → 1
2 → 3
3 → 2


 ,

(123) ≡




1 → 2
2 → 3
3 → 1


 , (132) ≡




1 → 3
2 → 1
3 → 2


 , 1 ≡



1 → 1
2 → 1
3 → 3


 .

The composition τσ of two permutations τ and σ is the permutation obtained by first applying σ
followed by τ , e.g., if τ = (23) and σ = (13), then τσ = (123). Note that στ = (132), so that the
composition of permutations is not commutative in general. Permutations such as

(12) ≡ 1 → 2 → 1, or (132) ≡ 1 → 3 → 2 → 1

are called cyclic permutations. Every permutation can be decomposed as the product of disjoint
cyclic permutations. For example,

(2.3) σ =

[
1 2 3 4 5 6 7 8

3 8 7 6 1 2 5 4

]
= (1375)(2846).

Equivalently, σ = (2846)(1375), a consequence of the fact that the composition of any two disjoint
(or without common elements) cyclic permutations is commutative. A 2-element cyclic permuta-
tion, e.g., (13), is called a transposition. Note that

(2.4) (1375) = (15)(17)(13), (2846) = (26)(24)(28).

In general, every cyclic permutation decomposes as a (non-commuting) product of transpositions.
This is true for all two-cycles. Assuming that it holds for cycles of length n − 1, direct evaluation
shows that

(12 . . .n) = (1n)(12 . . .n − 1),

thus proving that the stated decomposition holds for cycles of length n.
From 2.3 and 2.4 we obtain

σ = (1375)(2846) = (15)(17)(13)(26)(24)(28),

and observe that σ, of length 8, decomposes as the product of 2 disjoint cycles. These two numbers
are sufficient to characterize the permutation. The difference 8 − 2 = 6 is called the decrement
and corresponds to the number of transpositions expressing σ. To see this, note that every cycle
of length n is the product of n − 1 transpositions,

(12 . . .n) = (1n)(1 n − 1) . . . (12),

so that a permutation σ = C1 . . .Ch of length m with h disjoint cycles of length n1, . . . , nh can be
written as the product of

h∑

i=1

(ni − 1) = m − h = decrement (σ)

transpositions. Since the parity of a permutation is defined as the parity of its decrement, it
follows that an even (respectively odd) permutation is the product of an even (respectively odd)
number of transpositions.

Proposition 2.2.1. For all permutations σ and transpositions τ ,

Decrement (τσ) = Decrement (σ) ± 1.

Proof. Following Bacry (1963), there are two cases to consider: When {a, b} belong to a
common cycle of σ, the fact that

(ab)(a . . .xb . . .y) = (a . . .x)(b . . .y),
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shows that the number of cycles of σ is increased by one unit, so that the decrement of σ decreases
by one unit; Similarly, when {a, b} belong to a different cycle, the fact that

(a . . .xb . . .y) = (ab)(a . . .x)(b . . .y)

shows that the number of cycles is decreased by one unit, and consequently the decrement of σ
is increased by one unit. In both cases, because disjoint cycles commute, it is always possible to
write the transposition to the left of the cycle(s) of interest. �

Definition 2.2.1. The sign (Sgn), or signature, of a permutation is given by

Sgn(σ) =

{
1 if σ is even,

−1 if σ is odd.

As a consequence of Proposition 2.2.1, the reader may verify that the parity of the product
στ of any two permutations σ, τ is given by




σ\τ even odd

even even odd

odd odd even


 ,

and that, consequently,

(2.5) Sgn (στ ) = Sgn (σ)Sgn (τ )

for any two permutations σ, τ .

Definition 2.2.2. Two permutations σ and η are conjugate when there is a permutation τ
such that σ = τητ−1 for some permutation τ .

The reader may verify that the relation σ ∼ η defined by conjugacy is an equivalence relation.
The resulting classes are called conjugacy classes. Clearly, Definition 2.2.2 applies to any group
in general.

The reader may also observe that the only effect the operation of conjugacy has on the cycle
structure of a permutation is that of eventually renaming the elements within each cycle. For
example, in S3, if η = (12) and τ = (23), then the conjugacy τητ−1 transforms the cycle (12) into
the cycle (13), that is, τητ−1 = (13). We then have:

Proposition 2.2.2. Conjugate permutations have the same cycle structure.

2.2.1. Integer partitions and Young frames. In view of Proposition 2.2.2, the conjugacy
classes of permutations groups S` are naturally associated with the integer partitions

λ = (n1, n2, . . . , n`), n1 ≥ . . . ≥ n` ≥ 0, n1 + . . . + n` = `

of `, describing the permutation’s cycle structure, and their corresponding Young frames. To
illustrate, consider the case n = 3. The partitions, cycle structure and corresponding conjugacy
class representatives are: λ = (1, 1, 1) indicating the cycle structure with 3 cycles of length 1. We
also write λ = 13, with 1 as a representative member; λ = (2, 1, 0), or 2111 indicating the cycle
structure with 1 cycle of length 2 and one of length 1. A representative is (12); λ = (3, 0, 0), or
3102, having one cycle of length 3. A representative is the element (123).

The associated Young frames are

(1, 1, 1) =
−
−
−

, (2, 1, 0) =
− −
− , (3, 0, 0) = − − − ,

with n1, . . . , n` boxes in rows 1, . . . , ` respectively. Indicating by (m1, . . . , mk) the multiplicities
with which the k distinct components of each frame occur, each frame can be written, uniquely,
as

λ = (am1
1 , . . . , amk

k ), a1 > a2 . . . ≥ 0.
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Definition 2.2.3. A group is a nonempty set G equipped with an associative operation (σ, τ ) ∈
G × G → στ ∈ G, and an element 1 ∈ G, satisfying:

(1) 1τ = τ1, for all τ ∈ G;
(2) for every τ ∈ G, there is an element τ−1 ∈ G such that ττ−1 = τ−1τ = 1.

A commutative group is one in which the operation is commutative (the term Abelian is also
common in the literature). A subset of G which is a group under the group operation of G is
called a subgroup of G.

Example 2.2.1 (Permutation groups). The set S`, together with the operation of mapping
composition, defines the group of permutations on the integers {1, . . . , `}. Similarly, SL together
with the operation of composition of functions is a finite group. S3 is a permutation group of order
3! = 6 (the number of elements in the group). The resulting multiplication table, or Cayley table,
for S3 is shown in Matrix (2.6), where the permutations are indicated by the symbols on the first
column.

(2.6)

∗ a b c d e f
a = 1 a b c d e f

b = (12) b a e f c d

c = (13) c f a e d b

d = (23) d e f a b c

e = (123) e d b c f a

f = (132) f c d b a e

.

In Table (2.6) as in Table (1.1) of Chapter 1, we adopt the convention that when both the
algebraic (group multiplication) and analytic (function composition) are to be distinguished, the
group operation is then represented by the ∗ symbol, and the function composition by simple
juxtaposition. For example, then, f ∗ b = c as group operation of row ∗ column, whereas c = bf
indicates the function composition f followed by b. Otherwise, the algebraic interpretation for a
notation such as στ takes precedence. �

Example 2.2.2 (Cyclic groups). Indicate by Z the set of integers and by pZ the set {. . .−
p, 0, p, . . .} of integer multiples of p, where p is any positive integer. Note that pZ is a subgroup
of the additive group (Z, +). The sets

Ok = {k + z mod p; z ∈ Z} ≡ k + pZ, k = 0, 1, . . ., p − 1,

of residues modulo p are the orbits or cosets of pZ in Z, and decompose Z into the disjoint union

Z = O0 ∪ . . .∪Op−1.

Direct calculation shows that the set of orbits, together with the operation

Om + On = Om+n mod p

form a group, called the quotient group, and denoted by Z/pZ. The quotient group can be
generated by any one of its points by taking successive powers, that is,

Om, 2Om, . . . , (p − 1)Om

generates Z/pZ, for any Om in Z/pZ. When this property verifies we say that the group is cyclic
and that Om is a group generator. Clearly, then, cyclic groups are commutative. The cyclic group
C3 = {1, (123), (132)} is a commutative subgroup of S3, of order 3 generated, for example, by
(123). �

A disjoint decomposition of the form Z = O0 ∪ . . .∪Op−1 is useful in the evaluation of sums
(such as expectations) of data x(z) indexed by Z. If x : Z → R, and Γ = {0, 1, . . ., p − 1} then

∑

Z

x(z) =
∑

k∈Γ

∑

z∈Ok

x(z) =
∑

Γ

∑

z∈Z

x(k + pz),
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provided that the sum over Z is well-defined. Here, Γ is known as a cross-section in Z. It intercepts
each orbit in exactly one point. In particular, if x is constant in each orbit of the group pZ, taking
the value xk in Ok, then the expected value E(x) of x can be then evaluated as

E(x) =
∑

Γ

∑

z∈Z

x(k + pz)P(k + pz) =
∑

Γ

xk

∑

z∈Z

P(k + pz) =
∑

Γ

xkP(Ok),

where P(Ok) is the probability of orbit Ok under the underlying probability model P for z ∈ Z. �

Example 2.2.3 (Matrix groups). The set GL(F, n) of n × n nonsingular (i.e., nonzero deter-
minant) matrices with entries in the field F of scalars is a group under the operation of matrix
multiplication. It is usually called the general linear group. Equivalently, we may consider the
underlying vector space V = Fn and write GL(V) to indicate the general linear group. In the
present text, it will be understood that F = R or F = C. Note that for n ≥ 2 these groups are
non-commutative. Some classical subgroups: the set Mn of all n × n permutation matrices is a
finite subgroup of GL(V), of order n!; the special linear (or unimodular) group of all n×n matrices
of determinant one, denoted by SL(n); the proper orthogonal group of all n×n matrices r ∈ SL(n)
for which rr′ = I, denoted by O+(n). For n = 2,

r =
[

cos θ sin θ
− sin θ cos θ

]
.

The proper affine group in the line, is defined by

{
[
x y
0 1

]
, x > 0}.

The step transformation group is the set of all matrices of the form

{
[
x y
0 x

]
, x > 0}.

�

The convex hull of Mn (all permutation matrices in dimension n) is the set of all doubly
stochastic matrices in dimension n. Given a doubly stochastic matrix P and a vector y satisfying
y1 ≥ . . . ≥ yn then the new vector x = Py is said to majorize y, x � y, in the sense that
x1 ≥ . . . ≥ xn and

n∑

j=1

xj =
n∑

j=1

yj,

m∑

j=1

xj ≥
m∑

j=1

yj, m = 1, . . . , n − 1.

In fact, it can be shown that x � y ⇐⇒ x = Py. For a detailed discussion of majorization and
further references see Marshall and Olkin (1979).

Example 2.2.4 (The group of the quaternions). Given the vector x ∈ R3, the matrix

X = X(x) =

[
x3 x1 − ix2

x1 + ix2 −x3

]
∈ C2×2

is called the matrix associated with the vector x. These matrices have several remarkable proper-
ties, e.g., Cartan (1966)[p.43]). In particular, as the reader may verify, for all x, y ∈ R3, that

det X = −||x||2; X2 = ||x||2
[
1 0
0 1

]
; XY + YX = 2x′y;

i(XY − YX)/2 = matrix associated with (the bivector) x × y.

In particular if we consider the matrices

H1 = X(e1) =

[
0 1

1 0

]
, H2 = X(e2) =

[
0 −i

i 0

]
, H3 = X(e3) =

[
1 0

0 −1

]

associated with the basis vectors e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1), we observe that
H2

1 = H2
2 = H2

3,
H1H2 + H2H1 = H1H3 + H3H1 = H2H3 + H3H2 = 0,
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and H1H2H3 = iH0, where H0 =
[
1 0
0 1

]
. Moreover, because

3∑

`=0

a`H` =
[
a0 + a3 a1 − ia2

a1 + ia2 a0 − a3

]

we conclude that there is no linear relation of the form
∑3

`=0 a`H` = 0 with complex coefficients
unless all these coefficients are zero. That is, any complex 2× 2 matrix can be expressed uniquely
as the sum of a scalar matrix a0H0 and the matrix associated with a vector.

Consequently, we can identify H0, . . . , H3 with a basis for a four-dimensional vector space H on
which a vector multiplication has been defined. For all f, g, h ∈ H and all scalars α in the field of the
vector space, we have fg ∈ H, f(g+h) = fg+fh, (f+g)h = fh+gh, a(fg) = f(ag) = (af)g. That is, H
constitute an algebra. When expressed in terms of I0 = H0, I1 = −iH1, I2 = −iH2, I3 = −iH3,
the algebra is known as Hamilton’s algebra2 of the quaternions. This algebra is associative but
not commutative. The elements 1 ≡ H0, i ≡ iH3, j ≡ iH2 and k = iH1 satisfy the relations

ij = −ji = k, jk = −kj = i, ik = −ki = −j, i2 = j2 = k2 = −1,

and {±1,±i,±j,±k} form a group known as the group of the quaternions.
We observe that

det[
3∑

`=0

a`H`] = det
[

a0 + a3 a1 − ia2

a1 + ia2 a0 − a3

]
= a2

0 − a2
1 − a2

2 − a2
3 = −||a||2,

where in the above expression ||.|| indicates the norm defined by the (Lorentz) fundamental form.
Whether or not ||a||2 = 0 has non-zero solutions depends on the field of scalars. In particular,
when a0 = 0, there are infinitely many complex (isotropic vectors) solutions to ||a||2 = 0, whereas
only (0, 0, 0, 0) is a solution over the real field. For each non-zero real a0 the real solutions to
||a||2 = 0 transform as the full group of rotations in three dimensions. �

Definition 2.2.4. Given two groups G, H, a homomorphism from G to H is a function
ρ : G → H preserving the group structure, that is,

ρ(τσ) = ρ(τ )ρ(σ), for all τ, σ ∈ G.

Note that if ρ is a homomorphism of G then ρ(1) = 1 and ρ(τ−1) = ρ(τ )−1 for all τ ∈ G. An
injective homomorphism is called a monomorphism. An isomorphism is an invertible homomor-
phism. When G = H, the isomorphism ρ is called an automorphism in H. The kernel of the
homomorphism ρ is the set of those elements in G mapped into the identity element of H, that is,
kerρ = {τ ∈ G; ρ(τ ) = 1}, whereas its range or image is the set imρ = {ρ(τ ); τ ∈ G}.

Note that when kerρ = {1} then the homomorphism ρ is an isomorphism onto its image in H.
In fact, ρ(τ ) = ρ(σ) implies

ρ(τσ−1) = ρ(τ )ρ(σ−1) = ρ(σ)ρ(σ−1) = ρ(1) = 1,

so that τσ−1 ∈ {1}, or, σ = τ .

Example 2.2.5. The permutation group S` is isomorphic to the group M` of `×` permutation
matrices: to each permutation τ in S` we associate the permutation matrix r(τ ) in M` representing
the changing

{e1, e2, . . . , e`} → {eτ1, eτ2, . . . , eτ`}
in the canonical basis {e1, e2, . . . , e`} of R`. We then have r(τ ∗ σ) = r(τ )r(σ), for all τ, σ ∈ S`. In
S3, for instance, (123) = (13) ∗ (23) and

r[(123)] =




0 1 0
0 0 1
1 0 0


 =




0 0 1
0 1 0
1 0 0






1 0 0
0 0 1
0 1 0


 = r[(13)]r[(23)].

�
2William Rowan Hamilton, 1805-1865.
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Example 2.2.6. The proper affine group in the line described in Example 2.2.3 is isomorphic
to the transformations group

t → xt + y, x > 0,

thus justifying its name. More specifically, as the reader may verify, if Fi = {
[
xi yi

0 1

]
, xi > 0},

fi(t) = xit + yi and ξ(fi) = Fi, i = 1, 2, then f1f2(t) = f1(f2(t)) = x1x2t + x1y2 + y1, so that

ξ(f1f2) = ξ(f1)ξ(f2).

The reader may also verify that φ maps the identity transformation t → t into the 2 × 2 identity
matrix I. Moreover, by showing that any point t → tx + y can be smoothly connected to the
identity transformation, one shows that any point in the proper affine group can be smoothly
connected to the identity matrix I. The (continuous) group in the neighborhood of I is called a
Lie Group (See also Exercise 2.4). �

Example 2.2.7 (Normal subgroups). Fix any member τ of a group G and define the mapping
iτ : G → G by iτ (σ) = τστ−1. Then, for every τ ∈ G, the mapping iτ is a isomorphism in G, and
the mapping τ 7→ iτ is a homomorphism of G, taking values in the set Aut (G) of automorphisms
in G. The mapping iτ is usually called the conjugation by τ , or the inner automorphism generated
by τ . A subgroup N of G satisfying the property τNτ−1 ⊂ N for all τ ∈ G is called a normal or
stable subgroup of G. That is, a normal subgroup contains the complete conjugacy classes of all its
elements. pZ is a normal subgroup of (Z, +). Homomorphism kernels are normal subgroups. �

Definition 2.2.5. Given two groups N and H, let α be a homomorphism from H to Aut(N).
For (τ, σ) and (τ1, σ1) in N × H, define the operation

(τ, σ) ×α (τ1, σ1) = (τα(σ)(τ1), σσ1).

Then, G = N× H, together with ×α, is a group, called the semidirect product of N and H under
α. The reader may want to verify that 1G = (1N, 1H) and that

(τ, σ)−1 = (α(σ−1)(τ−1), σ−1).

The direct product of two groups is obtained when α(σ) ≡ 1 for all σ ∈ H in the above
definition.

Example 2.2.8. Let’s evaluate the direct product G = C3 × C2. Write C2 = {1, τ} and
C3 = {1, σ, σ2}. Direct evaluation shows that the resulting multiplication table for G is

C3 × C2 1 2 3 4 5 6

1 = (1, 1) 1 2 3 4 5 6

2 = (σ, 1) 2 3 1 5 6 4

3 = (σ2, 1) 3 1 2 6 4 5

4 = (1, τ ) 4 5 6 1 2 3

5 = (σ, τ ) 5 6 4 2 3 1

6 = (σ2, τ ) 6 4 5 3 1 2

,

where the elements of G are indicated according to the first column of the table. Comparing the
first and second rows,

[
1 1 2 3 4 5 6

2 2 3 1 5 6 4

]
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of the table, we observe that this corresponds to the permutation (123)(456). Similarly, following
with the remaining rows we obtain the equivalence

(1, 1) 1

(σ, 1) (123)(456)

(σ2, 1) (132)(465)

(1, τ ) (14)(25)(36)

(σ, τ ) (153426)

(σ2, τ ) (162435)

.

The reader now can recognize that these permutations coincide with the cyclic group C6. We have
then, C3 × C2 ' C6. It is not difficult to verify that, in general, Cm × Cn ' Cmn, provided that
m and n are relative primes.

Example 2.2.9 (Dihedral groups). The semi-direct product G = C3 ×α C2 defined by the
group homomorphism

α(σ)(τ ) =

{
τ if σ = 1
τ−1 if σ 6= 1

from C2 with values in Aut(C3) follows from the multiplication rule

(τ, σ) ×α (τ1, σ1) =

{
(ττ1, σ1) when σ = 1
(ττ−1

1 , tσ1) when σ = t = (12)

in C3 × C2, from which we obtain the multiplication table

(2.7)

×α 1 2 3 4 5 6

1 = (1, 1) 1 2 3 4 5 6

2 = (η, 1) 2 3 1 5 6 4

3 = (η2, 1) 3 1 2 6 4 5

4 = (1, t) 4 6 5 1 3 2

5 = (η, t) 5 4 6 2 1 3

6 = (η2, t) 6 5 4 3 2 1

,

where t indicates the transposition (12) in C2. Note that rows 1 and 2 define the permutation
(123)(456). Defining the remaining permutations (relative to row 1), we obtain the equivalences

(1, 1) ≡ 1

(η, 1) ≡ (123)(456) ≡ (123)

(η2, 1) ≡ (132)(465) ≡ (132)

(1, τ ) ≡ (14)(26)(35) ≡ (23)

(η, τ ) ≡ (15)(24)(36) ≡ (12)

(η2, τ ) ≡ (16)(25)(34) ≡ (13).

The sets {1, 4}, {2, 5} and {3, 6} constitute what is known as an imprimitive system and the
resulting identification realizes the semi-direct product C3 ×α C2 as the group of symmetry trans-
formations fixing a regular triangle with vertices labeled as {1, 2, 3}. This group is know as the
dihedral group D3. Their elements are realized as the rotations {1, (123), (132)} and axial reflec-
tions {(12), (23), (13)} fixing the regular triangle.

In general, the dihedral group Dn is obtained as the semi-direct product Cn ×α C2. It is
the group of symmetries (rotations and the axial reflections) leaving a n-sided regular polygon
invariant. Its order is 2n. �
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2.3. Group actions and orbits

Definition 2.3.1. Given a set V and a group G, a group action of G on V is a function
ϕ : G × V → V satisfying

(1) ϕ(1, s) = s, for all s in V,
(2) ϕ(σ, ϕ(τ, s)) = ϕ(στ, s), for all s ∈ V, τ, σ in G.

The orbit Os of an element s ∈ V generated by G under the action ϕ is the set

(2.8) Os = {ϕ(τ, s); τ ∈ G}.

