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Abstract

Let ξ, ξ1, ξ2, . . . be a sequence of independent and identically distributed
random variables, Sn = ξ1 + · · · + ξn and Mn = max

k≤n
Sk. Let τ = min{n ≥

1 : Sn ≤ 0}. We assume that ξ has a heavy-tailed distribution and negative
finite mean Eξ < 0. We find asymptotics for P(Mτ ∈ (x, x + T ]) as x → ∞
for a fixed positive constant T ≤ ∞.

1 Introduction and main result

Let ξ, ξ1, ξ2, . . . be a sequence of independent random variables with a common

distribution F and mean −∞ < −m < 0. Consider the random walk

S0 = 0, Sn = ξ1 + · · ·+ ξn.

Let

τ = min{n ≥ 1 : Sn ≤ 0}, Mτ = max
0≤i≤τ

Si

be the first ladder epoch and the cycle maximum of the random walk respectively.

Note that in this case, Eτ < ∞ and Mτ < ∞ a.s. In this work we study local

asymptotics for the cycle maximum

P(Mτ ∈ (x, x + T ]), x →∞,

where T is a fixed positive constant. We consider the (right) heavy-tailed case, that

is when Eeλξ1 = ∞ for all λ > 0.

The global asymptotics for P(Mτ > x) (and some related problems) are studied

by various authors. In [13] these asymptotics are obtained for regularly varying

distributions. In [1] (see also corrections in the proof in [2, Theorem X.9.4]) these

asymptotics are found for a more general class S∗ (see Definition 1 below). Namely,

it is proved that if F belongs to S∗ then

(1) P(Mτ > x) ∼ EτF (x)
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(here and throughout a(x) ∼ b(x) means limx→∞
a(x)
b(x)

= 1). A short proof of (1)

may be found in [8]. Foss and Zachary [12] show that the converse is true: if F is

long-tailed and (1) holds then F ∈ S∗. They also prove that (1) holds even if instead

of τ we take any stopping time with finite mean. In [11] this result is generalized to

the case of infinite mean stopping times.

In order to state our results we require some definitions.

Definition 1. A distribution function F on R belongs to the class S ∗ (see Klüppelberg[14])

if and only if F (x) > 0 for all x and
∫ x

0

F (x− y)F (y)dy ∼ 2m+F (x),

where m+ =
∫∞
0

F (y)dy < ∞.

Further, it is known that if a distribution function F belongs to the class S ∗ then

it is subexponential (see [14]). In general, the converse assertion does not hold, i.e.

a subexponential distribution with finite mean may not belong to S ∗, see [9] for a

counterexample.

Fix 0 < T ≤ ∞ and write ∆ = (0, T ],

x + ∆ = (x, x + T ], x ∈ R.

Let

F (x + ∆) = P(ξ ∈ x + ∆) = P(ξ ∈ (x, x + T ]).

Definition 2. We say that a distribution F on R belongs to the class L∆ if and only

if F (x + ∆) > 0 for all sufficiently large x and

(2)
F (x + t + ∆)

F (x + ∆)
→ 1 as x →∞,

for all t ∈ [0, 1].

Remark 1. The class L∆ is introduced in [3]. Note that Definition 2 implies local

uniform convergence (uniform convergence on each compact t—set in (0,∞)) in

(2). Indeed, it follows from Definition 2 that (2) holds for all t ≥ 0. Put f(x) =

F (log x + ∆), then (2) is equivalent to f(tx)/f(x) → 1 as x → ∞. This means

that function f is slowly varying (see [5] for definition and properties). Uniform

convergence in (2) follows now from the Uniform Convergence Theorem for slowly

varying functions (see, e.g., [5, Theorem 1.2.1]). Moreover, it follows from the

uniform convergence on any compact set that one can choose a function h(x) →∞
such that (2) holds uniformly in |t| ≤ h(x).

Definition 3. Let F be a distribution on R+ with unbounded support. We say that

F is ∆-subexponential and write F ∈ S∆ if F ∈ L∆ and

(F ∗ F )(x + ∆) ∼ 2F (x + ∆) as x →∞.

If T = ∞ we simply say that F is subexponential.
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The notion of ∆-subexponential distributions has been introduced in [3]. The

case T = ∞ corresponds to ordinary subexponential distributions introduced by

Chistyakov [7]. In [3] it is shown that the basic properties of subexponential dis-

tributions carry over virtually without changes to the case of ∆-subexponential

distributions.

In this paper we introduce a new class of distributions.

Definition 4. We say that a distribution F belongs to the class S∗∆ if F ∈ L∆,

m+ < ∞ and

x/2∫

0

F (x− y + ∆)F (y)dy ∼ m+F (x + ∆) as x →∞.

