
The survival probability for 
riti
al spread-out orientedper
olation above 4 + 1 dimensions. I. Indu
tionRem
o van der Hofstad �Frank den Hollander y zGordon Slade xSeptember 19, 2005Abstra
tWe 
onsider 
riti
al spread-out oriented per
olation above 4+1 dimensions. Our mainresult is that the extin
tion probability at time n (i.e., the probability for the origin to be
onne
ted to the hyperplane at time n but not to the hyperplane at time n+ 1) de
ays like1=Bn2 as n!1, where B is a �nite positive 
onstant. This in turn implies that the survivalprobability at time n (i.e., the probability that the origin is 
onne
ted to the hyperplane attime n) de
ays like 1=Bn as n!1. The latter has been shown in an earlier paper to have
onsequen
es for the geometry of large 
riti
al 
lusters and for the in
ipient in�nite 
luster.The present paper is Part I in a series of two papers. In Part II, we derive a la
e expansionfor the survival probability, adapted so as to deal with point-to-plane 
onne
tions. This la
eexpansion leads to a nonlinear re
ursion relation for the survival probability. In Part I, weuse this re
ursion relation to dedu
e the asymptoti
s via indu
tion.1 Introdu
tion and resultsFor oriented bond per
olation on Zd�Z+ with parameter p, the survival probability �n = �n(p) attime n 2 Z+ is the probability that there exists an x 2 Zd su
h that (0; 0) is 
onne
ted to (x; n).In the oriented setting, it is known that there is no per
olation at the 
riti
al threshold p = p
[3, 7℄, so limn!1 �n(p
) = 0. In this paper, we study the manner in whi
h �n(p
) tends to zero asn!1 when d > 4.�Department of Mathemati
s and Computer S
ien
e, Eindhoven University of Te
hnology, P.O. Box 513, 5600MB Eindhoven, The Netherlands. E-mail: rhofstad�win.tue.nlyEURANDOM, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. E-mail: denhollander�eurandom.tue.nlzMathemati
al Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands. E-mail:denhollander�math.leidenuniv.nlxDepartment of Mathemati
s, University of British Columbia, Van
ouver, BC V6T 1Z2, Canada. E-mail:slade�math.ub
.
a
1



Our main result is that for suÆ
iently \spread-out" oriented bond per
olation, with the degreeto whi
h 
onne
tions are spread out in spa
e parameterized by L 2 N ,limn!1n�n(p
) = 1B 2 (0;1) for d > 4 and for L suÆ
iently large. (1.1)In terms of the 
riti
al exponent �, de�ned by the 
onje
ture that �n(p
) behaves like n�1=� asn ! 1, (1.1) implies that � = 1. Our proof of (1.1) makes use of a result in Part II ([12℄),whi
h 
onsists of an extension of the la
e expansion to deal with point-to-plane 
onne
tions andwhi
h leads to a nonlinear re
ursion relation for �n(p). In Se
tion 2, we use this re
ursion relation,together with bounds on its 
oeÆ
ients that are valid when p = p
, d > 4 and L suÆ
iently large,to dedu
e (1.1) via indu
tion.The outline of this se
tion is as follows. In Se
tion 1.1, we de�ne spread-out oriented per
olationand re
all a few basi
 fa
ts. In Se
tion 1.2, we formulate our main theorem, a sharp asymptoti
formula for ��n(p
) = �n(p
)��n+1(p
), whi
h is the probability that extin
tion o

urs at time n+1.In Se
tion 1.3, we explain that (1.1) has interesting 
onsequen
es for the geometry of large 
riti
al
lusters and for the in
ipient in�nite 
luster, as shown in an earlier paper [11℄. In Se
tion 1.4, weindi
ate that our main theorem 
an be viewed as a perturbation of a sharp asymptoti
 formula forthe extin
tion probability of a 
riti
al bran
hing pro
ess. Finally, in Se
tion 1.5, we list the threemain ingredients that go into the proof of the main theorem, two of whi
h are treated in Part II.1.1 The modelThe spread-out oriented bond per
olation model is de�ned as follows. Consider the graph withverti
es Zd � Z+ and with dire
ted bonds ((x; n); (y; n + 1)), for n 2 Z+ = f0; 1; 2; : : :g andx; y 2 Zd. Let D be a �xed fun
tion D : Zd ! [0; 1℄, satisfyingXx2ZdD(x) = 1: (1.2)Let p 2 [0; kDk�11 ℄, where k � k1 denotes the supremum norm, so that pD(x) � 1 for all x 2 Zd.We asso
iate to ea
h dire
ted bond ((x; n); (y; n+ 1)) an independent random variable taking thevalue 1 with probability pD(y� x) and the value 0 with probability 1� pD(y� x). We say that abond is o

upied when the 
orresponding random variable is 1 and va
ant when it is 0. Note thatp is not a probability. Rather, p is the average number of o

upied bonds from a given vertex.The joint probability distribution of the bond variables will be denoted by Pp, the 
orrespondingexpe
tation by E p .The fun
tion D will be assumed to obey the properties of Assumption D in [16, Se
tion 1.2℄(whose pre
ise form is not important for the present paper), together with [17, Equation (1.2)℄.This assumption involves a parameter L 2 N , whi
h serves to spread out the 
onne
tions andwhi
h will be taken to be large. The assumption implies, in parti
ular, that there exists a �nitepositive 
onstant C su
h that supx2ZdD(x) � CL�d: (1.3)Examples of fun
tions D obeying the assumption are given in [16, Se
tion 1.2℄. A simple and basi
example is D(x) = 8<:(2L+ 1)�d if kxk1 � L;0 otherwise: (1.4)2