We also define the set

(2.9) fix (τ ) = {s ∈ V; ϕ(τ, s) = s}

of elements in V that remain fixed by τ under the action ϕ, and the set

(2.10) Gs = {τ ∈ G; ϕ(τ, s) = s},

of elements τ ∈ G fixing the point s ∈ V. This set is the stabilizer of s by G under ϕ. It is then
easy to check that |G| = |Os||Gs|. Moreover, note that Gs is a subgroup of G:

(1) 1 ∈ Gs;
(2) τ, σ ∈ Gs implies ϕ(τσ, s) = ϕ(τ, ϕ(σ, s)) = ϕ(τ, s) = s;
(3) τ ∈ Gs implies s = ϕ(1, s) = ϕ(τ−1τ, s) = ϕ(τ−1, ϕ(τ, s)) = ϕ(τ−1, s), that is, τ−1 ∈ Gs.

Gs is also called the isotropy group of s in G under ϕ.
When the orbit Os of an element s ∈ V generated by G under the action ϕ coincides with V

we say that the action ϕ is transitive, or that G acts transitively on V.

Example 2.3.1 (Orbits for binary sequences in length of two). Consider the set V = {uu, yy, uy, yu}
of two-sequences in length of two. That is, V is the set of all mappings s from {1, 2} into {u, y}.
The reader can verify that ϕ1(τ, s) = sτ−1,

ϕ1 : {1, 2} τ−1

−−→ {1, 2} s−→ {u, y}, s ∈ V, τ ∈ S2 = {1, (12)},

and ϕ2(σ, s) = σs,

ϕ2 : {1, 2} s−→ {u, y} σ−→ {u, y}, s ∈ V, σ ∈ S2 = {1, (uy)},

are actions of S2 on V. Action ϕ1 classifies the sequences by symmetries in the positions {1, 2}
whereas ϕ2 classifies the sequences by symmetries in the letters {u, y}. The evaluations of these
actions are summarized in the following matrices:

ϕ1 :




τ uu yy uy yu

1 uu yy uy yu

(12) uu yy yu uy


 , ϕ2 :




τ\s uu yy uy yu

1 uu yy uy yu

(12) yy uu yu uy


 .

Action ϕ1 generates 3 orbits {uu}, {yy} and {uy, yu} and ϕ2 generates 2 orbits, {uu, yy} and
{uy, yu}. The reader may refer to Table (2.2), identify the orbits of S4 acting on the set V of
binary sequences in length of four according to sτ−1 (position symmetry), the isotropy groups and
fixed points. �

Example 2.3.2 (Cyclic orbits for binary sequences in length of four). These orbits are also
called cyclic orbits. Matrix (2.11) shows the action sτ−1 of C4 = {1, (1234), (13)(24), (1432)} on
the mapping space V from Table (2.2).

(2.11)




C4\s 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2

1 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2

(13)(24) 1 16 12 8 15 14 4 11 10 7 6 13 3 2 9 5

(1234) 1 16 14 12 8 15 10 6 13 4 11 7 2 9 5 3

(1432) 1 16 8 15 14 12 7 6 4 13 11 10 5 3 2 9



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leads to the orbits (indicating the mappings by their labels)

O0 = {1},
O1 = {9, 5, 3, 2},
O21 = {13, 7, 10, 4}, O22 = {11, 6},
O3 = {15, 14, 12, 8},
O4 = {16}.

We note that C4 splits the original orbit O2 under S4 into two new orbits, O21 and O22, so that
O21 ∪O22 = O2. Similarly, the action sτ−1 of G = {1, (13)(24)} on V is given by

(2.12)




G\s 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2

1 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2

(13)(24) 1 16 12 8 15 14 4 11 10 7 6 13 3 2 9 5


 ,

with corresponding orbits,

O0 = {1},
O11 = {9, 3}, O12 = {5, 2},
O211 = {13, 4}, O212 = {7, 10}, O221 = {11}, O222 = {6},
O31 = {14, 8}, O32 = {15, 12},
O4 = {16}.

The action further splits the original order-4 cyclic orbits into additional, smaller orbits. �
Example 2.3.3 (Dihedral orbits for binary sequences in length of four). Consider the action

sτ−1 of the group D4, defined earlier on in Example 2.2.9, on the mapping space of binary sequences
in length of four. The resulting action is shown in Matrix (2.13):

(2.13)

D4\s 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2

1 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2

(24) 1 16 15 8 12 14 7 11 13 4 6 10 3 5 9 2

(13) 1 16 12 14 15 8 10 11 4 13 6 7 9 2 3 5

(12)(34) 1 16 14 15 8 12 13 6 10 7 11 4 5 9 2 3

(13)(24) 1 16 12 8 15 14 4 11 10 7 6 13 3 2 9 5

(14)(23) 1 16 8 12 14 15 4 6 7 10 11 13 2 3 5 9

(1234) 1 16 14 12 8 15 10 6 13 4 11 7 2 9 5 3

(1432) 1 16 8 15 14 12 7 6 4 13 11 10 5 3 2 9

,

which shows that D4 and C4 generate the same set of orbits under position symmetry. �

Example 2.3.4 (A generic indexing). The set

fix (τ ) = {s ∈ V; ϕ(τ, s) = s} ⊆ V

of elements in V that remain fixed by τ under the action ϕ of the group G on the set V is usefull to
define a general method of assigning data to the underlying group acting on V, called the regular
indexing. To see this, let x be a scalar measurement in V and to each element τ ∈ G associate
the evaluation x(τ ) of a scalar summary of x defined over fix (τ ). That is, x(τ ) is the summary of
the data over those elements in V that share the symmetry of τ . For example, if the summary of
interest is the averaging, then

x(τ ) =
1

|fix(τ )|
∑

s∈fix(τ)

x(s).

In particular, x(τ ) = |fix(τ )| assigns to τ the volume of points in V with its symmetry: the
τ−symmetry content in V.

To illustrate, consider Example 2.3.3 and Matrix (2.13), in which the data are originally
indexed by the set V of all binary sequences in length of four. The action is of D4 on the position
of the letters, and the scalar measurements are frequencies x(s) with which these sequences appear
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in a parent sequence. Consider the averaging as the summary of interest. Note, from Matrix (2.13)
that

fix(τ ) =





V if τ = 1
{1, 16, 15, 12,11,6,5, 2} if τ = (24)
{1, 16, 14, 8,11,6, 9, 3} if τ = (13)
{1, 16, 13, 4} if τ = (12)(34)
{1, 16, 11, 6} if τ = (13)(24)
{1, 16, 7, 10} if τ = (14)(23)
{1, 16} if τ = (1234)
{1, 16} if τ = (1432),

so that, for example,

x(1) =
1
16

∑

s∈V

x(s),

whereas

x((14)(23)) =
x(1) + x(16) + x(7) + x(10)

4
,

and so on. The data x are now indexed by D4.
Clearly, this construction assumes that fix(τ ) 6= for all τ in the subgroup H of interest. That

is, one would search for the largest subgroup in which the property applies. Clearly, when V = G
the subgroup H reduces to the identity alone. �

Example 2.3.5 (Maxwell-Boltzmann and Bose-Einstein counts). Define two mappings s and
f in the mapping space V = CL as equivalent whenever sτ−1 = f for some permutation τ ∈ S`.
That is, s and f differ only by a permutation of the ` positions of the their c symbols. The orbits
{sτ−1; τ ∈ S`} decompose the space V into the disjoint union

(2.14) V = Oλ1 ∪ . . .∪Oλm,

where m is the number of Young frames (Section 2.2.1) or integer partitions λ = (n1, . . . , nc) of
`, and each Oλi is a disjoint union of elementary orbits whose members share a particular frame.
These elementary orbits define the quotient space V/S` generated by the action sτ−1 (position
symmetry). Permutation orbits generated by the action σs (letter symmetry) are defined similarly.

To illustrate further the orbit decomposition, consider the case in which the mapping space
V = CL represents the possible compositions of an urn with four marbles with labels in the set
L = {1, 2, 3, 4} and colors in the set

C = {red (◦), blue (•), green (�)}.

Two urn compositions are defined as equivalent when they differ only by relabeling of the marbles.
That is, S4 acts on V according to sτ−1. Start with the elementary frames: There are m = 4 of
those, namely,

λ1 = (4, 0, 0), λ2 = (3, 1, 0), λ3 = (2, 2, 0), λ4 = (2, 1, 1).
Following the notation of Section 2.2.1, we write λ1 = 402, λ2 = 310, λ3 = 220, λ4 = 212. In
correspondence with equality (2.14), we obtain the decomposition

|V| = c` =
∑

λ

`!
(a1!)m1(a2!)m2 . . . (ak!)mk

c!
m1!m2! . . .mk!

of the Maxwell-Boltzmann count c` into the product of the volumes

Ωλ =
`!

(a1!)m1(a2!)m2 . . . (ak!)mk

of the elementary orbits in V/S` and their multiplicities

Qλ =
c!

m1!m2! . . .mk!
.



2.3. GROUP ACTIONS AND ORBITS 43

In the above decomposition, λ varies over the m elementary frames, or integer partitions (am1
1 , . . . , amk

k )
satisfying m1a1 + . . . + mkak = ` and m1 + . . . + mk = c. Moreover,

∑

λ

Qλ =
(

c + ` − 1
`

)

decomposes the Bose-Einstein count
(
c+`−1

`

)
into the sum of the number Qλ of quantal states

associated to frame λ. Writing

(2.15) v(λ) = ΩλQλ

we have c` =
∑

λ v(λ). Direct computation leads to

|Oλ1| = 3, |Oλ2 | = 24, |Oλ3| = 18, |Oλ4 | = 36.

Matrix (2.16) summarizes the correspondence among frames, orbits, volumes of elementary orbits,
multiplicities and urn compositions.

(2.16)

λ urn composition Ωλ Qλ v(λ)

402 {◦ ◦ ◦ ◦} 1 3 3

310 {◦ ◦ ◦ •} 4 6 24

220 {◦ ◦ • •} 6 3 18

212 {◦ ◦ • �} 12 3 36

.

We observe that |V| = 34 = 81 =
∑

λ v(λ), and that
∑

λ Qλ =
(
c+`−1

`

)
=

(
6
4

)
= 15. In addition,

the volume of the elementary orbit Oλ associated with frame λ = (n1, . . . , nc) can be decomposed
in terms of its subframes of size c − 1. In the present example,

|Oλ1| = v(4, 0, 0) = (44)v(0, 0) + (40)v(4, 0) = 1 + 2,

|Oλ2| = v(3, 1, 0) = (43)v(1, 0) + (41)v(3, 0) + (40)v(3, 1) = 8 + 8 + 8,

|Oλ3| = v(2, 2, 0) = (42)v(2, 0) + (40)v(2, 2) = 12 + 6,

|Oλ4| = v(2, 1, 1) = (42)v(1, 1) + (41)v(2, 1) = 12 + 24.

The resulting partition of V according to color-only attribute is defined by the number |Aij| of
configurations in which exactly j marbles have color i. In the present example, j = 0, 1, 2, 3, 4,
i ∈ {red, blue, green}, and

|Ai0| = (40)[v(4, 0) + v(3, 1) + v(2, 2)] = 16,

|Ai1| = (41)[v(3, 0) + v(2, 1)] = 32,

|Ai2| = (42)[v(2, 0) + v(1, 1)] = 24,

|Ai3| = (43)v(1, 0) = 8,

|Ai4| = (44)v(0, 0) = 1.

If the urn compositions are equally likely, or, equivalently, if the points in V are uniformly dis-
tributed, the resulting probabilities

wi(j) = P[exactly j marbles have the same color i]

in V/S4 are

(wi(0), wi(1), wi(2), wi(3), wi(4)) =
1
81

(16, 32, 24, 8,1).

�
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2.3.1. Burnside’s Lemma. The following result evaluates the number of orbits in V gen-
erated by the action ϕ of G as the average number of fixed points of ϕ. The reader may first refer
to Matrix (2.2), which summarizes the action sτ−1 of S4 on the space V of all two-sequences in
length of four and identify, for each τ ∈ G the number |fix(τ )| of points in V fixed by the action
on V, and the number |Gs| of points in G that leave the element s ∈ V fixed.

Lemma 2.3.1 (Burnside). If a finite group G acts on V according to ϕ, then

Number of orbits in V =
1
|G|

∑

τ∈G

|fix (τ )|.

Proof. Let A = {(τ, s) ∈ G × V; ϕ(τ, s) = s}. First calculate the number |A| of elements in
A as

(2.17) |A| =
∑

τ∈G

|fix (τ )|.

Secondly, writing η = number of orbits in V, evaluate this same number as

(2.18) |A| =
∑

s∈V

|Gs| =
η∑

i=1

|Oi||Gs| =
η∑

i=1

|Oi|
|G|
|Oi|

= η × |G|.

From equalities 2.17 and 2.18 the result then follows. �

The lemma carries the name of William Burnside, Born: 2 July 1852 in London, England.
Died: 21 Aug 1927 in West Wickham, London, England. Among his applied mathematics teachers
at Cambridge were Stokes, Adams and Maxwell. However, it was actually proved by Frobenius in
1887.

Example 2.3.6. From Matrix (2.2), with G = S4, it follows that

Number of orbits of V =
1

| G |
∑

G

| fix(σ) |= 120
24

= 5,

namely, indicating the mappings by their labels in Matrix (2.2),

O0 = {1},
O1 = {9, 5, 3, 2},
O2 = {13, 11, 7, 10, 6, 4},
O3 = {15, 14, 12,8},
O4 = {16}.

Note, in each case, that |Oi| = |G|/|Gsi|, where si is a representative on Oi. �

2.3.2. Contravariant actions. When in Definition 2.3.1, (2) is replaced by

ϕ(σ, ϕ(τ, s)) = ϕ(τσ, s)

for all s ∈ V, τ, σ in G, we say that the ϕ is a contravariant action. To illustrate, let F = F(V)
indicate the vector space of scalar-valued functions, x, defined in the structure V where G acts
according to ϕ. Let also

θ(τ, x)(s) = x(ϕ(τ, s)), s ∈ V, τ ∈ G, x ∈ F .

Then θ is a contravariant action of G on F . In fact, θ(τ, x) ∈ F ,

θ(1, x)(s) = x(ϕ(1, s)) = x(s),

for all s ∈ V, that is, θ(1, x) is the identity function in F , and

θ(τ, θ(σ, x))(s) = θ(σ, x)(ϕ(τ, s)) = x(ϕ(σ, ϕ(τ, s))) = x(ϕ(στ, s)) = θ(στ, x)(s),

for all s ∈ V. That is, θ(τ, θ(σ, x)) = θ(στ, x) for all τ, σ ∈ V and x ∈ F .
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Example 2.3.7 (Data indexed by conjugacy classes). Applying the above construction, let
V = G a finite group and ϕ(τ, σ) = τστ−1, so that θ(τ, x)(σ) = x(τστ−1). Scalar-valued functions
defined on the conjugacy classes of G play an important role in the theory of groups. �

In addition, the reader may want to verify that

τ∗ : x ∈ F 7→ θ(τ, x) ∈ F

is a linear mapping in F , with inverse τ−1∗ ∈ F for all τ ∈ G, and hence τ∗ ∈ GL(F). In addition,
τ 7→ τ∗ is a group homomorphism.

2.3.3. Translations. For all σ, τ ∈ G we write Sτ (σ) = στ−1 to indicate the left translation
action, and Dτ (σ) = τσ to indicate the right translation action. Clearly, Sη(Sτ (σ)) = Sητ (σ),
Dη(Sτ (σ)) = Dητ (σ), for all η, τ, σ ∈ G, and S1(σ) = D1(σ) = σ for all σ ∈ G.

2.3.4. Cayley’s Theorem. Given τ ∈ G and an action ϕ of G on V, note that the eval-
uations τ∗(s) = ϕ(τ, s), s ∈ V, define a permutation in V. In fact, ϕ(τ, s) = ϕ(τ, f) implies
s = ϕ(τ−1, ϕ(τ, s)) = ϕ(τ−1, ϕ(τ, f)) = f. Moreover, τ∗σ∗(s) = ϕ(τ, ϕ(σ, s)) = ϕ(τσ, s) = (τσ)∗(s),
so that the mapping

τ ∈ G 7→ τ∗ ∈ SV

is a group homomorphism from G to SV. It is called the permutation representation of G associated
with the action ϕ of G on V. We thus have

Proposition 2.3.1. If G acts on V according to ϕ, then the evaluations τ∗(s) = ϕ(τ, s), s ∈ V,
are permutations in V, for all τ ∈ G and τ 7→ τ∗ is a group homomorphism. Conversely, given a
homomorphism τ ∈ G 7→ τ∗ ∈ SV, the mapping ϕ(τ, s) = τ∗(s) defines a group action of G on V.

The argument justifying Proposition 2.3.1, when applied to any group acting on itself by (say)
right translation, implies that τ ∈ ker (τ 7→ τ∗) if and only if τ∗(σ) = Dτ (σ) = τσ = 1 for all
σ ∈ G, so that τ = 1. Consequently, τ 7→ τ∗ is a monomorphism from G to SG. This leads to
Cayley’s Theorem:

Theorem 2.1 (Cayley, 1878). Every group G is isomorphic to a subgroup of SG. If G is finite
with ` elements, then G is isomorphic to a subgroup of S`.

When τ 7→ τ∗ is a monomorphism we say that the corresponding action is faithful, or that G
acts on V faithfully.

2.4. Linear representations

Proposition 2.3.1 shows that the mapping τ 7→ τ∗ defined in G with values in SV is a homo-
morphism from G into SV. Correspondingly, let {es; s ∈ V} indicate a basis for a vector space V,
indexed by the elements of V, {eτ∗(s); s ∈ V} the new basis determined by τ∗, and

{es; s ∈ V} ρ(τ)−−−→ {eτ∗(s); s ∈ V},

the nonsingular matrix representing the changing of basis. Then, ρ is a group homomorphism
from G into the general linear group GL(V).

Definition 2.4.1. A linear representation of a group G in a vector space V is a group homo-
morphism from G into GL(V).

Note that every linear representation maps the identity of G into the identity matrix (or
operator) of GL(V), that is, ρ(1) = I. Also, it maps the inverse τ−1 of τ into the inverse ρ(τ )−1 of
the matrix ρ(τ ), that is ρ(τ−1) = ρ(τ )−1. The dimension of ρ is defined as the dimension of the
corresponding vector space.

Also note that if ρ is a linear representation of G in GL(V) and B is any non-singular matrix
of dimension equal to the dimension of ρ, then β : τ 7→ B−1ρ(τ )B is also a linear representation
of G in GL(V). Any two such linear representations, obtained one from another by a changing of
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basis, are called equivalent or isomorphic representations. We write ρ ' β to indicate that ρ and
β are equivalent3. Often, for simplicity of notation we may write ρτ and ρ(τ ) without distinction.

Example 2.4.1 (One-dimensional representations). The unity or symmetric representation
assigns the value ρτ = 1 for all τ ∈ G. The antisymmetric or signature representation of S` is
defined as

Sgn (τ ) =

{
+1 if the permutation τ is even;
−1 if the permutation τ is odd.

From Proposition 2.2.1, we know that Sgn (στ ) = Sgn (σ)Sgn (τ ), for any two permutations σ, τ .
When G is the cyclic subgroup Cn of Sn, the reader may verify that

ρk(τ j) = ωjk, j = 0, . . . , n − 1, k = 1, . . .n,

where τ is a generator of Cn and ω is a primitive n-th root of 1, are n distinct one-dimensional
representations of Cn. �

Example 2.4.2 (Regular representations). The (left) regular representation is defined by the
(left) translation action Sτ (σ) = στ−1 of G on itself. A matrix representation of τ ∈ G is the
matrix φτ changing the basis {eσ; σ ∈ G} into {eστ−1 ; σ ∈ G}. The dimension of the representation
is the number |G| of elements in G. Similarly, the right regular representation is defined by the
right translation action Dτ . For simplicity of notation we will refer to either action as the regular
action, the context indicating which one is at work, and indicate its linear representation by φ.

To illustrate, consider the right translation by τ = (132) ∈ S3. From the multiplication table
of S3,

S3 a b c d e f
a = 1 a b c d e f

b = (12) b a e f c d

c = (13) c f a e d b

d = (23) d e f a b c

e = (123) e d b c f a

f = (132) f c d b a e

,

the canonical basis for R6 indexed by {1, (12), (13), (23), (123), (132)} is changed under Dτ (σ) = τσ
into the basis indexed by {(132), (23), (12), (13),1, (123)}. Its representation is then

φ(132) =




0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0




.

�

The regular representation is particular case of a permutation representation of G associated
with a set V. In the previous example, the action ϕ is the right translation, V = G = S3 and
τ∗ = Dτ .

3Most of the theory of linear representation of finite groups have the equivalent result formulated for infinite

groups, in which we would look at ρ as linear operators. In the present discussion, we often write or think of ρ as
the notation indicating the representation in its matrix form. At times, however, the broader interpretation of ρ as

a linear operator also applies.
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A permutation representation of S3 associated with V = {1, 2, 3} results from changing the
canonical basis indexed by V to the basis {τ1, τ2, τ3}. For example,

ρ(132) =




0 0 1

1 0 0

0 1 0


 .

We will refer to the representation of a subgroup G of S` acting on the set of indices V = {1, . . . , `}
for the canonical basis for R` according to (τ, j) = τ j simply as the permutation representation of
G. The representation is an isomorphism between S` and M`.

A representation of S2 acting on the space of binary sequences in length of two according to

ϕ1 :




τ\s uu yy uy yu

1 uu yy uy yu

t = (12) uu yy yu uy




as discussed in Example 2.3.1, is given by

ρ1(1) =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, ρ1(t) =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




.

