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Abstract

We consider growth-collapse processes (GCPs) that grow linearly
between random partial collapse times at which they jump down ac-
cording to some distribution depending on their current level. The
jump occurrences are governed by a state-dependent rate function
r(x). We deal with the stationary distribution of such a GCP X, t >
0, and the distributions of the hitting times T, = inf{t > 0| X; = a},
a > 0. After presenting the general theory of these GCPs, several
important special cases are studied. We also take a short look at the
Markov-modulated case. In particular, we present a method to com-
pute the distribution of min[7,, o] in this case (where o is the time of
the first jump) and apply it to determine the long-run average cost of
running a certain Markov-modulated disaster-ridden system.
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1 Introduction

Growth-collapse processes (GCPs) are real-valued stochastic processes which
grow (possibly in a random fashion) between random collapse times at which
they jump down according to some distribution depending on their current
level. This pattern of behavior can be encountered in a large variety of physi-
cal phenomena, for example the build-up of friction, earthquakes, avalanches
and neuron firing; cf. Bak’s [7] paradigm of “systems of self-organized crit-
icality”. Also in population growth models it seems reasonable to assume
that the growth rate and the extent of occasional ‘disasters’ (e.g. epidemics)
depend on the current population size. In the realm of operations research,
GCPs occur in insurance mathematics and related fields and in models of pro-
duction/inventory systems (Asmussen [5, 6], Rolski et al. [22]) and queueing
(see e.g. Bekker et al. [8]).

Eliazar and Klafter [16] consider a GCP X = (X,);>0 composed of three
random sources: (a) a steady random inflow with stationary independent
positive increments; (b) crash times 71 < 7 < ... which form a renewal
process; (c¢) crash proportions Uy, Us, ... which are i.i.d. random variables
on (0,1). The three sources are assumed to be stochastically independent.
At the nth crash time 7, the process jumps down by the amount U, X, _ so
that the new system level at 7, is X, = (1 — U,)X,,_. Eliazar and Klafter
[16] compute several system characteristics (means, variances, Laplace trans-
forms, probability tails) and focus on crash proportions governed by power-
law distributions.

In the spirit of [16] we study in this paper a class of [0, oo)-valued, piecewise
deterministic Markov processes (PDMPs) X = (X,);>o characterized by the
following features:

(i) X increases linearly at rate 1 between jumps and is right-continuous.

(ii) Given X; = z, the probability of a jump in (#,74n) is equal to r(z)n+o(n)
as 1 — 0, where r : (0,00) = [0,00) is a continuous function.

(iii) If a jump occurs at time ¢, and X, = a, then the distribution of X, is
., which is a probability measure on [0, ).

If Xo = 0, the function r(x) in (ii) is just the failure rate of the first jump



time o = inf{t > 0| X; # X;_}, so that

t

Plo>1t)= exp{ — /T(T) dm}, t > 0.
0

It is reasonable to assume that P(c < oo) = 1, which is equivalent to
fooo r(z) dv = oo. In most examples the probability measure p, has a
density p(x,y) on (0,2) and possibly an atom at zero. A particularly in-
teresting case which we will study is that of ‘uniform’ crash proportions, i.e.,
p(r,y) = 27" 10m)(y). Another example is the age process (A;);>0 of a stan-
dard renewal process which can be described as follows: It starts at Ay = 0,
increases at rate 1 between jumps, every jump takes the process back to 0,
and a jump occurs in (¢, +n) with probability r(A;)n+o(n) as n — 0, where
r(-) is the failure rate of the underlying distribution function.

As an alternative to the growth condition (i), we also consider the case that X
increases linearly between jumps at a rate ¢(.J;), where (.J;);>0 is a modulating
irreducible Markov chain having state space {1,...,n} and the rates ¢(j)
satisfy ¢(1) > ¢(2) > ... > ¢(n) > 0.

In a variety of examples we will in particular deal with the stationary distri-
bution of X and the distribution of the hitting time T, = inf{t > 0 | X, = a}.
In Section 2 we present the general theory of these distributions. In the subse-
quent sections these results are applied to important special cases. In Section
3 we give explicit formulas in the case when the jump rate is proportional
to the achieved level, i.e. r(x) = Az, and the jump sizes are uniformly dis-
tributed (1. ([0,y)) = minfy/x,1]). Moreover we prove that a ?log T, — \/2
in probability as ¢ — oo. In Section 4 we consider uniform cut-offs with
Poisson jump arrivals. It is shown that the stationary distribution of X is
Erlang(2,A) and the LT of T, can be given in terms of degenerate hyper-
geometric functions. Furthermore, we derive explicit formulas for the first
two moments of the GCP at fixed time ¢ and just after the nth jump. In
Section 5 we consider GCPs for which the time periods between the jumps
are 1.i.d. random variables with an arbitrary distribution. Based on a duality
argument it is proved that the level of the GCP after its nth jump has the
same distribution as the level of a certain shot noise process which has been
studied before in [8]. Using this connection the LT of the stationary density
of the GCP can be derived. Finally, in Section 5 we take a short look af
the Markov-modulated case, as described above. In particular, we present a
method to compute the distribution of min[T,, o] in this case and apply it to
determine the long-run average cost of running a certain Markov-modulated



disaster-ridden system.