In this example, the bonds are given by ((x; n); (y; n + 1)) with kx � yk1 � L, and a bond iso

upied with probability p(2L+ 1)�d.We say that (x; n) is 
onne
ted to (y;m), and write (x; n) �! (y;m), if there is an orientedpath from (x; n) to (y;m) 
onsisting of o

upied bonds. Note that this is only possible whenm � n. By 
onvention, (x; n) is 
onne
ted to itself. We write (x; n) �! m if m � n and there isa y 2 Zd su
h that (x; n) �! (y;m).The event f(0; 0) �! 1g is the event that f(0; 0) �! ng o

urs for all n. There is a 
riti
althreshold p
 > 0 su
h that the event f(0; 0) �! 1g has probability zero for p � p
 and haspositive probability for p > p
. The parameterization we have 
hosen is 
onvenient, sin
e p
 is
lose to 1 for large L. In fa
t, it is shown in [14℄ that there is a �nite positive 
onstant 
 su
h thatp
 = 1 + 
L�d +O(L�d�1) as L!1 for d > 4: (1.5)The survival probability at time n is de�ned by�n(p) = Pp((0; 0) �! n); (1.6)and the extin
tion probability at time n is de�ned by��n(p) = �n(p)� �n+1(p) = Pp((0; 0) �! n; (0; 0) �!= n+ 1): (1.7)General results of [3, 7℄ imply that limn!1 �n(p
) = 0. The same 
on
lusion was shown in [2℄ tofollow from the triangle 
ondition. The triangle 
ondition was veri�ed in [17, 18℄, for d > 4 and LsuÆ
iently large, yielding an alternate proof that limn!1 �n(p
) = 0 in this setting.1.2 The main theoremHen
eforth we will assume that p = p
 and suppress p from the notation.Our main result is the following theorem. Constants implied by the O notation below areindependent of both L and n. Although only the dimension d = 5 lies in the interval 4 < d < 6,we indi
ate the d-dependen
e of our estimate in this range to display its degenera
y as d # 4.Theorem 1.1. Let d > 4 and p = p
. There are �nite positive 
onstants L0 = L0(d) andB = B(d; L) = 12 +O(L�d) su
h that, for L � L0,��n = 1Bn2 h1 +O(n�1 logn) + L�dO(Æn)i as n!1 (1.8)with Æn = 8>>>><>>>>: n�(d�4)=2 logn (4 < d < 6);n�1 log2 n (d = 6);n�1 logn (d > 6): (1.9)From (1.8) we obtain�n = 1Xm=n��m = 1Bn h1 +O(n�1 logn) + L�dO(Æn)i as n!1; (1.10)3



whi
h proves (1.1).In Se
tion 1.5, we sket
h the main ingredients in the proof of Theorem 1.1. As explained inSe
tion 1.4, for 
riti
al bran
hing pro
esses a result like (1.8) without the se
ond error term is wellknown. In [17℄, the s
aling behaviour of the 
riti
al oriented per
olation r-point fun
tions (r � 2)was 
omputed, for d > 4 and L suÆ
iently large. It was shown that all moment measures of 
riti
aloriented per
olation 
onverge to the moment measures of the 
anoni
al measure of super-Brownianmotion in the s
aling limit. The latter shows that the nature of large 
riti
al spread-out orientedper
olation 
lusters is similar to that of large 
riti
al spread-out bran
hing random walk 
lusters,for d > 4. This intuition will guide our proof of Theorem 1.1.1.3 Consequen
es of the main theoremWe formulate four 
onsequen
es of (1.1), whi
h we have seen is a 
onsequen
e of Theorem 1.1.For this, we �rst re
all some results from [17℄. Let�n(x) = P((0; 0) �! (x; n)); (1.11)�n1;n2(x1; x2) = P((0; 0) �! (x1; n1); (0; 0) �! (x2; n2)) (1.12)denote the two-point and three-point fun
tions, respe
tively. It follows from [17, Theorem 1.1 andEquation (2.52)℄ (see [10℄ for a review) that there are �nite positive 
onstants A = A(d; L) andV = V (d; L) su
h that for p = p
, d > 4 and L suÆ
iently large,limn!1 Xx2Zd �n(x) = A; (1.13)Xx1;x22Zd �n1;n2(x1; x2) = A3V (n1 ^ n2)[1 + o(1)℄ as n1 ^ n2 !1: (1.14)Moreover, A = 1 +O(L�d) and V = 1 +O(L�d) as L!1.I. Relation between 
onstants A; V and B. In [11, Theorem 1.5℄ we proved that, subje
t to(1.1), B = AV2 : (1.15)Thus we 
an now 
on
lude that this formula is true. It follows that B = 12 +O(L�d) as L!1.We will provide a dire
t proof of the latter below, based on the expli
it series representation forB given in (2.2). The identity (1.15) is dis
ussed further in Se
tion 1.3 of Part II.It is worth noting that for p = p
, d > 4 and L suÆ
iently large, (1.13){(1.14) imply theelementary lower bound �n � 1AV n [1 + o(1)℄; (1.16)whi
h gives the 
orre
t power of n and only misses the 
orre
t 
onstant by a fa
tor 2. To prove(1.16), we let Nn = #fx 2 Zd : (0; 0) �! (x; n)g (1.17)denote the number of verti
es at time n to whi
h the origin is 
onne
ted. From the Cau
hy{S
hwarzinequality, we obtain E [Nn ℄ = E hNnI[Nn > 0℄i � �E [N 2n ℄�1=2�1=2n : (1.18)4