The representation has dimension 4. Similarly, a representation of S2 acting according to

ϕ2 :




τ\s uu yy uy yu

1 uu yy uy yu

(12) yy uu yu uy


 ,

leads to the representation

ρ2(1) =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, ρ2(t) =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




.

Its dimension is also 4.

Example 2.4.3 (A two-dimensional representation of S3). The reader may verify that

β1 =
[
1 0
0 1

]
, β(12) =

[
0 1
1 0

]
, β(13) =

[
−1 −1
0 1

]
,

β(23) =
[

1 0
−1 −1

]
, β(123) =

[
0 1
−1 −1

]
, β(132) =

[
−1 −1
1 0

]

is a two-dimensional representation of S3. �

2.4.1. Unitary representations. An inner product in a vector space V (over F = R or C)
is a function (., .) : V2 7→ F such that, for all x, y, z ∈ V and a, b ∈ F,

(1) (x, y) = (y, x) , (Hermitian symmetric)
(2) (ax + by, z) = a(x, y) + b(y, z) , (conjugate bilinear)
(3) (x, x) ≥ 0, (x, x) = 0 ⇐⇒ x = 0 , (positive definite).

The vector space V, together with (., .) is called an inner product space. An Euclidian (respectively
unitary) space is a real (respectively complex) inner product space.

A linear representation ρ of G in the inner product space V is unitary if

(ρτ x, ρτ y) = (x, y)
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for all x, y ∈ V and τ ∈ G. If (.|.) is an inner product in V, direct evaluation shows that then

(2.19) (x, y) =
1
|G|

∑

τ∈G

(ρτ x|ρτ y)

is an inner product in V, relative to which ρ is unitary. Moreover, ρ is equivalent to a repre-
sentation that is unitary in the initial inner product space. To see this, indicate by {e1, . . . , ev}
an orthonormal basis relative to (.|.) and by {f1, . . . , fv} an orthonormal basis relative to the in-
variant inner product (., .), and let A be the linear transformation defined by Aei = fi. Then
(Aei, Aej) = δij = (ei|ej), so that (Ax, Ay) = (x|y). Define r(τ ) = A−1ρ(τ )A, τ ∈ G. Then r and ρ
are equivalent and, because

(r(τ )x|r(τ )y) = (A−1ρ(τ )Ax|A−1ρ(τ )Ay) = (ρ(τ )Ax, ρ(τ )Ay) = (Ax, Ay) = (x|y),

r is unitary in the original inner product space.

Example 2.4.4. We will construct a representation unitarily equivalent to the two-dimensional
representation of S3,

β1 =
[
1 0
0 1

]
, β(12) =

[
0 1
1 0

]
, β(13) =

[
−1 −1
0 1

]
,

β(23) =
[

1 0
−1 −1

]
, β(123) =

[
0 1
−1 −1

]
, β(132) =

[
−1 −1
1 0

]

illustrated earlier on in Example 2.4.3. The invariant scalar product derived from the Euclidean
inner product ( | ) in R2 is

(x, y) =
∑

τ

(βτ x|βτ y) =
∑

τ

x′β′
τ βτ y = x′

[
8 4
4 8

]
y ≡ x′Fy.

Next, starting with the canonical basis e1 = (1, 0), e2 = (0, 1) for R2, use Gram-Schmidt to
construct a basis {w1, w2} that is orthonormal relative to the invariant inner product:

(1) ||e1||2 = e′1Fe1 = 8. Let w1 = e1/||e1|| = (
√

2/4, 0);

(2) w2 is the normalized version of e2 − w′
1Fw1 =

[
−1/2

1

]
, which has norm

√
6. That is

w2 = (−
√

6/12,
√

6/6).

The resulting new (unitarily equivalent) representation is then bτ = A−1βτ A, where

A =

[
1/4

√
2 −1/12

√
6

0 1/6
√

6

]
.

We obtain b1 = I2,

b12 =

[
1/2 1/4

√
2
√

6

1/4
√

2
√

6 −1/2

]
, b13 =

[
−1 0

0 1

]
,

b23 =

[
1/2 −1/4

√
2
√

6

−1/4
√

2
√

6 −1/2

]
, b123 =

[
−1/2 1/4

√
2
√

6

−1/4
√

2
√

6 −1/2

]
,

and

b132 =

[
−1/2 −1/4

√
2
√

6

1/4
√

2
√

6 −1/2

]
.

In each case we have bτ b′
τ = I2. �



2.4. LINEAR REPRESENTATIONS 49

2.4.2. Regular representations and group algebras. Given a finite group G, consider
a vector space (A) and a basis that is indexed by the elements of G. For example, we may index
the canonical basis for R2 with the elements of S2 = {1, t} according to e1 = (1, 0), et = (0, 1).
The points (x) in this space have the form of symbolic linear combinations

x =
∑

σ∈G

x(σ)σ,

with coefficients x(τ ) in R or C. This vector space, of dimension equal to the number |G| of
elements in G, has an operation of multiplication defined by

(2.20) xy =
∑

σ,η

x(σ)y(η)ση =
∑

τ

[
∑

ση=τ

x(σ)y(η)]τ ∈ A,

so that for all x, y, z ∈ A and all scalars γ in the field of the vector space, we have xy ∈ A,
x(y + z) = xy + xz, (x + y)z = xz + yz, γ(xy) = x(γy) = (γx)y. Moreover, because the group
operation is associative, we have x(yz) = (xy)z = xyz. In this case, we say that the vector space
A, along with the multiplication so defined, constitutes an associative group algebra. It then
follows that (τ, x) → τx defines an action of G on A in which the invariant subspaces, B, satisfy
τB ⊂ B for all τ ∈ G. Consequently, by the linearity of the multiplication, we note that the
invariant subspaces are exactly those subalgebras I of A that satisfy yI ⊂ I for all y ∈ A. These
subalgebras are the left ideals of A. In view of this, the determination of the invariant subspaces
of the representation corresponds to searching for the left ideals of A.

2.4.3. Tensor representations. Let ρ indicate the representation of S2 = {1, t} acting on

V = {1, 2} according to (τ, j) = τ j, τ ∈ S2, j ∈ V. It is given by ρ(1) =
[
1 0
0 1

]
and ρ(t) =

[
0 1
1 0

]
.

It is simple to verify that

1 7→ I4 = ρ(1) ⊗ ρ(1), t 7→
[

0 ρ(t)
ρ(t) 0

]
= ρ(t) ⊗ ρ(t),

where ⊗ indicates the Kronecker product of two matrices, is a representation of G acting on
V × V according to ϕ(τ, (j, k)) = (τ j, τk). This new representation of G is called the tensor
representation of ρ with itself, and is indicated by ρ ⊗ ρ. Its dimension is (dim ρ)2 = 4. Similarly,
ϕ(τ, (s, f)) = (ϕ1(τ, s), ϕ2(τ, f)), τ ∈ G, (s, f) ∈ V × V defines a tensor representation of two
representations ρ1 and ρ2 determined by actions ϕ1 and ϕ2 of G on V. The same construction
applies to tensor representations of three or more representations.

2.4.4. Actions on cosets. Given a subgroup H of G, consider the set G/H of cosets {σH; σ ∈
G} of H in G. Then, it is easy to verify that ϕ : G × G/H → G/H defined by ϕ(τ, σH) = τσH is
an action of G on G/H. Consequently, from Proposition 2.3.1, we obtain a group homomorphism
ρ from G into Sn, where n = [G : H] is the number of cosets σH of H in G. Moreover, if τ ∈ ker ρ,
we must have τσH = σH for all σ ∈ G. In particular, τH = H so that τ ∈ H. This proves

Theorem 2.2. If H is a subgroup of G of index [G : H] = n, then there is an homomorphism
ρ of G into Sn, with ker ρ ⊆ H.

The homomorphism ρ in Theorem 2.2 is a permutation representation of G acting on V = G/H.
When H = {1}, Theorem 2.2 leads to Cayley’s Theorem of Section 2.3.4.
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Example 2.4.5. Let G = S3 and H = C3 = {a, e, f}, following the notation in the multiplica-
tion table (2.21) for S3.

(2.21)

∗ a b c d e f
a = 1 a b c d e f

b = (12) b a e f c d

c = (13) c f a e d b

d = (23) d e f a b c

e = (123) e d b c f a

f = (132) f c d b a e

.

The cosets of H in G are aH = eH = fH = H and bH = cH = dH = {b, c, d}. The number of cosets
is the index [G : H] = 2. The action (τ, σH) = τσH of G on G/H, summarized in the following
matrix, 



S3 aH bH

a aH bH

b bH aH

c bH aH

d bH aH

e aH bH

f aH bH




leads to a two-dimensional representation ρ of S3 determined by

ρa = ρe = ρf =
[
1 0
0 1

]
, ρb = ρc = ρd =

[
0 1
1 0

]
,

in which ker ρ = H ⊆ H. �

2.4.5. Matrices with group structure. In multivariate statistics, the following algebraic
argument leads to a systematic characterization of certain patterned covariance matrices. See, for
example, Andersson (1992) and Gao and Marden (2001).

Proposition 2.4.1. Given a representation ρ of G in Rn and M a real n × n matrix, then

(2.22) W =
1
|G|

∑

τ∈G

ρ(τ )Mρ(τ )−1

has the symmetry of (or is centralized by) ρ in the sense that ρ(σ)W = Wρ(σ) for all σ ∈ G.

Proof. For any σ ∈ G, we have

ρ(σ)Wρ(σ)−1 =
1
|G|

∑

τ∈G

ρ(σ)ρ(τ )Mρ(τ )−1ρ(σ)−1 =
1
|G|

∑

τ∈G

ρ(στ )Mρ(στ )−1 = W,

observing that στ spans G when τ ∈ G, for any σ in G. �

In this case, we also say that W commutes with the representation ρ. The set Hom(ρ) of all
linear operators commuting with a representation ρ in V is a linear subspace of the space of linear
operators in V. Also in Hom(ρ) are the linear operators of the form

x̂(ρ) =
∑

τ∈G

x(τ )ρ(τ )

where x is a scalar function defined in G, with the additional property that x is constant over the
conjugacy classes of G. See also Naimark and Štern (1982, p.55) and Simon (1996, p.28).
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Example 2.4.6 (Matrices with dihedral structure). Following the notation suggested by Ex-
ample 2.2.9, we write

D4 = {1, η, η2, η3, τ, ητ, η2τ, η3τ}
= {1, (abcd), (ac)(bd), (adcb), (ad)(bc), (bd), (ab)(cd), (ac)},

to indicate the group of symmetries of the square. Its permutation representation is given by

ρ(ηjτk) =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0




j 


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




k

, j, k = 0, 1, 2, 3.

Direct evaluation shows that the matrices centralized by D4 have the form

1
8

∑

σ∈D4

ρ(σ)Wρ(σ)−1 =




A B C B
B A B C
C B A B
B C B A


 ,

with
A =

1
4
tr W, B =

1
8
tr W[ρ(η) + ρ(η3)], C =

1
4
tr Wρ(η2).

�

Example 2.4.7 (Matrices with complex structure). Consider the complex group G = {1, i,−1,−i}.
Its multiplication table is

∗ 1 −1 i −i

1 1 −1 i −i

−1 −1 1 −i i

i i −i −1 1

−i −i i 1 −1

.

Define

ρ(ik) =

[
0 −1

1 0

]k

, k = 0, 1, 2, 3.

The reader may want to verify that ρ is a representation of the complex group in R2 and that

1
4

3∑

k=0

ρ(ik)

[
a b

c d

]
ρ(ik)−1 =

1
2

[
d + a −c + b

−b + c d + a

]
.

Matrices of the form

M =

[
A B

−B A

]

where A and B are n× n real matrices are said to have complex structure and carry the symmetry
of the complex group represented by ρ in the sense that

(ρ(τ ) ⊗ In)M = M(ρ(τ ) ⊗ In), for all τ ∈ G.

�

Example 2.4.8 (Matrices with quaternionic structure). Following Example 2.2.4, define

ρ(±1) = ±




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, ρ(±k) = ∓




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0




,
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ρ(±j) = ∓




0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0




, ρ(±i) = ∓




0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0




.

Direct verification shows that ρ is a linear representation in R4 of the group of the quaternions.
Given a real matrix

F =




a b c d

e f g h

p q r s

t u v x




,

it then follows that

1

8

∑
ρ(τ)Fρ(τ)−1 =

1

4




a + f + r + x b − e − s + v c + h − p − u d − g + q − t

e − b − v + s a + f + r + x g − d + t − q c + h − p − u

p + u − c − h d − g + q − t a + f + r + x e − b − v + s

g − d + t − q p + u − c − h b − e − s + v a + f + r + x




,

so that matrices of the form

M =




A B1 B2 B3

−B1 A −B3 B2

−B2 B3 A −B1

−B3 −B2 B1 A




,

where A, B1, B2 and B3 are any n × n real matrices, are said to have a quaternionic structure.
Those are exactly the matrices with the symmetry of the given representation, in the sense that

(ρ(τ ) ⊗ In)M = M(ρ(τ ) ⊗ In), for all τ ∈ Q.

�

2.5. Reducibility

Definition 2.5.1. Let ρ be a representation of G in GL(V). A stable subspace of V is a linear
subspace W of V with the property that if x ∈ W then ρ(τ )x ∈ W for all τ ∈ G.

Note that {0} and V are stable subspaces of V.

Example 2.5.1 (The Sym2 and Alt2 subspaces). Let G = S2 = {1, t} and ρ the permutation
representation of S2. Starting with a canonical basis for R4 indexed as {e(1,1), e(1,2), e(2,1), e(2,2)}
for the tensor representation ρ ⊗ ρ of G, form the new basis for R4 with components

v1 = 2e(1,1), v2 = 2e(2,2), v3 = e(1,2) + e(2,1), v4 = e(1,2) − e(2,1).

The representation, ξ, of S2 acting on the indices (j, k) is given by

ξ(1) =
[
I3 0
0 1

]
, ξ(t) =

[
F 0
0 −1

]
,

where F =




0 1 0
1 0 0
0 0 1


. We observe that the representation ξ decomposes as the sum of two

representations ξ1 and ξ2, given by

ξ1(1) = I3, ξ1(t) = F, ξ2(1) = 1, ξ2(t) = −1,

and that the corresponding subspaces

V1 =< v1, v2, v3 >, V2 =< v4 >
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are stable subspaces of R4 under ξ. The direct-sum decomposition R4 = V1 ⊕ V2 justifies the
notation ξ = ξ1 ⊕ ξ2 to indicate that ξ is reducible and that the representations ξ1 and ξ2 are its
components. To indicate that ξ and ρ ⊗ ρ are in fact equivalent (or isomorphic) representations
we write

ρ ⊗ ρ ' ξ1 ⊕ ξ2.

The subspaces (and corresponding representations) V1 and V2 are called, respectively, the symmet-
ric square (Sym2) and alternating square (Alt2) subspaces or representations4. The study of group
representations is concerned with describing all inequivalent, indecomposable representations of a
group G. �

More generally, let ρ indicate a representation of G acting on V with v elements, so that the
basis for the tensor representation ρ ⊗ ρ of G is indexed by V × V. Let D indicate the main
diagonal of V ×V and U its upper triangular part. The representation of G acting on the indices
of the basis for the subspace V1 indexed as

{e(s,f) + e(f,s); (s, f) ∈ D ∪ U}

is the Sym2 (symmetric square) representation, of dimension v(v+1)/2, whereas the representation
of G acting on the indices of the basis for V2 indexed as

{e(s,f) − e(f,s); (s, f) ∈ U}

is the Alt2 (alternating square) representation, of dimension v(v − 1)/2. Moreover, ρ ⊗ ρ '
Sym2 ⊕ Alt2.

To illustrate, let G = C4 = {1, τ, τ2, τ3}, and ρ(τk) = rk, k = 0, 1, 2, 3, where

r =




0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0




.

Correspondingly, (ρ ⊗ ρ)(τk) = rk ⊗ rk. The basis for ρ ⊗ ρ may be indexed by V × V =
{(1, 1), (1, 2), . . .(4, 3), (4, 4)}, from which the two bases for the Sym-square and Alt-square repre-
sentations can be obtained. The indices for these bases are, respectively,

D ∪U = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)},

U = {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)}.

The matrix generating the two new bases {e(s,f)+e(f,s); (s, f) ∈ D∪U} and {e(s,f)−e(f,s); (s, f) ∈ U}
is

B =




2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0




,

4The representation Alt2 is also called exterior square representation.
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from which we obtain,

B(ρ ⊗ ρ)(τ )B−1 ' (ρ ⊗ ρ)(τ ) =


 Alt 2(τ ) 0

0 Sym 2(τ )


 ,

or, ρ ⊗ ρ ' Alt2 ⊕ Sym2. Correspondigly, V = R16 decomposes into the direct sum V1 ⊕ V2 of
invariant subspaces of dimensions 10 and 6 respectively. The components of the decomposition
are given by

Sym2(τk) =




0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0




k

,

Alt2(τk) =




0 0 0 1 0 0

0 0 0 0 1 0

−1 0 0 0 0 0

0 0 0 0 0 1

0 −1 0 0 0 0

0 0 −1 0 0 0




k

, k = 0,1,2, 3.

Note that when V = V1 ⊕ V2 and V1 is a stable subspace of V, of dimension v1, under ρ, it is
necessary and sufficient that the pattern of ρ(τ ) takes the matrix form

ρ(τ ) =
[
R1(τ ) 0
M(τ ) R2(τ )

]
,

for matrices R1(τ ), R2(τ ) and M(τ ) of dimensions v1 × v1, v2 × v2 and v2 × v1, respectively, so
that τ 7→ R1(τ ) and τ 7→ R2(τ ) are representations of G, of dimensions v1 and v2, respectively.
In this case, we say that ρ is a reducible representation.

Definition 2.5.2. We say that a representation ρ of G in GL(V) is irreducible when the only
proper stable linear subspace of V is the null subspace, that is,

ρ(τ )v ∈ W for all τ ∈ G, for all v ∈ W, for some W ( V =⇒ W = {0}.

Clearly, then, all one-dimensional representations are irreducible.

Example 2.5.2. Consider again the representation of S2 in V = R2 given by ρ1 = I2 and

ρt =
[
0 1
1 0

]
, where t = (12). Changing the canonical basis for V indexed as {e1, et} to the new

basis {et − e1, et}, we see that ρ is equivalent to the representation ξτ = Bρτ B−1 given by

ξ1 =

[
1 0
0 1

]
, ξt =

[
−1 0
−1 1

]
,

where B =
[
−1 1
0 1

]
. If V1 =< et − e1 > and V2 =< et > then V decomposes as the direct

sum V1 ⊕V2 and V1 is a stable one-dimensional subspace reduced by the signature representation
introduced earlier on in Example 2.4.1. Consequently, ρ is reducible. Note however that V2 is not
yet a stable complement of V1 in V.
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Consider, instead, the basis {et − e1, et + e1} for V, relative to which the equivalent represen-
tation is now

β1 =

[
1 0
0 1

]
, βt =

[
−1 0
0 1

]
.

The new component is the unit or symmetric representation, which is also one-dimensional and
hence irreducible. In summary, ρ decomposes as the sum 1⊕Sgn of two irreducible one-dimensional
representations, V decomposes and the sum V1 ⊕ VSgn of two stable (irreducible) subspaces:

V = V1 ⊕ VSgn, ρ ' ρ1 ⊕ ρSgn.

�

Example 2.5.3. Consider the action

ϕ :




τ\s uu yy uy yu

1 uu yy uy yu

t = (12) uu yy yu uy




of S2 on the space of binary sequences in length of two according to position symmetry. Its
representation is given by

ω(1) =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, ω(t) =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




.

We observed that ω is decomposable as ρ1 ⊕ ρ1 ⊕ ρ, where ρ1 is the unit representation and ρ is
the permutation representation of S2, which further reduces into the (irreducible) one-dimensional
components 1 and Sgn. That is, ω ' 1 ⊕ 1 ⊕ 1 ⊕ Sgn. �

Example 2.5.4 (A two-dimensional irreducible representation of S3). We will construct a
two-dimensional irreducible representation of S3. Let ρ indicate the permutation representation
of S3, which is given by

ρ1 =




1 0 0

0 1 0

0 0 1


 , ρ(12) =




0 1 0

1 0 0

0 0 1


 , ρ(13) =




0 0 1

0 1 0

1 0 0


 ,

ρ(23) =




1 0 0

0 0 1

0 1 0


 , ρ(123) =




0 1 0

0 0 1

1 0 0


 , ρ(132)




0 0 1

1 0 0

0 1 0


 .

Start with the subspace W1 generated by the sum e = e1 + e2 + e3 of the vectors in the canonical
basis {e1, e2, e3} of V = R3. That is, W1 is generated by e′ = (1, 1, 1). Clearly, W1 is a stable
subspace of ρ, that is,

ρτ y ∈ W1, for all y ∈ W1, for all τ ∈ S3.

