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1 Introdu
tionGrowth-
ollapse pro
esses (GCPs) are real-valued sto
hasti
 pro
esses whi
hgrow (possibly in a random fashion) between random 
ollapse times at whi
hthey jump down a

ording to some distribution depending on their 
urrentlevel. This pattern of behavior 
an be en
ountered in a large variety of physi-
al phenomena, for example the build-up of fri
tion, earthquakes, avalan
hesand neuron �ring; 
f. Bak's [7℄ paradigm of \systems of self-organized 
rit-i
ality". Also in population growth models it seems reasonable to assumethat the growth rate and the extent of o

asional `disasters' (e.g. epidemi
s)depend on the 
urrent population size. In the realm of operations resear
h,GCPs o

ur in insuran
e mathemati
s and related �elds and in models of pro-du
tion/inventory systems (Asmussen [5, 6℄, Rolski et al. [22℄) and queueing(see e.g. Bekker et al. [8℄).Eliazar and Klafter [16℄ 
onsider a GCP X = (Xt)t�0 
omposed of threerandom sour
es: (a) a steady random in
ow with stationary independentpositive in
rements; (b) 
rash times �1 < �2 < : : : whi
h form a renewalpro
ess; (
) 
rash proportions U1; U2; : : : whi
h are i.i.d. random variableson (0; 1). The three sour
es are assumed to be sto
hasti
ally independent.At the nth 
rash time �n, the pro
ess jumps down by the amount UnX�n� sothat the new system level at �n is X�n = (1� Un)X�n�. Eliazar and Klafter[16℄ 
ompute several system 
hara
teristi
s (means, varian
es, Lapla
e trans-forms, probability tails) and fo
us on 
rash proportions governed by power-law distributions.In the spirit of [16℄ we study in this paper a 
lass of [0;1)-valued, pie
ewisedeterministi
 Markov pro
esses (PDMPs) X = (Xt)t�0 
hara
terized by thefollowing features:(i) X in
reases linearly at rate 1 between jumps and is right-
ontinuous.(ii) GivenXt = x, the probability of a jump in (t; t+�) is equal to r(x)�+o(�)as �! 0, where r : (0;1)! [0;1) is a 
ontinuous fun
tion.(iii) If a jump o

urs at time t, and Xt� = x, then the distribution of Xt is�x, whi
h is a probability measure on [0; x).If X0 = 0, the fun
tion r(x) in (ii) is just the failure rate of the �rst jump2



time � = infft � 0 j Xt 6= Xt�g, so thatP(� > t) = expn� tZ0 r(x) dxo; t � 0:It is reasonable to assume that P(� < 1) = 1, whi
h is equivalent toR10 r(x) dx = 1. In most examples the probability measure �x has adensity p(x; y) on (0; x) and possibly an atom at zero. A parti
ularly in-teresting 
ase whi
h we will study is that of `uniform' 
rash proportions, i.e.,p(x; y) = x�11(0;x)(y). Another example is the age pro
ess (At)t�0 of a stan-dard renewal pro
ess whi
h 
an be des
ribed as follows: It starts at A0 = 0,in
reases at rate 1 between jumps, every jump takes the pro
ess ba
k to 0,and a jump o

urs in (t; t+�) with probability r(At)�+o(�) as �! 0, wherer(�) is the failure rate of the underlying distribution fun
tion.As an alternative to the growth 
ondition (i), we also 
onsider the 
ase thatXin
reases linearly between jumps at a rate 
(Jt), where (Jt)t�0 is a modulatingirredu
ible Markov 
hain having state spa
e f1; :::; ng and the rates 
(j)satisfy 
(1) > 
(2) > ::: > 
(n) � 0.In a variety of examples we will in parti
ular deal with the stationary distri-bution of X and the distribution of the hitting time Ta = infft � 0 j Xt = ag.In Se
tion 2 we present the general theory of these distributions. In the subse-quent se
tions these results are applied to important spe
ial 
ases. In Se
tion3 we give expli
it formulas in the 
ase when the jump rate is proportionalto the a
hieved level, i.e. r(x) = �x, and the jump sizes are uniformly dis-tributed (�x([0; y)) = min[y=x; 1℄). Moreover we prove that a�2 log Ta ! �=2in probability as a ! 1. In Se
tion 4 we 
onsider uniform 
ut-o�s withPoisson jump arrivals. It is shown that the stationary distribution of X isErlang(2,�) and the LT of Ta 
an be given in terms of degenerate hyper-geometri
 fun
tions. Furthermore, we derive expli
it formulas for the �rsttwo moments of the GCP at �xed time t and just after the nth jump. InSe
tion 5 we 
onsider GCPs for whi
h the time periods between the jumpsare i.i.d. random variables with an arbitrary distribution. Based on a dualityargument it is proved that the level of the GCP after its nth jump has thesame distribution as the level of a 
ertain shot noise pro
ess whi
h has beenstudied before in [8℄. Using this 
onne
tion the LT of the stationary densityof the GCP 
an be derived. Finally, in Se
tion 5 we take a short look atthe Markov-modulated 
ase, as des
ribed above. In parti
ular, we present amethod to 
ompute the distribution of min[Ta; �℄ in this 
ase and apply it todetermine the long-run average 
ost of running a 
ertain Markov-modulated3