This class is a natural extension of the class S ∗. It is not difficult to see that

S∗ = S∗(0,∞) since S∗ ⊂ L(0,∞) (see [14]). We will also show that if F belongs to S∗∆
for some ∆ then it belongs to S∆.

Now we are in position to state our main result.

Theorem 1. Let F ∈ S∗∆ and
(
F (x)

)2
= o(F (x + ∆)). Then

(3) P(Mτ ∈ x + ∆) ∼ EτF (x + ∆).

The proof of the result is given in Section 3. It will be shown in Remark 6 that the

condition
(
F (x)

)2
= o(F (x + ∆)) is essential for the relation (3) to hold. In other

words, Remark 6 shows that asymptotics of P(Mτ ∈ x + ∆) may be different from

(3) if we assume only that F ∈ S∗∆.

The paper is organized as follows. In Section 2, in the form of five lemmas, we

present some properties of the new class S∗∆ . We show that the main properties of

the class S ∗ remain valid for the case of arbitrary positive T . We also give sufficient

conditions for a distribution to belong to class S∗∆. Using these sufficient conditions

we show that standard examples of subexponential distributions are contained in

the class S∗∆. The proof of our main result is given in Section 3. Proofs of five

lemmas formulated in Section 2 are collected in the Appendix.

2 Basic properties of the class S∗∆
First, we give some conditions for distributions to belong to the class S∗∆. These con-

ditions show that standard examples of distributions from the class S ∗ are contained

in the class S∗∆.

Lemma 1. Let a distribution F belong to the class L∆ for some finite T > 0.

Assume that there exist c > 0 and x0 < ∞ such that F (x + t + ∆) ≥ cF (x + ∆) for

any t ∈ (0, x] and x > x0. Assume also that m+ < ∞. Then F ∈ S∗∆.
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Remark 2. In [3], it is shown that if a distribution F satisfies the conditions of

Lemma 1 then F ∈ S∆. It is clear that for such distributions F (2x) ≥ cF (x), and it

is shown in ([14], Theorem 3.2) that distributions with this property belong to the

class S∗.
The Pareto distribution (with the tail F (x) = x−α, α > 1, x ≥ 1) satisfies the

conditions of Lemma 1 for any T > 0. The same is true for any distribution F such

that P(ξ ∈ x + ∆) is regularly varying at infinity, i.e., for F (x + ∆) ∼ x−αl(x),

where l(x) is slowly varying at infinity.

Let Q∆(x) = − ln F (x + ∆) for any finite T and Q(x) = − ln F (x). Following,

with obvious changes, the construction presented in [14] (see also [16]), it is easy to

check that for any distribution F ∈ L∆ we can always find a distribution G such

that G ∈ L∆, F (x + ∆) ∼ G(x + ∆) as x → ∞ and R∆(x) = − ln G(x + ∆) is

differentiable. In view of Lemma 4 we may give sufficient conditions for F ∈ S∗∆
assuming the existence of derivative Q′

∆(x).

Lemma 2. Assume that r = lim sup
x→∞

xQ′
∆(x)

Q(x)
< 1, the function Q(x)/x is eventually

non-increasing and F
1−r−ε

(x) is integrable for some ε > 0. Then F ∈ S∗∆.

Remark 3. Lemma 2 is a generalization of Theorem 2.8 (c) of [15] to the case of ar-

bitrary positive T . Note that in the case T = ∞ the conditions of both propositions

coincide, since in this case the fact that Q(x)/x is a non-increasing function follows

from assumption r < 1.

Direct computations show that any Weibull distribution (i.e., distribution with the

tail F (x) = e−xγ
) satisfies the conditions of Lemma 2 for any T > 0 if 0 < γ < 1.

One can also show that so-called semi-exponential distributions (i.e., distributions

with the tails F (x) = e−xγ l(x), where 0 ≤ γ < 1 and l(x) is a slowly varying function

such that l′(x) = o(l(x)/x) as x → ∞, see, for example, [6]) satisfy the conditions

of Lemma 2 for any T > 0.

It is known (see [3]) that S∆ ⊂ S for any positive T . The Lemma below shows that

an inclusion S∗∆ ⊂ S∗ also holds.

Lemma 3. If F ∈ S∗∆ for some finite interval ∆ = (0, T ], then F ∈ S∗.

The following Lemma is a generalization of Theorem 2.1 (b) of [14] to the case of

arbitrary positive T .