Sin
e E [Nn ℄ = Px2Zd �n(x) and E [N2n ℄ = Px1;x22Zd �n;n(x1; x2), it follows from (1.13){(1.14) thatA[1 + o(1)℄ � �A3V n[1 + o(1)℄�1=2�1=2n ; (1.19)whi
h implies (1.16).II. In
ipient in�nite 
luster. The formula (1.1) has impli
ations for the in
ipient in�nite 
luster(IIC). Let F denote the �-algebra of events, and let F0 denote the algebra of 
ylinder events, i.e.,the events that depend on the o

upation status of a �nite set of bonds. In [11℄, we 
onstru
ted ameasure P1, the IIC measure, as follows. We de�ned Pn byPn(E) = 1�n Xx2ZdP(E \ f(0; 0) �! (x; n)g) (E 2 F); (1.20)where �n = Px2Zd �n(x). In [11, Theorem 1.1℄, we showed that for p = p
, d > 4 and L suÆ
ientlylarge, the limit P1(E) = limn!1Pn(E) (E 2 F0) (1.21)exists and extends to a measure on F . A se
ond and more natural 
onstru
tion of the IIC ariseswhen we 
ondition on survival up to time n, as follows. ForE 2 F , let Qn(E) = P(E j (0; 0) �! n).In [11, Theorem 1.2℄, we showed that, subje
t to (1.1), for p = p
, d > 4 and L suÆ
iently large,the limit Q1(E) = limn!1Qn(E) (E 2 F0) (1.22)exists and extends to a measure on F , with Q1 = P1. Thus we now have the following 
orollary.Corollary 1.2. Let d > 4 and p = p
. There is a �nite positive 
onstant L0 = L0(d) su
h that,for L � L0, the measure Q1 exists and equals P1.III. Size of survival set. Re
all from (1.17) that Nn denotes the number of verti
es at time nto whi
h the origin is 
onne
ted. The following is a 
onsequen
e of [11, Theorem 1.5℄ and (1.1).Corollary 1.3. Let d > 4 and p = p
. There is a �nite positive 
onstant L0 = L0(d) su
hthat, for L � L0, n�1Nn 
onverges weakly to an exponential random variable with parameter� = 2=(A2V ) = 1=(AB), under the measure Qn as n!1.We have already used the fa
t that E [Nn ℄ = A[1 + o(1)℄ by (1.13). A

ording to (1.1) andCorollary 1.3, we 
an understand this statement to 
orrespond to the two statementsP(Nn > 0) = 1Bn [1 + o(1)℄; E [Nn jNn > 0℄ = ABn[1 + o(1)℄: (1.23)In other words, 
lusters rarely survive to time n, but when they do, they are large.IV. Criti
al exponent for size of 
luster of origin. Let p = p
. Let C(x; n) = f(y;m) 2Zd � Z+ : (x; n) �! (y;m)g denote the forward 
luster of (x; n), of 
ardinality jC(x; n)j. LetPn = P(jC(0; 0)j = n); (1.24)5



and let P�n = 1Xm=nPm = P(jC(0; 0)j � n) (1.25)denote the probability that the size of the 
luster of the origin is at least n. For h � 0, letM(h) = 1�P1n=1 Pne�hn. The 
riti
al exponent Æ is de�ned by the 
onje
tured asymptoti
 relationM(h) � 
onst�h1=Æ as h # 0, or, in a stronger statement, by Pn � 
onst �n�1�1=Æ, whi
h implies thatP�n � 
onst � n�1=Æ. It is known quite generally that M(h) � 
onst � h1=2 for h � 0 [1℄. For d > 4and L suÆ
iently large, it is a 
onsequen
e of the triangle 
ondition that also M(h) � 
onst � h1=2[2, 18℄, so that M(h) ' h1=2 (where \'" denotes upper and lower bounds with possibly di�erent
onstants), and thus Æ = 2 in this sense. It is also known that dMdh = P1n=1 nPne�hn ' h�1=2 [2, 18℄for d > 4 and L suÆ
iently large. The following 
orollary to (1.1) gives a somewhat di�erentstatement that Æ = 2, and is proved dire
tly without invoking the triangle 
ondition.Corollary 1.4. Let d > 4 and p = p
. There are �nite positive 
onstants L0 = L0(d) and
i = 
i(d; L), i = 1; 2, su
h that, for L � L0,
1pn � P�n � 
2pn (n � 1): (1.26)The proof is given in Se
tion 3. For ordinary (non-oriented) nearest-neighbour bond per
olationin dimensions d � 6, the asymptoti
 formula P(jC(0)j = n) � 
onst � n�3=2 was proved in [9,Theorem 1.1℄, where C(0) denotes the 
luster of the origin. Our present methods are not suÆ
ientto prove the 
orresponding statement for oriented per
olation for d > 4, whi
h would imply anasymptoti
 formula in pla
e of (1.26).1.4 Criti
al bran
hing pro
essesAbove the 
riti
al dimension 4, the 
onne
tivity fun
tions of 
riti
al oriented per
olation havebeen shown to have the same s
aling as their analogues for 
riti
al bran
hing random walk [17℄.It is therefore natural to expe
t that the same will be true for the survival probability, and ouranalysis is based on a 
omparison of the re
ursion relation (1.37) with its 
ounterpart for 
riti
albran
hing random walk, or, equivalently, the survival probability for 
riti
al bran
hing pro
esses.In this se
tion, we derive the analogue of (1.8) for 
riti
al bran
hing pro
esses. Consider abran
hing pro
ess with a 
riti
al o�spring distribution q̂ = (q̂m)1m=0, i.e.,�q̂ = 1Xm=0mq̂m = 1: (1.27)Let �2̂q denote the varian
e of q̂, whi
h we assume is positive and �nite. By (1.27),�2̂q = 1Xm=0m(m� 1)q̂m: (1.28)We write P̂ for the law of the 
riti
al bran
hing pro
ess, Zn for the number of parti
les alive attime n, and we let �̂n = P̂(Zn > 0) (1.29)6