disaster-ridden system.We 
lose this se
tion with a brief dis
ussion of some related GCP models.The sample paths of GCPs of the above type look like those of risk pro
esses.However, in 
lassi
al risk theory the surplus pro
ess of an insuran
e portfolioin
reases linearly between 
laims (leading to downward jumps), and the 
laimsizes and 
laim intervals are independent. We are not aware of risk studiesin whi
h the 
laim size depends on the size of the portfolio at the 
laim time.However, several authors did re
ently look at more general models where theindependen
e assumption is relaxed. See Asmussen [1℄ for a survey of thesubje
t. In [1℄ the distribution of the 
laim interval depends on the previous
laim size (see [11℄ for a queueing model with a similar dependen
e stru
ture).In [2℄ a more general, semi-Markovian, dependen
e stru
ture is introdu
edin the risk model. The 
laim sizes now depend on some underlying Markov
hain { but not on the size of the portfolio at the 
laim time.Motivated by various appli
ations in 
ommuni
ation systems, there have re-
ently been several studies about 
uid systems that alternate between \on"and \o�". During o�-periods, the bu�er 
ontent in
reases in some state-dependent way, and during on-periods it de
reases with a state-dependentrate (unless it is at zero). In [9℄ the o�-periods are exponentially distributed.In [10, 23℄ the rate at whi
h the system swit
hes from on to o� (and ba
k)depends on the a
tual bu�er 
ontent. It should be noted that if the on-periodis 
ompressed to zero, and the state-dependent de
rease rate goes to in�nityin an appropriate way, one 
ould obtain a pro
ess in whi
h the size of thedownward jump depends on the bu�er 
ontent.Altman et al. [4℄ study GCPs in relation to the TCP (Transmission ControlProto
ol) of the Internet. Variants of TCP lead to AWPs (Adaptive WindowProto
ols) in whi
h the window size alternately grows for a 
ertain period andde
reases instantaneously a

ording to some fun
tion of the present windowsize. For example, in AIMD (Additive In
rease Multipli
ative De
rease) thewindow size grows linearly, and at jump epo
hs it de
reases proportional toits present size. For a quite general AWP, Altman et al. [4℄ obtain stability
onditions and derive the steady-state window size distribution in analyti
form. See [3, 12, 19℄ for studies of the AIMD proto
ol. As shown in Se
tion5, there is a one-to-one 
orresponden
e between a parti
ular GCP and thewell-known shot noise pro
ess. 4



2 GCPs as PDMPsPDMPs in general were analyzed by Davis [14, 15℄; see also the presentationin Rolski et al. [22℄. We will spe
ialize this theory to the growth-
ollapsepro
esses de�ned by (i)-(iii) above. This yields the following key results.Proposition 1 The in�nitesimal generator of X is given by(Gf)(x) = f 0(x) + r(x) Z[0;x) (f(y)� f(x))�x(dy): (2.1)Its domain D(G) 
ontains all fun
tions f : R+ ! R whi
h are lo
ally boundedand absolutely 
ontinuous.Proof. This follows from Theorem 11.2.2 in Rolski et al. [22℄.Proposition 2 The hitting times Ta satisfyEx(Ta) � E0(Ta) <1 for all a > x: (2.2)Proof. The �rst inequality is obvious. Regarding the integrability of Taunder P0, observe that Ta > t implies that there o

urs at least one jump inea
h of the time intervals (0; a℄; (a; 2a℄; : : : ; ([t=a℄� 1)a; [t=a℄a℄, so thatP0(Ta > t)� �1� expn� aZ0 r(s) dso��1 � expn � min0�x�a x+aZx r(s) dso�[t=a℄�1� (1� ra)[t=a℄; (2.3)where ra = expn� min0�x�a x+aZx r(s) dso:It follows that ra 2 (0; 1) andE0(Ta) = 1Z0 P0(Ta > t) dt � 1Z0 (1 � ra)t=adt= a=j log(1� ra)j:5



Proposition 3 De�ne �(x) = r(x) R x0 �x([0; u)) du. If for some " > 0 andsome a > 0 �(x) > 1 + " for all x � a; (2.4)then Ex(Ta) <1 for all x � a: (2.5)Proof. Let i(x) = x be the identity fun
tion and note that by Dynkin'sformula the pro
ess Xt^Ta � t^TaZ0 (Gi)(Xs) ds (2.6)is a Px-martingale for every x � a. By Proposition 1, we have (Gi)(x) =1� �(x), so that (2.6) and the de�nition of Ta yieldx = Ex(X0) = Ex�Xt^Ta � t^TaZ0 (1� �(Xs)) ds� � a+ "Ex(t ^ Ta) for every x � a:(2.7)Letting t!1 leads to Ex(Ta) � (x� a)=": (2.8)Proposition 4 If Q is a stationary distribution of X, then Q has a densityq(x) satisfying the integral equationq(x) = 1Zx r(t)�t([0; x))q(t) dt: (2.9)Proof. It follows from Davis [14℄ that if Q is a stationary distribution thenZ (Gfs)(x) dQ(x) = 0 for all s > 0;6



where fs(x) = e�sx. Inserting (2.1) and integrating by parts yields1Z0 �f 0s(x)� r(x) xZ0 f 0s(u)�x([0; u)) du� dQ(x) = 0;whi
h is tantamount to1Z0 e�sx dQ(x) = 1Z0 e�su� 1Zu� r(x)�x([0; u)) dQ(x)� dufor all s > 0. It follows that Q has a density q satisfying (2.9).Proposition 5 If lim infx!1 �(x) > 1; (2.10)then X has exa
tly one stationary distribution Q and Xt ! Q weakly ast!1.Proof. Sin
e the expe
ted re
urren
e times for any a > 0 are �nite byPropositions 2 and 3, this follows from the ergodi
 theorem for regenerativepro
esses (Asmussen [2, p. 170℄).Now let us turn to the hitting time Ta. To determine its Lapla
e transform(LT) Ex(e��Ta), we use in the sequel the method presented in Kella and Stadje[18℄, whi
h requires, for any � > 0, to �nd a solution f� of the equation�f(x) = (Gf)(x) (2.11)whi
h is positive and bounded on [0; a℄. Then, by [18℄, the LT is simply givenby Ex(e��Ta) = f�(x)=f�(a); 0 � x < a: (2.12)Example 1. Let �x(dy) have a probability density of the formp(x; y) = a(x)b(y)1(0;x)(y): (2.13)This 
overs in parti
ular the 
ase p(x; y) = x�11(0;x)(y) in whi
h at every
rash a uniformly distributed pie
e of Xt� is 
ut o�.7