We close this section with a brief discussion of some related GCP models.
The sample paths of GCPs of the above type look like those of risk processes.
However, in classical risk theory the surplus process of an insurance portfolio
increases linearly between claims (leading to downward jumps), and the claim
sizes and claim intervals are independent. We are not aware of risk studies
in which the claim size depends on the size of the portfolio at the claim time.
However, several authors did recently look at more general models where the
independence assumption is relaxed. See Asmussen [1] for a survey of the
subject. In [1] the distribution of the claim interval depends on the previous
claim size (see [11] for a queneing model with a similar dependence structure).
In [2] a more general, semi-Markovian, dependence structure is introduced
in the risk model. The claim sizes now depend on some underlying Markov
chain  but not on the size of the portfolio at the claim time.

Motivated by various applications in communication systems, there have re-
cently been several studies about fluid systems that alternate between “on”
and “off”. During off-periods, the buffer content increases in some state-
dependent way, and during on-periods it decreases with a state-dependent
rate (unless it is at zero). In [9] the off-periods are exponentially distributed.
In [10, 23] the rate at which the system switches from on to off (and back)
depends on the actual buffer content. It should be noted that if the on-period
is compressed to zero, and the state-dependent decrease rate goes to infinity
in an appropriate way, one could obtain a process in which the size of the
downward jump depends on the buffer content.

Altman et al. [4] study GCPs in relation to the TCP (Transmission Control
Protocol) of the Internet. Variants of TCP lead to AWPs (Adaptive Window
Protocols) in which the window size alternately grows for a certain period and
decreases instantaneously according to some function of the present window
size. For example, in ATMD (Additive Increase Multiplicative Decrease) the
window size grows linearly, and at jump epochs it decreases proportional to
its present size. For a quite general AWP, Altman et al. [4] obtain stability
conditions and derive the steady-state window size distribution in analytic
form. See [3, 12, 19] for studies of the AIMD protocol. As shown in Section
5, there is a one-to-one correspondence between a particular GCP and the
well-known shot noise process.



2 GCPs as PDMPs

PDMPs in general were analyzed by Davis [14, 15]; see also the presentation
in Rolski et al. [22]. We will specialize this theory to the growth-collapse
processes defined by (i)-(iii) above. This yields the following key results.

Proposition 1 The infinitesimal generator of X is given by
(GH)) = 1)+ rle) [ (Fl) — Fpnti) (2.1
[0,7)

Its domain D(G) contains all functions f: Ry — R which are locally bounded
and absolutely continuous.

Proof. This follows from Theorem 11.2.2 in Rolski et al. [22]. ]

Proposition 2 The hitting times T, satisfy
E.(T,) <Eo(T,) < oo foralla > x. (2.2)

Proof. The first inequality is obvious. Regarding the integrability of T,
under Py, observe that T, > t implies that there occurs at least one jump in
each of the time intervals (0, a], (a,2a], ..., ([t/a] — 1)a,[t/a]a], so that

Po(T, > 1)

a r+a

[t/a]—1
< —e — s) d. —e — mi S) d.
< (1 exp{ ./r(e) (]9}) (1 exp{ 021;2{} / r(s) (]9})
0 T
<1, 23)
where
r+a
r, = exp{ — Orélrl;ga / r(s) ds}.
It follows that r, € (0,1) and
Fo (Th) = /IP’O(T,, > 1) dt < /(1 —ra)tdt
0 0
— o/ llog(1 — o)l
]



Proposition 3 Define p(z) = r(x) fOT o ([0,w)) du. If for some & > 0 and

some a > ()

p(x)>14e forall x> a, (2.4)
then

E.(T,) < oo forallx > a. (2.5)

Proof. Let i(#) = a be the identity function and note that by Dynkin’s
formula the process

tAT,

Xt / (Gi)(X,) ds (2.6)

0

is a P,martingale for every # > a. By Proposition 1, we have (Gi)(z) =
1 — p(x), so that (2.6) and the definition of T, yield

tAT,

r=E,(Xo) =E, <XMTG — / (1 - p(Xy)) ds) > a4 ek, (t ANT,) for every x

0

(2.7)

Letting t — oo leads to
E.(T,) < (v —a)/c. (2.8)
| ]

Proposition 4 If ) is a stationary distribution of X, then QQ has a density
q(x) satisfying the integral equation

o) = [ rOmll0.0)a0) ot (2.9)

Proof. It follows from Davis [14] that if Q is a stationary distribution then

/(gﬂ)("/’) dQ(x) =0 for all s >0,

IV



where fo(2) = ¢ *". Inserting (2.1) and integrating by parts yields

o]

/ <f§(”f) —r(x) / Fi(u)pa(10,u)) du> dQ(x) = 0,

which is tantamount to

/e"”m dQ(x) = /e“”( /T(J?)/,Lm([077t)) (]Q(T)) du
0 0 u—
for all s > 0. It follows that () has a density ¢ satisfying (2.9). [

Proposition 5 If

liminf p(2) > 1, (2.10)

T—00

then X has exactly one stationary distribution QQ and X, — Q weakly as
t = o0.

