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Abstract

We consider estimation of the emission parameters in hidden Markov models. Commonly,
one uses the EM algorithm for this purpose. However, our primary motivation is the Philips
speech recognition system wherein the EM algorithm is replaced by the Viterbi training
algorithm. Viterbi training is faster and computationally less involved than EM, but it is
also biased and need not even be consistent. For this reason we propose an alternative to
the Viterbi training – adjusted Viterbi training – that has the same order of computational
complexity as Viterbi training but gives more accurate estimators. Elsewhere, we studied the
adjusted Viterbi training for a special case of mixtures with relevant simulations ascertaining
the theory. This paper shows how the adjusted Viterbi training is also possible for more
general hidden Markov models.
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1 Introduction

We consider a set of procedures to estimate the emission parameters of a finite state hid-
den Markov model given observations x1, . . . , xn. Thus, Y is a Markov chain with (finite)
state space S, transition matrix (Pij), and initial distribution π. To every state l ∈ S
there corresponds an emission distribution Pl with density fl that is known up to the
parametrization fl(x; θl). When Y reaches state l, an observation according to Pl and
independent of everything else, is emitted.

The standard method for finding the maximum likelihood estimator of the emission
parameters θl is the EM-algorithm that in the present context is also known as the
Baum-Welch or forward-backward algorithm [1, 2, 7, 8, 15, 16]. Since the EM-algorithm
can in practice be slow and computationally expensive, one seeks reasonable alterna-
tives. One such alternative is Viterbi training (VT). VT is used in speech recognition
[7, 12, 16, 17, 18, 19], natural language modeling [13], image analysis [11], bioinformat-
ics [4, 14]. We are also motivated by connections with constrained vector quantization
[3, 5]. The basic idea behind VT is to replace the computationally costly expectation (E)
step of the EM-algorithm by an appropriate maximization step with fewer and simpler
computations. In speech recognition, essentially the same training procedure was already
described by L. Rabiner et al. in [9, 17] (see also [15, 16]). Rabiner considered this proce-
dure as a variation of the Lloyd algorithm used in vector quantization, referring to Viterbi
training as the segmential K-means training. The analogy with the vector quantization is
especially pronounced when the underlying chain is simply a sequence of i.i.d. variables,
observations on which are consequently an i.i.d. sample from a mixture distribution. For
such mixture models, VT was also described by R. Gray et al. in [3], where the training
algorithm was considered in the vector quantization context under the name of entropy
constrained vector quantization (ECVQ).

The VT algorithm for estimation of the emission parameters of the hidden Markov model
can be described as follows. Using some initial values for the parameters, find a realization
of Y that maximizes the likelihood of the given observations. Such an n-tuple of states is
called a Viterbi alignment. Every Viterbi alignment partitions the sample into subsam-
ples corresponding to the states appearing in the alignment. A subsample corresponding
to state l is regarded as an i.i.d. sample from Pl and is used to find µ̂l, the maximum
likelihood estimate of θl. These estimates are then used to find an alignment in the next
step of the training, and so on. It can be shown that in general this procedure converges
in finitely many steps; also, it is usually much faster than the EM-algorithm.

Although VT is computationally feasible and converges fast, it has a significant dis-
advantage: The obtained estimators need not be (local) maximum likelihood estimators;
moreover, they are generally biased and inconsistent. (VT does not necessarily increase
the likelihood, it is, however, an ascent algorithm maximizing a certain other objective
function.) Despite this deficiency, speech recognition experiments do not show any signif-
icant degradation of the recognition performance when the EM algorithm is replaced by
VT. There appears no other explanation of this phenomena but the “curse of complexity”
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of the very speech recognition system based on HMM.

This paper considers VT largely outside the speech recognition context. We regard the
VT procedure merely as a parameter estimation method, and we address the following
question: Is it possible to adjust VT in such a way that the adjusted training still has
the attractive properties of VT (fast convergence and computational feasibility) and that
the estimators are, at the same time, “more accurate” than those of the baseline proce-
dure? In particular, we focus on a special property of the EM algorithm that VT lacks.
This property ensures that the true parameters are asymptotically a fixed point of the
algorithm. In other words, for a sufficiently large sample, the EM algorithm ”recognizes”
the true parameters and does not change them much. VT does not have this property;
even when the initial parameters are correct (and n is arbitrarily large), an iteration of
the training procedure would in general disturb them. We thus attempt to modify VT in
order to make the true parameters an asymptotic fixed point of the resulting algorithm.
In accomplishing this task it is crucial to understand the asymptotic behavior of P n

l , the
empirical measures corresponding to the subsamples obtained from the alignment. These
measures depend on the set of parameters used by the alignment, and in order for the
true parameters to be asymptotically fixed by (adjusted) VT, the following must hold:
If P n

l is obtained by the alignment with the true parameters, and n is sufficiently large,
then µ̂l, the estimator obtained from P n

l , must be close to the true parameters. The latter
would hold if

P n
l ⇒ Pl, a.s. (1)

and if the estimators µ̂l were continuous1 at Pl with respect to the convergence in (1). The
reason why VT does not enjoy the desired fixed point property is, however, different and is
that (1) need not in generally hold. Hence, in order to improve VT in the aforementioned
sense, one needs to study the asymptotics of the measures P n

l . First of all, one needs to
know if there exists any limiting probability measures Ql such that for every l ∈ S

P n
l ⇒ Ql, l ∈ S a.s.. (2)

If such limiting measures exist, then under the above continuity assumption, the estima-
tors µ̂l will converge to µl, where

µl = arg max
θl

∫

ln fl(θl, x)Ql(dx).

Taking now into account the difference between µl and the true parameter, the appropri-
ate adjustment of VT, so called adjusted Viterbi training (VA) can be defined (§2.2).

Let us briefly introduce the main ideas of the paper. Let X stand for the observable
subprocess of our HMM. The core of the problem is that the alignment is not defined for
infinite sequences of observations, hence the asymptotic behavior of P n

l is not straight-
forward. To handle this, we introduce the notion of barrier (§3). Roughly, a barrier
is a block of observations from a predefined cylinder set that has the following prop-
erty: Alignments for contiguous subsequences of observations enclosed by barriers can be

1Loosely speaking, the requirement is that µ̂l is consistent.
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performed independently of the observations outside these enclosing barriers. A simple
example of a barrier is an observation z that determines, or indicates, the underlying
state: xu = z ⇒ yu = l, u ≤ n. This happens if z can only be emitted from l. This also
implies that any Viterbi alignment has to pass through l at time u, and in particular, the
alignment up to u does not depend on the observations after time u. If a realization had
many such special z’s, then the alignment could be obtained piecewise, gluing together
subalignments each for each segment enclosed by two consequitive z’s.

Barriers are a generalization of this concept. A barrier is characterized by containing
a special observation termed a node (of order r ≥ 0). Suppose a barrier is observed with
xu being its node. Now, the definition of the node guarantees the existence of state l such
that any alignment passes through l at time u independently of the observations outside
the barrier.

In Lemma 3.1, we prove (under certain assumptions) the existence of a special subse-
quence, or a block, of Y states such first, the subsequence itself occurs with a positive
probability, and second, with a positive probability, it emmits a barrier. Hence, by ergod-
icity of the full HMM process, almost every sequence of observations has infinitely many
barriers emitted from this special block. Next, we introduce random times τi’s at which
such nodes are emitted. Note that τi’s are unobservable: We do observe the barriers but
without knowing whether or not the underlying MC is passing throught that special block
at the same time. It is, However, not difficult to see that the times Ti = τi − τi−1 are
renewal times, and furthemore, the process X is regenerative with respect to the times τi

(Proposition 4.2).

Recall that almost every sequence of observations has infinitely many barriers and that
every barrier contains a node. For a generic such sequence, let ui be the times of its nodes.
Note that ui-s are observable and that also every for all j = 1, 2, . . ., τj = ui for some i ≥ j
(there may be more nodes than those emitted from the special block). Using these ui’s as
dividors, we define infinite alignment piecewise (Definition 4.1). Formally we have defined
a mapping v : X∞ → S∞, where X∞ is the set of all possible observation sequences, and
S∞ is the set of all possible state-sequences. Hence, V = v(X) is a well defined alignment
process. We consider the two-dimensional process Z := (X,V ), and we note that this
process is also regenerative with respect to τi’s. We now define empirical measures Qn

l

that are based on the first n elements of Z (Definition 4.2). Using the regenerativity, it
is not hard to show that there exists a limit measure Ql such that Qn

l ⇒ Ql, a.s and
P n

l ⇒ Ql (Theorem 4.4). This is the main result of the paper.

To implement VA in practice, a closed form of Ql (or µ̂l) as a function of the true pa-
rameters is necessary. The measures Ql depend on both the transition and the emission
parameters, and computing Ql can be very difficult. However, in the special case of mix-
ture models, the measures Ql are easier to find. In [10], VA is described for the mixture
case. The simulations in [10] verify that VA indeed recovers the asymptotic fixed point
property. Also, since the appropriate adjustment function does not depend on the data,
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each iteration of VA enjoys the same order of computational complexity (in terms of the
sample size) as the baseline VT. Moreover, for commonly used mixtures, such as, for
example mixtures of multivariate normal distributions with unknown means and known
covariances, the adjustment function is available in a closed form requiring integration
with the mixture densities. Depending on the dimension of the emission, the number of
components, and on the available computational resources, one can vary the accuracy of
the adjustment. We reiterate that, unlike the computations of the EM algorithm, com-
putations of our adjustment do not involve evaluation and subsequent summation of the
mixture density at every data point. Also, instead of calculating the measures Ql exactly,
one can easily simulate them producing in effect a stochastic version of VA. Although
simulations do require extra computations, the overall complexity of the stochastically
adjusted VT can still be considerably lower than that of EM, but this, of course, requires
further investigation.
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2 Adjusted Viterbi training

In this section, we define the adjusted Viterbi training and we state the main question of
the paper. We begin with the formal definition of the model.