Lemma 4. Let F,G ∈ L∆ and assume that there exist M1,M2 ∈ (0,∞) such that

M1 ≤ G(x+∆)/F (x+∆) ≤ M2 for all sufficiently large x. Then F ∈ S∗∆ ⇔ G ∈ S∗∆.

Let H be a non-negative measure on R+ such that

∫ ∞

0

F (t)H(dt) < ∞.
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In this case we can define the distribution GH on R+ with the tail

GH(x) := min


1,

∞∫

0

F (x + t)H(dt)


 .

The following Lemma is a generalization of Lemma 9 of [9].

Lemma 5. Let F ∈ S∗∆ and assume that sup
t

H((t, t+1]) ≤ b < ∞. Then GH ∈ S∆.

Remark 4. Here are some examples of such measures H:

(i) if H(B) = I(0 ∈ B), then GH = F ;

(ii) if H(dt) = dt is the Lebesgue measure on R+, then GH is the integrated tail

distribution.

3 Proof of Theorem 1

Put M = supn≥0 Sn and let π(B) = P(M ∈ B).

Let η = min{n ≥ 1 : Sn > 0} ≤ ∞ be the first (strict) ascending ladder epoch and

put

p = P{η = ∞} = P(M = 0).

Let {ψn}n≥1 be a sequence of independent random variables with common distribu-

tion

P(ψ1 ∈ B) ≡ G+(B) = P(Sη ∈ B|η < ∞).(4)

Let ν be a random variable, independent of the above sequence, such that P(ν =

n) = p(1− p)n, n = 0, 1, 2, . . . Then (see [10, Chapter XII] or [2, Chapter VIII])

(5) M
d
= ψ1 + . . . + ψν .

Let χ = Sτ be the first non-positive sum and

G−(B) = P(−χ ∈ B).(6)

Our proof of Theorem 1 is based on the following sequence of lemmas.

Lemma 6. Let M < ∞ a.s. Then

P(Mτ ∈ (x, x + T ]) ∼
∫ ∞

0

P(χ ∈ −dz)(π(x, x + z]− π(x + T, x + T + z])

+

∫ ∞

0

P(χ ∈ −dz, Mτ > x)π(x + z, x + z + T )(7)
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Lemma 7. Let the assumptions of Theorem 1 hold. Then, for any positive integer

n,

∫ ∞

0

G−(dz)

(
G∗n

+ ((x, x+z])−G∗n
+ ((x+T, x+T+z])

)
∼ n

1− p
F (x+∆) as x →∞.

Lemma 8. (exponential bound) Let the assumptions of Theorem 1 hold. Then for

any ε > 0 there exist numbers K < ∞ and x0 > 0 such that for all n and x > x0,

∣∣∣∣
∫ ∞

0

G−(dz)

(
G∗n

+ ((x, x + z])−G∗n
+ ((x + T, x + T + z])

)∣∣∣∣ ≤ K(1 + ε)nF (x + ∆).

Lemma 6 is an extension of Lemma 1 from [8] to the case of arbitrary T > 0. Indeed,

in the case T = ∞ the second term (7) is negligible and one obtains Lemma 1 from

[8].

Proofs of lemmas 6–8 are given in Section 4. We now present the proof of Theorem 1.

First, we will analyse the second term (7) in Lemma 6. We have,

(8)

∫ ∞

0

P(χ ∈ −dz, Mτ > x)P(M̃ ∈ x + z + ∆)

=
T

|Eξ|(1 + o(1))

∫ ∞

0

P(χ ∈ −dz,Mτ > x)F (x + z)

≤ T

|Eξ|(1 + o(1))F (x)

∫ ∞

0

P(χ ∈ −dz,Mτ > x) ≤ T

|Eξ|(Eτ)(1 + o(1))(F (x))2.

Here we used the facts that P(M̃ ∈ x + ∆) ∼ T

|Eξ|F (x) and P(Mτ > x) ∼ EτF (x)

as x → ∞ if F ∈ S∗ (see [4]). Inclusion S∗∆ ⊂ S∗ proved in Lemma 3 implies that

F ∈ S∗ under the assumptions of Theorem 1.

In view of our assumption (F (x))2 = o(F (x + ∆)) it remains to prove that

(9)

∫ ∞

0

P(χ ∈ −dz)(π(x, x + z]− π(x + T, x + T + z]) ∼ EτF (x + ∆)

as x → ∞. One of the ways to show this equivalence is to find the asymptotic

behaviour of

π(x, x + z]− π(x + T, x + T + z](10)

when z and T are fixed and x goes to infinity. This approach works well when T = ∞.