Proof. Since the expected recurrence times for any a > (0 are finite by
Propositions 2 and 3, this follows from the ergodic theorem for regenerative
processes (Asmussen [2, p. 170]). [

Now let us turn to the hitting time T,. To determine its Laplace transform
(LT) E, (e *"*), we use in the sequel the method presented in Kella and Stadje
[18], which requires, for any o > 0, to find a solution f, of the equation

af(r) = (GF)(x) (2.11)

which is positive and bounded on [0, a]. Then, by [18], the LT is simply given
by

E (e ") = fo(2)/fala), 0<z <a. (2.12)

Example 1. Let u,(dy) have a probability density of the form

p(x,y) = a(z)b(y)1(0m)(y)- (2.13)

This covers in particular the case p(z,y) = 27 '1(g4)(y) in which at every
crash a uniformly distributed piece of X;_ is cut off.



Setting B(x) = [ b(y) dy we have a(z) = 1/B(x) and ([0, 2)) = B(x)/B(t).
By Proposition 5, X has a stationary distribution if

lim inf r(z)

0

By Proposition 4 we get for the stationary density the integral equation

which is easily solved:

q(z) = CB(x) exp{ — /r(u) du} (2.14)
0
where the normalizing constant C is given by

o] r

C= (/B(m)exp{ ./r(u) du} (].7:)1.

0 0

To find the LT of T, we have to solve the integral equation

ofe) = 1)~ o [ P B) du (2.15)

Assuming that r() is differentiable, we obtain from (2.15) the second-order
differential equation

() Jo+ () + g(@)] () + agla) f() = 0. (2.16)

Below we will find the suitable solution in some special cases.

Example 2. Let r(2) = A be constant. The sufficient condition (2.10) for
the existence and uniqueness of a stationary distribution becomes

liminfE(.J, ) > A

T—00

where J, is the size of a generic jump starting from level 2. Formula (2.9)
for the stationary density transforms into

o]

o) = A [ (0.0t ot

r



This integral equation can be solved in terms of a Neumann series.

Regarding the LT of T,, equation (2.1) becomes

(0 + N f(x) = F/(r) + A / Fwe(dy).
[0.2)

If 11, has a density p(2,y) on (0,2) and an atom of mass py(x) at zero, we
get

(0 + N f(x) = £(r)+ A / Fw)p(esy) dy + pol) F(0).

[0,7)

Example 3. In the standard renewal age process we have y, = &g, the point
mass at 0. The well-known stationary density ¢(x) = Po(c > 2)/Eq(o) can
be easily derived from (2.9). Eq. (2.11) takes the form

af(r) = f/(x) + r(2)(F(0) — f(2). (2.17)

a first-order linear differential equation which can be easily solved explicitly.

Let R(x) = [ r(u) du. The function f,(x) = e*™+F() [l—fOT r(u)e*”“’*’?’(“’)du]

Jo
is a positive solution of (2.17) so that the LT of T, is given by

r

e(y(mfa)-l—l?,(m)fﬁ’,(a) [1 o /r(u)e(yuR(u)du]
Ble 7] = 0

a

1— /r(7/,)em”R(“’)du,

0

3 Uniform cut-offs and proportional jump in-
tensity

A very nice special case of Example 1 in Section 2 is the following:

(a) p(,y) = 2~ "V(0m (y);
(b) r(x) = Ax.

Thus the jump rate at time 7 is proportional to X;  and at a jump time a
uniformly distributed piece of X, is cut off. In this case the generator is of

9



the form

GH) = fx)+ X | (fly) — f(x)) dy.
[0.7)

Propositions 4 and 5 immediately yield

Theorem 1 The stationary density of X and the LT of T, are given by

q(z) = Ape 2712 (3.1)
0 0
0<u<a. (3.2)

Proof. By (2.9), the stationary density of X satisfies

o] o]

g(z) = /At%q(t) dt = Az /q(t) dt, (3.3)

and the right-hand side of (3.1) is the only density solving (3.3).

Eq. (2.11) becomes

af(r) = )+ [ ) dy Ao s (3.4)

Taking the derivative in (3.4) yields

af'(z) = f"(x) — Az f'(x). (3.5)
It follows that f is of the form
fx)=C+D /e“““y?/?) dy (3.6)
0
To find E, (e *7+) we may assume that f(0) = 1 (in view of (2.11)), i.e.
C = 1. It follows from (3.5) that o f(0) = f'(0) so that f'(0) = a. Hence,
D =1 so that (3.6) is equal to the numerator of (3.2) and provides a solution

falx) of (2.11) which is positive and bounded on [0,a]. Now (3.2) follows
from (2.11). ]

The following theorem describes the asymptotic behavior of T, as a — oo.

10



Theorem 2

log T,

2

A
— 5 in probability as a — oo. (3.7)
a

Proof. Let M; = maxg<,<; X;. We will show that
(log#) 2 M, —25 (2/))2, as t — oo. (3.8)

Relation (3.8) implies (3.7). Indeed, let g(t) = [(2/))logt]'/2. Then, by
(3.8),

Tim Po(M, > (14 8)g(#)) = 0 (3.9)
lim Po(M, > (1~ 8)g(1) = 1 (3.10)

for every § > 0. As T, < ¢t if and only if M, > a, (3.9) and (3.10) are

tantamount to

Hm Po(Ti4s)q) <) =0 (3.11)
Tim Po( T sy < 1) = 1. (3.12)

Setting first a = (1 — d)g(¢) and then a = (1 + §)g(¢) we obtain from (3.11)
and (3.12)

Tim Po(T, < exp {(1 n 5)()\/2)(1,2}) —0 (3.13)
Tim Py(T, < exp {(1 . 5)()\/2)(1,2}) —1 (3.14)

for all ¢ > 0. Relations (3.13) and (3.14) immediately yield (3.7).