2.1 The model

Let Y be a Markov chain with finite state space S = {1, . . . , K}. We assume that Y is
irreducible and aperiodic with transition matrix P = (pij) and initial distribution π that
is also the stationary distribution of Y . We consider the hidden Markov model (HMM),
in which to every state l ∈ S there corresponds an emission distribution Pl on (X ,B). We
assume X and B to be a separable metric space and the corresponding Borel σ-algebra,
respectively. Let fl be the density of Pl with respect to some reference measure λ on
(X ,B), which one for concreteness may want to specialize to the Lebesgue measure.

In our model, to any realization y1, y2, . . . of Y there corresponds a sequence of inde-
pendent random variables, X1, X2, . . ., where Xn has the distribution Pyn

. We do not
know the realizations yn (the Markov chain Y is hidden), as we only observe the process
X = X1, X2, . . ., or, more formally:

Definition 2.1 We say that the stochastic process X is a hidden Markov model if there
is a (measurable) function f such that for each n,

Xn = f(Yn, en), where e1, e2, . . . are i.i.d. and independent of Y. (3)

Hence, the emission distribution Pl is the distribution of f(l, en). The distribution of X
is completely determined by the chain parameters (P, π) and the emission distributions
Pl, l ∈ S. Moreover, the processes Y and X have the following properties:

• given Yn, the observation Xn is independent of Ym, m 6= n. Thus, the conditional
distribution of Xn given Y1, Y2 . . . depends on Yn only;

• the conditional distribution of Xn given Yn depends only on the state of Yn and not
on n;

• given Y1, . . . , Yn, the random variables X1, . . . , Xn are independent.

The process X is also mixing and, therefore, ergodic.

2.2 Viterbi alignment and training

Suppose we observe x1, . . . , xn, the first n elements of X. Throughout the paper, we
will also use the shorter notation x1...n. A central concept of the paper is the Viterbi
alignment, which is any sequence of states q1...n ∈ Sn that maximizes the likelihood of
observing x1...n. In other words, the Viterbi alignment is a maximum-likelihood estimate
of the realization of Y1, . . . , Yn given x1, . . . , xn. In the following, the Viterbi alignment
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will be referred to as the alignment. We start with the formal definition of the alignment.
First note that for any sequence q1...n ∈ Sn of states and sets Bi ∈ B i = 1, . . . , n,

P(X1 ∈ B1, . . . , Xn ∈ Bn, Y1 = q1, . . . , Yn = qn) = P(Y1 = q1, . . . , Yn = qn)
n
∏

i=1

∫

Bi

fqi
dλ,

and define Λ(q1, . . . , qn; x1, . . . , xn) to be the likelihood function:

Λ(q1...n; x1...n)
def
= P(Yi = qi, i = 1, . . . , n)

n
∏

i=1

fqi
(xi).

Definition 2.2 For each n ≥ 1, let the set of all the alignments be defined as follows:

V(x1...n) = {v ∈ Sn : ∀w ∈ Sn Λ(v; x1...n) ≥ Λ(w; x1...n)}. (4)

Any map v : X n 7→ V(x1...n) as well as any element v ∈ V(x1, . . . , xn) will also be called
an alignment.

Note that alignments require the knowledge of all the parameters of X: (π, P ) and Pl

∀l ∈ S.

Throughout the paper we assume that the sample x1...n is generated by an HMM with
transition parameters (π, P ) and with the emission distributions fi(x; θ∗l ), where θ∗ =
(θ∗1, . . . , θ

∗
K) are the unknown true parameters. We assume that the transition parameters

P and π are known, but the emission densities are known only up to the parametrization
fl(·; θl), θl ∈ Θl. In this case, the likelihood function Λ as well as the set of alignments
V can be viewed as a function of θ. In the following, we shall write Vθ for the set of
alignments using the parameters θ. Also, unless explicitly specified, vθ ∈ Vθ will denote
an arbitrary element of Vθ.

The classical method for computing MLE of θ∗ is the EM algorithm. However, if the
dimension of X is high, n is big and fi’s are complex, then EM can be (and often is)
computationally involved. For this reason, a shortcut, the so-called Viterbi training is
used. The Viterbi training replaces the computationally expensive expectation (E-)step
by an appropriate maximization step that is based on the alignment, and is generally
computationally cheaper in practice than the expectation. We now describe the Viterbi
training in the HMM case.

Viterbi training

1. Choose an initial value θo = (θo
1, . . . , θ

o
K).

2. Given θj, obtain alignment
vθj(x1...n) = v1...n
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and partition the sample x1, . . . , xn into K sub-samples, where the observation xk

belongs to the lth subsample if and only if vk = l. Equivalently, we define (at most)
K empirical measures

P̂ n
l (A; θj, x1...n) :=

∑n

i=1 IA×l(xi, vi)
∑n

i=1 Il(vi)
, A ∈ B, l ∈ S. (5)

3. For every sub-sample find MLE given by:

µ̂l
n(θj, x1...n) = arg max

θl∈Θl

∫

ln fl(θl, x)P̂ n
l (dx; θj, x1...n), (6)

and take
θj+1

l = µ̂l(θ
j, x1...n), l ∈ S.

If for some l ∈ S vi 6= l for any i = 1, . . . , n (lth subsample is empty), then the

empirical measure P̂ n
l is formally undefined, in which case we take θj+1

l = θj
l . We

will be omitting this exceptional case from now on.

The Viterbi training can be interpreted as follows. Suppose that at some step j, θj = θ∗

and hence vθj is obtained using the true parameters. The training is then based on the
assumption that the alignment v1...n = v(x1...n) is correct, i.e., vi = Yi, i = 1, . . . , n. In this

case, the empirical measures P̂ n
l , l ∈ S would be obtained from the i.i.d. sample generated

from Pl(θ
∗), and the MLE µ̂l

n(θ∗, X1...n) would be a natural estimator to use. Clearly,

under these assumptions P̂ n
l (θ∗, X1...n) ⇒ Pl(θ

∗) a.s. (”⇒” denotes the weak convergence
of probability measures) and, provided that {fl(·; θ) : θ ∈ Θl} is a Pl-Glivenko-Cantelli
class and Θl is equipped with some suitable metric, limn→∞ µ̂n

l (θ∗, X1...n) = θ∗l a.s. Hence,

if n is sufficiently large, then P̂ n
l ≈ Pl and

θj+1
l = µ̂n

l (θ∗, x1...n) ≈ θ∗l = θj
l , ∀l

i.e. θj = θ∗ would be (approximately) a fixed point of the training algorithm.

A weak point of the foregoing argument is that the alignment in general is not correct
even when the parameters used to find it, are. So, generally vi 6= Yi. In particular, this
implies that the empirical measures P̂ n

l (θ∗, x1...n) are not obtained from an i.i.d. sample

from Pl(θ
∗). Hence, we have no reason to believe that P̂ n

l (θ∗, X1...n) ⇒ Pl(θ
∗) a.s. and

limn→∞ µ̂n
l (θ∗, X1...n) = θ∗l a.s. Moreover, we do not even know whether the sequences of

empirical measures {P̂ n
l (θ∗, X1...n)} and MLE estimators {µ̂n

l (θ∗, X1...n)} converge (a.s.)
at all.

In this paper, we prove the existence of probability measures Ql(θ, θ
∗) (that depend on

both θ, the parameters used to obtain the alignments, as well as θ∗, the true parameters
used to generate the training samples), l ∈ S, such that for every l

P̂ n
l (θ∗, X1...n) ⇒ Ql(θ

∗, θ∗), a.s. (7)
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for a special choice of the alignment vθ∗ ∈ Vθ∗ used to define P̂ n
l (θ∗, x1...n). (In fact, adding

certain mild restrictions on Pl, one can eliminate the dependence of the above result on
the particular choice of the alignment vθ∗ ∈ Vθ∗ .) We will also be writing Ql(θ) for Ql(θ, θ)
whenever appropriate.

Suppose also that the parameter space Θl is equipped with some metric. Then, under
certain consistency assumptions on classes Fl = {fl(θl) : θl ∈ Θl}, the convergence

lim
n→∞

µ̂l(θ
∗, X1...n) = µl(θ

∗) a.s. (8)

can be deduced from (7), where

µl(θ)
def
= arg max

θ′
l
∈Θl

∫

ln fl(x; θ′l)Ql(dx; θ). (9)

We also show that in general, for the baseline Viterbi training Ql(θ
∗) 6= Pl(θ

∗), implying
µl(θ

∗) 6= θ∗l . In an attempt to reduce the bias θ∗l − µl(θ
∗), we next propose the adjusted

Viterbi training.

Suppose (7) and (8) hold. Based on (9), we now consider the mapping

θ 7→ µl(θ), l = 1, . . . , K, (10)

The calculation of µl(θ) can be rather involved and it may have no closed form. Nonethe-
less, since this function is independent of the sample, we can define the following correction
for the bias:

∆l(θ) = θl − µl(θ), l = 1, . . . , K. (11)

Thus, the adjusted Viterbi training emerges as follows:

Adjusted Viterbi training

1. Choose an initial value θ0 = (θ0
1, . . . , θ

0
K).

2. Given θj, perform the alignment and define K empirical measures P̂ n
l (θj, θ∗) as in

(5).