But in the case T < ∞, we were not able to find asymptotics (10) without imposing

some additional assumptions (for example, it is possible to find these asymptotics

when ξ− has a finite third moment). Therefore, we use another approach and prove

(9) directly, using lemmas 7 and 8. However, this approach uses almost the same

type of arguments.
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It follows from (5) that (9) can be represented in the following form

∫ ∞

0

P(χ ∈ −dz)(π(x, x + z]− π(x + T, x + T + z])

=
∞∑

n=0

p(1− p)n

∫ ∞

0

G−(dz)

(
G∗n

+ ((x, x + z])−G∗n
+ ((x + T, x + T + z])

)
.

Then it follows from Lemmas 7 and 8 and the dominated convergence theorem that
∫ ∞

0

P(χ ∈ −dz)(π(x, x + z]− π(x + T, x + T + z])

∼
∞∑

n=0

p(1− p)n n

1− p
F (x + ∆) = EτF (x + ∆).

Theorem 1 is proved.

4 Proofs of lemmas 6–8

Proof of Lemma 6. By the total probability formula

(11) P(M > x) = P(Mτ > x) + P(Mτ ≤ x, M̃ > x− χ),

where M̃ = supn≥0(Sτ+n − χ). Clearly,

M̃
D
= M, M̃ and (χ,Mτ ) are independent.

The second term in the RHS of (11) is

P(Mτ ≤ x, M̃ > x− χ) = P(M̃ > x− χ)−P(Mτ > x, M̃ > x− χ).

Then,

P(Mτ > x) = P(M > x)−P(M̃ > x− χ) + P(Mτ > x, M̃ > x− χ)

=

∫ ∞

0

P(χ ∈ −dz)π(x, x + z] + P(Mτ > x, M̃ > x− χ)

and it implies that

P(Mτ ∈ x + ∆) =

∫ ∞

0

P(χ ∈ −dz)(π(x, x + z]− π(x + T, x + T + z])

+ P(Mτ > x, M̃ > x− χ)−P(Mτ > x + T, M̃ > x + T − χ).

We have

P(Mτ > x, M̃ > x− χ)−P(Mτ > x + T, M̃ > x + T − χ)

= P(Mτ > x, M̃ > x− χ)−P(Mτ > x, M̃ > x + T − χ)

+ P(Mτ > x, M̃ > x + T − χ)−P(Mτ > x + T, M̃ > x + T − χ),
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where the latter line is estimated as follows

0 ≤ P(Mτ > x, M̃ > x + T − χ)−P(Mτ > x + T, M̃ > x + T − χ)

= P(Mτ ∈ x+∆, M̃ > x+T−χ) ≤ P(Mτ ∈ x+∆, M̃ > x+T ) = o(P(Mτ ∈ x+∆)).

Finally,

P(Mτ > x, M̃ > x− χ)−P(Mτ > x, M̃ > x + T − χ)

=

∫ ∞

0

P(χ ∈ −dz, Mτ > x)P(M̃ ∈ x + z + ∆).

In the proofs of Lemmas 7 and 8 we will need the following technical result.

Lemma 9. Let F belong to S∗∆ and
(
F (x)

)2
= o(F (x + ∆)), x → ∞. Then(

F (x/2)
)2

= o(F (x + ∆)), x →∞.

Proof of Lemma 9. Choose a function h(x) ↑ ∞ such that h(x) ≤ x/2 and (2) holds

uniformly in |t| ≤ h(x). For this function we have

h(x)∫

0

F (x− y + ∆)F (y)dy ∼ m+F (x + ∆) as x →∞,(12)

and, since F ∈ S∗∆,

x/2∫

h(x)

F (x− y + ∆)F (y)dy = o(F (x + ∆)) as x →∞.(13)

Consider the LHS of the last relation:

x/2∫

h(x)

F (x− y + ∆)F (y)dy ≥ F (x/2)

x/2∫

h(x)

F (x− y + ∆)dy

= F (x/2)

(∫ x/2+T

x/2

F (y)dy −
∫ x−h(x)+T

x−h(x)

F (y)dy

)

≥ TF (x/2)

(
F (x/2 + T )− F (x− h(x))

)

≥ TF (x− h(x))

(
F (x/2 + T )− F (x− h(x))

)
.

It follows from the latter bounds and (13) that

(14) F (x/2)

(
F (x/2 + T )− F (x− h(x))

)
= o(F (x + ∆)) as x →∞
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and

(15) F (x− h(x))

(
F (x/2 + T )− F (x− h(x))

)
= o(F (x + ∆)) as x →∞.

Summing (14) and (15) we obtain that

F (x/2)F (x/2 + T )− F (x− h(x))F (x/2, x/2 + T ]− F (x− h(x))2 = o(F (x + ∆)).