Thus it is sufficient to prove (3.8). We will now actually show that

t—o0

lim Ty (([(2/)\) log t]%Mt)n) =1 for alln € N. (3.15)

By (3.15), all moments of [(2/))log #]~3 M, converge to 1. This implies (3.8).

We know from (3.2) that

a 1
Fo (e *Te) = (1 + o / eyt /2) dy) )
Jo

11



Let v be the measure on [0,00) defined by v([0,t]) = Eo(M"). As {T, <
t} ={M, > a}, we have

‘/000 e(”dy(t)—/ooo, %EO(M”)(]
= /OO ,ﬂf<i/m "R M, > a)da )dt
—/ / a" e "Py(T, € dt)da

IE()(P*”T )da
1

“ i
-t ( + o / eyt (A7 /2) dy) da. (3.16)
Jo

liin((Q/)\ﬂ log (y|)7n/2 / e *dv(t)=1 foralln c N. (3.17)
all Jo

=n

o
/ o
Jo

We now prove that

As |log o] is slowly varying at 0, the standard Tauberian theorem yields

Tim ((2/)|Tog(1/1)])

which is what we want to show.

777,/2

v([0,t]) =1 foralln €N,

Of course, we have to consider the right-hand integral in (3.16) as o — 0. Tts
integrand tends to the nonintegrable "', which is why we have to introduce
an appropriate normalizing factor.

Denote the right-hand side of (3.16) by H, (o). We have to estimate H, (o)

from below and from above. For any b > () we have

14 o / IO /2) gy <1 4 abe® T2 for all a € [0, ).
J0

b a —1
H,(a) >n / a™! (1 + / et (Aw)/2 dy) da
Jo Jo

> 0" /(1 + (ybe”b+(/\b2/2)) for all b > 0. (3.18)

Hence,

Let § € (0,1) and set b = b(d,a) = [(1 — §)(2/M\)|loga|]'/? in (3.18). Tt
follows that

H,(a)b(6,0)™ > [1 + a’b(8, a) @)1 (3.19)

12



Since lim a’b(4, o) = 0, (3.19) yields

al0
limiinf(l — &) 2((2/N)|1log a|) " H, (o) > 1
al0
for all 4 € (0,1) and all n € N. Thus,
limiinf((Q/)\ﬂ log a|) ™2 H,(a) > 1. (3.20)
al0

To find an upper bound, we use

/ eI gy > / N2y > / N dy
J0 . .

0 a—1
> M2 g all > 1.

Hence, for any b > 0,

b+1 oo
H,(a) < / a" 'da+a 'n / a” e M2 g,
Jo )

b+1
b+ 1 v .
S (b_l_ l)n + O/71n / ( + ((], o 1)) e*)\((lf1) /2(1(],
Jb+1
—(b+1)"+a 'n(1 b )N D2 / 2" e . (3.21)
JA/2p

The integral on the right-hand side of (3.21) is bounded as follows: For every
N € N there is a constant Cny > 0 such that

/ eNe 2 de < OtV e for all > 0. (3.22)
Jt

By (3.21) and (3.22),
Hy(a) < (b+1)" +a 'n(14b )y A 0020, (A2p)2e2/2 (3.23)
for all b > 0.
Now set b = b(a) = [(2/A)|log o|]'/2. From (3.23) we conclude that
o) " Ha() < (14 b(o) )"
+nCh i (14 b(a) )" A2 b)) 2e A2

1
=(1+ b((y)*])"*] 1+ b((y)f1 + 577/Cn,,1)\1/2| log (y|72

— 1, as a 0.
Thus, limsup b(e) " H,,(a) < 1, which together with (3.20) yields

a\0
limb(a) "H,(a) =1
lin bo) " H, (o)
for every n € N, and this is equivalent to (3.17). [

13



4 Poisson jump times with uniform cut-offs

We now consider the case

(a) p(z,y) = 27 Lo ()
(b) r(z) =X > 0.

Thus, jumps arrive at Poisson times with intensity A and the cut-off mecha-
nism is the same as in Section 3.

Theorem 3 The stationary distribution of X is Erlang(2,)), i.e., has den-
sity

q(z) = Nae . (4.1)

The LT of T, is given by By (e ") = fo(x)/fala), 0 <z < a, where fo(x)

18 the unique solution of the differental equation
vf'(2)+ (1 =N+ a)r)f'(z) —af(z)=0, >0 (4.2)

subject to

fO)=1, f(0)=a. (4.3)

Proof. By (2.9), the stationary density of X satisfies

g(z) = /A%q(t) dt = Az / @ dt, (4.4)

and the right-hand side of (4.1) is the only density solving (4.4).