3. For every P̂ n
l (θj, x1...n), find µ̂n

l (θj, x1...n) as in (6).

4. For each l, define
θj+1

l = µ̂n
l (θj, x1...n) + ∆l(θ

j),

where ∆l as in (11).

Note that, as desired, for a sufficiently large n, the adjusted training algorithm has θ∗ as its
(approximately) fixed point: Indeed, suppose θj = θ∗, then µ̂n

l (θj, x1...n) = µ̂n
l (θ∗, x1...n).

Recalling (8), it then follows that µ̂n
l (θ∗, x1...n) ≈ µl(θ

∗) = µl(θ
j), for all l ∈ S. Hence,

θj+1
l = µ̂l(θ

∗, x1...n) + ∆l(θ
∗) ≈ µl(θ

∗) + ∆l(θ
∗) = θ∗l = θj, l ∈ S. (12)
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In [10], we considered i.i.d. sequence X1, X2, . . ., where X1 has a mixture distribution,

i.e. the density of X1 is
∑K

i=1 pifi. Here pi > 0 are the mixture weights. Such a se-
quence is an HMM with the transition matrix satisfying pij = pj ∀i, j. In this partic-
ular case, the alignment and the measures Ql are easy to find. Indeed, for any set of
parameters θ = (θ1, . . . θK), the alignment vθ can be obtained via a Voronoi partition
S(θ) = {S1(θ), . . . , SK(θ)}, where

S1(θ) = {x : p1f1(x; θ1) ≥ pjfj(x; θj), ∀j ∈ S} (13)

Sl(θ) = {x : plfl(x; θl) ≥ pjfj(x; θj), ∀j ∈ S}\(S1 ∪ . . . ∪ Sl−1), l = 2, . . . , K. (14)

Now, the alignment can be defined pointwise as follows: vθ(x1, . . . , xn) = vθ(x1) · · · vθ(xn),
where vθ(x) = l if and only if x ∈ Sl(θ).
The convergence (7) now follows immediately from the strong law of large numbers as

P̂ n
l (θ∗, X1...n) ⇒ Ql(θ

∗) a.s., where

ql(x; θ∗) ∝ f(x; θ∗)ISl(θ∗) = (
∑

i

pifi(x; θ∗))ISl(θ∗), l = 1, . . . , K

are the densities of respective Ql(θ
∗).

Thus, in the special case of mixtures, the adjustments ∆l are easy to calculate and the
adjusted Viterbi training is easy to implement. Simulations in [10] have largely supported
the expected gain in estimation accuracy due to the adjustment ∆ with a small extra
cost for computing ∆. Indeed, this extra computation does not affect the algorithm’s
overall computational complexity as a function of the sample size, since ∆ depends on
the training sample only through θj, the current value of the parameter.

Due to the time-dependence in the general HMM, the convergence (7) does not follow
immediately from the law of large numbers. However, the very concept of the adjusted
Viterbi training is based on the existence of the Ql-measures. Thus, in order to generalize
this concept to an arbitrary HMM, one has to begin with the existence of the Ql-measures,
which is the objective of this paper.
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3 Nodes and barriers

In this section, we present some preliminaries that will allow us to prove the convergences
(7) and (8). We choose to introduce the necessary concepts gradually, building up the
general notions on special cases that we find more intuitive and insightful. For a compre-
hensive introduction to HMM’s and related topics we refer to [7, 15, 16], and an overview
of the basic concepts related to HMM’s follows below in §3.1. We then proceed to the
notion of infinite (Viterbi) alignment (§4.2), developing on the way several auxiliary no-
tions such as nodes and barriers.

Throughout the rest of this section, we will be writing fl and V for fl(·; θ
∗
l ), the true

emission distributions, and Vθ∗ , the set of alignments with the true parameters, respec-
tively.

3.1 Nodes

3.1.1 Preliminaries

Let 1 ≤ u1 < u2 < . . . < uk ≤ n. Given any sequence a = (a1, . . . , an), write au1...uk
for

(au1 , . . . , auk
) and define also the following objects:

Sl1...lk
u1...uk

(n)
def
= {v ∈ Sn : vu1...uk

= (l1, . . . , lk)}.

Next, given observations x1...n, let us introduce the set of constrained likelihood maximiz-
ers defined below:

W l
u(x1...n) = {v ∈ Sl

u(n) : ∀w ∈ Sl
u(n) Λ(v; x1...n) ≥ Λ(w; x1...n)}.

Next, define the scores

δl(u)
def
= max

q∈Sl
u(u)

Λ(q; x1...u), (15)

and notice the trivial case: δl(1) = πlfl(x1). Then, we have the following recursion (see,
for example, [16]):

δj(u + 1) = max
l∈S

(δl(u)plj)fj(xu+1). (16)

The Viterbi training as well as the Viterbi alignment inherit their names from the Viterbi
algorithm, which is a dynamic programming algorithm for finding v ∈ V(x1...n). In fact,
due to potential non-uniqueness of such v, the Viterbi algorithm requires a selection rule
as part of its specification. However, for our purposes we will often be manipulating by
V(x1...n) as opposed to by individual v’s, in which case we will also be identifying the
entire V(x1...n) with the output of the algorithm. This algorithm is based on recursion
(16) and on the following relations:

t(u, j) = {l ∈ S : ∀i ∈ S δl(u)plj ≥ δi(u)pij}, u = 1, . . . , n − 1, (17)

V(x1...n) = {v ∈ Sn : δvn
(n) ≥ δi(n) ∀i ∈ S, vu ∈ t(u, vu+1) 1 ≤ u < n}. (18)
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It can also be shown that

W l
n(x1...n) = {v ∈ Sl

n(n) : vu ∈ t(u, vu+1) u = 1, . . . , n − 1}. (19)

We shall also need the following notation:

V l1...lk
u1...uk

(x1...n) = {v ∈ V(x1...n) : vuiui+1...uk
= (l1, . . . , lk)}.

and will use subscript (l) to refer to alignments obtained using (pli)i∈S (instead of π) as
the initial distribution. Thus V(l)(x1...n) stands for the set of all such alignments, and

V l1...lk
(l)u1...uk

(x1...n) = {v ∈ V(l)(x1...n) : vuiui+1...uk
= (l1, . . . , lk)}.

Similarly, W l1...lk
(l)u1...uk

(x1...n) will be referring to the constrained alignments obtained using

(pli)i∈S as the initial distribution. The following Proposition and Corollary reveal more
structure of the alignments.

Proposition 3.1 Let 1 ≤ u ≤ n, then

W l
u(x1...n) = W l

u(x1...u) × V(l)(xu+1...n), (20)

V l
u(x1...n) 6= ∅ ⇒ V l

u(x1...n) = W l
u(x1...n). (21)

Proof. The Markov property implies: for any q = (q1, . . . , qn).

Λ(q; x1...n) = Λ(q1...u; x1...u) · Λ(qu+1...n; xu+1...n|qu),

where

Λ(qu+1...n; xu+1...n|l) = P(Yu+1...n = qu+1...n|Yu = l)
n
∏

i=u+1

fqi
(xi).

Thus, (20) follows from the equivalence between maximizing Λ(q; x1...n) over Sl
u(n) on

one hand, and maximizing Λ(q1...u; x1...u) and Λ(qu+1...n; xu...n|l) over Sn−u and Sl
u(n),

respectively and independently, on the other. (21) follows immediately from the definitions
of the involved sets.

Corollary 3.1

V l
u(x1...n) 6= ∅ and V l

u(x1...u) 6= ∅ ⇒ V l
u(x1...n) = V l

u(x1...u) × V(l)(xu+1...n). (22)

Proof. The hypotheses of (22) together with (21) imply V l
u(x1...n) = W l

u(x1...n) and
V l

u(x1...u) = W l
u(x1...u). The latter statements and (20) yield the claim.

3.1.2 Nodes and alignment

We aim at extending the notion of alignment for infinite HMM’s. In order to fulfil this
objective, we investigate properties of finite alignments (e.g. Propositions 3.1, and 3.2)
and identify necessary ingredients (e.g. “node”, and “barrier”) for the development of the
extended theory. We start with the notion of nodes:
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x1 x2 x3 xu−1 xu xu+1 xn−1 xn

Figure 1: An example of the Viterbi algorithm in action. The solid line corresponds to the final
alignment v1...n. The dashed links are of the form (k, l) − (k + 1, j) with l ∈ t(k, j) and are not
part of the final alignment. E.g., (1, 3) − (2, 2) − (3, 3) is because 3 ∈ t(1, 2), 2 ∈ t(2, 3). The
observation xu is a 2-node, since we have 2 ∈ t(u, j) ∀j ∈ S. We also see that v1...u is fixed.

Definition 3.1 For 1 ≤ u < n, we call xu an l-node if

δl(u)plj ≥ δi(u)pij, ∀i, j ∈ S. (23)

We also say that xu is a node if it is an l-node for some l ∈ S.

Figure 1 illustrates the newly introduced notion.