Let W0 = {y ∈ V; e′y = 0} be the orthogonal complement of W1 in V and A = 1
3ee′ the projection

on W1 along W0, that is, V = W0 ⊕ W1, A2 = A and Ay = 0 for all y ∈ W0. Similarly, let

(2.23) Q = I3 −A =
1
3




2 −1 −1

−1 2 −1

−1 −1 2




indicate the projection on W0 along W1. The reader can verify that Q is centralized by ρ, that
is, ρτQ = Qρτ for all τ ∈ S3, and that, consequently, if y ∈ W0 then y ∈ Qz for some z ∈ V, and
ρτ y = ρτQz = Qρτ z ∈ W0, for all τ ∈ S3. That is, W0 is a stable two-dimensional complement
of W1 in V. To construct a 2-dimensional representation (β) in W0, note, from the corresponding
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projection in (2.23), that a basis {v1, v2} for im Q is v1 = 2e1 − e2 − e3, v2 = −e1 + 2e2 − e3. The
resulting representation of τ = (12), for example, is obtained from the fact that

τv1 = 2eτ1 − eτ2 − eτ3 = 2e2 − e1 − e3 = v2,

τv2 = −eτ1 + 2eτ2 − eτ3 = −e2 + 2e1 − e3 = v1,

that is, β(12) =
[
0 1
1 0

]
. Similar calculations (noting, from 2.23, that −e1 − e2 + 2e3 = −v1 − v2)

leads to the linear representation

β1 =
[
1 0
0 1

]
, β(12) =

[
0 1
1 0

]
, β(13) =

[
−1 −1
0 1

]
,

β(23) =
[

1 0
−1 −1

]
, β(123) =

[
0 1
−1 −1

]
, β(132) =

[
−1 −1
1 0

]
.

The two-dimensional representation β is irreducible. In fact, if there were a proper one-dimensional
stable subspace W, with generator y, then it would verify β(12)y = λy for some scalar λ, which
implies y2 = λy1, y1 = λy2. The non-zero eigenvalue solutions to y2 = λ2y2 are λ = ±1, that
is, y = (y1, y1) or y = (y1,−y1). Since the subspace W must also be stable under β(13) then we
would have

β(13)y =
[
−1 −1
0 1

] [
y1

y1

]
=

[
−2y1

y1

]
∈ W

⇐⇒ y1 = 0, using y = (y1, y1) or y = (y1,−y1) =⇒ W = {0}.

Because {0} is the only proper stable subspace, β is irreducible. Table (2.24) summarizes the ir-
reducible representations of S3. It includes the presently derived two-dimensional representation,
along with the trivial and signature (one-dimensional) ones. Since the trace tr ρ(τ ) of a represen-
tation, indicated here by χρ(τ ), is constant over conjugacy classes, it is sufficient to report it for
representatives of these classes.

(2.24)




χ 1 (12) (123)

χ1 1 1 1
χβ 2 0 −1

χSgn 1 −1 1


 .

This table completely describes the representations of S3, and will be studied later on in the
chapter with more detail. �

To appreciate the role of the field of scalars in Example 2.5.4, restrict the search for a one-
dimensional stable subspace to the cyclic subgroup C3 = {1, (123), (132)} of S3. In this case, we
have the two-dimensional representation

γ1 =
[
1 0
0 1

]
, γ(123) =

[
0 1
−1 −1

]
γ(132) =

[
−1 −1
1 0

]
.

The equations γτ y = λy for τ ∈ C3 lead to the characteristic equations (1 − λ)2 = 0 and λ2 +
λ + 1 = 0. When the field of scalars is C we find two one-dimensional irreducible representations,
corresponding to the roots ω = e

2πi
3 and ω2. If the field of scalars is R then γ is irreducible. Here

is the summary for three irreducible representations of C3, over C:

(2.25)




χ 1 (123) (132)

χ1 1 1 1
χ2 1 ω ω2

χ2 1 ω2 ω


 .
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Example 2.5.5 (Planar rotations). Let V indicate the infinite-dimensional real vector space
of all trigonometric Fourier series

f(t) =
∞∑

m=0

am cos(mt) + bm sin(mt), −π ≤ t ≤ π, am, bm ∈ R,

with basis B = {cos(mt), sin(mt) : m = 0, 1, 2, . . .}, and consider the subspaces W` of V generated
by B` = {cos(mt), sin(mt) : m = 0, 1, 2, . . ., ` − 1}. We let the cyclic group C` = {τh; h =
0, . . . , ` − 1} act on the elements g ∈ W` according to ϕ(τh, g)(t) = gτ−h(t) = g(t − h). To see
that this is indeed an action note that if the components cos(mt) and sin(mt) are in W` then the
components of [

cos(m(t − h))

sin(m(t − h))

]
=

[
cos (mh) − sin (mh)

sin (mh) cos (mh)

] [
cos (mt)

sin (mt)

]
,

are also in W`, and that ϕ(τh, ϕ(τk, g) = ϕ(τh+k , g). This linear relationship defines a family of
representations

ρm(τh) =

[
cos (mh) − sin (mh)

sin (mh) cos (mh)

]
, h, m = 0, 1, . . . , ` − 1,

where the multiplication is mod `. These representations in turn sum as a representation ρ =
ρ0 ⊕ ρ1 ⊕ . . . ⊕ ρ`−1 of C` in GL(R2`) in which the components ρm are irreducible (over R) for
m > 0 and ρ0 further reduces as 1 ⊕ 1. To illustrate, when ` = 3,

ρ(τh) =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 cos (h) − sin (h) 0 0

0 0 sin (h) cos (h) 0 0

0 0 0 0 cos (2 h) − sin (2 h)

0 0 0 0 sin (2 h) cos (2 h)




= 1 ⊕ 1 ⊕ ρ1 ⊕ ρ2.

When expressed in trigonometric form, we obtain ρ(1) = I,

ρ(τ ) =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 cos (α) sin (α) 0 0

0 0 − sin (α) cos (α) 0 0

0 0 0 0 cos (2 α) sin (2 α)

0 0 0 0 − sin (2 α) cos (2 α)




,

and

ρ(τ2) =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 cos (2 α) sin (2 α) 0 0

0 0 − sin (2 α) cos (2 α) 0 0

0 0 0 0 cos (α) sin (α)

0 0 0 0 − sin (α) cos (α)




, α =
2π

`
.

The reader may want to verify that ρ1 and ρ2 are indeed irreducible representations of C3. The
construction of the linear representation ρ, described in terms of three-fold planar rotations in
the present example (` = 3), extends naturally to ` = ∞. The resulting infinite-dimensional
representation describes all two-dimensional invariant subspaces for V.

This example also outlines the general structure of the representation obtained when the
planar rotations are replaced by spherical rotations. In that case, the invariant subspaces under
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the action of the full three-dimensional rotation group are spanned by the spherical harmonics
Y`m(θ, φ). To each basis indexed by ` there corresponds a 2` + 1-dimensional subspace. See also
Riley et al. (2002, p.930). �

Theorem 2.3. Let ρ : G → GL(V) be a linear representation of G in V and let W1 be a
vector subspace of V stable under G. Then there is a complement W0 of W1 in V which is also
stable under G.

Proof. Let P1 be a projection on W1 along some vector space complement of W1 in V. Form
the average

P1 =
1
|G|

∑

τ∈G

ρ(τ )P1ρ(τ−1)

of projections on W1 along that vector space complement. Then, im P1 = {P1z; z ∈ V} = W1.
To see this, first note that for z ∈ V we have P1ρτ−1 z ∈ W1, and because W1 is a stable subspace,
ρτ [P1ρτ−1 z] ∈ W1, so that P1z ∈ W1, that is, im P1 ⊆ W1. Secondly, if z ∈ W1, which is stable,
we have ρτ−1 z ∈ W1 for all τ ∈ G, so that P1ρτ−1 z = ρτ−1 z. This implies

P1z =
1
|G|

∑

τ∈G

ρτP1ρτ−1 z =
1
|G|

∑

τ∈G

ρτ ρτ−1 z = z,

that is, if z ∈ W1 then z = P1z ∈ im P1, and hence W1 ⊆ im P1. Therefore, W1 = im P1. Let
then W0 = ker P1 = {z ∈ V;P1z = 0}, so that V = W1 ⊕ W0. To conclude the proof, we must
show that W0 is G-stable: In fact, for all τ ∈ G,

ρτP1ρτ−1 =
1
|G|

∑

σ∈G

ρτ ρσP1ρσ−1ρτ−1 =
1
|G|

∑

σ∈G

ρτσP1ρ(τσ)−1

=
1
|G|

∑

σ∈G

ρσP1ρσ−1 = P1,

so that y ∈ W0 = ker P1 implies P1y = 0 and hence P1ρτ y = ρτP1y = 0, thus showing that
ρτ y ∈ W0, for all τ ∈ G. Consequently, W0 is a stable subspace of V under G. �

Example 2.5.6 (The invariant subspaces of a group algebra). With the definitions and nota-
tion of Section 2.4.2, let I1 indicate a left ideal of the group algebra A. Theorem 2.3 implies that
A decomposes as the direct sum

A = I1 ⊕ I2

of I1 and a complementary ideal I2. If x ∈ A then x = x1 + x2 with x1, x2 in I1, I2 respectively.
In particular, the identify 1 ∈ A can be expressed as

1 = e1 + e2,

so that x = xe1 + xe2, for all x ∈ A, thus showing that the subspaces I1, I2 are spanned by e1

and e2, respectively. When x ∈ I1, because I1 is a left ideal, xe1 ∈ I1 and x = x(e1 + e2) = xe1.
In particular, for x = e1, e1 = e2

1. Similarly, e2 = e2
2. In addition,

e1 = e1(e1 + e2) = e2
1 + e1e2 = e1 + e1e2

so that e1e2 = 0. Similarly, e2e1 = 0. Repeating the argument in each component, we obtain a
final decomposition of the form

A = I1 ⊕ I2 ⊕ . . .⊕ Ih,

1 = e1 + e2 + . . . + eh,

with e2
i = ei and eiej = 0 for i 6= j, and such that each ideal cannot be further reduced as a sum

of two left ideals. The irreducible left ideals are called the primitive idempotents of the group
algebra.

Theorem 2.4. Every representation is a direct sum of irreducible representations.
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Proof. Let V be (the vector space associated to) a linear representation of G. The argument
is by induction on the dimension of V. Suppose dim V ≥ 1. If V is irreducible, the proof is
complete. Otherwise, from Theorem 2.3, V = V′⊕V′′ with dim V′ < dim V and dim V′′ < dim V.
By the induction hypothesis, V′ and V′′ are direct sum of irreducible representations, and then so
is V. �

2.6. Characters of a representation

Given a representation ρ, the complex-valued function

χρ : τ → tr ρτ

is called the character of the representation. It plays an important role in the characterization of
the representation. Since ρ(1) = I` and ` = dim ρ, we note that χρ(1) = dim ρ.

If λ is an eigenvalue of ρ, then, relative to the invariant inner product, expression (2.19), we
have

(y, y) = (ρτ y, ρτ y) = (λy, λy) = λλ(y, y),
so that λλ = 1. Let λ1, . . . , λm indicate the eigenvalues of ρτ (over C). Then

(2.26) χρ(τ−1) = tr ρτ−1 = tr ρ−1
τ =

∑
λ−1

i =
∑

λi = tr ρτ = χρ(τ ).

Also note, since trace is invariant under similarity, that

(2.27) χρ(τστ−1) = χρ(σ), for all τ, σ ∈ G.

Proposition 2.6.1. Let ρi : G → GL(Vi) be a linear representation of G, with corresponding
character χi, i = 1, 2. Then

χρ1⊕ρ2 = χ1 + χ2, χρ1⊗ρ2 = χ1 × χ2.

Proof. We have

χρ1⊕ρ2 = tr (ρ1 ⊕ ρ2) = tr
[
ρ1 0
0 ρ2

]
= tr ρ1 + tr ρ2 = χ1 + χ2,

whereas, noting that the diagonal of χρ1⊗ρ2 is

([ρ1]11diag ρ2, [ρ1]22diag ρ2, . . . , [ρ1]n1n1diag ρ2),

we obtain

χρ1⊗ρ2 = tr (ρ1 ⊗ ρ2) =
∑

i

[ρ1]ii ×
∑

j

[ρ2]jj = tr ρ1 × tr ρ2 = χ1 × χ2.

�

In Example 2.5.1 we considered the Sym2 and Alt2 representations and showed that ρ ⊗ ρ '
Sym2⊕Alt2. From the decomposition for the tensor representation of C4 discussed in that example,
we obtain the following characters:

C4 χρ(τ ) χSym2(τ ) χAlt2 (τ )

1 4 10 6

(1234) 0 0 0

(13)(24) 0 2 −2

(1432) 0 0 0

Note that, for all τ ∈ C4,

χ2
ρ(τ ) = χρ⊗ρ(τ ) = χSym2(τ ) + χAlt2(τ ),

and
χSym2(τ ) =

1
2
(χ2

ρ(τ ) + χρ(τ2)), χAlt2(τ ) =
1
2
(χ2

ρ(τ ) − χρ(τ2)).

It can be shown that these two equalities hold in general for any linear representation ρ of G.
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2.7. Schur’s Lemma and applications

Lemma 2.7.1 (Schur). Let ρi : G → Vi be irreducible representations of G, i = 1, 2, and let
f : V1 → V2 be a non-zero linear mapping satisfying fρ1(τ ) = ρ2(τ )f for all τ ∈ G. Then ρ1 and
ρ2 are isomorphic. If, in addition, V1 = V2 and ρ1 = ρ2 then f is a scalar multiple of the identity
mapping.

Proof. Let W1 = ker f = {x; f(x) = 0}. If x ∈ W1 then f(x) = 0 and fρ2(τ )x = ρ1(τ )f(x) = 0,
which implies ρ1(τ )x ∈ W1, for all τ ∈ G. That is, W1 is a stable subspace. Since ρ is irreducible,
we must have W1 = {0} or W1 = V1. If W1 = V1 then f = 0, contrary to the hypothesis, hence
W1 = {0}. Similarly, we obtain im f is stable and equal to V2. Hence, f is an isomorphism, and
the two representations are equivalent or isomorphic. For the second part, let λ be an eigenvalue
of f (the field is C, so there is at least one) and define f ′ = f − λ, understanding that λ ≡ λI. If
f(x) = λx then (f−λ)x = 0, so that ker (f−λ) 6= {0}, and equivalently, f−λ is not an isomorphism.
Moreover,

(f − λ)ρ(τ ) = fρ(τ ) − λρ(τ ) = ρ(τ )f − ρ(τ )λ = ρ(τ )(f − λ), for all τ ∈ G.

From the first part of the Lemma, it follows that f − λ = 0, or f = λI. �

In the analysis of structured data, it is often of interest to consider the vector space F(G) of
all scalar functions defined on G. An important element in F(G) is the character χρ(τ ) = tr ρτ

of a representation ρ of G, introduced earlier on in Section 2.6. In general, note that each entry
ρij of a linear representation ρ defines a scalar function τ → ρij(τ ).

The representations

β1 =
[
1 0
0 1

]
, β(12) =

[
0 1
1 0

]
, β(13) =

[
−1 −1
0 1

]
,

β(23) =
[

1 0
−1 −1

]
, β(123) =

[
0 1
−1 −1

]
, β(132) =

[
−1 −1
1 0

]
,

of dimension 2, the unit (1) and the signature (Sgn) representations of S3 identified in Example
2.5.4 account for 24 + 1 + 1 = 26 scalar functions defined on G, or 26 points in the vector space
F(G). These functions have a number of characteristic properties. For example, note that

∑

τ∈G

1(τ )h Sgn(τ−1) = 0, for all scalar h,

∑

τ∈G

1(τ )Hβ(τ−1) = 0,
∑

τ∈G

Sgn(τ )Hβ(τ−1) = 0,

for all linear mappings H : R2 → R.

Proposition 2.7.1. For every non-equivalent irreducible representations ρ1, ρ2 and every
linear mapping H : V1 → V2, it holds that

∑
τ∈G ρ1(τ )Hρ2(τ−1) = 0.

Proof. Note that H0 =
∑

τ∈G ρ1(τ )Hρ2(τ−1) is a linear mapping from V1 into V2 which
intertwines with ρ1(τ ) and ρ2(τ ) for all τ ∈ G, that is, ρ1(τ )H0 = H0ρ2(τ ) for all τ ∈ G. From
Schur’s Lemma (the representations are non-equivalent irreducible) it follows that H0 = 0. �

Now take any linear mapping H =
[
a b
c d

]
and consider the two-dimensional irreducible rep-

resentation β of S3 reviewed above. Direct evaluation shows that

1
6

∑

τ∈S3

βτ Hβτ−1 =
a + d

2
I2 =

tr H
2

I2.

In fact, we have,
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Proposition 2.7.2. Let ρ be an irreducible representation of G into GL(V) with dim ρ = n.
Then, for any linear mapping H in V,

1
|G|

∑

τ∈G

ρτ Hρτ−1 =
tr H
n

In.

Proof. Schur’s Lemma implies that H0 = 1
|G|

∑
τ∈G ρτ Hρτ−1 = λIn for some scalar λ. Taking

the trace on both sides (and using its invariance under similarity) the result λ = tr H/n obtains.
�

Consider again the irreducible representations 1, Sgn and β of S3, discussed earlier on in
Section 2.7. Let H = (h11, h12) be any linear mapping from R2 into R. From Schur’s Lemma we
know that ∑

τ∈G

Sgn (τ )Hβ(τ−1) = 0.

That is, the linear forms
∑

τ∈G

Sgn (τ )[h11β11(τ−1) + h12β21(τ−1)],
∑

τ∈G

Sgn (τ )[h11β12(τ−1) + h12β22(τ−1)]

in h11 and h12 vanish for all values of h11 and h12. Therefore, the corresponding coefficients must
be zero, that is,

∑

τ∈G

Sgn (τ )β11(τ−1) = 0,
∑

τ∈G

Sgn (τ )β21(τ−1) = 0,(2.28)

∑

τ∈G

Sgn (τ )β21(τ−1) = 0,
∑

τ∈G

Sgn (τ )β22(τ−1) = 0.(2.29)

The reader may verify relations (2.28) and (2.29) from Matrix (2.30).

(2.30)

τ 1 Sgn(τ ) β11(τ ) β21(τ ) β12(τ ) β22(τ )

1 1 1 1 0 0 1

(12) 1 −1 0 1 1 0

(13) 1 −1 −1 0 −1 1

(23) 1 −1 1 −1 0 −1

(132) 1 1 0 −1 1 −1

(123) 1 1 −1 1 −1 0

.

This is the argument that proves

Corollary 2.7.1. For any two non-equivalent irreducible representations ρ, β of G, the relation
∑

τ∈G

ρij(τ )βk`(τ−1) = 0

holds for all i, j, k, ` indexing the entries of these representations.

Consider again the irreducible two-dimensional representation, β, of S3 discussed in Section
2.7. From Proposition 2.7.1, we know that

1
|G|

∑

τ∈G

βτ

[
h11 h12

h21 h22

]
βτ−1 =

tr H
2

I2,

implying that, for all scalars h11, h12, h21, h22, we must have

1
|G|

∑

τ∈G

2∑

j,k=1

βij(τ )hjkβki(τ−1) =
1
2
h11 +

1
2
h22, i = 1, 2.
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or, equivalently,

1
|G|[

∑

τ∈G

βi1(τ )β1i(τ−1)]h11 +
1
|G| [

∑

τ∈G

βi1(τ )β2i(τ−1)]h12+

1
|G|[

∑

τ∈G

βi2(τ )β1i(τ−1)]h21 +
1
|G| [

∑

τ∈G

βi2(τ )β2i(τ−1)]h22 =
1
2
h11 +

1
2
h22, i = 1, 2,

for all scalars h11, h12, h21, h22. Consequently, equating the coefficients of the linear forms, the
equality

∑
τ∈G βij(τ )βk`(τ−1) = 1

2
when i = `, j = k (and 0 otherwise) must obtain. This is the

argument proving the following result:

Proposition 2.7.3. For any n-dimensional irreducible representation, ρ, of G we have

1
|G|

∑

τ∈G

ρij(τ )ρk`(τ−1) =

{
1/n if i = `, j = k;
0 otherwise.

Matrix (2.30) provides the numerical values for applying Proposition 2.7.3 to the irreducible
representations of S3.

2.7.1. Orthogonality relations for characters. Following Section 2.4.1, we observe that

(2.31) (f | g) =
1
|G|

∑

τ∈G

f(τ )g(τ )

is a inner product in the vector space F(G) of complex-valued functions defined in G. In particular,
if χ1 and χ2 are characters of a representation of G, then χ1, χ2 ∈ F(G), and because χ(τ−1) =
χ(τ ), we have

(χ1 | χ2) =
1
|G|

∑

τ∈G

χ1(τ )χ2(τ ) =
1
|G|

∑

τ∈G

χ1(τ )χ2(τ−1).

From Section 2.4.1 we may assume that the representation ρ is unitary so that Proposition 2.7.3
can then be expressed as

(2.32)
1
|G|

∑

τ∈G

ρij(τ )ρk`(τ−1) =
1
|G|

∑

τ∈G

ρij(τ )ρk`(τ ) = (ρij | ρk`) =

{
1/n if i = `, j = k,

0 otherwise.

Similarly, Corollary 2.7.1 becomes

(2.33) (ρij | βk`) = 0, for all i, j, k, `,

where ρ and β are two non-equivalent irreducible representations of G.

Theorem 2.5. (a) If χ is the character of an irreducible representation then (χ | χ) = 1; (b)
If χ1 and χ2 are the characters of two non-equivalent irreducible representations of a group G,
then (χ1 | χ2) = 0.