denote the survival probability at time n. By 
onditioning on the number of o�spring of the initialparti
le that survive to time n+1, and assuming for simpli
ity that the third moment of q̂ is �niteas well, we obtain the re
ursion relation�̂n+1 = 1Xm=1mq̂m�̂n(1� �̂n)m�1 + 1Xm=2 m(m� 1)2 q̂m�̂2n(1� �̂n)m�2 +O(�̂3n): (1.30)We expand the power of 1� �̂n in (1.30) to obtain�̂n+1 = 1Xm=1mq̂m[�̂n � (m� 1)�̂2n℄ + 1Xm=2 m(m� 1)2 q̂m�̂2n +O(�̂3n)= �̂n � �2̂q2 �̂2n +O(�̂3n): (1.31)Note the 
an
ellation that results in a negative 
oeÆ
ient for the quadrati
 term in (1.31).From (1.31) it is straightforward to dedu
e that�̂n = 2�2̂qn [1 +O(n�1 logn)℄; (1.32)whi
h is the analogue of (1.10). Indeed, following [5, Se
tion 8.5℄, we put v̂n = 1=�̂n and note that(1.31) yields the re
ursion relationv̂n+1 = v̂n1� �2̂q2 v̂�1n +O(v̂�2n ) = v̂n + �2̂q2 +O(v̂�1n ): (1.33)For later referen
e (see under (2.28) below), we note also that the 
onstant in the error term of(1.33) depends only on the third moment of q̂. It is a 
lassi
al result that �̂n ! 0, and hen
ev̂n !1. Using the latter in the right-hand side of (1.33), we obtainv̂n+1 = �2̂qn2 [1 + o(1)℄: (1.34)Inserting this into (1.33), we get the re
ursionv̂n+1 = v̂n + �2̂q2 +O(n�1): (1.35)From this, in turn, we obtain v̂n = �2̂qn2 +O(logn); (1.36)whi
h proves (1.32).1.5 Main ingredients in the proofThere are three main ingredients in the proof of Theorem 1.1. The �rst two are proved in Part II,and we prove the third here in Part I. 7



A. The �rst ingredient is the derivation of a re
ursion relation for �n that repla
es the simplere
ursion (1.31) for bran
hing pro
esses. We do this in Part II by extending the la
e expansionfrom an expansion for the two-point fun
tion (a point-to-point expansion) to an expansion for thesurvival probability (a point-to-plane expansion). It turns out that this is not a minor modi�
ationof previous la
e expansions. The result of the expansion is that the re
ursion relation (1.31) forbran
hing pro
esses is repla
ed by the following re
ursion relation for oriented per
olation:�n = n�1Xm=0 �mp�n�1�m � bn=2
Xm1=1 nXm2=m1 �m1;m2�n�m1�n�m2 + en: (1.37)Here, (�m) are the 
oeÆ
ients appearing in the la
e expansion for the two-point fun
tion [17, 18℄(in terms of the notation �m(x) of [17, Se
tion 3℄, we have �0 = 1, �1 = 0, and �m = Px2Zd �m(x)for m � 2), (�m1;m2) are 
ertain 
oeÆ
ients similar to those appearing in the la
e expansion for thethree-point fun
tion [17℄, while (en) are error terms. The expansion (1.37) holds rather generally,but to be useful it is ne
essary to have estimates for the 
oeÆ
ients appearing in its right-handside.B. The se
ond ingredient in the proof 
onsists of estimates on �m, �m1;m2 and en, whi
h werefer to as diagrammati
 estimates. These diagrammati
 estimates are valid for p = p
, d > 4 andL suÆ
iently large. Diagrammati
 estimates for �m1;m2 and en are obtained in Part II, and gooddiagrammati
 estimates for �m are known already from [17, Proposition 2.2℄. Also, it was shownin [17, Se
tion 2.1.2℄ that p
 1Xm=0 �m = 1: (1.38)We may think of (1.38) as an analogue of (1.27). The following theorem summarises the diagram-mati
 bounds. Here, and throughout the paper, we use the abbreviation� = L�d: (1.39)The dimension d enters our analysis only as a parameter and not with any geometri
 meaning.To emphasise this, and to fa
ilitate the possible extension of our analysis to models other thanoriented per
olation, we repla
e the parameter d by� = d2 ; (1.40)and we assume that � > 2. We repla
e (1.9) byÆn = 8>>>><>>>>: 13��n�(��2) logn (2 < � < 3);n�1 log2 n (� = 3);n�1 logn (� > 3); (1.41)and also de�ne �n = 8>>>><>>>>: n�(��2) logn (2 < � < 3);n�1 logn (� = 3);n�1 (� > 3): (1.42)Part (i) of the following theorem is proved in [17℄, and parts (ii-iii) are proved in [12℄.8