Proposition 3.2

xu is an l-node ⇐⇒ l ∈ t(u, j) ∀j ∈ S, (24)

⇒ V l
u(x1...u) 6= ∅, (25)

⇒ ∀v ∈ V(x1...n),∀v∗ ∈ V l
u(x1...u) (v∗, vu+1...n) ∈ V l

u(x1...n), (26)

⇒ V l
u(x1...n) 6= ∅, (27)

⇒ Right hand side of (22). (28)

Whether xu is a node does not depend on xi, i > u.

Proof. The final statement follows immediately from Definition 3.1 and (15), and (24)
also follows immediately from Definition 3.1 and (17). Summing both sides of (23) over
j ∈ S, we obtain

δl(u) ≥ δi(u), ∀i ∈ S, (29)

hence, (25) holds by (18). Note that (26) means that any alignment v ∈ V(x1...n) can be
modified by setting vu = l and taking v∗

i ∈ t(i, vi+1) for i = u − 1, u − 2, . . . , 1, and the
modified string remains an alignment, i.e. belongs to V(x1...n). Such a modification is

13



evidently always possible, i.e., (v∗, vu+1...n) is well-defined since V l
u(x1...u) 6= ∅. For u = n

this holds trivially, for u < n this follows from (24) (as the latter implies l ∈ t(u, vu+1)
for any value of vu+1), and (18). Also, (26) implies (27). Finally, given (25) and (27),
Corollary 3.1 yields (28).

Remark 3.2 Note that a modification of v ∈ V(x1...xn
) possibly required to enforce vu = l

when xu is an l-node (see proof of (26) above) depends only on x1, . . . , xu−1. Thus, if xu

is an l-node and if v∗ ∈ V l
u(x1...xu

), then for any n > u and any xu+1, . . . , xn (26) always
guarantees an alignment v ∈ V(x1...n) with v1...u = v∗, in which case we can call v∗ fixed,
meaning that v∗ can be kept as the substring of the first u components for any alignment
based on the extended observations.

The fact that v ∈ V(x1...n) in general does not imply v1...u ∈ V(x1...u) complicates the
structure of the alignments and furthermore emphasizes the significance of nodes in view
of (28) and Remark 3.2.

Corollary 3.2 Suppose the observations x1, . . . , xn are such that for some 1 ≤ u1 < u2 <
· · · < uk ≤ n, the observations xui

are li-nodes, i = 1, . . . , k − 1. Then

∅ 6= V l1l2···lk
u1u2···uk

(x1...n) =

= V l1
u1

(x1...u1) × V l2
(l1)u2

(xu1+1...u2) × · · · × V lk
(lk−1)uk

(xuk−1+1...uk
) × V(lk)(xuk+1...n). (30)

Proof. By (25),
V li

ui
(x1...ui

) 6= ∅, i = 1, . . . , k.

By (27)
V lk

uk
(x1...n) 6= ∅, V li

ui
(x1...ui+1

) 6= ∅ i = 1, . . . , k − 1.

From (26), it now follows

V lili+1
uiui+1

(x1...ui+1
) 6= ∅, i = 2, . . . k − 1.

Now use (22) to decompose

V lk
uk

(x1...n) = V lk
uk

(x1...uk
) × V(lk)(xuk+1...n).

Use (22) again to decompose

V lk−1lk
uk−1uk

(x1...uk
) = V lk−1

uk−1
(x1...uk−1

) × V lk
(lk−1)uk

(xuk−1+1...uk
).

Proceeding this way, we obtain (30).

Corollary 3.2 guarantees the existence of an alignment v(x1...n) that can be constructed
piecewise, i.e.

(v1, . . . , vk+1) ∈ V(x1...n), (31)

where

v1 ∈ V l1
u1

(x1...u1), v2 ∈ V l2
(l1)u2

(xu1+1...u2), . . . , vk ∈ V lk
(lk−1)uk

(xuk−1+1...uk
), vk+1 ∈ V(lk)(xuk+1...un

).

14



3.1.3 Proper alignment

If the sets V li
(li−1)ui

(xui−1+1...ui
), i = 2, . . . , k as well as V(lk)(xuk+1...n) have a single element

each, then the concatenation (31) is unique. Otherwise, a single vi will need to be selected
from V li

(li−1)ui
(xui−1+1...ui

). Thus, suppose that (xui−1+1...ui
) = (xuj−1+1...uj

), and li = lj
for some j 6= i. Ignoring the fact that the actual probability of such realizations may
well be zero in most cases, for technical reasons we are nonetheless going to be general
and require that the selection from any V l

(q)u+∆(xu+1...u+∆) for which xu and xu+∆ are
q and l nodes, respectively, be made independently of u. To achieve this, we impose
the following (formally even more restrictive) condition on admissible selection schemes
{wql(x1...m) : R

m → W l
(q)m(x1...m), m = 1, . . . , n, q, l ∈ S}:

∀q, ∀l ∈ S, ∀m ≤ n, ∀x1...n ∈ R
n : w1...n = wql(x1...n) ⇒ w1...m = wqwm(x1...m). (32)

The condition (32) above simply states that the ties are broken consistently.

Definition 3.3 The alignment (31) based on l1,. . . ,lk nodes xu1 , . . . , xuk
is called proper

if for every i = 2, . . . , k − 1
vi = wlili+1(xui+1...ui+1

),

where {wql(x1...m) : R
m → W l

(q)m(x1...m), m = 1, . . . , n, q, l ∈ S} is some selection scheme

satisfying (32).

Clearly, there may be many such selection schemes and the following discussion is valid
for all of them (provided the choice is fixed throughout). One such selection scheme is
based on taking maxima under the reverse lexicographic order on Sm (for any positive
integer m). According to this order ≺, for a, b ∈ Sm, a ≺ b if and only if for some i,
1 ≤ i < m, ai < bi and aj = bj for j = i + 1, . . . ,m. (Clearly, if neither a ≺ b nor b ≺ a,
then aj = bj for j = 1, . . . ,m, in which case a and b are defined equal for this order.) It
is immediate to verify that (32) holds for

wql(x1...m)
def
= max≺ W l

(q)m(x1...m), 1 ≤ m ≤ n, q, l ∈ S. (33)

For the sake of concreteness, we are going to refer to this particular selection scheme as
the selection and base all proper alignments on it. Also, since Definition 3.3 does not
concern the initial or terminal components of the concatenated alignment (31), we extend
the selection (again, purely for the sake of concreteness of the presentation) to the initial
and terminal components of the concatenated alignment (31). Thus, to specify the initial

component we have wπl(x1...m)
def
= max≺W l

m(x1...m), 1 ≤ m ≤ n, for all l ∈ S and for
all π, probability mass functions on S. To be concise, we will write ∨W for the selected
element of W for any W ⊂ Sm (where W generally depends on x1...m). In particular, the
final component is then specified via ∨V(l)(x1...m).

Example 3.4 Consider an i.i.d. sequence X1, X2, . . ., where X1 has a mixture distribu-
tion, i.e. the density of X1 is

∑K

i=1 pifi. Here pi > 0 are the mixture weights. Such a
sequence is an HMM with the transition matrix satisfying pij = pj ∀i, j. In this case, an
observation xu is an l-node if

δl(u) ≥ δi(u), ∀i.
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In particular, this means that every observation is an l-node for some l ∈ S. Then (16)
becomes

δi(u + 1) = max
j

(δj(u))pifi(xu+1) ∝ pifi(xu+1), ∀i

and
δl(u) ≥ δi(u), ∀i ⇐⇒ plfl(xu) ≥ pifi(xu), ∀i. (34)

Thus, in a mixture-model, any observation xu is a node, more precisely it is an l-node for
any l = arg maxj (pjfj(xu)). For this model, the alignment can naturally be concatenated
pointwise: v(x1...n) = (v(x1), . . . , v(xn)), where

v(x) = arg max
i

pifi(x). (35)

The alignment will be proper if ties in (35) are broken consistently, which is, for example,
the case when using the selection (33).

3.2 rth-order nodes

The concept of nodes is both important and rich, but the existence of a node can also be
restrictive in the following sense: Suppose x1...u is such that δi(u) > 0 for every i. In this
case, (23) is equivalent to

δl(u) ≥ max
i

(

max
j

(pij

plj

)

δi(u)
)

and actually implies plj > 0 for every j ∈ S. Hence, one cannot guarantee the existence
of an l-node for an arbitrary emission distribution since an ergodic P in general can have
a zero in every row, violating the above positivity constraint on the lth row of P . We
now generalize the notion of nodes in order to eliminate the aforementioned positivity
constraint and to still enjoy the desirable properties of nodes. We need some additional
definitions: For each u ≥ 1 and r ≥ 1, let

p
(r)
ij (u) = max

q1...r∈Sr
piq1fq1(xu+1)pq1q2fq2(xu+2)pq2q3 . . . pqr−1qr

fqr
(xu+r)pqrj. (36)

Also, for each u ≥ 1 define p
(0)
ij (u) = pij, and notice

p
(r)
ij (u) = max

q∈S
piq(u)fq(xu+1)p

(r−1)
qj (u + 1).

The recursion (16) then generalizes to

δj(u + 1) = max
i

(

δi(u − r)p
(r)
ij (u − r)

)

fj(xu+1), r < u.

For r ≥ 1 and u + r ≤ n define

t(r)(u, j) = {l ∈ S : ∀i ∈ S δl(u)p
(r−1)
lj ≥ δi(u)p

(r−1)
ij }, (37)

t(r)(u, J) = {t(r)(u, j) : j ∈ J}, J ⊂ S.
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Figure 2: In this example, xu is a 2d order 2-node, xu−1 is a 3d-order 3-node. Thus, for given
x1...n, the alignment includes vu = 2. However, unlike in the case of ordinary nodes (of order 0),
xu+1 can now destroy the property of xu being the (second order) node.