First, it follows from (12) and F (x)2 = o(F (x + ∆)) that

F (x− h(x))2 = o(F (x + ∆)).

Second, it follows from (12) and F ∈ S∗∆ that

F (x− h(x))F (x/2, x/2 + T ] = o(F (x + ∆)).

Therefore,
(
F (x/2)

)2
= o(F (x + ∆)).

Proof of Lemma 7. The starting point of our analysis is the well-known Wiener-Hopf

identity (see, e.g. [10, Chapter XII, (3.11)]):

(16) F (x) = (1− p)

∫ ∞

0

G−(dz)G+((x, x + z]).

Recall that G−(dz) = P(−χ ∈ dz).

In the case n = 1, (16) yields

∫ ∞

0

G−(dz)

(
G+((x, x + z])−G+((x + T, x + T + z])

)
=

1

1− p
F (x + ∆).

Denote Vn =
n∑

k=1

ψk. We will use induction arguments. Assume that the assertion of

the Lemma is valid for n and let us prove it for n+1. For any z > 0, let ∆z = (0, z].

By the total probability formula,

∫ ∞

0

G−(dz)

(
G
∗(n+1)
+ ((x, x + z])−G

∗(n+1)
+ ((x + T, x + T + z])

)

=

∫ ∞

0

G−(dz)

(
P(Vn ≤ x/2, Vn+1 ∈ x + ∆z)−P(Vn ≤ x/2, Vn+1 ∈ x + T + ∆z)

)

+

∫ ∞

0

G−(dz)

(
P(ψn+1 ≤ x/2, Vn+1 ∈ x + ∆z)−P(ψn+1 ≤ x/2, Vn+1 ∈ x + T + ∆z)

)

+

∫ ∞

0

G−(dz)

(
P(Vn > x/2, ψn+1 > x/2, Vn+1 ∈ x + ∆z)

−P(Vn > x/2, ψn+1 > x/2, Vn+1 ∈ x + T + ∆z)

)

≡ I1(x) + I2(x) + I3(x).(17)
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First,

I1(x) =

∫ x/2

0

G∗n
+ (dy)

∫ ∞

0

G−(dz)

(
G+((x−y, x−y+z])−G+((x+T−y, x+T−y+z])

)

=
1

1− p

∫ x/2

0

G∗n
+ (dy)F (x− y + ∆).

Since F ∈ L∆ we can choose a function h(x) ↑ ∞ such that h(x) ≤ x/2 and (2)

holds uniformly for |t| ≤ h(x). For this function we have

(18)

∫ h(x)

0

G∗n
+ (dy)F (x− y + ∆) ∼ F (x + ∆) as x →∞,

and, by Proposition 2 from the appendix,

(19)

∫ x/2

h(x)

G∗n
+ (dy)F (x− y + ∆) ≤

[x/2]+1∑

k=[h(x)]−1

G∗n
+ (k, k + 1] sup

y∈[0,1]

F (x− k − y + ∆)

∼ n
1− p

pm
T

[x/2]+1∑

k=[h(x)]−1

F (k)F (x− k + ∆) = o(F (x + ∆))

since F ∈ S∗∆.

Second, by the induction hypothesis,

I2(x) =

∫ x/2

0

G+(dy)

∫ ∞

0

G−(dz)

(
G∗n

+ ((x−y, x−y+z])−G∗n
+ ((x+T−y, x+T−y+z])

)

∼ n

1− p

∫ x/2

0

G+(dy)F (x− y + ∆).

Following the arguments used to prove (18) and (19) we conclude that

(20) n

∫ x/2

0

G+(dy)F (x− y + ∆) ∼ nF (x + ∆) as x →∞.

Finally, in view of (18) – (20), it remains to prove that I3(x) = o(F (x + ∆)). We

have,

I3(x) =

∫ ∞

0

G−(dz)

(
P(Vn > x/2, ψn+1 > x/2, Vn+1 ∈ x + ∆z)

−P(Vn > x/2, ψn+1 > x/2, Vn+1 ∈ x + T + ∆z)

)

=

∫ ∞

0

G−(dz)

(
P(Vn > x/2, ψn+1 > x/2, Vn+1 ∈ x + ∆)

−P(Vn > x/2, ψn+1 > x/2, Vn+1 ∈ x + z + ∆)

)

≡ I31(x)− I32(x).
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Here, we have used the fact that for any measurable event B,

P(B, Vn ∈ x + ∆z)−P(B, Vn ∈ x + T + ∆z])

= P(B, Vn > x)−P(B, Vn > x + z)−P(B, Vn > x + T ) + P(B, Vn > x + T + z)

= P(B, Vn ∈ x + ∆)−P(B, Vn ∈ x + z + ∆).