Eq. (2.11) becomes
af(r) = o)+ 2 [ f) dy— Afo). (45)

Multiplying by 2 and taking the derivative in (4.5) yields (4.2). The initial
condition f(0) =1 can be fixed arbitrarily, and then the condition f'(0) = «
follows by letting 2 tend to zero in (4.5). ]

14



Eq. (4.2) is a variant of the degenerate hypergeometric differential equation.
Its general solution is given by

flz) = H‘”””[C] <ﬁ 1 —2(Ma)x >—|—02 <m,1;2()\—|—(y)9/:>]7

where
> (a)g x
Dla. b:x)=1 —
k=1
is Kummer’s series (here (a)y =a(a+1)...(a+k—1), (a)o=1) and
1
Ula,1;2) = m{@(m 2; 1) log x

(a),z” 1
ri(r + 1)!} + F((J,)7

+Z (a+r) —(l+r) —b(2+7r)]

where ¢(z) = T"(2)/T(2) is the logarithmic derivative of the gamma function
(see [21], eqs. 2.1.2.103 and 2.1.2.65). In our case we can also use the formula

1
1

— [, O0<a <.
F((J,)F(la,)/P (L=#)7dt, 0<a<

The constants Cy and C5 are uniquely determined by the boundary conditions

P(a,1;2) =

0

4.3), which become transcendental equations involving the function ® and
) q g

P,

Next we derive the expected value and the variance of X;. Let Xy = 0. We
can write X, in the form

Xp=t—) mnWNO, (4.6)

where

(i) {N(#) | t > 0} is a homogeneous Poisson counting process with rate A,
=0and 0 <7 <7 <--- denote the jump times of {N(¢) | ¢+ > 0};

(ii) Uy, Us, ... are i.i.d. random variables which are independent of {N(#) |
t > 0} and have the uniform distribution on (0,1), Wj* =1 and

W™ = I(n=m)(1 — Uy,) + I(n < m) H Ui, n>1. (47)

n
7=n+1

Let Y; =t — X,. Clearly, Y; is the sum of the sizes of all jumps in [0, 7].

15



Theorem 4 For every t € [0, 00),
R[X,] = §(1 — e MY, (4.8)
Proof. We have
B[X,] =t — E[Yi] =t — F[E[Y; | N(+) = n]].
Obviously, E[Y; | N(t) = 0] = 0. For n > 1, it is well-known that

7 | N(t) =n ~ tBeta(i,n + 1 —1).

Accordingly, due to the independence of 7; and W

2

i Wi | N(t) = ]

=1

n ; 1 n4+1—1
— ¢ i Z )
> 3) o
_: (1 .
n

1
=(0-6)7)
(At)"

Setting p(n; M) = e M —— n =0,1,..., we find that

E[X,] - f' BIY; | N(#)
el )
= 2t§;p<n;m>n . (1 - @*) (4.10)
el ()

Eq. (4.8) is easily obtained from (4.10). [

, we obtain for all n > 1

E[Y; | N(t) =n] = E

= 2tE

Theorem 5 For fixed t, the variance of X; is

1
VX =502 4e M 166 M2 4186 M/, (4.11)

16



Proof. We have

N(t)
VIX} =V{V;} =V WV
n=>0
ks 1
=E |V WO | N7 (4.12)

L= |

S 1
+VIE [Z m, WNO) | N (1)

.V
n=>0

Since V{E{Y; | N(#)}} = V{E{X, | N(¢#)}} we obtain from (4.9) that the
second term on the right-hand side of (4.12) is

N(t)+1
V{E{X, | N(t)}} = 4’V {ﬁ (1 N <%> ) }

- 4t2;p(n;)\t) m (1 - (%) | ) (4.13)

L

As for the first term on the right-hand side of (4.12), we notice that

N(t)
VY WO Nt =0 =0,

n=>0

and forn > 1

1% {inww | N(t) = n} -V {IE

=1

i mW "™ | N(T) = n,W<">] N () = n}

=1

v {Z W | N(t) = n,W(n)} | N(t) = n] :

. (4.14)

+ E
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Furthermore, due to the independence of W™ and N(#),
ol T W L I e
v{E] YA ¥ = W ]|N<t>n}v{n+1 W }

S O

S (n+1)? |4

)
o550 (6
) ()

.//.2

=1 =i+l
B 12 _ 1 ”+5 1
S 2n +1)2 2 3

To obtain the second term on the right-hand side of (4.14) we start with

(4.15)

v (Z AW N () = n,w““) = S WPV | N () = )

=1

=1
+23 Y W COV(m 7 | Ny = n).

1<i<j<n
(4.16)
Moreover,
iln+1-—1)
V{r | N(t) =n} =t , 4.17
{7—, | ( ) 77} (TL“‘ 1)2(77/_'_2) ( )
1=1,...,n, and for 1 < 7,
(n+1—7
COV(r 7y | N(#) = ) = "1 ) (4.18)

CESiIeET)
Substituting (4.17)-(4.18) in (4.16) and taking expectations we obtain

T

E{V{ Y nw ™| N(t) = n,W<”>} | N(t) = n]

s 6 ) () )]

(4.19)
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Summing (4.15) and (4.19) we get for n > 1

" > | - = i (0 5))

=1

()20 0 6]