It can be verified that for 1 ≤ q, r, q + r ≤ n − u

t(r+q)(u, j) = t(q)(u, t(r)(u + q, j)), (38)

where t(1)(u, j) coincides with t(u, j) (18). Thus, l1 ∈ t(q)(u, t(r)(u + q, j)) in (38) implies
the existence of l2 ∈ t(r)(u + q, j) such that l1 ∈ t(q)(u, l2). In short,

t(q)(u, t(r)(u + q, j)) = ∪l∈t(r)(u+q,j)t
(q)(u, l).

Note that with this new notation, (18) and (19) can be rewritten respectively as follows:

V(x1, . . . , xn) = {v ∈ Sn : δvn
(n) ≥ δi(n) ∀i ∈ S, vu ∈ t(n−u)(u, vn) 1 ≤ u < n} (39)

W l
u(x1, . . . , xn) = {v ∈ Sl

n(n) : vu ∈ t(n−u)(u, l) 1 ≤ u < n} (40)

We now generalize the concept of the node:

Definition 3.5 Let 1 ≤ r < n, u ≤ n − r and let l ∈ S. We call xu an l-node of order r
if

δl(u)p
(r)
lj (u) ≥ δi(u)p

(r)
ij (u), ∀i, j ∈ S. (41)

We also say that xu is a node of order r if it is an l-node of order r for some l ∈ S.

Note that a 0th-order node is just a node. One immediately obtains the following proper-
ties of the (generalized) nodes:

Proposition 3.3 Let 0 ≤ r, 1 ≤ q such that r + q ≤ n − u, then

1. If xu is an rth-order l-node, then it is also an l-node of order r + q.

2. If xu+q is an rth-order l-node, then xu is an (r + q)th-order l′-node for any l′ ∈
t(q)(u, l).
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Next, we generalize Proposition 3.2:

Proposition 3.4

xu is an l-node of order r ⇐⇒ l ∈ t(r+1)(u, j) ∀j ∈ S, (42)

u + r < n, xu is an l-node of order r ⇒ ∀v ∈ V(x1...n),∀v∗ ∈ W l
u(x1...u)

∃v′ ∈ W l vu+r+1

u u+r+1(x1...u+r+1) :v∗ = v′
1...u, (v

′, vu+r+1...n) ∈ V l
u(x1...n), (43)

⇒ V l
u(x1...n) 6= ∅, (44)

⇒ V l
u(x1...n) = W l

u(x1...u) × V(l)(xu+1...n). (45)

Finding v′
u+1...u+r and v∗ ∈ W l

u(x1...u) in (43) for given v ∈ V(x1...n) does not require
knowledge of any of xu+r+1...n. Finally, whether xu is an l-node of order r depends on
x1, . . . , xu+r only, i.e. it does not depend on any xi for i > u + r.

Proof. The final statement follows immediately from Definition 3.5 and relations (15) and
(36). (42) also follows immediately from Definition 3.5 and (37). In order to see (43), note
that applying (38) with q = 1 to l ∈ t(r+1)(u, vu+r+1) once gives us ṽ1 ∈ t(r)(u+1, vu+r+1).
Applying then (38) with q = 1 to ṽi ∈ t(r−i+1)(u + i, vu+r+1) successively for i = 2, . . . , r
proves the existence of the entire ṽ1...r ∈ Sr such that l ∈ t̃(u, v′

1), ṽ′
1 ∈ t(u + 1, ṽ2), . . .,

ṽr−1 ∈ t(u + r − 1, ṽr), ṽr ∈ t(u, vu+r+1). Thus, recalling (40), ṽ = v′
u+1...u+r for some

v′ ∈ W l vu+r+1

u u+r+1(x1...u+r+1). Since v∗
i ∈ t(i, v∗

i+1) for i = 1, . . . , u − 1 (v∗ ∈ W l
u(x1...u) and

(19)), and vi ∈ t(i, vi+1) for i = u+r+1, . . . , n−1 and δvn
(n) ≥ δj(n) ∀j ∈ S (v ∈ V(x1...n)

and (18)), one gets (v∗, v′, vu+r+1...n) ∈ V l
u(x1...n). Evidently, v′ above involves no xi for

i > u + r. Thus, unlike in (26), in addition to setting vu = l and taking v∗
i ∈ t(i, vi+1) for

i = u − 1, u − 2, . . . , 1 we may have to “realign” u + 1st, . . ., u + rth components in order
for the modified string to remain in V(x1...n). Moreover, v∗ need not belong to V(x1...u).
Clearly, (43) implies (44). Finally, given (44), Proposition 3.1 yields (45).

Corollary 3.3 For any fixed s ∈ S, Proposition 3.4 remains valid after replacing π by
(psi)i∈S, wherever appropriate. In particular,

u + r < n, xu is an l-node of order r ⇒ ∅ 6= V l
(s)u(x1...n) =

= W l
(s)u(x1...u) × V(l)(xu+1...n).

Corollary 3.4 Let ui + ri < ui+1 i = 1, . . . , k − 1, and uk + rk < n, and suppose x1...n is
such that the observations xui

are li-nodes of order ri, for i = 1, . . . , k. Then

∅ 6= V l1l2···lk
u1u2···uk

(x1...n) =

= W l1
u1

(x1...u1) ×W l2
(l1)u2

(xu1+1...u2) × · · · ×W lk
(lk−1)uk

(xuk−1+1...uk
) × V(lk)(xuk+1...n). (46)

Proof. By (44), we have
V li

ui
(x1...n) 6= ∅ i = 1, . . . , k.

Hence,
∅ 6= V l1l2···lk

u1u2···uk
(x1...n).
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By (45),

V l1l2···lk
u1u2···uk

(x1...n) = W l1
u1

(x1...u1) × V l2···lk
(l1)u2···uk

(xu1+1...n).

Apply Corollary 3.3 to get

V l2···lk
(l1)u2···uk

(xu1+1...n) = W l2
(l1)u2

(xu1+1...u2) × V l3···lk
(l2)u3···uk

(xu2+1...n),

and repeat similarly to get

V
li+1···lk

(li)ui+1···uk
(xui+1...n) = W

li+1

(li)ui+1
(xui+1...ui+1

) × V
li+2···lk

(li+1)ui+2···uk
(xui+1+1...n)

for i = 2, . . . , k − 1, yielding the desired result.

Thus, the assumptions of Proposition 3.4 and Corollary 3.4 establish the existence of
piecewise alignments

v = (v1, . . . , vk+1) ∈ V(x1...n), (47)

where v1 ∈ W l1
u1

(x1...u1), v2 ∈ W l2
(l1)u2

(xu1+1...u2), . . ., vk ∈ W lk
(lk−1)uk

(xuk−1+1...uk
), vk+1 ∈

V(lk)(xuk+1...n). Moreover, for every i = 1, . . . , k, the vectors w(i)
def
= (v1, . . . , vi) satisfy

w(i) ∈ W li
ui

(x1...ui
) and w(i)1...ui−1

= w(i − 1), i = 2, . . . , k. Since w(i) does not depend
on xui+ri+1, . . . , xn and as long as x1, . . . , xui+ri

are such that xui
is a node of order-ri, an

alignment v(x1...n) can always be found such that v1...ui
= w(i).

Definition 3.6 Any alignment of the form in (47) is called a piecewise alignment based
on nodes xu1 , . . . , xuk

of orders r1, . . . , rk, respectively.

Recall that we have previously fixed the selection scheme ∨ (33). Based on this selection
scheme, we will concern ourselves in §4.2 with proper (Definition 3.3) piecewise (Defini-
tion 3.6) alignments (that are based on nodes of possibly non-zero orders) formally defined
as follows:

Definition 3.7

v(x1...n)
def
= (∨W l1

u1
(x1...u1),∨W

l2
(l1)u2

(xu1+1...u2), . . . ,

∨W lk
(lk−1)uk

(xuk−1+1...uk
),∨V(lk)(xuk+1...n)) ∈ V l1...lk

u1...uk
(x1...n),

for k > 0, and v(x1...n)
def
= ∨V(x1...n) for k = 0.

To summarize the above, recall that by defining nodes (of various orders) we aim at ex-
tending alignments at infinitum, and we would like to do this for as wide class of HMMs
with irreducible and aperiodic hidden layers as possible. Having l-nodes of order 0 im-
mediately restricts the transition probabilities by requiring plj > 0 for ∀j ∈ S. However,
this restriction disappears with the introduction of nodes of order r for sufficiently large
r. Indeed, suppose that ∀u 0 < u ≤ n, δj(u) > 0 ∀j ∈ S (which in particular implies
fj(xu) > 0 ∀j ∈ S ∀u 0 < u ≤ n). Then, xu being an l-node of order r and irreducibility

of the underlying chain imply p
(r)
lj (u) > 0 ∀j ∈ S. The latter in turn implies that rlj > 0

for every j ∈ S, where rlj is the entry lj of P r. Thus, having an l-node of order r for
some r does not impose any restriction on P : by virtue of irreducibility and aperiod-
icity of P , there always exists r0 such that P r has all of its entries positive for every r ≥ r0.
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3.3 Barriers

By Corollary 3.4, xu being a node of order r fixes the alignment up to u for any possible
continuation of x1...u+r. However, changing the value of an observation before xu+r+1, say
x1 or xu+r, can prevent xu from being the node. Moreover, in general nothing guarantees
that for an arbitrary prefix x′

1...w ∈ Sw, w + u-th element of (x′
1...w, x1...u+r) would be a

node of order r. On the other hand, a block of observations y1...k ∈ Sk (k ≥ r) can be
such that for any w > 0 and for any x′

1...w ∈ Sw, w + k − r-th element of (x′
1...w, y1...k) is a

node of order r. y1...k in that case will be called a barrier.