Proof. From expression (2.32), we have

(χ | χ) =
1
|G|

∑

τ∈G

(
n∑

i=1

ρii(τ ) |
n∑

j=1

ρjj(τ )) =
n∑

i=1

(ρii | ρii) =
n∑

i=1

1
n

= 1,

whereas, from Expression (2.33), similarly, we obtain (χ1 | χ2) = 0. �

We refer to the character of an irreducible representation as an irreducible character.
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Example 2.7.1. The following matrix shows three irreducible characters of S3, corresponding
to the irreducible representations 1, Sgn, and β discussed earlier on in Section 2.7:

(2.34)

τ χρ χ1 χSgn χβ

1 3 1 1 2

(12) 1 1 −1 0

(13) 1 1 −1 0

(23) 1 1 −1 0

(123) 0 1 1 −1

(132) 0 1 1 −1

;

It also shows the character χρ of the permutation representation ρ of Sn. �

The reader may verify, from Matrix 2.34, that

(χ1 | χρ) = (χβ | χρ) = (χSgn | χρ) = 1.

In fact, (χθ | χρ) is the number of irreducible representations isomorphic to θ in any decomposition
of ρ. We have, then,

Proposition 2.7.4. If ρ is a linear representation of G with character ρ and χ1, . . . , χh are
the irreducible characters of G, then (χi|χ) is the number of representations in any decomposition
of ρ that are isomorphic to ρi.

We remark that the notation

ρ ' m1ρ1 ⊕ . . .⊕ mhρh,

with mi = (χi|χ), indicates that there is a basis in V relative to which

ρ(τ ) = Diag (Im1 ⊗ ρ1(τ ), . . . , Imh ⊗ ρh(τ )), τ ∈ G.

Example 2.7.2. Let S2 = {1, t} act on V = {uu, yy, uy, yu} according to sτ−1 (location
symmetry). A representation in V = R4 is given by

ρ1 = I4, ρt =




1 0 0
0 1 0

0 0
[
0 1
1 0

]


 ,

which, relative to the basis for V indexed by {uu, yy, uy + yu, uy − yu}, can be expressed as
1 ⊕ 1 ⊕ 1 ⊕ Sgn . That is ρ ' 1 ⊕ 1 ⊕ 1 ⊕ Sgn , or

ρ(τ ) = Diag (1, 1, 1, Sgn (τ )).

In fact, from the character table



τ χρ χ1 χSgn

1 4 1 1

t 2 1 −1


 ,

we obtain

(χ1 | χρ) =
1
2
(χ1(1)χρ(1) + χ1(t)χρ(t)) =

1
2
(4 + 2) = 3,

which is the multiplicity of the unit representation in this decomposition of ρ. The signature
representation appears with multiplicity

(χSgn | χρ) =
1
2
(1 × 4 + (−1) × 2) = 1.
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Similarly, when S2 acts on V according to σs (letter symmetry), we have,

ρ1 = I4, ρt =




[
0 1
1 0

]
0

0
[
0 1
1 0

]




,

so that
ρ ' 1 ⊕ 1 ⊕ Sgn ⊕ Sgn.

The multiplicities for 1 and Sgn are, respectively,

(χ1|χρ) =
1
2
(χ1(1)χρ(1) + χ1(t)χρ(t)) =

1
2
(4 + 0) = 2,

and
(χSgn|χρ) =

1
2
(χSgn(1)χρ(1) + χSgn(t)χρ(t)) =

1
2
(4 + 0) = 2.

Note that the multiplicity of a given irreducible component does not depend on the underlying
choice of basis. Moreover, two representations with the same character are isomorphic, because
they contain each irreducible component with exactly the same multiplicity. These arguments
reflect the importance of characters in the study of linear representations. It is in that sense that
irreducible representations are the building blocks of generic representations. �

We may then restrict our attention to the set χ1, . . . , χh of distinct irreducible characters of
G, and write,

V = m1V1 ⊕ . . .⊕ mhVh,

or, equivalently, ρ ' m1ρ1 ⊕ . . .⊕ mhρh. In this case, we have

(2.35) χρ = m1χ1 + . . . + mhχh.

The multiplicities mi are given by the integers (χρ | χi) ≥ 0, i = 1, . . .h. In the previous example,
under location symmetry,

χρ = 3χ1 + χSgn.

Consequently, the orthogonality relations among the irreducible components imply that (χρ |
χρ) =

∑h
i=1 m2

i . The following result is a useful characterization of the irreducible representations.

Theorem 2.6. (χρ | χρ) = 1 if and only if ρ is irreducible.

Proof. We have (χρ | χρ) =
∑h

i=1 m2
i = 1 if and only if exactly one of the mi’s is equal to 1

and all the others are equal to 0, in which case ρ is isomorphic to that irreducible component. �

Example 2.7.3. Consider the irreducible representations 1, β and Sgn of S3, along with the
tensor β ⊗ β representation. Matrix 2.36 shows the corresponding characters:

(2.36)

τ β β ⊗ β 1 Sgn

1 2 4 1 1

(12) 0 0 1 −1

(13) 0 0 1 −1

(23) 0 0 1 −1

(123) −1 1 1 1

(132) −1 1 1 1

.

The reader may verify that

(χβ | χβ) = (χ1 | χ1) = (χSgn | χSgn) = 1;

As for the tensor representation, (χβ⊗β | χβ⊗β) = 18/6 = 3, so it must be reducible. On the other
hand,

(χβ⊗β | χβ) = (χβ⊗β | χ1) = (χβ⊗β | χSgn) = 1,
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so that these representations appear in the decomposition of the tensor representation with single
multiplicity. In fact, β ⊗ β ' 1 ⊕ β ⊕ Sgn, with the corresponding character decomposition. �

Of particular interest in the study of group representations is the regular representation,
introduced earlier on in Example 2.4.2. It is defined by the action ϕ(τ, σ) = τσ in G × G. Its
dimension is |G|. Since, for all σ ∈ G, ϕ(τ, σ) = ϕ(η, σ) if and only if τ = σ, and ϕ(τ, 1) = τ for
all τ ∈ G, it follows that its character is given by

χreg(τ ) =

{
0 if τ 6= 1;
|G| if τ = 1.

Consequently, for any irreducible representation ρ of G with character χρ, we have

(2.37) (χreg, χρ) =
1
|G|

∑

τ∈G

χreg(τ )χρ(τ−1) = χρ(1) = dim ρ,

that is, from 2.35, every irreducible representation is contained in the regular representation with
multiplicity (χreg|χρ) equal to its dimension.

Proposition 2.7.5. The dimensions n1, . . . , nh of the h distinct irreducible representations of
G, satisfy the relation |G| =

∑h
i=1 n2

i .

Proof. From relation 2.35, we have χreg(τ ) =
∑h

i=1 miχi(τ ), where, from 2.37, mi = (χreg|χi) =
dim ρi = ni, so that

χreg(τ ) =
h∑

i=1

niχi(τ ),

for all τ ∈ G. Taking τ = 1, the proposed equality obtains. �

Note that for τ 6= 1, the defining property of χreg implies that
∑h

i=1 niχi(τ ) = 0. This equality
together with Proposition 2.7.5 show that

(2.38)
1
|G|

h∑

i=1

niχi(σ−1τ ) = δστ .

Example 2.7.4. Let G = S3. The irreducible non-equivalent representations 1, β and Sgn are
contained in the regular representation with multiplicities 1, 2, 1, respectively. Because |G| = 6 =
12 + 22 + 12, these must be all the distinct irreducible non-equivalent representations of S3. �

Definition 2.7.1. A scalar-valued function h defined on G and satisfying h(τστ−1) = h(σ),
for all σ, τ ∈ G is called a class function.

Clearly, class functions are constant within each conjugacy class of G. We indicate by C the set
of class functions on G. Note that C is a linear subspace of the vector space F(G) of scalar-valued
functions defined on G. All characters belong to C. From Example 2.3.7 we observe that C is a
stable subspace of F(G) under the representation σ

φ−→ σ∗, that is,

x ∈ C =⇒ φ(σ)x = x, for all σ ∈ G.

More precisely, C is the subspace of F(G) of functions invariant under this conjugation action.
For each class function, x, and any representation ρ, define the linear mapping

(2.39) x̂(ρ) =
∑

τ∈G

x(τ )ρ(τ ).

Note that x̂(ρ) commutes with ρ(τ ) for all τ ∈ G. In fact,

ρτ x̂(ρ)ρτ−1 = ρτ

∑

σ

x(σ)ρσρτ−1 =
∑

σ

x(σ)ρτ ρσρτ−1 =
∑

σ

x(σ)ρτστ−1

=
∑

σ

x(τστ−1)ρτστ−1 =
∑

σ

x(σ)ρσ = x̂(ρ).
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Therefore, if ρ is an irreducible representation, it follows from Schur’s Lemma that x̂(ρ) = λI. To
evaluate λ we take the trace in each side of the above equality, to obtain

tr x̂(ρ) =
∑

τ∈G

x(τ )tr ρ(τ ) =
∑

τ∈G

x(τ )χρ(τ ) =
∑

τ∈G

x(τ )χρ(τ−1)

= |G|(x, χρ) = tr λIn = nλ,

so that λ = |G|(x, χρ)/n. This proves

Proposition 2.7.6. If ρ is an n-dimensional irreducible representation of G and x ∈ C then

x̂(ρ) =
|G|
n

(x|χρ)In.

Theorem 2.7. The distinct irreducible characters form an orthonormal basis for C.

Proof. From Theorem 2.5 we know that the set of distinct irreducible characters form an
orthonormal set of functions in C. We need to show that this set generates C. Suppose that x ∈ C
and that x is orthogonal to χ1, . . . , χh. Therefore, for any irreducible n-dimensional representation
ρ of G, we have

x̂(ρ) =
|G|
n

(x | χρ)In = 0.

Because every representation decomposes isomorphically as a sum of irreducible components, it
follows that x̂(ρ) = 0 for every representation ρ. In particular, x̂(ρreg) = 0, {eτ : τ ∈ G} is a basis
for V, and

0 = x̂(ρreg)e1 =
∑

τ∈G

x(τ )ρreg(τ )e1 =
∑

τ∈G

x(τ )eτ ,

which implies x(τ ) = 0 for all τ ∈ G. That is, x = 0. �

Note that the dimension of the subspace C of class functions is determined both by the number
of distinct irreducible representations of G and by the number of orbits, or conjugacy classes, of
G under the action στσ−1, in which the class functions can be arbitrarily defined. Consequently,
the number of distinct irreducible representations coincide with the number of conjugacy classes
of G.

Example 2.7.5. If G is a commutative group, then G has |G| conjugacy classes and hence
|G| distinct irreducible representations. Moreover, because

|G| =
∑

j

dim2ρj,

we conclude that these representations are all one-dimensional. In particular, if G is cyclic, the
irreducible representations are given by ρj(τk) = e2πijk/|G| . �

Proposition 2.7.7. If χ1, . . . , χh are the distinct irreducible characters of group G, then
∑

i

χi(η)χi(τ ) =

{
|G|
|Oτ | if η ∈ Oτ ;
0 if η /∈ Oτ ,

where |Oτ | is the number of elements in the conjugacy class Oτ = {στσ−1, σ ∈ G} of τ ∈ G.

Proof. Define

xτ (η) =

{
1 if η ∈ Oτ ;
0 if η /∈ Oτ .

Then xτ is a class function and, consequently, can be expressed as a linear combination
∑

i ciχi

of the distinct irreducible characters χ1, . . . , χh of G. The reader may verify that, in this case,
ci = (xτ | χi) = |Oτ | χi(τ )/|G|, so that

xτ (η) =
∑

i

|Oτ |
|G|

χi(τ )χi(η) =

{
1 if η ∈ Oτ

0 if η /∈ Oτ ,

from which the result follows. �
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Example 2.7.6. Matrix (2.40) shows the irreducible characters χ1, χSgn, χβ of S3, along with
the characters χρ, χβ⊗β, χreg of the permutation, tensor β ⊗β and regular representations, respec-
tively.

(2.40)

τ χρ χ1 χSgn χβ χβ⊗β χreg

1 3 1 1 2 4 6

(12) 1 1 −1 0 0 0

(13) 1 1 −1 0 0 0

(23) 1 1 −1 0 0 0

(123) 0 1 1 −1 1 0

(132) 0 1 1 −1 1 0

.

S3 has three conjugate orbits (and hence three distinct irreducible representations),

O1 = {1}, Ot = {(12), (13), (23)}, Oc = {(123), (132)}.

We obtain

χ1(τ )χ1(τ ) + χSgn(τ )χSgn(τ ) + χβ(τ )χβ(τ ) =





4 + 1 + 1 = 6 = |G|/|O1|, if τ ∈ O1;
0 + 1 + 1 = 2 = |G|/|Ot|, if τ ∈ Ot;
1 + 1 + 1 = 3 = |G|/|Oc|, if τ ∈ Oc,

whereas

χ1(τ )χ1(η) + χSgn(τ )χSgn(η) + χβ(τ )χβ(η) =




2 × 0 + 1 × (−1) + 1 × 1 = 0, if τ = 1, η = (12);
2 × (−1) + 1 × 1 + 1 × 1 = 0, if τ = 1, η = (123);
0 × (−1) + (−1) × 1 + 1 × 1 = 0, if τ = (12), η = (123).

To decompose, say, the character of β ⊗ β, we write χβ⊗β = c1χ1 + cSgnχSgn + cβχβ , in which the
coefficients are determined by

c1 = (χβ⊗β | χ1) = 6/6 = 1, cSgn = (χβ⊗β | χSgn) = 6/6 = 1,

and cβ = (χβ⊗β | χβ) = 6/6 = 1. In fact, χβ⊗β = χ1 + χSgn + χβ. �

2.8. The canonical decomposition

Consider again the representations of S2 = {1, t} acting on the space V of binary sequences in
length of two according to position and letter symmetry, introduced earlier on in Section 2.4, see
also Example 2.3.1. We examine first the position symmetry. The representation is isomorphic to

ξ1 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, ξt =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




,

taking values in GL(R4). Equivalently, writing V = R4, we observe that the ξ determines the
decomposition

V = W1 ⊕W2 ⊕W3,

where the stable subspaces W1 and W2 reduce isomorphically as a subspace U1 associated with
the unit representation and W3 reduces as the sum of an isomorphic copy of U1 and a subspace
USgn associated with the sign representation. Therefore,

V = U1 ⊕ U1 ⊕ U1︸ ︷︷ ︸
V1

⊕ USgn = V1 ⊕ VSgn,
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showing a decomposition of V into a direct sum of the irreducible representations of S2 in which
we collected together the isomorphic copies. This is the canonical decomposition of V. Next, we
will construct projections P1 and PSgn of V on the irreducible subspaces V1 and VSgn. To do this,
define

Pβ =
nβ

|G|
∑

τ∈G

χβ(τ )ξτ ,

where χβ is the irreducible character of the irreducible representation β of G, and nβ its dimension.
In the present case (G = S2), β ∈ {1, Sgn} with corresponding characters




1 t

χ1 1 1

χSgn 1 −1


 ,

so that

P1 =
1
2
[ξ1 + ξt], PSgn =

1
2
[ξ1 − ξt].

When the projections are evaluated relative to a basis of V = V1 ⊕ VSgn on which

ξτ = Diag(I3 ⊗ 1τ , Sgnτ )

we obtain

P1 =
1
2
[Diag(I3 ⊗ 1, 1) + Diag(I3 ⊗ 1,−1)] = Diag(I3 ⊗ 1, 0) = Diag(1, 1, 1, 0),

and

PSgn =
1
2
[Diag(I3 ⊗ 1, 1) − Diag(I3 ⊗ 1,−1)] = Diag(I3 ⊗ 0, 1) = Diag(0, 0, 0, 1).

It then follows that
(1) P2

1 = P1, P2
Sgn = PSgn;

(2) P1PSgn = PSgnP1 = 0;
(3) I4 = P1 + PSgn,

so that Pβ is a projection on a subspace isomorphic to Vβ . Note that properties (1),(2) and (3)
above remain valid if Pβ is evaluated relative to any representation Mξτ M−1 equivalent to ξ. In
this case, Pβ transforms as MPβM−1 and (1),(2) and (3) remain unchanged. For example, relative
to the basis for V indexed by {uu, yy, uy, yu}, we have

P1 =




1
1 [

1/2 1/2
1/2 1/2

]


 , PSgn =




0
0 [

1/2 −1/2
−1/2 1/2

]


 .

Here is an outline of the same construction when ξ (letter symmetry) is given by

ξ1 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, ξt =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




.

In this case V = W1 ⊕W2 and in each one of these two stable subspaces ξ reduces isomorphically
as the sum of the unit and the sign representations. Collecting the isomorphic copies of the
corresponding irreducible subspaces U1 and USgn we have then

V = U1 ⊕ U1︸ ︷︷ ︸
V1

⊕USgn ⊕ USgn︸ ︷︷ ︸
VSgn

.

This is the canonical decomposition of V. The corresponding projections are:

P1 =
1
2
[ξ1 + ξt], PSgn =

1
2
[ξ1 − ξt].
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When the projections are evaluated relative to a basis of V = V1 ⊕ VSgn on which

ξτ = Diag(I2 ⊗ 1τ , I2 ⊗ Sgnτ )

we obtain

P1 =
1

2
[Diag(I2 ⊗ 1, I2 ⊗ 1) + Diag(I2 ⊗ 1, I2 ⊗−1)] = Diag(I2 ⊗ 1, I2 ⊗ 0) = Diag(1, 1, 0, 0),

and

PSgn =
1

2
[Diag(I2 ⊗ 1, I2 ⊗ 1) − Diag(I2 ⊗ 1, I2 ⊗−1)] = Diag(I2 ⊗ 0, I2 ⊗ 1) = Diag(0, 0, 1, 1).

It then follows that Pβ is a projection on a subspace isomorphic to Vβ and, regardless of the chosen
basis for V,

(1) P2
1 = P1, P2

Sgn = PSgn;
(2) P1PSgn = PSgnP1 = 0;
(3) I4 = P1 + PSgn.

In particular,

P1 =
1
2




[
1 1
1 1

]

[
1 1
1 1

]


 , PSgn =

1
2




[
1 −1
−1 1

]

[
1 −1
−1 1

]


 .

The arguments illustrated in the above example will now be applied to prove the following theorem.

Theorem 2.8 (Canonical Decomposition). Let ρ be a linear representation of G into GL(V),
ρ1, . . . , ρh the distinct non-isomorphic irreducible representations of G, with corresponding char-
acters χ1, . . . , χh and dimensions n1, . . . , nh. Then,

Pi =
ni

|G|
∑

τ∈G

χi(τ )ρ(τ ),

is a projection of V onto a subspace Vi, sum of mi isomorphic copies of the irreducible subspaces
associated with ρi, i = 1, . . . , h. Moreover, PiPj = 0, for i 6= j, P2

i = Pi and
∑

i Pi = Iv, where
v = dim V =

∑h
i=1 mini.

Proof. From Proposition 2.7.4 we know that ρ '
∑h

j=1 mjρj, where ρ1, . . . , ρh are the distinct
irreducible representations of G. That is, there is a basis in V relative to which

ρ = Diag(Im1 ⊗ ρ1, . . . , Imh ⊗ ρh).

Therefore,
Pi =

ni

|G|Diag(Im1 ⊗
∑

τ

χi(τ )ρ1(τ ), . . . , Imh ⊗
∑

τ

χi(τ )ρh(τ )).

Applying Proposition 2.7.6 with x = χi, so that x̂(ρj) =
∑

τ χi(τ )ρj(τ ), we have
∑

τ

χi(τ )ρj(τ ) =
|G|
ni

(χj|χi)Ini ,

and consequently
Pi = Diag(δi1Im1 ⊗ In1 , . . . , δihImh ⊗ Inh ).

It is then clear that P2
i = Pi, so that Pi is a projection of V into the subspace Vi direct sum of

mi copies of the irreducible subspaces associated with ρi, i = 1, . . . , h. It is also clear that, in
addition, PiPj = 0 for j 6= i and that

h∑

i=1

Pi = Diag(Im1 ⊗ In1 , . . . , Imh ⊗ Inh) = Iv,

concluding the proof. �

Note that tr Pi = nimi = dim Vi.
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2.9. The standard decomposition

In this section we will characterize the canonical decomposition applied to the permutation
representation ρ of Sn. This is the reduction that is naturally associated with data that are indexed
by V = {1, . . . , n}, such as in statistical sampling. Recall that ρ is defined by the action of Sn

on the set of indices V = {1, . . . , n} for the canonical basis for Rn according to (τ, j) = τ j. The
resulting representation is an isomorphism between Sn and Mn, the group of n × n permutation
matrices.

It will be useful to adopt the notation

A =
1
n

ee′, Q = I − A

from now on, where ee′ is the n × n matrix of ones. Clearly, the reduction

I = A + Q

satisfies A2 = A, Q2 = Q and AQ = QA = 0. Moreover, A projects V = Rn into a subspace Va

of dimension dim Va = tr A = 1 generated by e = e1 + . . . + en = (1, 1, . . . , 1) ∈ V, whereas Q
projects V into the subspace Vq in dimension n − 1, the orthogonal complement of Va in V. We
will show that the reduction V = Va + Vq is exactly the canonical reduction determined by ρ. We
refer to this decomposition as the standard decomposition or standard reduction.

To illustrate the argument, consider first the case n = 3. The joint character table for ρ and
the irreducible representations of S3 is




χ 1 (12) (123)

χρ 3 1 0

χ1 1 1 1
χβ 2 0 −1

χSgn 1 −1 1




,

where β is the two-dimensional irreducible representation derived earlier on in Example 2.5.4.
Recall also that there are 3 elements in the class of (12) and two elements in the class of (123). It
then follows that (χ1|χρ) = 1, (χSgn|χρ) = 0 and (χβ |χρ) = 1, so that ρ ' 1⊕ β and χβ = χρ − 1.
In general, we have:

Proposition 2.9.1. χβ = χρ − 1 is an irreducible character of Sn. Its dimension is n − 1.