(4.20)
Finally, (4.13) and (4.20) yield
V{X}—#i iy |20 =D (4 (LY
IS S TETAC
n 2 \" 1 1\
(n+1)(n+2)\3 (n+1)2\4
- 1 1\" 1 /1\"
42 i AM)——— [ 1 — | = —| -
A2 A (- G) )
4 a2
- F (1 —e )\f/Z)
S 1 S (1/2)"
— 6t DY — 6t? DY
2 M) gy~ O 2 M e
s 1/3)" 4
2_/[_2 . )\_//_ ( _//_2 /7)\1‘, T 1 o /7)\1‘,/2 2.
2 A G iy O e
(4.21)
Careful simplification of (4.21) yields (4.11). [
Corollary
lim E[X,]| = 2 lim V{X;} = 2
] = 5 i VR =
The distribution function of Y;, for fixed ¢, is
e ™M, y=20
H(y;t)=1{ e M+ pnid)Ha(yst), 0<y<t (4.22)
n=1
1, y>t
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where, for n > 1,

H(y;t) =P (i nW" <y | N(t) = n) - (4.23)

Denote by h(y;t) the density of H(y;t). Another important function is
PY;<y|Y,=2),0<s <t Tocompute it, we start from

PY:<y|Y(s)=a2,N(s)=m,N({)=n,7n)

_p (.wanm» S WO LS ) < y> ,
=1

=1

(4.24)

where Uj.,—pm(t — ) is the ith order statistic of n — m i.i.d. random variables

distributed uniformly on (0,7 — s). As hefore, T/Vi(nfm) (1-U; )H? U

r=1,....,n—m—1, and Wﬁ;’”) =1-U, ., where Uy, ....U,_,, are 1.i.d.,
uniform on (0,1) and independent of U, (t — ), 2 =1,...,n — m.

The conditional distribution of 7,,, given N(s) = m, is like s - Beta(m, 1).
Also, 7,, is independent of {T/Vi(nim) li=1,...,n—m}and of {U.,_pm(t—3) |
i =1,...,n — m}. Hence, by (4.24),

PY:<yl|Y,=2)= meA@Zpl)\f—s
m=0 =

—I—ZW ,]7‘9)<y>d2.

The probability in the integrand on the right side of (4.25) can essentially be
written as Lebesgue measure of a (2/)-dimensional set.

Another quantity of interest is the embedded Markov chain X (n) = X, , i.e.,
the sequence of levels just after jumps.

Theorem 6 The stationary distribution of X(n) is exp(}).
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Proof. By PASTA, the levels X, _ just prior to jumps have the same sta-
tionary distribution as the continuous-time process {X; | + > 0}, which is
Erlang(2, A) by Theorem 3. Therefore the stationary distribution of X (n) is
equal to that of VU, where V is Erlang(2, A)-distributed, U is uniform on
(0,1) and U and V are independent. The stationary density of X (n) is thus
given by

o]

1
pla) = /)\27)6)‘”—(17) =Xe M, 2> 0.
v

We now compute the expected value and the variance of X(n). Notice that
for every n > 1

X(n)=U,X(n—1)+ (1 — Tn1)Un,

where X(0) = Xy = 0. Furthermore, 7,, — 7,1 ~ exp(A), n > 1. Hence we
can write

X(Tl) e Z R,I/T/;(n)7 n 2 1
i=1
where Ry, Ry, ... are i.i.d. exp(A),
W =T[vs, i=1.....n
j=i
and Ry, R,, ... are independent of {T/T/i(n) li=1,...,n,n>1}

Theorem 7 For each n > 1,

B[X(n)] = ; (1 - (%)) , (4.26)
VX (n)} = % (1 9 (é) 49 (%) - G)) L 4o

and,
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Proof. (i) Since R; is independent of VV(”)7

2

3 R,w,w] = EIRIE[W "]

=1 =1
1 n 1 n+1—1 1 1 n

= — - —— (1= > 1.
() s0-6G))

(ii) Let W) — (W1(n), e I/T/,f”)) We compute the variance in two parts,

according to
+V {IE

1% (Z R,W,f””) ~E
=1

E[X(n)] = E

> R W] } |
=1

oS )
=1

(4.28)
Due to independence,
n N(n’) N . _1 n n 5
oS wel - LS (1),
=1 =1 7=
Hence,
n (n) 1 n 1 n4+1—1 1 1 n
E|V RW™ | WM | — — - ——(1-(=) ).
(S| =3 () =5 (1 (5))
(4.29)
For the second term of (4.28), we start with
n B N 1 n B
E[S R | wm| = 2N 4.30
St e < 13 430

It follows that

ofe[ S ]} v { S

=1

_ % Z viwy 423y covm, W}"))]
=1

1<i<j<n

(4.31)
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In addition,

~ 1 n+1—1 1 n+1—1
Vi = <§> - (Z) . i=1,...,n.

Similarly, for 7 < 7,

- - 1 J—4 1 n+l1—73 1 ntl1—j
covar = () |(5)(5) ]

Substituting in (4.31) and summing shows that

1 S 1 (1 " 5 /1\" [1Y\"

—V Wwml = — |- 2= () (=) |- 4.32

S w6 56 ()] e
Finally, from (4.29), (4.31) and (4.32) we obtain (4.27). [

Corollary The asymptotic mean and variance of X(n) are

lim E[X(n)] = %7 lim V{X(n)} = i

n—o0o n—o0o )\2

Finally, we develop recursive formulae for the distributions of X(n), n =
1,2,... We start with the transition function

K{ys) = P(X(n) <y | X(n—1) = )

and its density k(y; x).