SettingB(x) = R x0 b(y) dy we have a(x) = 1=B(x) and �t([0; x)) = B(x)=B(t).By Proposition 5, X has a stationary distribution iflim infx!1 r(x)B(x) xZ0 B(u) du > 1:By Proposition 4 we get for the stationary density the integral equationq(x) = B(x) 1Zx r(t)B(t)q(t) dt;whi
h is easily solved:q(x) = CB(x) expn� xZ0 r(u) duo (2.14)where the normalizing 
onstant C is given byC = � 1Z0 B(x) expn� xZ0 r(u) duo dx��1:To �nd the LT of Ta we have to solve the integral equation�f(x) = f 0(x)� r(x)B(x) xZ0 f 0(u)B(u) du: (2.15)Assuming that r(x) is di�erentiable, we obtain from (2.15) the se
ond-orderdi�erential equationf 00(x)� [�+ r(x) + g(x)℄f 0(x) + �g(x)f(x) = 0: (2.16)Below we will �nd the suitable solution in some spe
ial 
ases.Example 2. Let r(x) � � be 
onstant. The suÆ
ient 
ondition (2.10) forthe existen
e and uniqueness of a stationary distribution be
omeslim infx!1 E(Jx) > ��1;where Jx is the size of a generi
 jump starting from level x. Formula (2.9)for the stationary density transforms intoq(x) = � 1Zx �t([0; x))q(t) dt:8



This integral equation 
an be solved in terms of a Neumann series.Regarding the LT of Ta, equation (2.1) be
omes(� + �)f(x) = f 0(x) + � Z[0;x) f(y)�x(dy):If �x has a density p(x; y) on (0; x) and an atom of mass p0(x) at zero, weget (� + �)f(x) = f 0(x) + � Z[0;x) f(y)p(x; y) dy + p0(x)f(0):Example 3. In the standard renewal age pro
ess we have �x = "0, the pointmass at 0. The well-known stationary density q(x) = P0(� > x)=E0(�) 
anbe easily derived from (2.9). Eq. (2.11) takes the form�f(x) = f 0(x) + r(x)(f(0) � f(x)); (2.17)a �rst-order linear di�erential equation whi
h 
an be easily solved expli
itly.LetR(x) = R x0 r(u) du. The fun
tion f�(x) = e�x+R(x)�1�R x0 r(u)e��u�R(u)du�is a positive solution of (2.17) so that the LT of Ta is given byE[e��Ta ℄ = e�(x�a)+R(x)�R(a)h1 � xZ0 r(u)e��u�R(u)dui1� aZ0 r(u)e��u�R(u)du :3 Uniform 
ut-o�s and proportional jump in-tensityA very ni
e spe
ial 
ase of Example 1 in Se
tion 2 is the following:(a) p(x; y) = x�11(0;x)(y);(b) r(x) = �x.Thus the jump rate at time t is proportional to Xt� and at a jump time auniformly distributed pie
e of Xt� is 
ut o�. In this 
ase the generator is of9



the form (Gf)(x) = f 0(x) + � Z[0;x) (f(y)� f(x)) dy:Propositions 4 and 5 immediately yieldTheorem 1 The stationary density of X and the LT of Ta are given byq(x) = �xe��x2=2 (3.1)Ex(e��Ta) = �1 + � xZ0 e�y+(�y2=2) dy���1 + � aZ0 e�y+(�y2=2) dy�;0 � x < a: (3.2)Proof. By (2.9), the stationary density of X satis�esq(x) = 1Zx �txt q(t) dt = �x 1Zx q(t) dt; (3.3)and the right-hand side of (3.1) is the only density solving (3.3).Eq. (2.11) be
omes�f(x) = f 0(x) + � xZ0 f(y) dy � �xf(x): (3.4)Taking the derivative in (3.4) yields�f 0(x) = f 00(x)� �xf 0(x): (3.5)It follows that f is of the formf(x) = C +D xZ0 e�y+(�y2=2) dy (3.6)To �nd Ex(e��Ta) we may assume that f(0) = 1 (in view of (2.11)), i.e.C = 1. It follows from (3.5) that �f(0) = f 0(0) so that f 0(0) = �. Hen
e,D = 1 so that (3.6) is equal to the numerator of (3.2) and provides a solutionf�(x) of (2.11) whi
h is positive and bounded on [0; a℄. Now (3.2) followsfrom (2.11).The following theorem des
ribes the asymptoti
 behavior of Ta as a!1.10



Theorem 2 log Taa2 ! �2 in probability as a!1: (3.7)Proof. Let Mt = max0�s�tXs. We will show that(log t)� 12Mt D�! (2=�) 12 ; as t!1: (3.8)Relation (3.8) implies (3.7). Indeed, let g(t) = [(2=�) log t℄1=2. Then, by(3.8), limt!1P0(Mt � (1 + Æ)g(t)) = 0 (3.9)limt!1P0(Mt � (1� Æ)g(t)) = 1 (3.10)for every Æ > 0. As Ta � t if and only if Mt � a, (3.9) and (3.10) aretantamount to limt!1P0(T(1+Æ)g(t) � t) = 0 (3.11)limt!1P0(T(1�Æ)g(t) � t) = 1: (3.12)Setting �rst a = (1 � Æ)g(t) and then a = (1 + Æ)g(t) we obtain from (3.11)and (3.12) lima!1P0(Ta � expn(1 + ")(�=2)a2o) = 0 (3.13)lima!1P0(Ta � expn(1 � ")(�=2)a2o) = 1 (3.14)for all " > 0. Relations (3.13) and (3.14) immediately yield (3.7).Thus it is suÆ
ient to prove (3.8). We will now a
tually show thatlimt!1 E0��[(2=�) log t℄� 12Mt�n� = 1 for all n 2 N: (3.15)By (3.15), all moments of [(2=�) log t℄� 12Mt 
onverge to 1. This implies (3.8).We know from (3.2) thatE0(e��Ta) = �1 + � Z a0 e�y+(�y2=2) dy��1:11