Definition 3.8 A block of observations y1...k ∈ X k (k ≥ r) is called an l-barrier of order
r if for any w > 0 and for any x′

1...w ∈ Xw, w + k − r-th element of (x′
1...w, y1...k) is an

l-node of order r.

3.4 Existence of barriers

In this section, we state the main technical result of the paper. For each i ∈ S, we denote
by Gi the support of Pi.

Definition 3.9 We say that a subset of states C ⊂ S is a cluster, if, simultaneously,

min
j∈C

Pj(∩i∈CGi) > 0, and Pj(∩i∈CGi) = 0 ∀j 6∈ C.

Hence, a cluster is a maximal subset of states such that the corresponding emission distri-
butions have a ”detectable” intersection of their supports. The clusters are not necessarily
disjoint and a cluster can consist of a single state. In this latter case the state is not hid-
den: Any emission from this state indicates that state. If K = 2, then, for an HMM,
there is only one cluster (otherwise the underlying Markov chain would not be hidden as
all observations reveal their states). In many cases in practise there is only one cluster,
that is S.
A proof of Lemma 3.1 below is given in the Appendix.

Lemma 3.1 Assume that for each state l ∈ S,

Pl

(

x : fl(x) max
j

{pjl} > max
i,i 6=l

{fi(x) max
j

{pji}}

)

> 0. (48)

Moreover, assume that there exist a cluster C ⊂ S and a finite integer m < ∞ such that
the m-th power of the sub-stochastic matrix Q = (pij)i,j∈C has all of its entries non-zero.
Then, for some integer M and r, M > r ≥ 0, there exists a set Y = Y1×· · ·×YM ⊂ XM ,
an M-tuple of states q1...M ∈ SM , and a state l ∈ S, such that every vector y1...M ∈ Y is
an l-barrier of order r , qM−r = l and

P
(

(X1, . . . , XM) ∈ Y
∣

∣

∣Y1 = q1, . . . , YM = qM

)

> 0, P(Y1 = q1, . . . , YM = qM) > 0.

Lemma 3.1 implies that P
(

(X1, . . . , XM ) ∈ Y
)

> 0. Every element of Y is a (r-order)
barrier. By the ergodicity of X, a.e. realization of X therefore has infinitely many l-
barriers of order r, hence each such realization also has infinitely many l-nodes of order
r.
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3.4.1 Separated barriers

If we were to apply Corollary 3.4 to a realization with infinitely many l-nodes of order
r, we would first need to ensure that ui+1 > ui + r for i = 1, 2, . . ., where ui’s are the
locations of the nodes. Obviously, one can easily select a subsequence of those nodes
to enforce this condition. For some technical reasons related to the construction of the
infinite alignment process (§4), we, however, choose first to define special barriers for which
the above ”separation” condition is always satisfied. Then, we give a formal statement
(Lemma 3.2 below) guaranteeing that these separated barriers also occur infinitely often.
Let Y ⊂ XM and M and r be as in Lemma 3.1 and xj...j+M−1 ∈ Y , i.e. is an l-barrier of
order r for some l ∈ S and some j > 0, and xj+M−r−1 is an l-node of order r. However,
it might happen that for some i, j ≤ i ≤ j + r, xi...i+M−1 is also in Y . Then xi+M−r−1 is
another node of order r. In this case, i + M − r − 1− (j + M − r − 1) ≤ r and Corollary
3.4 can not be used (in the presence of ties) with these two nodes simultaneously.

Definition 3.10 Let Y ⊂ X k such that all its elements are l-barriers of order r (r ≤ k),
and let y1...k ∈ Y. We say that y1...k is a separatedrth order l-barrier relative to Y if for
any w, 1 ≤ w ≤ r, and for any y′

1...w ∈ Xw the concatenated block (y′
1...w, y1...k−w) 6∈ Y.

In other words, a barrier is separated, if the distance from the previous barrier is at least
r + 1. Next, Lemma 3.2 (proven in Appendix) shows that a.e. realization of X has
infinitely many separated barriers.

Lemma 3.2 Suppose the assumptions of Lemma 3.1 are satisfied. Let M , r, Y ⊂ XM

and q1...M be as promised by Lemma 3.1. Then, for some N ≥ M , there exist a set
Y∗ = Y1 × · · · × YN−M × Y ⊂ XN , an N-tuple of states q∗ = (q∗1...N−M , q1...M ) ∈ SN , and
a state l ∈ S such that every vector y1...N ∈ Y∗ is an l-barrier of order r, and moreover
yN−M+1...N ∈ Y is a separated rth-order l-barrier relative to Y, qM−r = l and

P
(

(X1, . . . , XN) ∈ Y∗
∣

∣

∣(Y1, . . . , YN) = q∗
)

> 0, P
(

(Y1, . . . , YN) = q∗
)

> 0.

3.4.2 Counterexamples

The condition on C in Lemma 3.1 might seem technical and even unnecessary. We next
give an example of an HMM where the cluster condition is not fulfilled and no barriers
can occur. Then, we will modify the example (Examples 3.12 3.13) to enforce the cluster
condition and consequently gain barriers.

Example 3.11 Let K = 4 and consider an ergodic Markov chain with transition matrix

P =









1
2

0 0 1
2

0 1
2

1
2

0
1
2

0 1
2

0
0 1

2
0 1

2









.

Let the emission distributions be such that (48) is satisfied and G1 = G2 and G3 = G4 and
G1 ∩G3 = ∅. Hence, in this case there are two disjoint clusters C1 = {1, 2}, C2 := {3, 4}.
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The matrices Qi corresponding to Ci, i = 1, 2 are

Q1 = Q2 =

(

1
2

0
0 1

2

)

.

Evidently, the cluster assumption of Lemma 3.1 is not satisfied. Note also that the align-
ment cannot change (in one step) its state to the other one of the same cluster. Due
to the disjoint supports, any observation indicates the corresponding cluster. Hence any
sequence of observations can be regarded as a sequence of blocks emitted from alternating
clusters. However, the alignment inside each block stays constant.

In order to see that no xu can be a node (of any order) for 1 ≤ u < n, recall t(u, j) (17)
and t(u, j)(r) (38), and Proposition 3.4. Specifically, note that in this setting for any j ∈ S
t(u, j) contains exactly one element, hence for any r ≥ 1, t(u, j)(r) defines a function from
S to S. Now, it is easy to see that depending on xu, t(u, j) belongs to a single cluster
C(xu) for all j ∈ S. In particular, there are i, j ∈ C ′ ⊂ S for some cluster C ′ such
that i 6= j. Given this particular transition matrix, evidently t(u, i) 6= t(u, j). Hence, xu

cannot be a (zero order) node (by (42)). Now, starting with u+1 (instead of u), the same
argument establishes that for some i, j ∈ S, t(u + 1, i) 6= t(u + 1, j) but are in one clus-
ter. Applying the same argument again but now to t(u + 1, i) and t(u + 1, j), we get that
t(u, t(u + 1, i)) 6= t(u, t(u + 1, j)), i.e. t(2)(u, i) 6= t(2)(u, j). Consequently xu cannot be a
first order node (42); and so forth and so on recursively for any r such that 0 ≤ r < n−u.

Example 3.12 Let us modify the HMM in Example 3.11 to ensure the assumptions of
Lemma 3.1 hold. At first, let us change the transition matrix. Let 0 < ε < 1

2
and consider

the Markov chain Y with transition matrix








1
2
− ε ε 0 1

2
ε 1

2
− ε 1

2
0

1
2

0 1
2

0
0 1

2
0 1

2









.

Let the emission distributions be as in the previous example. In this case, the cluster
C1 satisfies the assumption of Lemma 3.1. As previously, every observation indicates
its cluster. Unlike in the previous example, nodes are now possible. To be concrete, let
ε = 1/4, f1(x) = exp(−x)x≥0, f2(x) = 2 exp(−2x)x≥0, and f3(x) = exp(x)x≤0, f4(x) =
2 exp(2x)x≤0. It can then be verified that, for example, if x1 = 1, x2 = 1 then x1 is a 1-node
of order 2. Indeed, in that case any element of Y = (0, +∞)× (log(2), +∞)× (0, +∞) is
a 1-barrier of order 2.

Example 3.13 Another way to modify the HMM in Example 3.11 to enforce the assump-
tions of Lemma 3.1 is to change the emission probabilities. Assume that the supports Gi,
i = 1, . . . , 4 are such that Pj(∩

4
i=1Gi) > 0 for all j ∈ S, and (48) holds. Now, the model

has only one cluster that is S = {1, . . . , 4}. Since the matrix P 2 has all its entries positive,
the conditions of Lemma 3.1 are now satisfied. A barrier can now be constructed. For
example, the following block of observations,

z1, z2, z3, y1, . . . , yk, z
′
1, z

′
2, z

′
3, (49)
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where zi, z
′
i ∈ ∩4

j=1Gj, i = 1, 2, 3, yi ∈ X , i = 1, . . . k and k is sufficiently large, is a
barrier (see proof of Lemma 3.1). The construction of barriers in this case is possible
because of the observations zi and z′

i. These observations can be emitted from any state
(i.e. from any distribution Pi, i = 1, . . . , 4) and therefore do not indicate any proper
subsets of S. They play a role of a buffer allowing a change in the alignment from a given
state to any other state (in 3 steps). The HMM in Example 3.11 does not have r-order
nodes, because such buffers do not arise. The cluster assumption in Lemma 3.1 makes
these buffers possible.
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4 Alignment process

Let x1∞ = x1, x2, . . . be a realization of X. If for some r < ∞ x1∞ contains infinitely
many r-order nodes, then Corollary 3.4 paves the way for defining an infinite alignment
for x1∞.