Theorem 8 For eachn > 1,

o 1
K(yy;z)=1—exp(— Ay — 2)7) + XMy / —e Mdu, (4.33)
Jmax(z,y)
and
Ax - 1 —Au
E(y;z) = e / —e Mdu. (4.34)
J max(z,y) U

Proof. We have

K{yio) = P(X(n) <y | X(n 1) = 2) = B(U(x + B) < y),
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where U ~ U(0,1), R ~ exp(A) and U is independent of R. Notice that

Yy
r+ R

Yy
x4+ R’

IP’(U< |R>—[{m+R<y}+[{m+R>y}

This implies (4.33). Formula (4.34) is obtained by differentiating (4.33) with

respect to y. ]

Let f.(7) denote the density function of X (n). One can immediately prove
that

U

>
Fi(y) = A / Lo gy 0 <y < oo
Y

Theorem 9 For each n > 2,

) = Fily) / CATE () + | / T () (). (435)

Proof. For each n > 2,

) = [ k) (i (4:36)

Substituting (4.34) in (4.36) we obtain (4.35). ]

5 The generalized uniform cut-off process and
its relation to the shot noise process

In this section we consider the following GCP (X;);>0. As before, X, in-
creases linearly, at rate 1, between downward jumps. This time the intervals
By, By, ... between the downward jumps are i.i.d. random variables with a
general distribution with LST £(-). The downward jump 7, after B, de-
pends on S, where 5, is the level of the X,-process just before the nth
jump. We generalize the uniform cut-off procedure of the previous sections
in the following way. The remainder W,, = §,, — Z,,, after the jump, is given
by W,, = U%(0,S,,), where U*(0,b) denotes a random variable with density
at® '/b* on (0,0). (Of course, @ = 1 yields the uniform cut-off procedure.)
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We want to analyze W,,, the state of X; immediately after the nth jump.
Since S,, = W,, + B,,, we have

Wit = U0, W, + Bn), n=12... (5.1)

One can show that the steady-state distribution of the W,,-process exists for
all traffic parameters; see the Remark below.

It follows from (5.1) that the steady-state variable W, of the sequence W,
satisfies

oo oo a—1
E[e—"W] = / e / ”Z P(W + B € dy) dx
J0 Jx R

= / —P(W + B € dy) / az® e " dx. (5.2)
Jo y”° Jo

Differentiate both sides of (5.2) with respect to o and use partial integration
in the last integral to get

The solution of this differential equation is readily verified to be given by

E[ef(’w“] = exp{—a /” 1776(“)

0 {7

du}. (5.4)

Let us now point out a relation between the above growth-collapse process
and the so-called shot noise process, which has been extensively studied in the
literature on queneing models with workload-dependent service speed (see,
e.g., [8, 13, 17]). First transform X, into a ‘dual’ workload process following
a procedure in [20]. This is done in two steps:

(1) Construct a ‘mountain’ process by changing the negative jumps into
negative slopes with rate —1;

(2) construct a workload process by changing the positive slopes into positive
jumps of size By, B, ...

The resulting process has paths which are linearly decreasing hetween posi-
tive jumps; its workload just before the nth jump (of size B,,) is W,,.

Next consider the following shot noise process: jumps upward, of sizes By, By,
.., occur after independent, exp(X)-distributed time intervals. Between
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jumps, the process decreases at rate ra if the process level equals 2 (where
r > 0 is some constant). One can now interpret

1

R(y,rt:)—/ —dw (5.5)

rw

as the time it takes for this shot noise process to decrease from level = to
level y, when no jumps occur.

Finally consider the following transformation:

W,
5.

Y, = %log( (5.6)
A simple calculation shows that Y}, is exp(ra)-distributed. Taking a = \/r
results in Y, being exp(A)-distributed. But from (5.5) and (5.6) it is also
clear that Y,, as defined above denotes the time to decrease from S, to W,
in the dual workload process, as well as an interarrival time in the shot noise
process. It is thus seen that the level of the shot noise process just before
the nth upward jump has exactly the same distribution as W,, in the dual
process and the original GCP.

The shot noise process just described has been analyzed in [8]. On p. 546 of
[8] it was shown that it has a steady-state density v(-) whose Laplace trans-
form is given in (5.4). Because of the PASTA property, this is also the LT of
the density of the shot noise process just before jump epochs, and the above
construction confirms that this is also the LT of W,.. See p. 546/547 of [§]
for special cases (like A = r and By being exponentially distributed, resulting
in an exponential workload density).

Remark. The shot noise process not only never reaches 0; it is also known
to be stable for all offered traffic loads. The relation to the special process
derived above implies that the same properties hold for the latter process.