Theorem 1.5. (Diagrammati
 estimates)Fix d > 4, � = d=2, and p = p
. There are positive 
onstants C�; C�; Ce and �0 su
h that for0 < � � �0 the following hold:(i) �0 = 1, �1 = 0 and j�mj � C��(m+ 1)�� (m � 2): (1.43)(ii) �1;1 = 12p2
Px2ZdD(x)(1�D(x)) = 12 [1 +O(�)℄ andj�m1;m2 j � C��(m1 + 1)�(��1)(m2 �m1 + 1)�(��1) (m2 � m1 � 1; m1 +m2 � 3): (1.44)(iii) If �m � C�(m + 1)�1 for 0 � m � n and some C� � 1, thenjen+1j � CeC3� (n+ 1)�2 h(n + 1)�1 + ��n+1i : (1.45)C. The third ingredient in the proof is an indu
tive analysis of the re
ursion relation (1.37),using the diagrammati
 estimates of Theorem 1.5 to bound the 
oeÆ
ients in (1.37). The indu
tiveanalysis is 
arried out in Se
tion 2 and is the main 
ontent of Part I. Note that the diagrammati
estimate in (1.45) for en+1, whi
h is the error term in (1.37) for �n+1, assumes a bound for �m with0 � m � n. This is pre
isely what opens up the possibility of an indu
tive analysis. The re
ursionrelation (1.37) is a nonlinear equation for �n. Our indu
tion hypothesis is on vn = 1=�n, as inSe
tion 1.4. From the indu
tion we will 
on
lude that vn = Bn[1 +O(n�1 logn) + �O(Æn)℄, whi
hwill in turn imply the result (1.8) for ��n.The initialisation of the indu
tion in ingredient C uses spe
i�
 properties of oriented per
ola-tion, but the advan
ement of the indu
tion uses only the re
ursion relation (1.37) and the estimatesof Theorem 1.5, and does not otherwise use spe
i�
 properties of oriented per
olation. Be
ause ofthis model-independent aspe
t, our analysis 
an potentially serve to study the extin
tion probabil-ity for other models as well, su
h as 
riti
al unoriented per
olation, latti
e trees, and the 
riti
al
onta
t pro
ess. In parti
ular, a program to apply the la
e expansion to the 
riti
al spread-out
onta
t pro
ess on Zd for d > 4 was initiated in [19℄, and extended in [13, 15℄, via an approxi-mation by 
riti
al spread-out oriented per
olation. We expe
t that it is possible to 
ombine ourmethods with those of [15℄ to prove the analogue of Theorem 1.1, and hen
e also the analogueof the asymptoti
 formula (1.10) for the survival probability, for the 
riti
al spread-out 
onta
tpro
ess in dimensions d > 4.For the voter model, the survival probability is the probability that the opinion of the originsurvives to time t when initially all other verti
es hold the opposite opinion. Methods quite di�erentfrom ours have been used to prove the analogue of (1.1) for the voter model for all dimensionsd � 2 (with a logarithmi
 
orre
tion when d = 2) [4, 6℄. However, these methods do not have aknown extension to the 
riti
al 
onta
t pro
ess or 
riti
al oriented per
olation.2 The indu
tion analysisIn this se
tion we prove Theorem 1.1, subje
t to (1.37) and Theorem 1.5. We use the bounds onthe 
oeÆ
ients in the re
ursion relation (1.37), given in Theorem 1.5, to dedu
e the asymptoti
sin (1.8) via indu
tion on n. The indu
tion is 
arried out on the quantityvn = 1�n : (2.1)9



Sin
e �n ! 0 as n!1, we know that vn !1 as n!1.The outline of this se
tion is as follows. In Se
tion 2.1, we formulate our indu
tion hypothesis.In Se
tion 2.2, we initialise the indu
tion by 
omparing 
riti
al oriented per
olation with bran
hingrandom walk. Finally, in Se
tion 2.3, we advan
e the indu
tion.We assume throughout this se
tion that � > 2, whi
h for oriented per
olation is the statementthat d > 4. Also, we �x p = p
 throughout this se
tion.2.1 The indu
tion hypothesisIn the 
ourse of the indu
tion, we will show that the 
onstant B in Theorem 1.1 is given byB = P1m1=1P1m2=m1 �m1;m21 + p
P1m=2m�m : (2.2)By Theorem 1.5(i{ii), B <1 for d > 4 and L suÆ
iently large, withB = 12 +O(�) as � # 0: (2.3)The formula (2.2) 
an be guessed from the following rough 
al
ulation, in whi
h `�' denotesan un
ontrolled approximation. Let � = P1m1=1P1m2=m1 �m1;m2 . We �rst approximate (1.37) by�n � n�1Xm=0 �mp
�n�1�m � ��2n: (2.4)We then repla
e �j by (Bj)�1, use1n� 1�m = 1n + m+ 1n(n� 1�m) � 1n + m + 1n2 ; (2.5)and, re
alling (1.38) and �1 = 0, use Pn�1m=0 �mp
 � 1 and Pn�1m=0(m + 1)�mp
 � 1 +P1m=2m�mp
.This leads to 1Bn � 1Bn + 1Bn2  1 + 1Xm=2m�mp
!� �(Bn)2 ; (2.6)and (2.2) results after we solve for B. Note the 
an
ellation of the �rst-order term in (2.6), due to(1.38).Our indu
tion hypothesis is the following analogue of (1.35):(IH) There are K; fK > 0 (independent of �) and �0 > 0 su
h thatjvj � vj�1 � Bj � K(j + 1)�1 + fK��j+1 (1 � j � n; 0 < � � �0); (2.7)with �j+1 given by (1.42), B given by (2.2), and v0 = 1.Note that nXj=1�j+1 � (n + 1)Æn+1; (2.8)10