The following estimate is valid:

I31(x) ≤ P(Vn ∈ x/2 + ∆)P(ψn+1 ∈ x/2 + ∆)

= G∗n
+ (x/2 + ∆)G+(x/2 + ∆).(21)

By Proposition 2 from the appendix,

G∗n
+ (x/2 + ∆)G+(x/2 + ∆) ∼ n

1− p

pm
TF (x/2)

1− p

pm
TF (x/2) = O(F (x/2)2.

Therefore, by Lemma 9, I31(x) = o(F (x + ∆)). Similarly, using Proposition 2 from

the appendix, we obtain

I32(x) ≤
∫ ∞

0

G−(dz)

∫ x/2+z+T

x/2

G∗n
+ (dy)G+((x + z − y, x + z − y + T ])

∼ 1− p

pm
T

∫ ∞

0

G−(dz)

∫ x/2+z+T

x/2

G∗n
+ (dy)F (x + z − y)

≤ 1− p

pm
TF (x/2− T )

∫ ∞

0

G−(dz)G∗n
+ ((x/2, x/2 + z + T ]).

Then, by the induction hypothesis,
∫ ∞

0

G−(dz)G∗n
+ ((x/2, x/2 + z]) ∼ n

1− p
F (x/2)

and, by Proposition 2 from the appendix,
∫ ∞

0

G−(dz)G∗n
+ ((x/2+z, x/2+z+T ]) ∼ n

1− p

pm
T

∫ ∞

0

G−(dz)F (x/2+z) ≤ n
1− p

pm
TF (x/2).

As a result, we obtain that

I32(x) = O(F (x/2)2) = o(F (x + ∆))

due to Lemma 9.

Proof of Lemma 8. We will give only the proof of the upper bound. The proof of

the lower bound is similar. For x0 ≥ 0 and k ≥ 1, put

Ak(x0) = sup
x>x0

∫∞
0

G−(dz)

(
G∗k

+ ((x, x + z])−G∗k
+ ((x + T, x + T + z])

)

F (x + ∆)
.
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Take any ε > 0. Pick x0 such that for all x > x0 the following holds: F (x + ∆) > 0

and
∑[x/2]+1

k=[x0]−1 F (k) supy∈[0,1] F (x− k − y + ∆)

F (x + ∆)
≤ ε/2;(22)

∫ x/2

0
G+(dy)F (x− y + ∆)

F (x + ∆)
≤ 1 + ε/2;(23)

F (x/2)2

F (x + ∆)
≤ ε/2.(24)

It follows from the fact that F ∈ S∗∆, from Lemma 9 and (20) that such x0 always

exists.

For any k ≥ 1, put Ak ≡ Ak(x0). Then,

Ak ≤ max

{
1

infx0≤x≤2x0 F (x + ∆)
,

sup
x>2x0

∫∞
0

G−(dz)
(
G∗k

+ ((x, x + z])−G∗k
+ ((x + T, x + T + z])

)

F (x + ∆)

}
.

Let us now estimate the second term in the maximum. As in the proof of Lemma 7,

denote Vn =
n∑

k=1

ψk and ∆z = (0, z], where z is any positive number. We will use

representation (17). First, by the same arguments as in Lemma 7, we have

I1(x) =
1

1− p

∫ x/2

0

G∗n
+ (dy)F (x−y+∆) =

1

1− p

(∫ x0

0

+

∫ x/2

x0

)
G∗n

+ (dy)F (x−y+∆).

Then,

sup
x>2x0

∫ x0

0
G∗n

+ (dy)F (x− y + ∆)

F (x + ∆)
≤ sup

x>2x0

sup0≤y≤x0
F (x− y + ∆)

F (x + ∆)
≡ R1.

Constant R1 is finite since F ∈ L∆. Further, it follows from (22) and Proposition 2

from the appendix that

∫ x/2

x0
G∗n

+ (dy)F (x− y + ∆)

F (x + ∆)
≤

∑[x/2]+1
k=[x0]−1 G∗n

+ (k, k + 1] supy∈[0,1] F (x− k − y + ∆)

F (x + ∆)

≤ C1(1 + ε/2)n

∑[x/2]+1
k=[x0]−1 F (k) supy∈[0,1] F (x− k − y + ∆)

F (x + ∆)
≤ C1(1 + ε/2)nε/2.