Let � be the measure on [0;1) de�ned by �([0; t℄) = E0(Mnt ). As fTa �tg = fMt � ag, we haveZ 10 e��td�(t) = Z 10 e��t ddtE0(Mnt ) dt= Z 10 e��t� ddt Z 10 nan�1P0(Mt � a) da� dt= Z 10 Z 10 nan�1e��tP0(Ta 2 dt) da= nZ 10 an�1E0(e��Ta) da= nZ 10 an�1�1 + �Z a0 e�y+(�y2=2) dy��1 da: (3.16)We now prove thatlim�#0�(2=�)j log �j��n=2 Z 10 e��t d�(t) = 1 for all n 2 N: (3.17)As j log�j is slowly varying at 0, the standard Tauberian theorem yieldslimt!1�(2=�)j log(1=t)j��n=2�([0; t℄) = 1 for all n 2 N;whi
h is what we want to show.Of 
ourse, we have to 
onsider the right-hand integral in (3.16) as �! 0. Itsintegrand tends to the nonintegrable an�1, whi
h is why we have to introdu
ean appropriate normalizing fa
tor.Denote the right-hand side of (3.16) by Hn(�). We have to estimate Hn(�)from below and from above. For any b > 0 we have1 + � Z a0 e�y+(�y2=2) dy � 1 + �be�b+(�b2=2) for all a 2 [0; b℄:Hen
e, Hn(�) � nZ b0 an�1�1 + Z a0 e�y+(�y2)=2 dy��1 da� bn=(1 + �be�b+(�b2=2)) for all b > 0: (3.18)Let Æ 2 (0; 1) and set b = b(Æ; �) = [(1 � Æ)(2=�)j log �j℄1=2 in (3.18). Itfollows that Hn(�)b(Æ; �)�n � [1 + �Æb(Æ; �)e�b(Æ;�)℄�1: (3.19)12



Sin
e lim�#0 �Æb(Æ; �) = 0, (3.19) yieldslim inf�#0 (1 � Æ)�n=2((2=�)j log �j)�n=2Hn(�) � 1for all Æ 2 (0; 1) and all n 2 N. Thus,lim inf�#0 ((2=�)j log �j)�n=2Hn(�) � 1: (3.20)To �nd an upper bound, we useZ a0 e�y+(�y2)=2dy � Z a0 e�y2=2dy � Z aa�1 e�y2=2dy� e�(a�1)2=2 for all a � 1:Hen
e, for any b > 0,Hn(�) � Z b+10 an�1da+ ��1nZ 1b+1 an�1e��(a�1)2=2da� (b+ 1)n + ��1nZ 1b+1�b+ 1b (a� 1)�n�1e��(a�1)2=2da= (b+ 1)n + ��1n(1 + b�1)n�1��(n�1)=2 Z 1�1=2b xn�1e�x2=2dx: (3.21)The integral on the right-hand side of (3.21) is bounded as follows: For everyN 2 N there is a 
onstant CN > 0 su
h thatZ 1t xNe�x2=2 dx � CNtN�1e�t2=2 for all t > 0: (3.22)By (3.21) and (3.22),Hn(�) � (b+ 1)n + ��1n(1 + b�1)n�1��(n�1)=2Cn�1(�1=2b)n�2e��b2=2 (3.23)for all b > 0:Now set b = b(�) = [(2=�)j log �j℄1=2. From (3.23) we 
on
lude thatb(�)�nHn(�) � (1 + b(�)�1)n+ nCn�1(1 + b(�)�1)n�1��1=2��1b(�)�2e��b(�)2=2= (1 + b(�)�1)n�1 �1 + b(�)�1 + 12nCn�1�1=2j log �j�2��! 1; as �& 0:Thus, lim sup�&0 b(�)�nHn(�) � 1, whi
h together with (3.20) yieldslim�&0 b(�)�nHn(�) = 1for every n 2 N, and this is equivalent to (3.17).13



4 Poisson jump times with uniform 
ut-o�sWe now 
onsider the 
ase(a) p(x; y) = x�11(0;x)(y)(b) r(x) � � > 0:Thus, jumps arrive at Poisson times with intensity � and the 
ut-o� me
ha-nism is the same as in Se
tion 3.Theorem 3 The stationary distribution of X is Erlang(2; �), i.e., has den-sity q(x) = �2xe��x: (4.1)The LT of Ta is given by Ex(e��Ta) = f�(x)=f�(a), 0 � x < a, where fa(x)is the unique solution of the di�erental equationxf 00(x) + (1 � (� + �)x)f 0(x)� �f(x) = 0; x � 0 (4.2)subje
t to f(0) = 1; f 0(0) = �: (4.3)Proof. By (2.9), the stationary density of X satis�esq(x) = 1Zx �xt q(t) dt = �x 1Zx q(t)t dt; (4.4)and the right-hand side of (4.1) is the only density solving (4.4).Eq. (2.11) be
omes�f(x) = f 0(x) + �x xZ0 f(y) dy � �f(x): (4.5)Multiplying by x and taking the derivative in (4.5) yields (4.2). The initial
ondition f(0) = 1 
an be �xed arbitrarily, and then the 
ondition f 0(0) = �follows by letting x tend to zero in (4.5).14