4.1 Preliminaries

Throughout this Section, we work under the assumptions of Lemma 3.1. Let M ≥ 0,
Y ⊂ XM , r ≥ 0, and l ∈ S as promised by Lemma 3.1. Then, by Lemma 3.2, for some
N > r ≥ 0, there exist Y∗ = Y ′ × Y ⊂ XN for some Y ′ ⊂ XN−M , and an N -tuple of
states q∗ = q1...N ∈ SN such that for every n,

P
(

(Yn, . . . , Yn+N−1) = q∗
)

> 0, P
(

(Xn, . . . , Xn+N−1) ∈ Y∗
∣

∣

∣(Yn, . . . , Yn+N−1) = q∗
)

> 0

hence every xn...n+N−1 ∈ Y∗ is (ends with) a separated barrier from Y .

Denote P
(

(Xn, . . . , Xn+N−1) ∈ Y∗
)

by γ∗, thus γ∗ > 0, and define

Un = (Xn, . . . , Xn+N−1), Dn = (Yn, . . . , Yn+N−1). (50)

Let Fn := σ(Y1, . . . , Yn, X1, . . . , Xn). Define stopping times νo, ν1, ν2, . . ., R0, R1, R2, . . . ,
and ϑ0, ϑ1, ϑ2, . . . , of the filtration {Fn+N−1}

∞
n=1 as follows:

νo := min{n ≥ 1 : Un ∈ Y∗, Dn = q∗}, νi := min{n > νi−1 : Un ∈ Y∗, Dn = q∗}; (51)

ϑo := min{n ≥ 1 : Un ∈ Y∗}, ϑi := min{n > ϑi−1 : Un ∈ Y∗}; (52)

R0 := min{n ≥ 1 : Dn = q∗}, Ri := min{n > Ri−1 : Dn = q∗}. (53)

We use the convention min ∅ = 0 and max ∅ = −1. Note the difference between ν and
R and ϑ: The stopping times ϑ are observable by looking at the X process only; the
stopping times R are observable by looking at the Y process only; the sopping times ν
require the knowledge of the full two-dimensional process (X,Y ). Clearly ϑi ≤ νi, and
Ri ≤ νi.

From (53), it follows that the random variables R0, (R1 − R0), (R2 − R1), . . . are inde-
pendent and (R1 − R0), (R2 − R1), . . . are identically distributed. The same evidently
holds for the random variables ν0, (ν1 − ν0), (ν2 − ν1), . . .. In Appendix, we prove that all
the latter ones have finite expectations, and, therefore, are stationary renewal times:

Proposition 4.1 E(ν1−ν0) < ∞ and for any π′ (not necessarily equal to π, the invariant
distribution) initial distribution of Y , Eπ′ν0 < ∞.

To every νi, i = 0, 1, . . . there corresponds an r-order l-barrier. This barrier occupies the
interval [νi + N − M, νi + N − 1]. By Definition 3.8, Xτi

is an l-node of order r, where

τi = νi + (N − 1) − r, i = 0, 1, . . .
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Define

T0
def
= τ0, Ti

def
= τi − τi−1 = (νi − νi−1), i = 1, 2, . . . . (54)

From Proposition 4.1, it immediately follows Eπ′T1 < ∞, Eπ′T0 < ∞, where π′ is any
initial distribution of Y . Thus Ti, i = 0, 1, . . . correspond to a delayed renewal process [6].

Let u0, u1, u2, . . . be the locations of the r-order l-nodes corresponding to the stopping
times ϑ, i.e.

ui = ϑi + (N − 1) − r, i = 0, 1, 2, . . . . (55)

Clearly, every τi is also a uj for some j ≥ i. Also, since the barriers are separable,
ui > ui−1 + r.

4.2 Alignments

We next specify the alignments v(x1...n) ∈ V(x1...n), and define v(x1...∞) and the measures
P n

l corresponding to v(x1...n).
Let k(x1...n) be the number of xu0 , xu1 ,. . . , xuk(x1...n)−1

, all l nodes of order r such that

ui > ui−1 + r for i = 1, . . . , k(x1...n) − 1, and uk(x1...n)−1 + r < n. Recall (Definition 3.7)
that based on the selection ∨ (33), we single out the following proper piecewise alignment:

v(x1...n) = (∨W l
u0

(x1...u0),∨W
l

(l)u1
(xu0+1...u1), . . . ,

∨W l
(l)uk−1

(xuk−2+1...uk−1
),∨V(l)(xuk−1+1...n)) ∈ V l...l

u0...uk−1
(x1...n),

for k = k(x1...n) > 0, and v(x1...n) = ∨V(x1...n) for k = 0. Corollary 3.4 makes it possible
to define the infinite proper piecewise alignment that will be consistent with Definition
3.7 (in the sense of (56) below). Namely, we state

Definition 4.1

v(x1...∞)
def
= (∨W l

u0
(x1...u0),∨W

l
(l)u1

(xu0+1...u1), . . . , )

for all x1∞ that contain infinitely many xu0, xu1, . . . , l-nodes of order r, which is the

case a.s. (Lemmas 3.1 and 3.2). (For all other realizations, let us adopt v(x1...∞)
def
=

(∨W l
u0

(x1...u0),∨W
l

(l)u1
(xu0+1...u1), . . . ,∨W

l
(l)uk−1

(xuk−2+1...uk−1
), 1, 1, . . .), where k is the to-

tal number of l nodes of order r in the given realization.)

Note that for every xui
observed in (x1, . . . , xn)

v(x∞
1 )1···ui

= v(x1, . . . , xn)1···ui
. (56)

Let us now formally define the empirical measures P n
l which are central to this theory:

Definition 4.2 Let = V ′
1...n = v(X1, . . . , Xn) (where v is as in Definition 3.7). For each

state l ∈ S that appears in V ′
1 , V ′

2 , . . .V ′
n define the empirical l-measure

P n
l (A,X1...n)

def
=

∑n

i=1 IA×l(Xi, V
′
i )

∑n

i=1 Il(V ′
i )

, A ∈ B.
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For other l ∈ S (i.e. such that l 6= V ′
i for i = 1, . . . , n), define P n

l to equal some arbitrarily
chosen (probability) measure P ∗.

The infinite alignment allows us to define the alignment process:

Definition 4.3 The encoded process V
def
= v(X) will be called the alignment process.

(Of course, the definition of V above is sensible only because X has infinitely many ui-s
a.s..) We shall also consider the 2-dimensional process

Z
def
= (X,V ).

Using Z, we define a related quantity Qn
l as follows: Let V1, . . . , Vn be the first n elements

of the alignment process. In general

v(x∞
1 )1...n 6= v(x1, . . . , xn),

hence V ′
i need not equal Vi. For every l ∈ S, we define

Qn
l (A,Z1...n)

def
=

∑n

i=1 IA×l(Xi, Vi)
∑n

i=1 Il(Vi)
=

∑n

i=1 IA×l(Zi)
∑n

i=1 Il(V )
, A ∈ B.

(As in Definition 4.2, if l 6= Vi, i = 1, . . . , n, then Qn
l

def
= P ∗.)

4.3 Regenerativity

To prove our main theorem, we use the fact that Z is a regenaritive process:

Proposition 4.2 The processes V , X, and Z are regenerative with respect to τ .

The proof is given in the Appendix.

Recall Y∗ = Y1 × · · · × YN−M × YN−M+1 × · · · × YN and q∗ = q1...N (from §4.1), and
let

P r
qi
∝ Pqi

IYi
, i = 1, . . . , N.

Thus, P r
qi

is the measure P r
qi

conditioned on Yi. Recall also that qN−r = l.

Define new processes

Y r def
= (Y r

i )∞i=1, where Y r
1 = qN−r+1, . . . , Y

r
r = qN , and Y r

r+1, Y
r
r+2, . . . (57)

is an S -valued Markov chain with transition probability matrix P and initial

distribution (pqN j)j∈S;

Xr def
= (Xr

i )
∞
i=1 is a modified HMM with Y r as its underlying Markov chain and

PY r
i

(i > r) and P r
qN−r+i

(1 ≤ i ≤ r) as its emission distributions;

V r def
= (V r

i )∞i=1
def
= v(Xr), where v is as in Definition 4.1; (58)
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Zr def
= (Xr, V r). (59)

Note that the process Xr is not exactly an HMM as defined in Definition 2.1 because
the first r-emissions are generated from distributions that differ from the distributions
of the rest. However, conditioned on the underlying Markov Chain Y r, all emissions are
still independent. Also note that in the definition of V r, the alignment is still based on
the original HMM X, i.e. the definition of v(x1, . . . , xn) relies on the distributions Pq1 ,
Pq2 ,. . . , Pqn

(given Y1...n = q1...n).
Finally, note that for r = 0, the process Y 0 is essentially our original Markov chain

except fro the initial distribution being (plj)j∈S (instead of π). Similarly, X0 is the HMM
in the sense of Definition 2.1 with Y 0 as its underlying Markov chain. Therefore, Z0 is
the process Z, with (plj)j∈S as the initial distribution of its Y -component.