6 The Markov-modulated case

Now let us look at the Markov-modulated case, as described in the Introduc-
tion. The underlying Markov process is two-dimensional: 7, = (X, .J;), and
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the generator is

(GF) (i) = c(i) f(x,i) + Y aiif(x.5) — (g +r(2) f(,i)

i#i
+r(z) ).f(va/lm(dy)v r=1,...,n (6.1)

J [0,z

or in matrix form

(GF)(x) = Cf'(x) +(Q — r(x)E)f(x) + r(x) Ds(x),

where

(a) flx) = (f(z, 1), fa, 1))
(b) @ = (4ij)ijefr,.. ny 18 the generator of the Markov chain J; and ¢; = —g;i;

(¢) C and Dy(x) are diagonal matrices with diagonal entries ¢(7) and
Jowy F(Y,7) a(dy), respectively;

(d) E is the n X n identity matrix.

One can now derive the stationary distribution of Z; and the LT Em(e*”’T"')
in terms of integral and differential equations.

Instead of developing this generalization we finally consider the following
problem: what is the distribution of T, A 07 To see that this is a relevant
question, let us for example interpret o as the time a disaster occurs in
some “system”, say some technical item. Assume that the system has to
run indefinitely; at any disaster it has to be replaced by a new identical
one but it can also be replaced preventively when its age reaches a certain
threshold @ > () which has to be specified by the controller. Thus, the first
replacement takes place at time T, A 0. Suppose that after replacement the
modulating chain is restarted at some fixed state 7o. If a replacement of a
still functioning system costs $C; and a replacement upon disaster costs $C,
(where C; < C3), then the long-run average cost of running the system when
using the policy T, is given by

. C1P0,i0(Ta No = Ta) —I— 02(1 — PO,iO(Ta No = Ta))

Cla) oo (Th A o)

Hence, P, (T, Ao =T,) and E, ;(T, A o) are important quantities; once they
are known as functions of @ one can try to minimize C(a).
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We deal with this problem as follows. Suppose the process is killed at time
o by entering a coffin state 9. By Dynkin’s formula, we have

o) =B ([ (1)) ) B (F(Z0) (6:2)

for f bounded and in the domain of G and T any integrable stopping time.
Now apply (6.2) to T'= T, A o in two cases:

(i) f = fi such that (Gfi)(x,2) =0, 2 € (0,a), and f(0,7) =0, fi(a,1) = 1.
(i) f = fy such that (Gf,)(r,7) = —1, & € (0,a), and f,() = 0, fu(a ) = 0.

A moment’s reflection shows that if fi, f, have these properties, then

file,i) =PpTa Ao =T,) (6.3)
fa(x,i) = Bpaiy(Ta A o). (6.4)
Hence, we have to solve
CF(2)+(Q — r(#)E)f() = (0,....0) (6.5
subject to
fla,-)=(1,...,1) (6.6)
and
CF () +(Q — () E)f(#) = (~1, .., ~1) (6.7)
subject to
fla,-) = (0,...,0)". (6.8)

Let us finally show that in the case n = 2 (two modulating states) these
systems of linear differential equations can be solved in special cases.

Example. Let n = 2 and set q1o = 1, q21 = po and f(a,7) = hi(x), 1 =1,2.
(6.5)-(6.6) and (6.7)-(6.8) become, for = € (0, al,

VW) — (gir + M) () + arhalr) = 0
AR () — (pi2 + A#)halir) + pazh () = 0 (6.9)
subject to
hi(a) = ha(a)=1 (6.10)



and

(2R () — (12 + M) ha() + proh () = 1 (6.11)

subject to
hi(a) = ha(a) =0, (6.12)

respectively. (6.9)-(6.10) can be transformed into the two second-order linear
differential equations

c(D)e(2)hi (=) = [(e(1

)+ c2)Mw) + 1 e(2) + pae(1)]hi(x)
+ )" +

i+ )M @)hi(x) = 0, € (0,a], i =1,2 (6.13)
with the boundary conditions

hi(a) = 1, hi(a) = Ma), i=1,2. (6.14)
Similarly, (6.11)-(6.12) lead to

(1)e(2)h] () — [(e(1) + e(2)A(2) + mie(2) + pac(1)]hi(2)
+ M) 4 (i A+ p2)A(@)]hi(e) =y — po — M) =0, 2 € (0,a], i =

D

subject to
hi(a) =0, hi(a)=-1, 1=1,2. (6.16)

Consider now the proportional jump intensity A(z) = Az, which we have
assumed in Section 3. In this case (6.13) takes the form

RI(x) + [dixe + do]hi(z) + [dsx® + dyz)h; (r)=0, i1 =1,2, € (0,a] (6.17)

where

—1

dy = (Ve Te() @], da = —(e(1)el2)) o) + pac(1)],
gy = (1)) N di = (e1)e(2)) (g +pa).

The general solution of (6.17) can be given as a linear combination of the
degenerate hypergeometric functions ® and ¥, which we have already used
in Section 3 (see [21], eq. 2.1.2.103 on p. 143), at certain arguments, and
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then the boundary conditions (6.14) uniquely determine the coefficients. We
will not write down the lengthy exact formulas. Let ®q(2) and ¥g(2) be two
linearly independent solutions of (6.17). The corresponding general solution
of the nonhomogeneous equation (6.15) is given by

r

C o (2) + CoTo(x) + (e(1)e(2)) [\Ilo(rt:) /

0

Do) (11 + 12 + M)

du
W (u) "

r

W) s + g2 + M)
~ o(a) / e du] 7

0
where W(u) = ®g(u) Uy (u) — Uo(u)Ps(u), and the constants Cy and Cy can
be determined from (6.16).
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