Second,

I2(x) =

∫ x/2

0

G+(dy)

∫ ∞

0

G−(dz)

(
G∗n

+ ((x−y, x−y+z])−G∗n
+ ((x+T−y, x+T−y+z])

)

≤ An

∫ x/2

0

G+(dy)F (x− y + ∆) ≤ An(1 + ε/2)F (x + ∆),

12



where the latter inequality follows from (22).

Third, we use the same representation I3(x) = I31(x) − I32(x) as in the proof of

Lemma 7. Then, the following estimate holds

I31(x) ≤ P(Vn ∈ x/2 + ∆)P(ψn+1 ∈ x/2 + ∆)

≤ C1(1 + ε/2)nP(ψn+1 ∈ x/2 + ∆)2 ≤ C2(1 + ε/2)nF (x + ∆).(25)

Therefore, for some positive constants C and R,

An+1 ≤ (1 + ε/2)An + C(1 + ε/2)n + R,

and, by recursion,

An+1 ≤ (1 + ε/2)nA1 + Cn(1 + ε/2)n + Rn(1 + ε/2)n.

The latter implies the assertion of the Lemma.

A Appendix

A.1 Properties of ∆− subexponential distributions

In this Proposition we list properties of ∆-subexponential distributions that are used

in the proof of Theorem 1. Proofs and some other properties may be found in [3].

Proposition 1. Let F ∈ S∆. Then

(i) (see [3, Corollary 2])

F ∗n(x + ∆) ∼ nF (x + ∆), x →∞;

(ii) (see [3, Proposition 4]) for any ε > 0, there exist x0 = x0(ε) > 0 and V (ε) > 0

such that, for any x > x0 and n ≥ 1,

F ∗n(x + ∆) ≤ V (ε)(1 + ε)nF (x + ∆).

We also need the following Proposition (see[4]).

Proposition 2. Let Eξ = −m ∈ (−∞, 0) and F ∈ S∗ be a non-lattice distribution.

Then for any T > 0,

G+(x + ∆) ∼ 1− p

pm
TF (x)

and G+ ∈ S∆.

Remark 5. In the lattice case this Proposition holds as well with some obvious

changes.

13



A.2 Proofs

We present here the proofs of the Lemmas stated in Section 2. Throughout the

Appendix, a function h(x) is such that h(x) ↑ ∞ as x → ∞, h(x) < x/2 for all x

and (2) holds uniformly in |t| ≤ h(x).

Proof of Lemma 1. For the function h(x) we have

h(x)∫

0

F (x− y + ∆)F (y)dy ∼ m+F (x + ∆) as x →∞

and

x/2∫

h(x)

F (x− y + ∆)F (y)dy ≤ 1

c
F (x + ∆)

x/2∫

h(x)

F (y)dy = o(F (x + ∆)) as x →∞.

Proof of Lemma 2. We need to prove that

x/2∫

h(x)

F (x− y + ∆)

F (x + ∆)
F (y)dy → 0 as x →∞

for the function h(x). Consider the integrand:

F (x− y + ∆)

F (x + ∆)
F (y) = exp {Q∆(x)−Q∆(x− y)−Q(y)}

≤ exp

{
y(r + ε)

Q(x− y)

x− y
−Q(y)

}

for sufficiently large x. Since the function
Q(x)

x
is eventually non-increasing and

y ≤ x/2,

exp

{
y(r + ε)

Q(x− y)

x− y
−Q(y)

}
≤ exp {−(1− r − ε)Q(y)} = F

1−r−ε
(y),

and the result follows.

Proof of Lemma 3. Indeed, note that F ∈ S∗ if and only if
x/2∫
0

F (x − y)F (y)dy ∼
m+F (x) as x →∞. First,

x/2∫

0

F (x− y)F (y)dy ≥ F (x)

x/2∫

0

F (y)dy = m+(1 + o(1))F (x).
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Second, if F ∈ S∗∆ then

x/2∫

0

F (x− y)F (y)dy =
∞∑

n=0

∫ x/2

0

F (x− y + nT + ∆)F (y)dy

≤
∞∑

n=0

∫ (x+nT )/2

0

F (x− y + nT + ∆)F (y)dy

= (1 + o(1))
∞∑

n=0

m+F (x + nT + ∆) = m+(1 + o(1))F (x).

Proof of Lemma 4. Indeed, from the assumptions of Lemma 4 we conclude that

M1 ≤ G(x)/F (x) ≤ M2 for all sufficiently large x. Suppose F ∈ S∗∆. Then G has

finite expectation. Since F,G ∈ L∆, there exists a function h(x) →∞ such that (2)

and the same relation for G hold uniformly in |t| ≤ h(x). For this function h(x) we

have
h(x)∫

0

G(x− y + ∆)G(y)dy ∼ G(x + ∆)

∫ ∞

0

G(y)dy as x →∞

and

x/2∫

h(x)

G(x− y + ∆)

G(x + ∆)
G(y)dy ≤ M2

2

M1

x/2∫

h(x)

F (x− y + ∆)

F (x + ∆)
F (y)dy → 0 as x →∞.