Eq. (4.2) is a variant of the degenerate hypergeometri
 di�erential equation.Its general solution is given byf(x) = e(�+�)xhC1�� �2(� + �) ; 1;�2(�+�)x�+C2	� �2(� + �) ; 1;�2(�+�)x�i;where �(a; b;x) = 1 + 1Xk=1 (a)k(b)k xkk!is Kummer's series (here (a)k = a(a+ 1) : : : (a+ k � 1); (a)0 = 1) and	(a; 1;x) = 1�(a� 1)n�(a; 2;x) log x+ 1Xr=0 � (a+ r) �  (1 + r) �  (2 + r)� (a)rxrr!(r + 1)!o+ 1�(a) ;where  (z) = �0(z)=�(z) is the logarithmi
 derivative of the gamma fun
tion(see [21℄, eqs. 2.1.2.103 and 2.1.2.65). In our 
ase we 
an also use the formula�(a; 1;x) = 1�(a)�(1 � a) 1Z0 etxta�1(1� t)�adt; 0 < a < 1:The 
onstants C1 and C2 are uniquely determined by the boundary 
onditions(4.3), whi
h be
ome trans
endental equations involving the fun
tion � and	.Next we derive the expe
ted value and the varian
e of Xt. Let X0 = 0. We
an write Xt in the form Xt = t� N(t)Xn=0 �nW (N(t))n ; (4.6)where(i) fN(t) j t � 0g is a homogeneous Poisson 
ounting pro
ess with rate �,�0 � 0 and 0 < �1 < �2 < � � � denote the jump times of fN(t) j t � 0g;(ii) U1; U2; : : : are i.i.d. random variables whi
h are independent of fN(t) jt � 0g and have the uniform distribution on (0; 1), Wm0 � 1 andW (m)n = I(n = m)(1� Um) + I(n < m)(1� Un) mYj=n+1 Uj; n � 1: (4.7)Let Yt = t�Xt. Clearly, Yt is the sum of the sizes of all jumps in [0; t℄.15



Theorem 4 For every t 2 [0;1),E[Xt ℄ = 2�(1 � e��t=2): (4.8)Proof. We haveE[Xt ℄ = t� E[Yt℄ = t� E[E [Yt j N(t) = n℄℄:Obviously, E [Yt j N(t) = 0℄ = 0. For n � 1, it is well-known that�i j N(t) = n � tBeta(i; n+ 1� i):A

ordingly, due to the independen
e of �i and W (n)i , we obtain for all n � 1E[Yt j N(t) = n℄ = E " nXi=1 �iW (n)i j N(t) = n#= t nXi=1 in+ 1 �12�n+1�i= t 1 � 2n + 1  1��12�n+1!! : (4.9)Setting p(n;�t) = e��t (�t)nn! , n = 0; 1; : : : , we �nd thatE [Xt℄ = t� E[Yt j N(t)℄= 2tE " 1N(t) + 1  1 ��12�N(t)+1!#= 2t 1Xn=0 p(n;�t) 1n + 1  1��12�n+1!= 2� 1Xn=1 p(n;�t)�1��12�n� : (4.10)Eq. (4.8) is easily obtained from (4.10).Theorem 5 For �xed t, the varian
e of Xt isV fXtg = 1�2 (2 � 4e��t � 16e��t=2 + 18e�2�t=3): (4.11)16



Proof. We haveV fXtg = V fYtg = V 8<:N(t)Xn=0 �nW (N(t))n 9=;= E 24V 8<:N(t)Xn=0 �nW (N(t))n j N(t)9=;35+ V 8<:E 24N(t)Xn=0 �nW (N(t))n j N(t)359=; : (4.12)Sin
e V fEfYt j N(t)gg = V fEfXt j N(t)gg we obtain from (4.9) that these
ond term on the right-hand side of (4.12) isV fEfXt j N(t)gg = 4t2V ( 1N(t) + 1  1 ��12�N(t)+1!)= 4t2 1Xn=0 p(n;�t)24 1(n+ 1)2  1��12�n+1!235� 4�2 �1� e��t=2�2 : (4.13)As for the �rst term on the right-hand side of (4.12), we noti
e thatV 8<:N(t)Xn=0�nW (N(t))n j N(t) = 09=; = 0;and for n � 1V ( nXi=1 �iW (n) j N(t) = n) = V (E " nXi=1 �iW (n)i j N(T ) = n;W(n)# j N(t) = n)+ E "V ( nXi=1 �iW (n)i j N(t) = n;W(n)) j N(t) = n# :(4.14)17



Furthermore, due to the independen
e of W(n) and N(t),V�E� nXi=1 �iW (n)i j N(t) = n;W(n)� j N(t) = n� = V ( tn+ 1 nXi=1W (n)i )= t2(n+ 1)2 " nXi=1 (n+ 1� i)2 �13�i ��14�i!+ 2 n�1Xi=1 i nXj=i+1 j�12�j�i 16 �13�n�j � 14 �14�n�j!#= t22(n + 1)2 �1� 4�12�n + 5�13�n � 2�14�n� : (4.15)To obtain the se
ond term on the right-hand side of (4.14) we start withV  nXi=1 �iW (n)i j N(t) = n;W(n)! = nXi=1 (W (n)i )2V f�i j N(t) = ng+ 2XX1�i<j�nW (n)i W (n)j COV(�i; �j j Nt = n):(4.16)Moreover, V f�i j N(t) = ng = t2 i(n+ 1� i)(n+ 1)2(n+ 2) ; (4.17)i = 1; : : : ; n, and for i < j,COV(�i; �j j N(t) = n) = t2 i(n+ 1 � j)(n+ 1)2(n+ 2) : (4.18)Substituting (4.17)-(4.18) in (4.16) and taking expe
tations we obtainE�V � nXi=1 �iW (n)i j N(t) = n;W(n)� j N(t) = n�= t2(n+ 1)2(n+ 2) �n2 �3 ��13�n�� 3�1 +�13�n�+ 6�12�n� :(4.19)18