with Æn de�ned in (1.41). It follows from (2.7){(2.8) thatjvn �Bnj � v0 + nPj=1 jvj � vj�1 � Bj� 1 +K log(n+ 1) + fK� nPj=1�j+1� 2K log(n+ 1) + fK�(n+ 1)Æn+1 (2.9)(when K is not too small). This says thatvn = Bn[1 +O(n�1 logn) + �O(Æn)℄; (2.10)whi
h is (1.10). Combining (2.7), the inequality �n+1 � Æn+1 and (2.10) with the relation��n = �n � �n+1 = 1vnvn+1 (vn+1 � vn) = 1vnvn+1 [B + (vn+1 � vn � B)℄; (2.11)we get (1.8).Thus, to prove Theorem 1.1, it suÆ
es to initialise and advan
e the indu
tion hypothesis (IH).The initialisation is via the following proposition, whi
h is proved in Se
tion 2.2. Proposition 2.1shows that (IH) holds for 1 � n � N0, for a suitable 
hoi
e of 
onstants, and with � small enough(depending on N0).Proposition 2.1. (Initialisation of the indu
tion)Fix d > 4 and p = p
. There are 
onstants K0 and �1 su
h that for every 1 � N0 <1 there existsa fK0 = fK0(N0) > 0 su
h that (IH) holds for all K � K0, fK � fK0, 1 � n � N0 and 0 < � � �1.Note that to prove Proposition 2.1 it suÆ
es to obtain (IH) with K = K0 and fK = fK0, by themonotoni
ity of (2.7) in K and fK.It is important to initialise the indu
tion for all 1 � n � N0, with N0 large, for two reasons.First, for the advan
ement of the indu
tion, we �nd it useful to start from n = N0 with N0large, sin
e this allows us to only keep tra
k of leading order terms in n while being generouswith 
onstants. More importantly, the bound (1.45) on the error term en+1 is not useful unlessn is large 
ompared to C� and C3, and indeed unless we have the existen
e of the 
onstant C� ofTheorem 1.5(iii). We will need large n in this regard.The following proposition, whi
h is proved in Se
tion 2.3, makes a 
hoi
e of N0 and advan
esthe indu
tion to all n > N0.Proposition 2.2. (Advan
ement of the indu
tion)Fix d > 4 and p = p
. There are 
onstants K, N0 = N0(K), fK = fK(K) and �2 = �2(K; fK) su
hthat if (IH) holds for all 1 � j � n, for some n � N0, for all 0 < � � �2 and with the 
onstantsK and fK, then (IH) holds for n + 1 with the same 
onstants.Note that we are free also to require that the 
onstants K and fK of Proposition 2.2 obeyK � K0 and fK � fK0, with K0 and fK0 given by Proposition 2.1. The various 
onstants will be
hosen in the following order: 11



(�) FirstK � K0 is 
hosen a

ording to Propositions 2.1{2.2, next N0 is 
hosen large (dependingon K), next fK � fK0 is 
hosen large (depending on K and N0), and �nally L0 is 
hosen solarge (depending on K, fK and hen
e on N0) that � = L�d � minf�0; �1; �2g for L � L0,where the �i are the 
onstants of Theorem 1.5 and Propositions 2.1{2.2.Together, Propositions 2.1{2.2 imply that (IH) holds for all n, with a suitable 
hoi
e of 
on-stants. Thus our remaining task is to prove Propositions 2.1{2.2. The proof of Proposition 2.1 isvia a 
omparison of oriented per
olation with bran
hing random walk, and is model-dependent.The advan
ement of the indu
tion is a model-independent argument that relies only on (1.37) andTheorem 1.5, provided that � > 2.2.2 Initialisation of the indu
tionIn this se
tion, we prove Proposition 2.1 by showing that for any �xed N0, (IH) holds for 1 � n �N0, provided we 
hoose fK0 depending on N0. For this, we will make use of three related bran
hingrandom walk models.We �rst de�ne a 
riti
al bran
hing random walk, with law P̂ and o�spring distribution q̂, asfollows. An initial parti
le at the origin gives birth to a parti
le at x with probability D(x), forea
h x 2 Zd, after whi
h it dies. In the next time step, ea
h parti
le at x gives birth to a parti
leat y with probability D(y � x), for ea
h y 2 Zd, after whi
h it dies, et
. Thus, the number ofo�spring per parti
le is a random variableX = Xx2Zd Ix; (2.12)where Ix (x 2 Zd) are independent Bernoulli random variables withP̂(Ix = 1) = D(x): (2.13)By (1.2){(1.3), �q̂ = Ê [X℄ = Xx2ZdD(x) = 1; (2.14)�2̂q = Ê [X2℄� (Ê [X℄)2 = Xx2ZdD(x)(1�D(x)) = 1 +O(�): (2.15)Let Zj denote the number of parti
les alive at time j, and let�̂j = P̂(Zj > 0): (2.16)We next de�ne a super
riti
al bran
hing random walk, with law P� and o�spring distributionq�, by repla
ing D(x) by p
D(x) in (2.13), i.e.,P�(Ix = 1) = p
D(x): (2.17)As in (2.14){(2.15), we have (re
all (1.5))�q� = Xx2Zd p
D(x) = p
 = 1 +O(�); �2q� = Xx2Zd p
D(x)(1� p
D(x)) = 1 +O(�); (2.18)12