Proof. Write χρ = χ to indicate the character of the permutation representation of Sn. To
evaluate

(χβ |χβ) =
1
|G|

∑

τ

(χ(τ ) − 1)2 =
1
|G|

∑

τ

(χ2(τ ) − 2χ(τ ) + 1)

and verify the irreducibility criteria (χβ |χβ) = 1 of Proposition 2.6, we need the first two moments
∑

τ

χ(τ )/|G|,
∑

τ

χ2(τ )/|G|,

of χ. The argument is as follows: Consider the action (τ i, τ j) of Sn on the product space V2 =
{1, . . . , n}2. Its character is χ2 and the number of orbits is clearly two, namely

O0 = {(i, i), i = 1, . . . , n}, O1 = {(i, j), i, j = 1, . . . , n, i 6= j}.

Now apply Burnside’s Lemma to write

2 = Number of orbits in V2 =
1
|G|

∑

τ

χ2(τ ).

Similarly, since Sn acts transitively on {1, . . . , n}, we have

1 = Number of orbits in V =
1
|G|

∑

τ

χ(τ ).
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Consequently,

(χβ|χβ) =
1
|G|

∑

τ

(χ2(τ ) − 2χ(τ ) + 1) = (2 − 2 + 1) = 1,

thus showing that χβ is an irreducible character of Sn. Its dimension is χβ(1) = χ(1)− 1 = n− 1,
concluding the proof. �

Consequently, the multiplicities (χ1|χρ) = 1 and (χβ|χρ) = 1 apply to the permutation rep-
resentation of Sn, and because its dimension is n we conclude that ρ ' 1 ⊕ β is an irreducible
decomposition of ρ.

The implication for the canonical decomposition of the permutation representation of Sn is as
follows: Because ρ ' 1 ⊕ β there are only two (non-null) projections, namely P1 associated with
the symmetric character, and Pβ associated with the irreducible character χβ of dimension n− 1.
Clearly,

P1 =
1
|G|

∑

τ

ρ(τ ) = A;

Moreover, I = A+Q = A+Pβ so we must have Pβ = Q. That is, A and Q are the only canonical
projections associated with the permutation representation of Sn, which is the characterization we
had in mind.

The results summarized in the following proposition are useful in obtaining new orthogonal de-
compositions from existing ones. Its proof is by direct verification that in each case the appropriate
identity matrix decomposes as a sum of pairwise orthogonal idempotents components.

Proposition 2.9.2. If Im =
∑

i Pi and In =
∑

j Tj are canonical reductions of dimensions m
and n respectively, then

Imn =
∑

i,j

Pi ⊗ Tj

and Pi ⊗ Tj are orthogonal projections. In particular

(µ ⊗ e)′(P ⊗ T )(µ ⊗ e) =

{
nµ′Pµ if T = A
0 if T = Q

.

If L1, . . . , Lh is a disjoint partition of L then the amalgamated components of

Im = (
∑

i∈L1

Pi) + . . . + (
∑

i∈Lh

Pi)

are orthogonal projections. If, in addition, m = n and the components Pi and Tj all commute,
then

In =
∑

i,j

PiTj

and PiTj are orthogonal projections. In particular, the components A and Q of the standard
reduction commute with every symmetric matrix of same dimension. �

The following result describes the matrices that are centralized by the permutation repre-
sentation of Sn. In multivariate analysis, these matrices play a significant role in describing the
(intraclass) covariance structure of permutation symmetric random variables.

Proposition 2.9.3. If ρ is the permutation representation of Sn, then, for every real or complex
n × n matrix H,

1
n!

∑

τ∈Sn

ρτ Hρτ−1 = a0ee′ + a1In,

where the coefficients a0 and a1 are scalars defined by the relations n(a0 + a1) = tr H and n(n −
1)a0 = e′He − tr H, in which e′He is the sum of the entries in H.



72 2. ALGEBRAIC METHODS FOR DATA ANALYSIS

Proof. Let M = 1
n!

∑
τ∈Sn

ρτ Hρτ−1 and let J = PHP−1 where

(2.41) P =




1 1 . . . 1 1
n − 1 −1 . . . −1 −1

...
...

...
...

...
−1 −1 . . . n − 1 −1


 .

It is simple to verify that the irreducible decomposition ρ ' 1⊕β of the permutation representation
is realized by PρP−1. Consequently, applying Proposition 2.7.2, we have

PMP−1 =
1
n!

∑

τ

(Pρτ P−1)J(Pρτ−1 P−1) =
[
J11 0
0 tr J22

n−1 In−1

]
,

from which we obtain

M = P−1

[
J11 0
0 tr J22

n−1
In−1

]
P.

Direct evaluation, using the definition of the matrix P, shows that M is the matrix with entries

Mij =

{
tr H/n if i = j;
(e′He − tr H)/(n − 1) if i 6= j

,

which is the proposed result. �

2.10. Inference

We conclude this chapter with examples of prototypic applications of canonical decompositions
and their connection with the Fisher-Cochran’s Theorem for quadratic forms.

The aspects of statistical inference associated with the canonical reduction are those of the
distribution of the corresponding quadratic forms. These results are known as the Fisher-Cochran
theorem. See, for example, Rao (1973), Eaton (1983), Searle (1971) or Muirhead (1982). The
corollary that relates to a canonical reduction can be formulated as follows:

Proposition 2.10.1. If the components of y′ = (y1, . . . , yn) are independent and normally
distributed with mean µi and unit variance, then the components y′Piy of the canonical reduction

y′y =
∑

i

y′Piy

are independent and distributed as χ2 with tr Pi degrees of freedom and noncentrality parameter
µ′Piµ.

Proof. Let X indicate the matrix in which the columns are the normalized characteristic
vectors from P1,P2, . . .. The orthogonality of the associated subspaces, implied by PiPj = 0 for
any i 6= j, allows that X′X = I. Moreover, because P2

i = Pi, the characteristic roots of Pi are
either 0 or 1 and, and consequently, in the new base z = X′y we have

y′Piy = z′X′PiXz = z′diag (0 . . . , 0, 1 . . ., 1︸ ︷︷ ︸
Wi

, 0, . . . , 0)z =
∑

Wi

z2
i

where Wi is the corresponding invariant subspace in the decomposition W1 ⊕W2 ⊕ . . . of the full
vector space. From the parametric assumptions on the components of y, we obtain the law of
y′Piy as χ2 with degrees of freedom equal to the dimension tr Pi of Wi, independently of the
y′Pjy, j 6= i, with noncentrality parameter equal to µ′Piµ. �
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The following example illustrates the construction described in Proposition 2.10.1. Consider
the regular reduction of D4. The projections are P1 = ee′/8,

P2 = 1/8




1 1 1 1 −1 −1 −1 −1

1 1 1 1 −1 −1 −1 −1

1 1 1 1 −1 −1 −1 −1

1 1 1 1 −1 −1 −1 −1

−1 −1 −1 −1 1 1 1 1

−1 −1 −1 −1 1 1 1 1

−1 −1 −1 −1 1 1 1 1

−1 −1 −1 −1 1 1 1 1




,

P3 = 1/8




1 −1 1 −1 1 −1 1 −1

−1 1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1 −1

−1 1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1 −1

−1 1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1 −1

−1 1 −1 1 −1 1 −1 1




,

P4 = 1/8




1 −1 1 −1 −1 1 −1 1

−1 1 −1 1 1 −1 1 −1

1 −1 1 −1 −1 1 −1 1

−1 1 −1 1 1 −1 1 −1

−1 1 −1 1 1 −1 1 −1

1 −1 1 −1 −1 1 −1 1

−1 1 −1 1 1 −1 1 −1

1 −1 1 −1 −1 1 −1 1




,

P5 = 1/4




2 0 −2 0 0 0 0 0

0 2 0 −2 0 0 0 0

−2 0 2 0 0 0 0 0

0 −2 0 2 0 0 0 0

0 0 0 0 2 0 −2 0

0 0 0 0 0 2 0 −2

0 0 0 0 −2 0 2 0

0 0 0 0 0 −2 0 2




,

so that the invariants and corresponding subspaces are




W1 m1 + m2 + m3 + m4 + m5 + m6 + m7 + m8

W2 m1 + m2 + m3 + m4 − m5 − m6 − m7 − m8

W3 m1 − m2 + m3 − m4 + m5 − m6 + m7 − m8

W4 m1 − m2 + m3 − m4 − m5 + m6 − m7 + m8

W5 2 m1 − 2 m3

2 m2 − 2 m4

2 m5 − 2 m7

2 m6 − 2 m8




,
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from which we obtain the matrix of orthogonal normalized characteristic vectors

X =




1/4
√

2 1/4
√

2 1/4
√

2 1/4
√

2 1/2
√

2 0 0 0

1/4
√

2 1/4
√

2 −1/4
√

2 −1/4
√

2 0 1/2
√

2 0 0

1/4
√

2 1/4
√

2 1/4
√

2 1/4
√

2 −1/2
√

2 0 0 0

1/4
√

2 1/4
√

2 −1/4
√

2 −1/4
√

2 0 −1/2
√

2 0 0

1/4
√

2 −1/4
√

2 1/4
√

2 −1/4
√

2 0 0 1/2
√

2 0

1/4
√

2 −1/4
√

2 −1/4
√

2 1/4
√

2 0 0 0 1/2
√

2

1/4
√

2 −1/4
√

2 1/4
√

2 −1/4
√

2 0 0 −1/2
√

2 0

1/4
√

2 −1/4
√

2 −1/4
√

2 1/4
√

2 0 0 0 −1/2
√

2




.

We have X′X = I and

y′Piy = z′X′PiXz =





z2
1 in W1

z2
2 in W2

z2
3 in W3

z2
4 in W4

z2
5 + z2

6 + z2
7 + z2

8 in W5.

The degrees of freedom are, respectively, 1, 1, 1, 1 and 4, and the noncentrality parameters

µ′Piµ =





(m1 + m2 + m3 + m4 + m5 + m6 + m7 + m8)
2/8 in W1

(m1 + m2 + m3 + m4 − m5 − m6 − m7 − m8)
2/8 in W2

(m1 − m2 + m3 − m4 + m5 − m6 + m7 − m8)
2/8 in W3

(m1 − m2 + m3 − m4 − m5 + m6 − m7 + m8)
2/8 in W4

[(2m1 − 2m3)
2 + (2m2 − 2 m4)

2 + (2 m5 − 2 m7)
2 + (2 m6 − 2 m8)

2]/4 in W5.

Related results. Direct evaluation, e.g., Searle (1971) of the cumulants of x′Px shows that, for x ∼
N(µ,Σ),

E(x′Px) = tr PΣ + µ′Pµ, Var(x′Px) = 2tr 2PΣ + 4µ′PΣPµ.

Moreover, e.g. Muirhead (1982), for any symmetric projection P, the distribution of x′Px is χ2
k(δ), where

k = tr P and δ = µ′Pµ, if and only if PΣ is idempotent. If P1 and P2 are symmetric projections such
that P1ΣP2 = 0 then x′P1x and x′P2x are independent.

Example 2.10.1. Consider the simple structure

V = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (1, 1)} = {α, x, y,X,Y, γ},

where S2 acts according to (τ i, τ j), τ ∈ S2. The resulting permutation table is,



S2 α x y X Y γ

1 α x y X Y γ

τ α y x Y X γ


 ,

from which we obtain the canonical reduction

P1 =




1 0 0 0 0 0

0 1/2 1/2 0 0 0

0 1/2 1/2 0 0 0

0 0 0 1/2 1/2 0

0 0 0 1/2 1/2 0

0 0 0 0 0 1




, P2 =




0 0 0 0 0 0

0 1/2 −1/2 0 0 0

0 −1/2 1/2 0 0 0

0 0 0 1/2 −1/2 0

0 0 0 −1/2 1/2 0

0 0 0 0 0 0




.

Note that the invariants on
µ = (α, x, y, X, Y, γ)

are
P1µ = 1/2

[
2 α x + y x + y X + Y X + Y 2 γ

]
,

and
P2µ = 1/2

[
0 x − y −x + y X − Y −X + Y 0

]
,
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of dimensions 4 and 2 respectively. Correspondingly, we have,

µ′P1µ = 1/2
[

2 α2 + (x + y)2 + (X + Y)2 + 2 γ2
]
,

and
µ′P2µ = 1/2

[
(x − y)2 + (X − Y)2

]
.

Suppose that n = 3 independent, identically distributed normal observations are obtained in each
point of V, resulting in the data

f ′ =
[

3 4 3 4 5 5 6 7 3 9 7 4 10 9 9 5 5 9
]
∈ R18,

respectively, as in V (the first three data points are from α, and so on). Following Proposition
2.9.2 with e′ = (1, 1, 1), we know that

(µ ⊗ e)′(P ⊗ T )(µ ⊗ e) =

{
nµ′Pµ if T = A
0 if T = Q

is the expected value of
f ′(P ⊗ T )f.

Here is the resulting decomposition after tensoring P1 + P2 with the standard reduction:



P f ′Pf tr P
P1 ⊗A 687.66 4

P2 ⊗A 11.33 2

P1 ⊗ Q 24.33 8

P2 ⊗ Q 9.66 4

total 733 18




.

Combining the error terms P1 ⊗ Q + P2 ⊗ Q we obtain the analysis of variance table



source ss df

P1 ⊗ A 687.66 4

P2 ⊗ A 11.33 2

residual 34 12

total 733 18




.

Under the hypothesis H : x = y, X = Y, we have

µ′P2µ = 1/2
[

(x − y)2 + (X − Y)2
]

= 0,

so that
E(f ′(P2 ⊗A)f) = E(f ′(P2 ⊗Q)f) = 0.

Therefore,

F =
f ′(P2 ⊗ A)f/tr (P2 ⊗A)
f ′(P2 ⊗ Q)f/tr (P2 ⊗Q)

has a F distribution with degrees of freedom df1 = tr (P2 ⊗ A) and df2 = tr (P2 ⊗ Q), and can
be used to assess the hypothesis. In the present example, F = 1.99 with degrees of freedom 2 and
12. �

Example 2.10.2. Consider the simple set product structure V = L1 × L2 with L1 = {1, 2} and
L2 = {1, 2, 3}, which is the index set for a 2 × 3 data table such as

y =

[
u1 u2 u3

v1 v2 v3

]
.
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Let S2 × S3 act on V according to (τ i, σj), where (τ, σ) ∈ S2 × S3 and (i, j) ∈ V. The data are indicated
by y′ = (u1,u2,u3, v1, v2, v3) ∈ V. The character tables of S2 and S3 are, respectively,




χ2\τ 1 t

χ21 1 1

χ22 1 −1


 ,




χ3\τ 1 t r

χ31 1 1 1

χ32 2 0 −1

χ33 1 −1 1


 ,

in which 1 indicates the appropriate identity, t the corresponding (conjugacy class of) transpositions and
r the (class of) order 3 cyclic permutations. Indicate by ρ and η the resulting permutation representa-
tions of S2 and S3, respectively. From Proposition 2.9.1 we know that these reductions are exactly the
corresponding standard reductions, indicated here by A2,Q2 and A3,Q3. The proposed reduction follows
from Proposition 2.9.2, by tensoring. That is:

P1 = A2 ⊗A3 =
1

6




1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1




,

P2 = A2 ⊗Q3 =
1

6




2 −1 −1 2 −1 −1

−1 2 −1 −1 2 −1

−1 −1 2 −1 −1 2

2 −1 −1 2 −1 −1

−1 2 −1 −1 2 −1

−1 −1 2 −1 −1 2




,

P3 = Q2 ⊗A3 =
1

6




1 1 1 −1 −1 −1

1 1 1 −1 −1 −1

1 1 1 −1 −1 −1

−1 −1 −1 1 1 1

−1 −1 −1 1 1 1

−1 −1 −1 1 1 1




,

P4 = Q2 ⊗Q3 =
1

6




2 −1 −1 −2 1 1

−1 2 −1 1 −2 1

−1 −1 2 1 1 −2

−2 1 1 2 −1 −1

1 −2 1 −1 2 −1

1 1 −2 −1 −1 2




.

Table 2.1 shows the dimensions (d = tr P) of the corresponding subspaces and indices for the respective

bases. These indices carry the first-order interpretation of the data summarized in the subspaces generated

by these bases. Suppose that n = 3 independent and identically distributed are obtained at each

Table 2.1. Canonical subspaces of ρ ⊗ η, respective dimensions (d = tr P) and
corresponding bases for invariant subspaces.

P d basis interpretation

P1 1 u1 + u2 + u3 + v1 + v2 + v3 baseline average

P2 2 2u1 − u2 − u3 + 2v1 − v2 − v3, −u1 + 2u2 − u3 − v1 + 2v2 − v3 column effect
P3 1 u1 + u2 + u3 − v1 − v2 − v3 row effect

P4 2 2u1 − u2 − u3 − 2v1 + v2 + v3, −u1 + 2u2 − u3 + v1 − 2v2 + v3 remainder ε
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point of the initial structure. The new underlying structure is then V = L1 × L2 × L3 with
L1 = {1, 2}, L2 = {1, 2, 3} and L3 = {1, . . . , n}. The data space V has dimension `1 × `2 × n. The
unsung reduction is now obtained by an additional tensoring with the standard reduction A2,Q3.
The data are written as y′ = (u1, u2, u3, v1, v2, v3) ∈ V, with the understanding that each entry is
a vector in R3. From Proposition 2.9.2 we know that

I = P1 ⊗ A + . . .P4 ⊗A + P1 ⊗Q + . . .P4 ⊗Q

is a canonical reduction. Here is one numerical example, with the resulting decomposition followed
by the standard analysis of variance:

y =

[
3.1, 3.5, 3.2 4.5, 4, 4.7 6.7, 4.5, 6.8

4.1, 4, 4.4 2.3, 1.9, 1.5 7.9, 7.7, 8

]
:




V ss dim V
1 380.870 1

c 49.958 2

r 0.035 1

cr 15.779 2

e1 0.086 2

e2 0.260 2

e3 3.380 2

e4 0.086 2

e5 0.319 2

e6 0.045 2

total 450.840 18




.

Source Sum-of-Squares df Mean-Square F-ratio
ROW 0.036 1 0.036 0.102
COL 49.963 2 24.982 71.718
ROW*COL 15.781 2 7.891 22.652
Error 4.180 12 0.348

�

Example 2.10.3 (Reducing the standard 2p factorial data). The canonical reduction for the 2p

factorial data is simply the p-fold tensor of the standard reduction in S2, that is,

I2p = (A + Q) ⊗ · · · ⊗ (A + Q)︸ ︷︷ ︸
p times

.

For p = 2, denoting

u = A =
1

2

[
1 1

1 1

]
, t = Q =

1

2

[
1 −1

−1 1

]
,

we obtain the canonical reduction

uu = u ⊗ u =
1
4




1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1




, ut = u ⊗ t =
1
4




1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1




,

tu = t ⊗ u =
1
4




1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1




, tt = t ⊗ t =
1
4




1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1




.
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These projections act on observations indexed by the high (1)-low (0) labels (00, 10, 01, 11) in V.
To illustrate, consider the case in which n = 2 observations are obtained at each of the 8 labels of
a 23 factorial experiment, that is,

V =




a b c
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1




, y =




15 779

999 990

499 212

286 611

438 239

926 787

871 303

891 663




∈ V.

The data reduce according to

I = uuu ⊗ A + . . . ttt ⊗A + uuu ⊗Q + . . . ttt ⊗Q,

leading to the decomposition



trait P y′(P ⊗ A)y tr P ⊗A
1 uuu 5651317.56 1

c uut 488950.56 1

b utu 43785.56 1

bc utt 173264.06 1

a tuu 33033.06 1

ac tut 76.56 1

ab ttu 143073.06 1

abc ttt 7788.06 1

y′(P ⊗Q)y tr P ⊗Q

e uuu 7267.56 1

e uut 3570.06 1

e utu 86289.06 1

e utt 173264.06 1

e tuu 232083.06 1

e tut 19670.06 1

e ttu 4192.56 1

e ttt 76314.06 1

total I 7143939.00 16




.

All subspaces are one-dimensional so that the decomposition is irreducible and the analysis is
complete. Here is the condensed standard analysis:

Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio
a 33033.063 1 33033.063 0.439
b 43785.563 1 43785.563 0.581
c 488950.563 1 488950.563 6.491
a*b 143073.062 1 143073.062 1.899
a*c 76.563 1 76.563 0.001
b*c 173264.062 1 173264.062 2.300
a*b*c 7788.063 1 7788.063 0.103
Error 602650.500 8 75331.313
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�

Example 2.10.4 (Fractional factorial experiments). The projections defining a half fraction (23−1)
of the 23 experiment described in Example 2.10.3 can be obtained as

P1 = (u + t) ⊗ u ⊗ u =
1

4




1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1




,

P2 = (u + t) ⊗ u ⊗ t =
1

4




1 −1 1 −1 0 0 0 0

−1 1 −1 1 0 0 0 0

1 −1 1 −1 0 0 0 0

−1 1 −1 1 0 0 0 0

0 0 0 0 1 −1 1 −1

0 0 0 0 −1 1 −1 1

0 0 0 0 1 −1 1 −1

0 0 0 0 −1 1 −1 1




,

P3 = (u + t) ⊗ t ⊗ t =
1

4




1 −1 −1 1 0 0 0 0

−1 1 1 −1 0 0 0 0

−1 1 1 −1 0 0 0 0

1 −1 −1 1 0 0 0 0

0 0 0 0 1 −1 −1 1

0 0 0 0 −1 1 1 −1

0 0 0 0 −1 1 1 −1

0 0 0 0 1 −1 −1 1




,

P4 = (u + t) ⊗ t ⊗ u =
1

4




1 1 −1 −1 0 0 0 0

1 1 −1 −1 0 0 0 0

−1 −1 1 1 0 0 0 0

−1 −1 1 1 0 0 0 0

0 0 0 0 1 1 −1 −1

0 0 0 0 1 1 −1 −1

0 0 0 0 −1 −1 1 1

0 0 0 0 −1 −1 1 1




,

all in dimension of 2. Each projection generates two sets of one-dimensional orthogonal invariants,
obtained by symbolically multiplying the projection matrices by the labels

v′ = (000, 100, 010, 110,001,101, 011, 111).