Summing (4.15) and (4.19) we get for n � 1V� nXi=1 �iW (n)i j N(t) = n� = t2(n+ 1)2(n + 2) �2n�1 +�13�n��n�2�12�n +�14�n�� 2�1 +�14�n�+ 2��13�n +�12�n�� :(4.20)Finally, (4.13) and (4.20) yieldV fXtg = t2 1Xn=1 p(n;�t) � 2(n � 1)(n+ 1)2(n+ 2) �1��12�n�+ 2(n+ 1)(n+ 2) �13�n � 1(n+ 1)2 �14�n�+ 4t2 1Xn=0 p(n;�t) 1(n + 1)2 �1��12�n + 14 �14�n�� 4�2 �1� e��t=2�2= 6t2 1Xn=1 p(n;�t) 1(n + 1)(n+ 2) � 6t2 1Xn=1 p(n;�t) (1=2)n(n + 1)(n+ 2)+ 2t2 1Xn=1 p(n;�t) (1=3)n(n + 1)(n+ 2) + t2e��t � 4�2 (1 � e��t=2)2:(4.21)Careful simpli�
ation of (4.21) yields (4.11).Corollary limt!1 E [Xt℄ = 2�; limt!1 V fXtg = 2�2 :The distribution fun
tion of Yt, for �xed t, isH(y; t) = 8>>><>>>:e��t; y = 0e��t + 1Xn=1p(n;�t)Hn(y; t); 0 < y � t1; y > t (4.22)19



where, for n � 1,Hn(y; t) = P nXi=1 �iW (n)i � y j N(t) = n! : (4.23)Denote by h(y; t) the density of H(y; t). Another important fun
tion isP(Yt � y j Ys = x), 0 � s < t. To 
ompute it, we start fromP(Yt � y j Y (s) = x;N(s) = m;N(t) = n; �m)= P xW (n�m)1 + �m n�mXi=1 W (n�m)i + n�mXi=1 W (n�m)i Ui:n�m(t� s) � y! ;m � n; s < t (4.24)where Ui:n�m(t� s) is the ith order statisti
 of n�m i.i.d. random variablesdistributed uniformly on (0; t � s). As before, W (n�m)i = (1 � Ui)Qn�mj=i+1Uj,i = 1; : : : ; n�m� 1, and W (n�m)n�m = 1�Un�m, where U1; : : : ; Un�m are i.i.d.,uniform on (0; 1) and independent of Ui:n�m(t� s), i = 1; : : : ; n�m.The 
onditional distribution of �m, given N(s) = m, is like s � Beta(m; 1).Also, �m is independent of fW (n�m)i j i = 1; : : : ; n�mg and of fUi:n�m(t�s) ji = 1; :::; n�mg. Hen
e, by (4.24),P(Yt � y j Ys = x) = 1Xm=0 p(m;�s) 1Xl=0 p(l;�(t� s))� 1sB(m; 1) Z s0 zm�1P xW (l)1 + z lXi=1 W (l)i+ lXi=1 W (l)i Ui:l(t� s) � y! dz: (4.25)The probability in the integrand on the right side of (4.25) 
an essentially bewritten as Lebesgue measure of a (2l)-dimensional set.Another quantity of interest is the embedded Markov 
hain X(n) = X�n, i.e.,the sequen
e of levels just after jumps.Theorem 6 The stationary distribution of X(n) is exp(�).20



Proof. By PASTA, the levels X�n� just prior to jumps have the same sta-tionary distribution as the 
ontinuous-time pro
ess fXt j t � 0g, whi
h isErlang(2; �) by Theorem 3. Therefore the stationary distribution of X(n) isequal to that of V U , where V is Erlang(2; �)-distributed, U is uniform on(0; 1) and U and V are independent. The stationary density of X(n) is thusgiven by p(x) = 1Zx �2ve��v 1vdv = �e��x; x > 0:We now 
ompute the expe
ted value and the varian
e of X(n). Noti
e thatfor every n � 1 X(n) = UnX(n� 1) + (�n � �n�1)Un;where X(0) = X0 = 0. Furthermore, �n � �n�1 � exp(�), n � 1. Hen
e we
an write X(n) = nXi=1 Ri ~W (n)i ; n � 1where R1; R2; : : : are i.i.d. exp(�),~W (n)i = nYj=i Uj ; i = 1; : : : ; nand R1; R2; : : : are independent of f ~W (n)i j i = 1; : : : ; n; n � 1g.Theorem 7 For ea
h n � 1,E[X(n)℄ = 1� �1��12�n� ; (4.26)and V fX(n)g = 1�2 �1� 2�12�n + 2�13�n ��14�n� : (4.27)21



Proof. (i) Sin
e Ri is independent of W (n)i ,E[X(n)℄ = E " nXi=1 Ri ~W (n)i # = nXi=1 E[Ri ℄E[ ~W (n)i ℄= 1� nXi=1 �12�n+1�i = 1� �1��12�n� ; n � 1:(ii) Let ~W(n) = ( ~W (n)1 ; : : : ; ~W (n)n ). We 
ompute the varian
e in two parts,a

ording toV  nXi=1 Ri ~W (n)i ! = E "V ( nXi=1 Ri ~W (n)i j ~W(n))#+ V (E " nXi=1 Ri ~W (n)i j ~W(n)#) :(4.28)Due to independen
e,V ( nXi=1 Ri ~W (n)i j ~W(n)) = 1�2 nXi=1  nYj=i U2j! :Hen
e,E "V ( nXi�1 Ri ~W (n)i j ~W(n))# = 1�2 nXi=1 �13�n+1�i = 12�2 �1 ��13�n� :(4.29)For the se
ond term of (4.28), we start withE " nXi=1 Ri ~W (n)i j ~W(n)# = 1� nXi=1 ~W (n)i : (4.30)It follows thatV�E� nXi=1 Ri ~W (n)i j ~W(n)�� = 1�2V ( nXi=1 ~W (n)i )= 1�2 " nXi=1 V f ~W (n)i g+ 2XX1�i<j�nCOV( ~W (n)i ; ~W (n)j )# :(4.31)22