and, as in (2.16), we de�ne ��j = P�(Zj > 0): (2.19)It is an elementary fa
t (see, e.g., [8, p. 172℄) thatE � [Zj℄ = �jq�; E � [Z2j ℄� (E � [Zj℄)2 = �2q� �j�1q� (�jq� � 1)�q� � 1 ; (2.20)where we use that �q� = p
 > 1 (re
all (1.5)).The super
riti
al bran
hing random walk in the previous paragraph is 
losely related to 
riti
aloriented per
olation, but with the important di�eren
e that parti
les 
an 
oexist at the same vertexin the super
riti
al bran
hing random walk, whereas in oriented per
olation ea
h vertex 
ontains atmost one parti
le. However, we 
an think of oriented per
olation as 
orresponding to a super
riti
albran
hing random walk with killing, as follows. An initial parti
le at the origin gives birth to aparti
le at x with probability p
D(x), for ea
h x 2 Zd, after whi
h it dies. In the next time step,ea
h parti
le at x gives birth to a parti
le at y with probability p
D(y� x), for ea
h y 2 Zd, afterwhi
h it dies, but if two or more parti
les land on the same vertex in Zd then all but one are killed.Ea
h parti
le in the resulting 
on�guration generates its o�spring and dies, but again at ea
hvertex all but one of the parti
les are killed, et
. If P denotes the law of the super
riti
al bran
hingrandom walk with killing that is thus obtained, then by de�nition the survival probability at timej of our oriented per
olation model is given by�j = P(Zj > 0): (2.21)From this representation we immediately obtain the sandwi
hP�(Zj > 0; T > j) � �j � P�(Zj > 0); (2.22)where P� is the law of the super
riti
al bran
hing random walk without killing and T denotes the�rst time that two parti
les meet at the same vertex. Note that P�(T = 1) = 0 be
ause the initialparti
le at the origin puts at most one 
hild at a vertex. We will estimate the upper and lowerbounds in (2.22) using the following two lemmas.Lemma 2.3. The bran
hing random walks with o�spring distributions q̂ and q� are related by�̂j � ��j � pj
�̂j; j 2 Z+: (2.23)Proof. Sin
e p
 � 1 by (1.5), the lower bound in (2.23) is trivial (see (2.13) and (2.17)). The upperbound is proved as follows. For i 2 Z+, let I(i)x denote independent 
opies of Ix (x 2 Zd) with law(2.17). For ! : 0! j an oriented path of length j 
onne
ting 0 to level j, letE(j)(!) = j\i=1fI(i�1)!(i)�!(i�1) = 1g;E(j);<(!) = \!0<![E(j)(!0)℄
; (2.24)
13



where !0 < ! means that !0 is lexi
ographi
ally smaller than !, i.e., !0(k) < !(k) when k is the�rst time at whi
h the two paths disagree. In terms of these quantities, we haveP�(Zj > 0) = X!:0!j P��E(j)(!) \ E(j);<(!)�= X!:0!j P��E(j);<(!) j E(j)(!)�P��E(j)(!)�= X!:0!j P��E(j);<(!) j E(j)(!)� pj
 jYi=1D(!(i)� !(i� 1)) (2.25)� X!:0!j P̂�E(j);<(!) j E(j)(!)� pj
P̂�E(j)(!)�= pj
P̂(Zj > 0);where the inequality 
omes from the fa
t that E(j);<(!) is a de
reasing fun
tion of ea
h Ix.Lemma 2.4. For ea
h 1 � N0 < 1, there is a positive 
onstant C(N0) su
h that P�(T � j) �C(N0)� for all 2 � j � N0.Proof. Let Sj denote the set of verti
es where parti
les live at time j. ThenP�(T � j) = jXk=2P�(T = k) = jXk=2 XA6=;P�(Sk�1 = A; T = k)= jXk=2 XA6=;P�(Sk�1 = A; T > k � 1) P�(T = k j Sk�1 = A; T > k � 1)� jXk=2 XA6=;P�(Sk�1 = A) Xx1;x22A;x1 6=x2 Xy2Zd p
D(y � x1)p
D(y � x2) (2.26)� jXk=2 XA6=;P�(Sk�1 = A) C2p2
� jAj(jAj � 1)= C2p2
� jXk=2 E �(Zk�1(Zk�1 � 1));where the last inequality uses (1.3). Substituting (2.18){(2.20) into (2.26) and using the inequality(�lq � 1)=(�q � 1) = Pl�1i=0 �iq � l�l�1q , we arrive at P�(T � j) � C�j2 for some C > 0. This provesthe lemma with C(N0) = CN20 .With the above preliminaries, we are now able to prove Proposition 2.1.Proof of Proposition 2.1. Re
all from (2.1) that vj = 1=�j, and letv̂j = 1̂�j : (2.27)By the triangle inequality,jvj � vj�1 �Bj � jvj � v̂jj+ jvj�1 � v̂j�1j+ jB � �2̂q2 j+ jv̂j � v̂j�1 � �2̂q2 j: (2.28)14