Collecting one from each projection, we obtain the invariants

L1 = 000 + 100 + 010 + 110,

L2 = 000− 100 + 010− 110,

L3 = 000− 100− 010 + 110,

L4 = 000 + 100− 010− 110,
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thus showing that only the half fraction of the original 8 labels in V are needed in the fractional
experiment.

More generally, the fractional experiments for the 24 factorial experiment are obtained as the
solutions to the equations

(2.42) P1 + P2 = I, 2−3 fraction,

(2.43) P1 + P2 + P3 + P4 = I, 2−2 fraction,

(2.44) P1 + P2 + P3 + P4 + P5 + P6 + P7 + P8 = I, 2−1 fraction,

where the unknown are pairwise disjoint projection matrices in the original 24-dimensional space.
Equation (2.42) has three sets of non-isomorphic solutions, each one corresponding to a 24−3

fractional experiment, namely:

P3,11 = u ⊗ (u + t) ⊗ 1 ⊗ 1, P3,12 = t ⊗ (u + t) ⊗ 1 ⊗ 1,

P3,21 = u ⊗ (u + t) ⊗ (u + t) ⊗ 1, P3,22 = t ⊗ (u + t) ⊗ (u + t) ⊗ 1,

P3,31 = u ⊗ (u + t) ⊗ (u + t) ⊗ (u + t), P3,32 = t ⊗ (u + t) ⊗ (u + t) ⊗ (u + t).

Equation (2.43) leads to two sets of non-isomorphic 24−2 fractional experiments, given by

P2,11 = u ⊗ u ⊗ (u + t) ⊗ (u + t), P2,12 = u ⊗ t ⊗ (u + t) ⊗ (u + t),

P2,13 = t ⊗ u ⊗ (u + t) ⊗ (u + t), P2,14 = t ⊗ t ⊗ (u + t) ⊗ (u + t),

P2,21 = u ⊗ u ⊗ (u + t) ⊗ 1, P2,22 = u ⊗ t ⊗ (u + t) ⊗ 1,

P2,23 = t ⊗ u ⊗ (u + t) ⊗ 1, P2,24 = t ⊗ t ⊗ (u + t) ⊗ 1.

Equation (2.44) has one set of solutions, defining the 24−1 fractional experiment, given by

P1,1 = u ⊗ u ⊗ u ⊗ (u + t), P1,2 = t ⊗ u ⊗ u ⊗ (u + t),

P1,3 = u ⊗ u ⊗ t ⊗ (u + t), P1,4 = t ⊗ u ⊗ t ⊗ (u + t),

P1,5 = u ⊗ t ⊗ u ⊗ (u + t), P1,6 = t ⊗ t ⊗ u ⊗ (u + t),

P1,7 = u ⊗ t ⊗ t ⊗ (u + t), P1,8 = t ⊗ t ⊗ t ⊗ (u + t).

�
Example 2.10.5 (Cyclic symmetries). In this example we consider the set product space V = C × L

subject to permutation action of Cc and C` on C and L, respectively. There are c` one-dimensional
irreducible representations of Cc × C` with projection matrices given by

(2.45) Pmn =
1

c`

∑

i,j

ωmi
c ωnj

` (ρi
c ⊗ ρj

`), n = 1, . . . , c, m = 1, . . . , `,

where ωf = e2πi/f and ρf is the permutation representation of the generating cyclic permutation (12...f).
As commented earlier on in the chapter, it is important to distinguish the field of scalars defining the
vector space V, where these projections operate on. Consider, to illustrate this point, the case of C3. The
resulting canonical projections are given by

P1 =
1

3




1 1 1

1 1 1

1 1 1


 , P2 =

1

3




1 ω ω2

ω2 1 ω

ω ω2 1


 , P3 =

1

3




1 ω2 ω

ω 1 ω2

ω2 ω 1


 ,

where ω = ω3 = e2πi/3. In general, these matrices are in GL(C3), so that the resulting linear
operations upon the vectors in V then require that V be regarded as a complex vector space. In
the real vector space case the irreducible decomposition is I = T1 + T2, with T1 = P1 of dim = 1
and

T2 = P2 + P3 =
1
3




2 −1 −1

−1 2 −1

−1 −1 2



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of dim = 2. Note that P2 = P′
3, so that y′P2y = (y′P2y)′ = y′P3y, leading to the reduction

y′y = y′T1y + y′T2y = y′P1y + 2y′P2y.

Similarly, with C4, the reduction over the real field is I = T1 + T2 + T3, with

T1 =
1

4




1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1




, T2 =
1

4




1 ω2 1 ω2

ω2 1 ω2 1

1 ω2 1 ω2

ω2 1 ω2 1




=
1

4




1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1




,

both of dimension one, and

T3 = P3 + P4 =
1

4
(




1 ω ω2 ω3

ω3 1 ω ω2

ω2 ω3 1 ω

ω ω2 ω3 1




+




1 ω3 ω2 ω

ω 1 ω3 ω2

ω2 ω 1 ω3

ω3 ω2 ω 1




)

=
1

4




2 0 −2 0

0 2 0 −2

−2 0 2 0

0 −2 0 2




,

of dimension two. Here, P3 = P′
4, and the sum of squares reduces as

y′y = y′T1y + y′T2y + y′T3y = y′T1y + y′T2y + 2y′P3y.

We conclude this example with the evaluation of the product action of C4 × C7 on the data set
shown in Table 2.2. These data are discussed in Wit and McCullagh (2001). To decompose these

Table 2.2. Frequency of mining disasters between 1851-1962.

Mon Tue Wed Thu Fri Sat Sun total

Autumn 7 10 5 5 6 7 1 41
Winter 5 9 10 10 11 7 0 52
Spring 3 7 10 12 13 9 2 56

Summer 4 8 8 9 5 6 2 42

total 19 34 33 36 35 29 5 191

data, we apply (2.45) with ` = 4 and c = 7. There are 28 one-dimensional projections defined in
V regarded as a complex vectors space, decomposing the total sum of squares, 1607. The results
are summarized in the following matrix in which the (m,n) entry corresponds to the projection
Pmn.

[Pmn] =




1 2 3 4 5 6 7
1 13.378 3.325 2.419 0.539 2.218 16.762 11.607

2 2.784 1.165 0.014 0.014 1.165 2.784 0.321

3 16.762 2.218 0.539 2.419 3.325 13.378 11.607

4 68.450 23.760 5.510 5.510 23.760 68.450 1302.900




.

The corresponding 15 components of the irreducible (in R) reduction of the original (x′x)
sum of squares and the transformed (u′u) sum of squares based on the multinomial vector u′ =
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√
v(x − np)/

√
n are:




m, n m′, n′ x′(Pmn + Pm′n′)x dim u′(Pmn + Pm′n′)u

weekly-quarterly 1, 1 3,6 26.756 2 3.922

1, 2 3,5 6.650 2 0.975

1, 3 3,4 4.838 2 0.709

1, 4 3,3 1.078 2 0.157

1, 5 3,2 4.436 2 0.650

1, 6 3,1 33.524 2 4.914

2, 1 2,6 5.568 2 0.816

2, 2 2,5 2.330 2 0.341

2, 3 2,4 4.838 2 0.004

weekly 4, 1 4,6 136.900 2 20.064

4, 2 4,5 47.520 2 6.963

4, 3 4,4 11.020 2 1.612

quarterly 1, 7 3,7 23.214 2 3.403

2, 7 0.321 1 0.047

4, 7 1302.900 1 (0)

total x′x = 1607.000 28 (27) u′u = 44.584




It is not difficult to conclude that the probability law of u′(Pmn +Pm′n′)u is approximately χ2
2, so

that the reduction identifies

(1) the DC component m = 4, n = 7: note that under the multinomial transformation, as
expected, this component is zero;

(2) the weekly cycle n = 1, with u′(Pmn + Pm′n′ )u = 20.064 and the weekly cycle n = 2,
with u′(Pmn +Pm′n′)u = 6.963, corresponding to angular phases θ = 2π/7 and θ = 4π/7,
respectively;

(3) a suppressed, not significant, quarterly cycle m=1, with u′(Pmn + Pm′n′ )u = 3.403;
(4) a significant quarterly-weekly cycle m = 1, n = 6 (equivalently m = 1, n = 1), with

u′(Pmn + Pm′n′)u = 4.9146 and angular phase θ = 2π/28.

�

Example 2.10.6 (Latin squares). The reduction of a Latin square experiment has the form

I = [(A + Q)︸ ︷︷ ︸
rows

⊗ (A + Q)︸ ︷︷ ︸
columns

] (A + Q)︸ ︷︷ ︸
letters

.

To illustrate, consider the following experiment described in Youden (1951, p.96), in which the data




I II III IV

1 A B C D

2 C D A B

3 B C D A

4 D A B C



→




36 38 36 30

17 18 26 17

30 39 41 34

30 45 38 33




are the melting point temperature readings of 4 chemical cells (1, 2, 3, 4) obtained from 4 thermometers
(I,II,III,IV) in 4 different days (A,B,C,D). The numerical entries are the readings converted to degrees
Centigrade. Only the fourth decimal places are given, as the readings agreed up to the last two places.
The experimental background is such that there is no reason to assume an interaction between cells and
thermometers. Write the data as

y′ = (36, 38, 36, 30, 17, 18, 26, 17, 30, 39, 41, 34, 30, 45, 38, 33)
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and first evaluate the four projections associated with (A+Q)⊗(A+Q), where I4 = A+Q is the standard
reduction in dimension 4. We obtain

SS total = y′y = 17230,

SS constant = y′(A⊗A)y = 16129,

SS thermometers = y′(A⊗Q)y = 182.50,

SS cells = y′(Q⊗A)y = 805,

SS days + SS residual = y′(Q⊗Q)y = 113.5

To further reduce y′(Q ⊗ Q)y and determine the component due to eventual day-to-day variability, we
apply the standard reduction (indicated here by A• and Q•) to aggregate the data from corresponding
days. That is,

A• = 1/4




1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0

0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0

0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0

0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0

0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1




,

and Q• = I16 − A•. We obtain

SS days = y′([Q⊗Q]A•)y = 70,

SS residual = y′([Q⊗Q]Q•)y = 43.5.

The following table summarizes the results:



P ss = y′Py df = tr P mss = ss/df

A ⊗A (constant) 16129.00 1 16129.00

A ⊗Q (thermometers) 182.50 3 60.83

Q⊗ A (cells) 805.00 3 268.33

[Q⊗Q]A• (days) 70.00 3 23.33

[Q⊗Q]Q• (residual) 43.50 6 7.25

I (total) 17230.00 16 1076.90




.

The F ratio for cells is quite significant (268.33/7.25 = 37.01). The F ratio for thermometers,
60.83/7.25 = 8.39, also points to a difference among the thermometers whereas the F ratio for
days in only suggestive of a day-to-day effect. The estimated standard deviation for a single
measurement is

√
7.25 = 2.69, which shows an improvement in the error of comparison. In fact,

if the effect of days on the readings is not eliminated, the standard deviation would then be√
113.5/9 = 3.55. �

Example 2.10.7 (One-way analysis of variance). The canonical reduction for the one-way ANOVA
is simply

In = A + Q(DA + DQ),

where A + Q is the standard reduction in dimension n = n1 + . . . + nk,

DA = diag (An1 , . . . ,Ank),
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and DQ = I − DA. Here is one illustration with n1 = n2 = 3 and n3 = 5, so that

DA = diag (A3,A3,A5).

The reader may verify that indeed

I11 = A11 + Q11DA + Q11DQ ≡ P1 + P2 + P3

is a canonical reduction.
Given the data

y′ = (12, 14, 11︸ ︷︷ ︸
group 1

, 10, 9, 11︸ ︷︷ ︸
group 2

, 8, 12, 15, 14, 12︸ ︷︷ ︸
group 3

),

the resulting decomposition



P y′Py tr P y′Py/tr P
P2 (treatment) 11.07 2 5.53

P3 (residual) 35.46 8 4.43

P1( constant) 1489.45 1 1489.45

I( total) 1536.0 11 139.63




,

correspond to the standard ANOVA table

Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio

treatment 11.079 2 5.539 1.249

Error 35.467 8 4.433

�

Example 2.10.8 (Two-way analysis of variance). The reduction of a two-way ANOVA with r row
levels, c columns levels, and n observation in each cell is given by

Ircn = (Ar + Qr) ⊗ (Ac + Qc) ⊗ (An + Qn).

The resulting 8 projections define

(1) P1 = Ar ⊗Ac ⊗An, the constant;
(2) Pr = Qr ⊗Ac ⊗An, the row effect;
(3) Pc = Ar ⊗Qc ⊗An, the column effect;
(4) Prc = Qr ⊗Qc ⊗An, the interaction term;
(5) Pe = Ar ⊗Ac ⊗Qn + Qr ⊗Ac ⊗Qn + Ar ⊗Qc ⊗Qn + Qr ⊗Qc ⊗Qn, the error term.

�

Example 2.10.9 (Linear regression). The reduction of the linear regression structure is obtained from

I = A + QP + QP⊥ ≡ P1 + P2 + P3,

where P = X(X′X)−1X′, P⊥ = I −P, and X is the usual n × p design matrix. The reader may verify that
I = P1 +P2 +P3 is in fact a canonical reduction (use Proposition 2.9.2 and the fact that P is a symmetric
matrix). The data reduce according to

y′y = y′P1y︸ ︷︷ ︸
constant

+ y′P2y︸ ︷︷ ︸
regression

+ y′P3y︸ ︷︷ ︸
residual

.

�

2.11. Summary

In this chapter we introduced the elements of algebra for the analysis of structured data. Structured
data are data that are indexed by a set V of indices or labels upon which certain symmetry relations can
be defined. Some of the basic structures are the set of all mappings V = CL, the set product V = L × C
and the set V = L × Ω, where Ω = {ω;ωc = 1}. Corneal surface curvature data and Shack-Hartmann
wave-front sensor data are typically indexed by a structure V of the type L × Ω. The points or labels
in L × Ω are at the intersection of ` concentric rings and c equally spaced semi meridians, and provide
the index for a surface curvature or for a point spread function value. In many applications, the data are
indexed by a group (G) of symmetries. The refractive group described in Campbell (1997) is an example
of a set of labels or indices for refractive data. See, for example, Lakshminarayanan and Viana (2005), in
addition to Viana (2003a), Viana (2004) and Viana (2003b).
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We have illustrated the notion that summarizing and analyzing the structured data (x(s))s∈V can be
facilitated by the symmetries in the data space (V) that are induced by the symmetries in the underlying
structure. These symmetries when applied to the labels in V according to a group action ϕ reduce the
structure V into disjoint similarity orbits

O1 ∪ . . . ∪Om.

The group action leads to a linear group representation in the data space which associates to each σ ∈ G
the matrix ρ(σ) changing the canonical basis {es; s ∈ V} of V indexed by V into the basis {eϕ(σ,s); s ∈ V}.
The resulting factorization V = V1 ⊕ . . .⊕Vh in the data vector space is the consequence of defining a set
of orthogonal projections P1, . . . ,Ph, each one of these a linear combination of the matrices ρ(σ) over G,
with scalar coefficients the characters of the corresponding irreducible representation of G. If there are h
irreducible characters then the identity operator I in Rv reduces as

I = P1 + P2 + . . . + Ph

and the operators satisfy the properties PiPj = 0 for i 6= j and P2
i = Pi, i = 1, . . . ,h. It then follows that

the basic decomposition

||x||2 = (x|x) = (x|P1x) + (x|P2x) + . . . + (x|Phx)

for the sum of squares for a particular inner product (·|·) of interest (e.g., Euclidean, Hermitian, symplectic)
can be obtained.

The canonical decomposition, we remark, establishes the formal, unifying, connection between the
symmetries in the structured data and statistical inference. For example, the statistical (Fisher-Cochran)
theory of quadratic forms can be applied to obtain new forms of analysis of variance, within which
symmetry-related hypotheses can be defined and interpreted.

In particular, when the data are indexed by a group of symmetries (the case V = G mentioned above),
varied forms of spectral analysis for the structured data are then obtained. We observed that a data set

{x(τ); τ ∈ G}
indexed by a finite group G can be identified with the elements

∑
τ∈G xs(τ)τ of the group algebra AG

associated with G. There are several experimental conditions in which data {x(τ); τ ∈ G} are naturally
indexed by group symmetries: For example, the symmetry perception clinical studies described by Szlyk,
Seiple and Xie (1995) and Szlyk, Rock and Fisher (1995) in which the data are naturally indexed by
rotational and axial symmetries (dihedral experimental designs). These dihedral designs are potentially
useful to describe and suggest interpretations to the (rotational, axial) symmetries present in human visual
field data or in two-dimensional wave-front aberration data from the Shack-Hartmann wave-front sensor,
e.g., Salmon, Thibos and Bradley (1998). Similarly, these symmetries are visibly present in the maxilla-
mandible axial and rotational symmetries in data indexed by the points in the dental arch system, often
used in anthropological science, orthodontics and oral biology morphologic studies, e.g., Lestrel, Takahashi
and Kanazawa (2004), Oliveira, Silveira, Kusnoto and Viana (2004).

The group algebra interpretation given to data indexed by a group of symmetries suggests a different
mechanism to indexing the data, namely as the inverse solution to a Fourier transform

F = x̂(β) =
∑

τ∈G

x(τ)β(τ),

at the (irreducible) representation β of G. In applications, we start with a given optical linear operator F
and evaluations of the Fourier transform x̂(ρ) at the remaining irreducible representations ρ to pass the
data to the group. Once this is obtained we give to G the interpretation of a set structure as indicated
above, followed with the canonical decomposition of the structured data.

Further reading

(1) The presentation of the material in this chapter closely follows the program of Serre (1977).

All the basic results of functions on groups can be seen in the classic text Naimark and Štern
(1982). The basic facts about projections and vector spaces are found in Halmos (1987)’s classic
text. See also Rotman (1995) on general facts about the theory of groups, and Simon (1996)
for a more contemporary text on representations of finite and compact groups. The reader will
enjoy reading the historical account, by Lam (1998), of representations of finite groups in the
past century;

(2) On permutation groups, Cameron (1999) or Dixon and Mortimer (1996);
(3) On combinatorics, Cameron (1994) or Stanton and White (1986);
(4) Matrix groups, e.g., Curtis (1984);
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(5) Random matrices, functions, and permutations, Diaconis and Shahshahani (1986), Tuljapurkar
(1986), Kolchin (1971), Diaconis and Freedman (1999), Arratia and Simon (92), Lalley (96) ;

Exercises

Exercise 2.1. Signed matrices. Show that the set of all n × n matrices

{Diag (±1, . . . ,±1)},

with the operation of matrix multiplication defines a finite group of order 2n. It can be identified
with the mapping space of all two-sequences in length of n.

Exercise 2.2. Show that

ρi =

[
0 −1

1 0

]
, ρ−1 =

[
−1 0

0 −1

]
, ρ−i =

[
0 1

−1 0

]
, ρ1 =

[
1 0

0 1

]

is two-dimensional representation of the complex group.

Exercise 2.3. Show that, for any member τ of group G, the mapping τ∗ : G → G by
τ∗(σ) = τστ−1 is an isomorphism in G, and the mapping τ 7→ τ∗ is a homomorphism of G, taking
values in the set Aut (G) of isomorphisms in G.

Exercise 2.4. For each of the 2× 2 matrix groups, with elements indicated by X, introduced
in Example 2.2.3, evaluate the infinitesimal group element Ω(X) = X−1dX and show that Ω is
invariant under the group of transformations X → AX, for all A in a sufficiently smooth subgroup
(the Lie Group) of GL(n) in a neighborhood of the identity matrix I. The terminology follows
from the fact that when w = vX, for a row vector v, then dw = vdX = wX−1dX, or, equivalently,
dw = wdΩ. See, for example, Flanders (1989).

Exercise 2.5. Following Definition 2.2.5, show that G × H, together with ×η , is a group in
which;

(1) The identity is (1G, 1H);
(2) The inverse (τ, σ)−1 of (τ, σ) is given by (α(σ−1)(τ−1), σ−1).

Exercise 2.6. Following Exercise 2.5, show that G × {1H} is a normal subgroup of G ×η H
(recall that N is a normal subgroup of G whenever τN = Nτ for all τ ∈ G).

Exercise 2.7. Consider the semi-direct product S2 ×α S2

(σ, τ )(η, θ) = (σα(η, τ ), τθ) = (στητ−1, τθ)

of S2 with S2. Show that the resulting group, with elements in S2×S2, has its multiplication table
given by

×α a b c d
a a b c d
b b a d c
c c d a b
d d c b a

,

where a = (1, 1), b = (1, t), c = (t, 1) and d = (t, t).