In addition, V f ~W (n)i g = �13�n+1�i ��14�n+1�i ; i = 1; : : : ; n:Similarly, for i < j,COV( ~W (n)i ; ~W (n)j ) = �12�j�i "�13�n+1�j ��14�n+1�j# :Substituting in (4.31) and summing shows that1�2V ( nXi=1 ~W (n)i ) = 1�2 �12 � 2�12�n + 52 �13�n ��14�n� : (4.32)Finally, from (4.29), (4.31) and (4.32) we obtain (4.27).Corollary The asymptoti
 mean and varian
e of X(n) arelimn!1 E [X(n)℄ = 1�; limn!1 V fX(n)g = 1�2 :Finally, we develop re
ursive formulae for the distributions of X(n), n =1; 2; : : : We start with the transition fun
tionK(y;x) = P(X(n)� y j X(n� 1) = x)and its density k(y;x).Theorem 8 For ea
h n � 1,K(y;x) = 1� exp(��(y � x)+) + �e�xy Z 1max(x;y) 1ue��udu; (4.33)and k(y;x) = �e�x Z 1max(x;y) 1ue��udu: (4.34)Proof. We haveK(y;x) = P(X(n)� y j X(n� 1) = x) = P(U(x+R) � y);23



where U � U(0; 1), R � exp(�) and U is independent of R. Noti
e thatP�U � yx+R j R� = Ifx+R � yg+ Ifx+R > yg yx+R:This implies (4.33). Formula (4.34) is obtained by di�erentiating (4.33) withrespe
t to y.Let fn(x) denote the density fun
tion of X(n). One 
an immediately provethat f1(y) = �Z 1y 1ue��u du; 0 < y <1:Theorem 9 For ea
h n � 2,fn(y) = f1(y)Z y0 e�xfn�1(x)dx+ Z 1y e�xf1(x)fn�1(x)dx: (4.35)Proof. For ea
h n � 2,fn(y) = Z 10 k(y;x)fn�1(x)dx: (4.36)Substituting (4.34) in (4.36) we obtain (4.35).5 The generalized uniform 
ut-o� pro
ess andits relation to the shot noise pro
essIn this se
tion we 
onsider the following GCP (Xt)t�0. As before, Xt in-
reases linearly, at rate 1, between downward jumps. This time the intervalsB1; B2; : : : between the downward jumps are i.i.d. random variables with ageneral distribution with LST �(�). The downward jump Zn after Bn de-pends on Sn, where Sn is the level of the Xt-pro
ess just before the nthjump. We generalize the uniform 
ut-o� pro
edure of the previous se
tionsin the following way. The remainder Wn = Sn �Zn, after the jump, is givenby Wn = Ua(0; Sn), where Ua(0; b) denotes a random variable with densityata�1=ba on (0; b). (Of 
ourse, a = 1 yields the uniform 
ut-o� pro
edure.)24



We want to analyze Wn, the state of Xt immediately after the nth jump.Sin
e Sn = Wn +Bn, we haveWn+1 = Ua(0;Wn +Bn); n = 1; 2; : : : (5.1)One 
an show that the steady-state distribution of the Wn-pro
ess exists forall traÆ
 parameters; see the Remark below.It follows from (5.1) that the steady-state variable We of the sequen
e Wnsatis�es E[e��We ℄ = Z 10 e��x Z 1x axa�1ya P(W +B 2 dy) dx= Z 10 1yaP(W +B 2 dy)Z y0 axa�1e��xdx: (5.2)Di�erentiate both sides of (5.2) with respe
t to � and use partial integrationin the last integral to getdd�E[e��We ℄ = �a1� �(�)� E[e��We ℄: (5.3)The solution of this di�erential equation is readily veri�ed to be given byE[e��We ℄ = expf�aZ �0 1� �(u)u dug: (5.4)Let us now point out a relation between the above growth-
ollapse pro
essand the so-
alled shot noise pro
ess, whi
h has been extensively studied in theliterature on queueing models with workload-dependent servi
e speed (see,e.g., [8, 13, 17℄). First transform Xt into a `dual' workload pro
ess followinga pro
edure in [20℄. This is done in two steps:(1) Constru
t a `mountain' pro
ess by 
hanging the negative jumps intonegative slopes with rate �1;(2) 
onstru
t a workload pro
ess by 
hanging the positive slopes into positivejumps of size B1; B2; : : :The resulting pro
ess has paths whi
h are linearly de
reasing between posi-tive jumps; its workload just before the nth jump (of size Bn) is Wn.Next 
onsider the following shot noise pro
ess: jumps upward, of sizes B1; B2;: : : , o

ur after independent, exp(�)-distributed time intervals. Between25



jumps, the pro
ess de
reases at rate rx if the pro
ess level equals x (wherer > 0 is some 
onstant). One 
an now interpretR(y; x) = Z xy 1rwdw (5.5)as the time it takes for this shot noise pro
ess to de
rease from level x tolevel y, when no jumps o

ur.Finally 
onsider the following transformation:Yn = �1r log�WnSn �: (5.6)A simple 
al
ulation shows that Yn is exp(ra)-distributed. Taking a = �=rresults in Yn being exp(�)-distributed. But from (5.5) and (5.6) it is also
lear that Yn as de�ned above denotes the time to de
rease from Sn to Wnin the dual workload pro
ess, as well as an interarrival time in the shot noisepro
ess. It is thus seen that the level of the shot noise pro
ess just beforethe nth upward jump has exa
tly the same distribution as Wn in the dualpro
ess and the original GCP.The shot noise pro
ess just des
ribed has been analyzed in [8℄. On p. 546 of[8℄ it was shown that it has a steady-state density v(�) whose Lapla
e trans-form is given in (5.4). Be
ause of the PASTA property, this is also the LT ofthe density of the shot noise pro
ess just before jump epo
hs, and the above
onstru
tion 
on�rms that this is also the LT of We. See p. 546/547 of [8℄for spe
ial 
ases (like � = r and B1 being exponentially distributed, resultingin an exponential workload density).Remark. The shot noise pro
ess not only never rea
hes 0; it is also knownto be stable for all o�ered traÆ
 loads. The relation to the spe
ial pro
essderived above implies that the same properties hold for the latter pro
ess.6 The Markov-modulated 
aseNow let us look at the Markov-modulated 
ase, as des
ribed in the Introdu
-tion. The underlying Markov pro
ess is two-dimensional: Zt = (Xt; Jt), and26



