A Markovian Growth-Collapse Model

Onno Boxma, David Perry, Wolfgang Stadje and Shelley Zacks

Abstract

We consider growth-collapse processes (GCPs) that grow linearly between random partial collapse times at which they jump down according to some distribution depending on their current level. The jump occurrences are governed by a state-dependent rate function $r(x)$. We deal with the stationary distribution of such a GCP X_t, $t \geq 0$, and the distributions of the hitting times $T_a = \inf\{t \geq 0 \mid X_t = a\}$, $a > 0$. After presenting the general theory of these GCPs, several important special cases are studied. We also take a short look at the Markov-modulated case. In particular, we present a method to compute the distribution of $\min\{T_a, \sigma\}$ in this case (where σ is the time of the first jump) and apply it to determine the long-run average cost of running a certain Markov-modulated disaster-ridden system.

Keywords: Growth-collapse process; piecewise deterministic Markov process; stationary distribution; hitting time; uniform cut-off; duality; Markov modulation.

AMS Subject Classification: Primary 60K30, Secondary 60J27, 60J75, 60F05.

*EURANDOM and Department of Mathematics and Computer Science, Eindhoven University of Technology, HG 9.14, P.O. Box 513, 5600 MB Eindhoven, The Netherlands (boxma@win.tue.nl)
†Department of Statistics, University of Haifa, Haifa 31909 Israel (dperry@haifa.ac.il)
‡Department of Mathematics and Computer Science, University of Osnabrück, 49069 Osnabrück, Germany (wolfgang@mathematik.uni-osnabrueck.de)
§Binghamton University, Department of Mathematical Sciences, Binghamton, NY 13902-6000, USA (shelly@math.binghamton.edu)