Finally we define analogues of ν0 and τ0:

νr
0

def
= min

{

n ≥ 1 : (Y r
n , . . . , Y r

n+N−1) = q∗, (Xr
n, . . . , Xr

n+N−1) ∈ Y∗
)

}

τ r
0

def
= νr

0 + (N − 1) − r. (60)

Note that the random variable τ r
0 has the same law as Ti (54), i ≥ 1. The barriers in

Y∗ end by (length M) l barriers of order r from Y = YN−M+1 × YN−M+2 × · · · × YN

that are separated relative to Y (Definition 3.10, Lemma 3.2). Therefore, νr
0 > r. This

means that the laws of νr
0 , τ r

0 , ν0 + r, and τ0 + r would all be equal if Y had (pqM l)l∈S for
the initial distribution. Recalling that any initial distribution π of Y yields Eπ(ν0) < ∞
(Proposition 4.1), we obtain

ET1 = Eτ r
0 = EqM

(ν0 + (N − 1) − r + r) < ∞. (61)

The above observations will allow us to prove (see Appendix) the following theorem which
is the main result of the paper:

Theorem 4.4 If X satisfies the assumptions of Lemma 3.1, then there exist probability
measures Ql, l ∈ S such that

P n
l ⇒ Ql, a.s., Qn

l ⇒ Ql, a.s.

and for each A ∈ B,

Ql(A) =

∑∞

i=1 P(Zr
i ∈ A × l, τ r

o ≥ i)
∑∞

i=1 P(V r
i = l, τ r

o ≥ i)
. (62)

where V r, Zr, and τ r
o are defined in (58), (59), and (60), respectively.

Corollary 4.1 Suppose X satisfies the assumptions of Lemma 3.1 with r = 0. Then, for
each l ∈ S (62) takes form

Ql(A) =

∑∞

j=1 Pl(Zj ∈ A × i, τo ≥ j)
∑∞

j=1 Pl(Vj = i, τo ≥ j)
, (63)

where Pl stands for initial distribution of Y equal (plj)j∈S.
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5 Appendix

5.1 Proof of Lemma 3.1

Work in progress.

5.2 Proof of Lemma 3.2

Work in progress.

5.3 Proof of Proposition 4.1

We define blocked processes

U b
m = (X(m−1)N+1, . . . , XmN ), Db

m = (Y(m−1)N+1, . . . , YmN), m = 1, 2, . . . ,

and stopping times

νb
o := min{m ≥ 1 : U b

m ∈ Y∗, Db
m = Q∗} (64)

νb
i := min{m > ν∗

i−1 : U b
m ∈ Y∗, Db

m = Q∗};

Rb
0 := min{m > 1 : Db

m = Q∗}, (65)

Rb
i := min{m > Ri−1 : D∗

m = Q∗}.

The process Db is a finite MC, since Y is non-periodic and irreducible, the same holds for
Db. Hence (Db, U b) is a HMM.
Since Y is stationary, Q∗ occurs in every possible integer-interval with the same prob-
ability; so Q∗ belongs to the state space of Db. Since Db is irreducible and finite,
then every state is visited infinitely often, a.s. This means that for every i = 1, 2, . . . ,
P(Rb

i − Rb
i−1 < ∞) = 1 and then, of course, P(Ri − Ri−1 < ∞) = 1.

If Db
m = Q∗, then by Lemma 3.2, U b

m ∈ Y∗ with probability γ∗ > 0. This means that for
every i = 1, 2, . . . , P(νb

i − νb
i−1 < ∞) = 1 and this means P(νi − νi−1 < ∞) = 1.

The chain Db has finite state space and is ergodic. Hence, for any initial distribution of D∗,
we have E(R0) ≤ NE(Rb

0) < ∞. Every initial distribution π of Y induces an initial dis-
tribution of Db. Thus, for any π, Eπ(R0) < ∞. Now, obviously, Eν0 = γ∗−1Eπ(R0) < ∞.
This proves the second statement.

To prove the first statement, consider the blocked Markov chain Db with initial dis-
tribution concentrated on Q∗. The fact that E(R0) ≤ NE(Rb

0) < ∞ with any initial dis-
tribution implies that E(R1 −R0) < ∞ and, hence, E(ν1 − ν0) = (γ∗)−1E(R1 −R0) < ∞.

5.4 Proof of Proposition 4.2

Recall the definition of stopping times τ . By definition, for each i the underlying Markov
chain satisfies Yτi

= l. Hence, the behavior of X after τi does not depend of the behavior
of X up to τi. With the fact that Ti are renewal, this establishes the regenerativity of
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X. To every τi corresponds a r-order l-node. Moreover, since τi is always a uj, for some
j > i, it means that all the nodes corresponding to τi-s are also used to fix the alignment in
Definition 4.1. Therefore, the alignment up to τi does not depend on the alignment after
τi. In other words, the piece of alignment process corresponding to the Ti is a function of
the piece of X corresponding to the Ti. Formally

(Vs : s ∈ τi−1 + 1, . . . , τi) = v(l)(Xs : s ∈ τi−1 + 1, . . . , τi).

So, the process Z is regenerative with respect toτ .

5.5 Proof of Theorem 4.4

At first note that the right side of (62) defines a measure.
The proof uses the regenerativity of Z in the most standard way. For every n ≥ τo and
A ∈ B, and for every l ∈ S.

1

n

n
∑

i=1

IA×l(Zi) =
1

n

τo
∑

i=1

IA×l(Zi) +
1

n

τk(n)
∑

i=τo+1

IA×l(Zi) +
1

n

n
∑

i=τk(n)+1

IA×l(Zi)

where k(n) = max{k : τk ≤ n} stands for the renewal process. Now, since τo < ∞, a.s.,
we have

1

n

τo
∑

i=1

IA×l(Zi) ≤
τo

n
→ 0, a.s..

Let µ := Eτ r
0 . By (61), µ < ∞. Then

n − τk(n)

n
≤

Tk(n)+1

n
→ 0, a.s..

Finally, since Z is a regenerative process with respect to the τo, τ1, . . ., we have

1

n

τk(n)
∑

i=τo+1

IA×l(Zi) =
k(n)

n

1

k(n)

k(n)
∑

k=1

ξk,

where

ξk :=

τk
∑

i=τk−1+1

IA×l(Zi), k = 1, 2, . . .

are i.i.d. random variables. Denote ml(A) := Eξk ≤ µ < ∞ (and drop the A, because it
is fixed). Then, as n → ∞, we have

n

k(n)
→ µ and

1

k(n)

k(n)
∑

k=1

ξk → ml, a.s.

Let us calculate ml. Clearly,

ml = E

τr
0
∑

i=1

IA×l(Z
r
i ).
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Now

ml = E

τr
0
∑

i=1

IA×l(Z
r
i ) =

∞
∑

j=1

E(

j
∑

i=1

IA×l(Z
r
i )|τ

r
0 = j)P(τ r

0 = j)

=
∞
∑

j=1

j
∑

i=1

P(Zr
i ∈ A × l|τ r

0 = j)P(τ r
0 = j)

=
∞
∑

j=1

P(Zr
1 ∈ A × l|τ r

0 = j)P(τ r
0 = j) +

∞
∑

j=2

P(Zr
2 ∈ A × l|τ r

0 = j)P(τ r
0 = j) + · · ·

= P(Zr
1 ∈ A × l, τ r

0 ≥ 1) + P(Zr
2 ∈ A × l, τ r

0 ≥ 2) + · · ·

=
∞
∑

i=1

P(Zr
i ∈ A × l, τ r

0 ≥ i) ≤
∞
∑

i=1

P(τ r
0 ≥ i) = µ < ∞

Similarly,
1

n

n
∑

i=1

Il(V
r
i ) →

1

µ

∞
∑

i=1

P (V r
i = l, τ r

0 ≥ i) =:
wl

µ
≤ 1, a.s. (66)

Hence, we have shown that for each l ∈ S and for every A ∈ B

Qn
l (A) →

ml(A)

wl

=

∑∞

i=1 P(Zr
i ∈ A × l, τ r

0 ≥ i)
∑∞

i=1 P(V r
i = l, τ r

0 ≥ i)
, a.s. (67)

The theory of weak convergence of measures (recall X was assumed to be a separable
metric space) now establishes Qn

l ⇒ Ql, a.s..

It remains to show that, for all l ∈ S and A ∈ B

P n
l (A) →

ml(A)

wl

, a.s.. (68)

For this consider the sum
∑n

i=1 IA×l(Xi, V
′
i ). Since V ′

i = Vi, if i ≤ τk(n), we get, as n → ∞

1

n

n
∑

i=1

IA×l(Xi, V
′
i ) =

1

n

τo
∑

i=1

IA×l(Z)+
1

n

τk(n)
∑

i=τo+1

IA×l(Zi)+
1

n

n
∑

i=τk(n)+1

IA×l(Xi, V
′
i ) →

ml

µ
a.s.

Similarly,
1

n

n
∑

i=1

Il(V
′
i ) →

1

µ

∞
∑

i=1

P1(Vi = l, τ r
0 ≥ i) =:

wl

µ
, a.s.. (69)

These convergences prove (68).
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