the generator is(Gf)(x; i) = 
(i)f 0(x; i) +Xj 6=i qijf(x; j)� (qi + r(x))f(x; i)+ r(x)Z[0;x) f(y; i) �x(dy); i = 1; :::; n (6.1)or in matrix form(Gf)(x) = Cf 0(x) + (Q� r(x)E)f(x) + r(x)Df (x);where(a) f(x) = (f(x; 1); :::; f(x; n))t;(b) Q = (qij)i;j2f1;::: ;ng is the generator of the Markov 
hain Jt and qi = �qii;(
) C and Df (x) are diagonal matri
es with diagonal entries 
(i) andR[0;x) f(y; i) �x(dy), respe
tively;(d) E is the n� n identity matrix.One 
an now derive the stationary distribution of Zt and the LT Ex(e��Ta)in terms of integral and di�erential equations.Instead of developing this generalization we �nally 
onsider the followingproblem: what is the distribution of Ta ^ �? To see that this is a relevantquestion, let us for example interpret � as the time a disaster o

urs insome \system", say some te
hni
al item. Assume that the system has torun inde�nitely; at any disaster it has to be repla
ed by a new identi
alone but it 
an also be repla
ed preventively when its age rea
hes a 
ertainthreshold a > 0 whi
h has to be spe
i�ed by the 
ontroller. Thus, the �rstrepla
ement takes pla
e at time Ta ^ �. Suppose that after repla
ement themodulating 
hain is restarted at some �xed state i0. If a repla
ement of astill fun
tioning system 
osts $C1 and a repla
ement upon disaster 
osts $C2(where C1 < C2), then the long-run average 
ost of running the system whenusing the poli
y Ta is given byC(a) = C1P0;i0(Ta ^ � = Ta) + C2(1 �P0;i0(Ta ^ � = Ta))E0;i0 (Ta ^ �) :Hen
e, Px;i(Ta^� = Ta) and Ex;i(Ta^�) are important quantities; on
e theyare known as fun
tions of a one 
an try to minimize C(a).27



We deal with this problem as follows. Suppose the pro
ess is killed at time� by entering a 
oÆn state �. By Dynkin's formula, we havef(x; i) = E(x;i)�Z T0 (Gf)(Zt) dt�� E(x;i)(f(ZT )) (6.2)for f bounded and in the domain of G and T any integrable stopping time.Now apply (6.2) to T = Ta ^ � in two 
ases:(i) f = f1 su
h that (Gf1)(x; i) = 0, x 2 (0; a), and f1(�; i) = 0; f1(a; i) = 1.(ii) f = f2 su
h that (Gf2)(x; i) = �1, x 2 (0; a), and f2(�) = 0; f2(a; i) = 0.A moment's re
e
tion shows that if f1; f2 have these properties, thenf1(x; i) = P(x;i)(Ta ^ � = Ta) (6.3)f2(x; i) = E (x;i)(Ta ^ �): (6.4)Hen
e, we have to solveCf 0(x) + (Q� r(x)E)f(x) = (0; :::; 0)t (6.5)subje
t to f(a; �) = (1; :::; 1)t (6.6)and Cf 0(x) + (Q� r(x)E)f(x) = (�1; :::;�1)t (6.7)subje
t to f(a; �) = (0; :::; 0)t: (6.8)Let us �nally show that in the 
ase n = 2 (two modulating states) thesesystems of linear di�erential equations 
an be solved in spe
ial 
ases.Example. Let n = 2 and set q12 = �1; q21 = �2 and f(x; i) = hi(x), i = 1; 2.(6.5)-(6.6) and (6.7)-(6.8) be
ome, for x 2 (0; a℄,
(1)h01(x)� (�1 + �(x))h1(x) + �1h2(x) = 0
(2)h01(x)� (�2 + �(x))h2(x) + �2h1(x) = 0 (6.9)subje
t to h1(a) = h2(a) = 1 (6.10)28



and 
(1)h01(x)� (�1 + �(x))h1(x) + �1h2(x) = �1
(2)h01(x)� (�2 + �(x))h2(x) + �2h1(x) = �1 (6.11)subje
t to h1(a) = h2(a) = 0; (6.12)respe
tively. (6.9)-(6.10) 
an be transformed into the two se
ond-order lineardi�erential equations
(1)
(2)h00i (x)� [(
(1) + 
(2)�(x) + �1
(2) + �2
(1)℄h0i(x)+ [�(x)2 + (�1 + �2)�(x)℄hi(x) = 0; x 2 (0; a℄; i = 1; 2 (6.13)with the boundary 
onditionshi(a) = 1; h0i(a) = �(a); i = 1; 2: (6.14)Similarly, (6.11)-(6.12) lead to
(1)
(2)h00i (x)� [(
(1) + 
(2)�(x) + �1
(2) + �2
(1)℄h0i(x)+ [�(x)2 + (�1 + �2)�(x)℄hi(x)� �1 � �2 � �(x) = 0; x 2 (0; a℄; i = 1; 2(6.15)subje
t to hi(a) = 0; h0i(a) = �1; i = 1; 2: (6.16)Consider now the proportional jump intensity �(x) = �x, whi
h we haveassumed in Se
tion 3. In this 
ase (6.13) takes the formh00i (x) + [d1x+ d2℄h0i(x) + [d3x2 + d4x℄hi(x) = 0; i = 1; 2; x 2 (0; a℄ (6.17)whered1 = ��
(1)
(2)��1[
(1) + 
(2)�x℄; d2 = ��
(1)
(2)��1[�1
(2) + �2
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then the boundary 
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