Proof of Lemma 5.

Note that for all sufficiently large x

GH(x + ∆) =

∞∫

0

F (x + t + ∆)H(dt).

Thus GH ∈ L∆ since F ∈ L∆.

Consider two independent random variables η1 and η2 both having distribution GH .

We need to show that P(η1 +η2 ∈ x+∆) ∼ 2P(η1 ∈ x+∆). Consider the following

equality:

(26) P(η1 + η2 ∈ x + ∆) = 2P(η1 ≤ x/2, η1 + η2 ∈ x + ∆)

+ P(η1 > x/2, η2 > x/2, η1 + η2 ∈ x + ∆) ≡ 2I1(x) + I2(x).

Choose a function h(x) such that GH(x + t + ∆) ∼ GH(x + ∆) holds uniformly in

|t| ≤ h(x) and note that

(27)

h(x)∫

0

dGH(y)GH(x− y + ∆) ∼ GH(x + ∆) as x →∞.
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The mean value of F is finite. Thus, F (t)H((0, t]) = o(1/t)O(t) → 0 as t →∞ and

integration by parts yields, for x large enough,

GH(x) =

∫ ∞

x

H((0, t− x])F (dt).

Hence,

GH((x, x + 1]) =

∫ ∞

x

H((t− x− 1, t− x]) F (dt).

Therefore,
x/2∫

h(x)

dGH(y)GH(x−y+∆) → 0 as x →∞ if
x/2∫

h(x)

GH(x−y+∆)F (y)dy → 0

as x → ∞ (we used the last equality and our assumption that sup
t

H((t, t + 1]) ≤
b < ∞). Fix ε > 0. Since F ∈ S∗∆, there exists x0 such that, for all x ≥ x0,

∫ x/2

h(x)

F (x− y + ∆)F (y)dy ≤ εF (x + ∆).

Then, for x ≥ x0,

∫ x/2

h(x)

GH(x− y + ∆)F (y)dy =

∫ x/2

h(x)

(∫ ∞

0

F (x + t− y + ∆)H(dt)

)
F (y)dy

≤
∫ ∞

0

(∫ x+t
2

h(x)

F (x + t− y + ∆)F (y)dy

)
H(dt)

≤ ε

∫ ∞

0

F (x + t + ∆)H(dt) = εGH(x + ∆).

Using (27), we conclude that I1(x) ∼ GH(x + ∆) as x →∞. Consider now

I2(x) ≤
∫ x/2+T

x/2

GH(dy)GH(x− y + ∆)

=

∫ x/2+T

0

GH(dy)GH(x− y + ∆)−
∫ x/2

0

GH(dy)GH(x− y + ∆).

Note that

∫ x/2+T

0

GH(dy)GH(x− y + ∆) ∼
∫ x/2+T

0

GH(dy)GH(x− y + 2T + ∆)

∼ GH(x + 2T + ∆) ∼ GH(x + ∆)

as x →∞, and ∫ x/2

0

GH(dy)GH(x− y + ∆) ∼ GH(x + ∆)

as x →∞. Therefore, I2(x) = o(GH(x + ∆)) and the result follows from (26).
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Remark 6. We will now show that the condition
(
F (x)

)2
= o(F (x+∆)) is essential

for the relation (3) to hold. Assume that there exists 0 < y < ∞ such that ξ1 ≥ −y

a.s. Then χ ≥ −y a.s. In this case instead of the upper bound given in (8) we can

give the following lower bound:

P(Mτ > x, M̃ > x− χ)−P(Mτ > x, M̃ > x + t− χ)

=

∫ ∞

0

P(χ ∈ −dz, Mτ > x)P(M̃ ∈ x + z + ∆)

=
T

|Eξ|(1 + o(1))

∫ −y

0

P(χ ∈ −dz, Mτ > x)F (x + z)

≥ T

|Eξ|(1 + o(1))P(Mτ > x)F (x) ≥ T

|Eξ|Eτ(1 + o(1))(F (x))2,

where we used the fact that F belongs to the class L∆ and therefore is long-tailed.

Since the rest of the proof of Theorem 1 remains valid in this case, the given upper

estimate shows that the asymptotics of P(Mτ ∈ x + ∆) may be different from (3) if

we assume only that F ∈ S∗∆.
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