Exercise 2.8. Following the notation of Example 2.2.9, let B = {(1, 1), (1, t)} and verify that

{B, (η, 1)×α B, (η2, 1) ×α B}

is a partition of G = C3 ×α C2. It is called the imprimitive system generated by B (see also
Rotman (1995, p. 257)).

is an action of G on L(V).



EXERCISES 87

Exercise 2.9. Indicate by G the set of all non-singular n× n real doubly-stochastic matrices.
If A ∈ G then Ae = e and e′A = e′, where e indicates the n-component vector of ones. Given
A ∈ G and a = (a1, a2) ∈ R2 define the n × n matrix [a, A] = a1ee′ + a2A. The equality

[a, A][b, B] = (na1b1 + a1b2 + a2b1)ee′ + a2b2AB,

and the fact that AB ∈ G, suggests the operation ab = (na1b1 + a1b2 + a2b1, a2b2) in R2 × R2,
so that [a, A][b, B] = [ab, AB]. Show that R2 together with the product ab and the usual sum of
vectors is an algebra.

Exercise 2.10. Show that W = {(a1, a2) ∈ R2; a2 6= 0, na1 + a2 6= 0}, together with the
product ab of Exercise 2.9, is a commutative group in which the unit is (0, 1) ∈ W and, for a ∈ W,

a−1 = (
−a1

a2(na1 + a2)
,

1
a2

) ∈ W

and aa−1 = a−1a = (0, 1).

Exercise 2.11. Show that WG = {[a, A]; a ∈ W, A ∈ G}, together with the operation
(a, A), (b, B) → (ab, AB), is a group.

Exercise 2.12. With the notation of Exercise 2.11, show that when G = { In}, WG is the
subgroup of all equicorrelated covariance matrices; When W = {(0, 1)} and G = Sn, WG generates
the group of n × n permutation matrices; When W = {(0, 1)} and

G = {w0In + w1g + w2g2 + . . . + wn−1gn−1;
n−1∑

i=0

wi = 1, wi ∈ R},

where g is a primitive element of order n in Sn, WG generates the subgroup of stochastic circulants
with first row w

′
= (w0, . . . , wn−1). For example, take n = 4 and let F be a stochastic circulant

with first row w
′
. Then F′ = w0I + w1g3 + w2g2 + w3g ∈ G and

FF′ = α0I + α1g + α2g2 + α1g3 =




α0 α1 α2 α1

α1 α0 α1 α2

α2 α1 α0 α1

α1 α2 α1 α0




is a symmetric stochastic circulant with first row determined by αi = w
′
giw.

Exercise 2.13. Consider the group algebra defined by the cyclic group C2 = {1, τ, τ2} over
the finite field F = {0, 1} of two elements. Evaluate the addition and multiplication tables for the
group algebra and verify that this algebra has non-null elements x, y such that xy = 0, that is,
the algebra has a divisor of zero. See, for example, Dean (1966, p. 204).

Exercise 2.14. Based on Example 2.3.1 calculate |fix (τ )|, |Gs|, and |Os| and verify that

number of orbits in V =
1
|G|

∑

τ∈G

|fix (τ )|.

Exercise 2.15. From Matrix 2.2, calculate the isotropy group for {yyuu, yuyu}.

Exercise 2.16. Refer to Example 2.3.1 and consider the action σs of S2 = {1, t} on the set
of binary sequences in length of two and let O = {uy, yu}, where S2 acts transitively. Apply the
action σs componentwise on Om and show that the number k of orbits in Om is k = 2m − 1.

Exercise 2.17. Let ρ be a representation of G (with g elements) on a finite dimensional vector
space V, in which a scalar product ( | ) is defined e.g., Example 2.4.1. Show that

(x, y) =
1
g

∑

τ∈G

(ρτ x|ρτ y)

is a scalar product in V and that it satisfies (ρτ x, ρτy) = (x, y) for all τ ∈ G and all x, y ∈ V.
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Exercise 2.18. [Contributed by K.S. Mallesh] Show that the matrices centralized by D3 have
the pattern 



♣ ♦ ♥ ♠ × ?
♥ ♣ ♦ ? ♠ ×
♦ ♥ ♣ × ? ♠
♠ ? × ♣ ♥ ♦
× ♠ ? ♦ ♣ ♥
? × ♠ ♥ ♦ ♣




,

where

♣ = h11 + h22 + h33 + h44 + h55 + h66, ♦ = h12 + h23 + h31 + h46 + h54 + h65

♥ = h13 + h21 + h32 + h45 + h56 + h64, ♠ = h14 + h25 + h36 + h41 + h52 + h63

× = h15 + h26 + h34 + h43 + h51 + h62, ? = h16 + h24 + h35 + h42 + h53 + h61

define the transitive orbits relative to a generic 6 × 6 matrix H = (hij).

Exercise 2.19. For each y in a complex vector space V, define y∗ : V → C by y∗(x) = (x, y).
Show that y∗ is a homomorphism of V and the mapping y 7→ y∗ is an isomorphism from V into
its dual space.

Exercise 2.20. Show that m in (2.14) is determined by the number of conjugacy classes in
S`, when c ≥ `. For c < `, m is the number of unordered decompositions of a positive integer
` as a sum of c non-negative integers, and is given by m =

∑c
t=1 p(l, t), where, recursively,

p(n, k) =
∑k

t=1 p(n − l, t). Tables are available, e.g., Takács (1984).



Appendix A: Workshop

Short course on Symmetry Studies
TU Eindhoven, Maart 2005

Marlos Viana

In this workshop we will discuss a symmetry study to explore data indexed by the symmetries of
a regular triangle (S3). Note that this is the case in which the structure is in itself a group. All
calculations are simple enough and can be done by pencil and paper. If you prefer, however, you
may utilize the MAPLE codes shown in Appendix B.

Veel plezier!

(1) Choosing a group of symmetries: Identify and interpret the symmetries of S3 and its
multiplication table in (2.6);

(2) Choosing a group action: Let S3 act on itself by conjugacy, that is,

ϕ(τ, σ) = τστ−1.

(3) Show that ϕ is a group action (Definition 2.3.1);
(4) Construct a table similar to those of Example 2.4.2, describing the group action defined

above;
(5) Identify and interpret the orbits;
(6) Illustrate the proof of Burnside Lemma by counting the number of fixed points and the

size of the isotropy groups (stabilizers);
(7) Use Routine 2.1 in Appendix B to evaluate the linear representations ρ(τ ), τ ∈ S3;
(8) Evaluate the character table of ρ;
(9) Identify the character table (2.24) of S3;

(10) Construct the canonical projections (Pi) following Section 2.8;
(11) Determine the dimension of the subspaces in the decomposition V = R6 = V1 ⊕V2 ⊕V3;
(12) Determine the multiplicities with which the irreducible representations (1, sgn and β)

appear in ρ, that is, the multiplicities in the decomposition of Vi- e.g., Example 2.7.2;
(13) Verify the properties of a canonical decomposition;
(14) Define a data vector indexed by S3;
(15) Identify the invariants associated with each projection;
(16) Interpret these invariants;
(17) Decompose the sum of squares associated with the data vector;
(18) Interpret each component;
(19) Identify the parametric hypotheses associated with these invariants;
(20) Identify the non-centrality parameters and degrees of freedom for normally distributed

data. This item completes the first part of the lab.
(21) Now consider another group action of the same group on the same set, namely, the

multiplicative action ϕ(τ, σ) = στ generated by the Cayley table of S3. Now repeat all
steps above, compare and interpret the results. This item completes the second part of
the lab;

(22) Now consider the multiplicative action of C3 (the rotations only) on the same set. This
is simply the multiplicative action generated by the Cayley table restricted to rows a, e
and f (defining C3). Now repeat all steps above, compare and interpret the results;
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(23) To conclude this lab, write a summary underlying the effect that choosing different
group actions and symmetries has on the analysis of the data indexed by the structure
of interest.

2.12. Comments and solutions

The following example illustrates the role of different group actions on the reduction of data
indexed by the symmetries (S3) of a regular triangle. We remark that here the structure of interest
is in itself a group.

In the first part of this example we consider the action



ϕ(τ, σ) = τστ−1 a b c d e f

a = 1 a b c d e f

b = (12) a b d c f e

c = (13) a d c b f e

d = (23) a c b d f e

e = (123) a d b c e f

f = (132) a c d b e f




of S3 on itself by conjugacy, so that the resulting orbits are exactly the conjugacy classes of S3.
The canonical decompositions associated with this action are given by

P1 =




1 0 0 0 0 0

0 1/3 1/3 1/3 0 0

0 1/3 1/3 1/3 0 0

0 1/3 1/3 1/3 0 0

0 0 0 0 1/2 1/2

0 0 0 0 1/2 1/2




, P2 =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1/2 −1/2

0 0 0 0 −1/2 1/2




,

and

P3 =




0 0 0 0 0 0

0 2/3 −1/3 −1/3 0 0

0 −1/3 2/3 −1/3 0 0

0 −1/3 −1/3 2/3 0 0

0 0 0 0 0 0

0 0 0 0 0 0




,

of dimensions 3, 1 and 2, respectively. The invariants Px in the data vector

x′ = (a, b, c, d, e, f),

indicated by their labels for simpler notation, associated with the P1,P2 and P3 are, respectively,

{a,
1
3
(b + c + d),

1
2
(e + f)}, {±(e − f)},

and
{1
3
[b− c + d

2
],

1
3
[c − b + d

2
],

1
3
[d − b + c

2
]}.

The components of the decomposition of x′x are then

x′P1x = a2 +
1
3
(a + b + c)2 +

1
2
(e + f)2, x′P2x =

1
2
(e − f)2,

and
x′P3x =

2
3
(b2 + c2 + d2 − bc − bd − cd).

The parametric hypotheses afforded by this reduction are
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(1) H : e = f that the two (non-trivial) rotation parameters as the same;
(2) H : b = c = d, that all trasposition parameters are the same.

In the second part of this symmetry study we consider the regular action ϕ(τ, σ) = στ of S3 on
itself. This action is generated by the Cayley table of S3. In contrast, the resulting canonical
reductions now are

P1 = 1/6




1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1




, P2 = 1/6




1 −1 −1 −1 1 1

−1 1 1 1 −1 −1

−1 1 1 1 −1 −1

−1 1 1 1 −1 −1

1 −1 −1 −1 1 1

1 −1 −1 −1 1 1




and

P3 = 1/3




2 0 0 0 −1 −1

0 2 −1 −1 0 0

0 −1 2 −1 0 0

0 −1 −1 2 0 0

−1 0 0 0 2 −1

−1 0 0 0 −1 2




.

Their dimensions are 1, 1 and 4, respectively. Under the regular action, x′x now decomposes as

x′P1x =
1
6
(a + b + c + d + e + f)2, x′P2x =

1
6
(a + e + f − b − c − d)2,

and
x′P3x =

1
3
[(a − e)2 + (a − f)2 + (e − f)2 + (b − c)2 + (b − d)2 + (c − d)2].

The parametric hypotheses afforded by this reduction are
(1) H : a + e + f = b + c + d that the parameter sum of rotations equals the parameter sum

of transpositions;
(2) H : a = e = f and b = c = d, of homogeneity of rotation parameters and of homogeneity

of transposition parameters.
Observe that these hypotheses are disjoint and that the corresponding quadratic forms are null
when each one of them obtains.





Appendix B: Computing Algorithms

Routine 2.1 (Permutation matrices). This procedure generates the permutation matrices for
a given permutation.
> restart:
> p3 := proc(a1,a2,a3) local f,m:
> f:=[a1,a2,a3]:
> m:=(i,j)->1-min(abs(f[i]-j),1):
> Matrix(3,3,m):
> end:
> p3(3,2,1);

Example: If the basis (a,b,c) is mapped to (c,b,a),
the corresponding permutation matrix is:

>p3(3,2,1);
[0 0 1]
[ ]
[0 1 0]
[ ]
[1 0 0]

Note: To evaluate a n × n permutation matrix write [a1, . . . , an] and the dimension of matrix m
accordingly.

Routine 2.2 (Cayley Tables). This algorithm evaluates the multiplication table for S3.
> restart:
> with(group):
> t:=[[],[[1,2]],[[1,3]],[[2,3]],[[1,2,3 ]],[[1,3,2 ]]];
> ut:=[1,2,3,4,5,6];
> m:=(i,j)->mulperms(op(i,t),op(j,t));
> M:=Matrix(6,6,m):
> CS3:=subs( seq( op(i,t)=op(i,ut), i=1..nops(ut) ), evalm(M) );

Routine 2.3 (Invariants for C2h-labeled structure). First note that C2h is isomorphic to C2 ⊗
C2 so that the character table indexed by {u, c, o, s} = {E, C2, i, σh} is 1, 1, 1, 1, 1,−1, 1,−1,
1, 1,−1,−1, 1,−1,−1, 1 respectively. Also note that procedure p8 has a change of basis (defined
by the vector ff) so that the representations come in nice blocks.
> restart:
> with(LinearAlgebra):
> p8 := proc( a1,a2,a3,a4,a5,a6,a7,a8 )
> local f,ff,m:
> f:=[a1,a2,a3,a4,a5,a6,a7,a8]:
> ff:=[7,8,1,2,3,4,5,6]:
> m:=(i,j)->1-min(abs(f[i]-ff[j]),1):
> Matrix(8,8,m):
> end proc:
> c:=p8(1,2,7,8,5,6,3,4); o:=p8(2,1,8,7,6,5,4,3);
> s:=p8(8,7,2,1,4,3,6,5); u:=p8(7,8,1,2,3,4,5,6);
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> Q1:=(u+c+o+s)/4; Q2:=(u-c+o-s)/4;
> Q3:=(u+c-o-s)/4; Q4:=(u-c-o+s)/4;
> x:=<abb,abB,aBb,aBB,Abb,AbB,ABb,ABB>;
> MatrixVectorMultiply(Q1,x);
> MatrixVectorMultiply(Q2,x);
> MatrixVectorMultiply(Q3,x);
> MatrixVectorMultiply(Q4,x);

Routine 2.4 (Regular projections for S3). > restart:
> with(group):

> t:=[[],[[1,2]],[[1,3]],[[2,3]],[[1,2,3]],[[1,3,2]]];

> ut:=[1,2,3,4,5,6];
> m:=(i,j)->mulperms(op(i,t),op(j,t));

> M:=Matrix(6,6,m):
> CS3:=subs( seq( op(i,t)=op(i,ut), i=1..nops(ut) ), evalm(M) );

> delta:=(i,j)->floor(2^(-abs(i-j)));

> f:=(i,j,k)->floor(2^(-abs(CS3[k,i]-CS3[1,j]))):

> c1:=<1,1,1,1,1,1>:
> c2:=<2,0,0,0,-1,-1>:
> c3:=<1, -1,-1,-1,1,1>:

> P1:=Matrix(6,6,(i,j)->add(c1[k]*f(i,j,k),k=1..6))/6;
> P2:=Matrix(6,6,(i,j)->add(c2[k]*f(i,j,k),k=1..6))*2/6;
> P3:=Matrix(6,6,(i,j)->add(c3[k]*f(i,j,k),k=1..6))/6;

Routine 2.5 (Regular projections for S4). > restart:
> with(group):
> t:=[[],[[3,4]],[[2,3 ]],[[2,4 ]],[[1,2 ]],[[1,3 ]],[[1,4]],
> [[2,3,4 ]],[[2,4,3 ]],[[1,2,3 ]],[[ 1,2,4]],[[1,3,2 ]],
> [[1,3,4 ]],[[1,4,2 ]],[[1,4,3 ]],[[1,2],[3,4]],
> [[1,3],[2,4 ]],[[1,4],[2,3 ]],[[1,2,3,4 ]],
> [[1,2,4,3 ]],[[1,3,2,4 ]],[[1,3,4,2 ]],[[1,4,3,2 ]],
> [[1,4,2,3 ]]];
> ut:=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
> 21,22,23,24];
> m:=(i,j)->mulperms(op(i,t),op(j,t));
> M:=Matrix(24,24,m):
> CS4:=subs( seq( op(i,t)=op(i,ut), i=1..nops(ut) ), evalm(M) ):
> delta:=(i,j)->floor(2^(-abs(i-j)));
> f:=(i,j,k)->floor(2^(-abs(CS4[k,i]-CS4[1,j]))):
> c1:=<1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>:
> c2:=<3,1,1,1,1,1,1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1>:
> c3:=<2, 0,0,0,0,0,0, -1,-1,-1,-1,-1,-1,-1,-1,2,2,2, 0,0,0,0,0,0>:
> c4:=<3,-1,-1,-1,-1,-1,-1, 0,0,0,0,0,0,0,0,-1,-1,-1, 1,1,1,1,1,1>:
> c5:=<1, -1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1, -1,-1,-1,-1,-1,-1>:
> P1:=Matrix(24,24,(i,j)->add(c1[k]*f(i,j,k),k=1..24))/24;
> P2:=Matrix(24,24,(i,j)->add(c2[k]*f(i,j,k),k=1..24))*3/24;
> P3:=Matrix(24,24,(i,j)->add(c3[k]*f(i,j,k),k=1..24))*2/24;
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> P4:=Matrix(24,24,(i,j)->add(c4[k]*f(i,j,k),k=1..24))*3/24;
> P5:=Matrix(24,24,(i,j)->add(c5[k]*f(i,j,k),k=1..24))/24;

Routine 2.6. This code generates the canonical projections of the regular representation of
D4.
> restart:
> with(group):
> t:=[[],[[1,2,3,4 ]],[[1,3],[2,4]],[[1,4,3,2 ]],[[1,4],[2,3 ]],
> mulperms([[1,4],[2,3 ]], [[1,2,3,4]]),mulperms([[1,4],[2,3 ]], [[1,3],[2,4]]),
> mulperms([[1,4],[2,3 ]], [[1,4,3,2]]) ];
> ut:=[1,2,3,4,5,6,7,8];
> m:=(i,j)->mulperms(op(i,t),op(j,t));
> M:=matrix(8,8,m):
> CD4:=subs( seq( op(i,t)=op(i,ut), i=1..nops(ut) ), evalm(M) ):
> delta:=(i,j)->floor(2^(-abs(i-j)));
> f:=(i,j,k)->floor(2^(-abs(CD4[k,i]-CD4[1,j]))):

> c1:=<1,1,1,1,1,1,1,1>:
> c2:=<1,1,1,1,-1,-1,-1,-1>:
> c3:=<1,-1,1,-1,1,-1,1,-1>:
> c4:=<1,-1,1,-1,-1,1,-1,1>:
> c5:=<2,0,-2,0,0,0,0,0>:

> P1:=Matrix(8,8,(i,j)->add(c1[k]*f(i,j,k),k=1..8))/8;
> P2:=Matrix(8,8,(i,j)->add(c2[k]*f(i,j,k),k=1..8))/8;
> P3:=Matrix(8,8,(i,j)->add(c3[k]*f(i,j,k),k=1..8))/8;
> P4:=Matrix(8,8,(i,j)->add(c4[k]*f(i,j,k),k=1..8))/8;
> P5:=Matrix(8,8,(i,j)->add(c5[k]*f(i,j,k),k=1..8))*2/8;
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Pólya, G. (1954), Patterns of plausible inference, in ‘Mathematics and Plausible Reasoning’, Vol. 2, Princton

University Press, Princeton, NJ.
Rao, C. R. (1973), Linear Statistical Inference and Its Applications, Wiley, New York.

Riley, K. F., Hobson, M. P. and Bence, S. J. (2002), Mathematical Methods for Physics and Engineering, 2nd edn,
Cambridge University Press, New York, NY.

Rosen, J. (1975), Symmetry Discovered, Dover, Mineola, NY.
Rosen, J. (1995), Symmetry in Science, An Introduction to the General Theory, Springer-Verlag, New York.

Rotman, J. J. (1995), An Introduction to the Theory of Groups, 4 edn, Springer-Verlag, New York.
Ruhla, C. (1989), The Physics of Chance, Oxford Press, New York, NY.

Salmon, T. O., Thibos, L. N. and Bradley, A. (1998), ‘Comparison of the eye’s wave-front aberration measured psy-
chophysically and with the shack-hartmannwave-front sensor’, J. Optical Society of America A 15(9), 2457–64.

Schrödinger, E. (1967), What is Life? The Physical Aspects of the Living Cell, Cambridge University Press, New
York, NY.

Searle, S. R. (1971), Linear Models, Wiley, New York, NY.
Serre, J.-P. (1977), Linear Representations of Finite Groups, Springer-Verlag, New York.

Simon, B. (1996), Representations of Finite and Compact Groups, American Mathematcis Society, Providence, RI.
Snedecor, G. W. and Cochran, W. G. (1989), Statistical Methods, 8th edn, Iowa State University Press, Ames, IO.

Stanton, D. and White, D. (1986), Constructive Combinatorics, Springer-Verlag, New York.
Swaddle, J. P. (1999), ‘Visual signalling by assymetry: a review of perceptual processes’, Philos Trans R Soc Lond

B Biol Science.
Szlyk, J. P., Seiple, W. and Xie, W. (1995), ‘Symmetry discrimination in patients with retinitis pigmentosa’, Vision

Research 35(11), 1633–1640.
Szlyk, J., Rock, I. and Fisher, C. (1995), ‘Level of processing in the perception of symmetrical forms viewed from

different angles’, Spatical Vision 9(1), 139–150.
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