For the fourth term, we �rst observe that it is easily veri�ed that the third moment of q̂ isbounded by a universal 
onstant. By (1.33){(1.35) (and the 
omment below (1.33)), the fourthterm is therefore at most K0(j + 1)�1 for j � 1 and some 0 < K0 < 1, where K0 is a universal
onstant. Hen
e it is also at most K(j + 1)�1 for any K � K0.The third term on the right-hand side is at most C 0� for some C 0 > 0, sin
e �2̂q = 1 + O(�)and B = 12 +O(�). For the �rst and se
ond terms, we �x 1 � N0 <1, let 1 � j � N0, and writevj � v̂j = (�̂j � �j)=�j �̂j. It 
an be seen from (2.22) and Lemmas 2.3{2.4 that�j � �̂j � C(N0)�: (2.29)In addition, it follows from (1.32) that, for small �, �̂n is eventually 
lose to a �-independent
onstant multiplied by n�1. By the monotoni
ity of �̂j in j, this implies that �̂j is bounded belowby an N0-dependent positive 
onstant, uniformly in 0 < � � �1 with �1 small enough, and in1 � j � N0. Therefore, �j �̂j � 1=C(N0) for 1 � j � N0 and some C(N0) > 0, and hen
e, on
e weprove that j�j � �̂jj � C(N0)� (1 � j � N0); (2.30)(2.7) follows if fK � fK0 = (C 0 + 2C(N0)2)��1N0+1. To prove (2.30), we 
ombine (2.29) with (2.22){(2.23) to obtain �̂j � C(N0)� � �j � pj
�̂j: (2.31)Sin
e p
 = 1 +O(�), (2.30) now follows.2.3 Advan
ement of the indu
tionIn this se
tion, we prove Proposition 2.2 by showing that the indu
tion hypothesis (IH) 
an beadvan
ed from n = N0 onwards when N0 is 
hosen large enough. In the proof, we assume that� > 2, and make use of (1.37) and Theorem 1.5, but we not otherwise use spe
i�
 properties oforiented per
olation.To begin, we re
all the de�nition of B in (2.2), and de�neBn+1 = Pb(n+1)=2
m1=1 Pn+1m2=m1 �m1;m21 + p
Pn+1m=2m�m ; �Bn+1 = B �Bn+1: (2.32)We also de�ne un+1 = �n � �n+1�n ; (2.33)and we write vn+1 � vn = vn un+11� un+1 : (2.34)The main step in the advan
ement of (IH) will be to prove the following proposition.Proposition 2.5. (Key estimate for advan
ement of the indu
tion)Let K and fK be the 
onstants of (IH). For every N0 suÆ
iently large depending on K, there existsa �3 = �3(fK) su
h that if (IH) holds for some n � N0 and for all 0 < � � �3, with these 
onstantsK and fK, then jvnun+1 � Bn+1j � 600B2Ce(n+ 1)�1 + C(K)��n+1; (2.35)where the 
onstant C(K) depends only on K, and where Ce is the 
onstant of (1.45).15



Before proving Proposition 2.5, we �rst show how it 
an be used to prove Proposition 2.2.Re
all that our 
hoi
e of 
onstants is taken in the order indi
ated in item (�) in Se
tion 2.1. The
onstants C�; C�; Ce; C� are the 
onstants of Theorem 1.5. We use C to denote a generi
 
onstantwhose value may 
hange from line to line. If C depends on variables su
h as K or N0, then wemake this expli
it by writing C = C(K;N0). Otherwise, C denotes a 
onstant that is independentof K, fK, N0 and �.Note that it follows from (2.9), and hen
e from (IH), thatjvn �Bnj � Bn "2KBn log(n+ 1) + fK�B �1 + 1n�Æn+1# : (2.36)Thus, if we 
hoose n � N0(K) suÆ
iently large, and � suÆ
iently small depending on N0(K),then 12Bn � vn � 2Bn: (2.37)Proof of Proposition 2.2. (Advan
ement of (IH)). Suppose that (2.7) holds for all 1 � j � n. By(2.32) and (2.34),vn+1 � vn �B = 11� un+1 f��Bn+1 + (vnun+1 �Bn+1) +Bun+1g : (2.38)From (1.43){(1.44), (2.2) and (2.32), it is easily dedu
ed thatj�Bn+1j � C(C� + C�)�(n+ 1)�(��2): (2.39)This term is of smaller order in n than the se
ond term on the right-hand side of (2.7). The middleterm of (2.38) is handled using Proposition 2.5. To 
ontrol the denominator and last term on theright-hand side of (2.38), we �rst note that by (2.32),un+1 � 1n = 1vn �� 1n(vn �Bn)� �Bn+1 + (vnun+1 � Bn+1)� : (2.40)It follows from (1.42), (2.8){(2.9), (2.35), (2.37) and (2.39) that����un+1 � 1n ���� � C(K;Ce)(n + 1)�2 log(n + 1) + C(K; fK;C�; C�)�(n+ 1)�1Æn+1: (2.41)In parti
ular, jun+1j � 2=n, and hen
e (1 � un+1)�1 � 2, if we 
hoose n � N0(K;Ce) large and� � �2(K; fK;C�; C�) small, as indi
ated in (�). It then follows from (2.35) and (2.38){(2.39) thatjvn+1 � vn � Bj � 2 �600B2Ce + 2B� (n+ 1)�1 + C(K;C�; C�)��n+1: (2.42)This proves (IH) for j = n+1, provided we take K � 2(600B2Ce+2B) and fK � C(K;C�; C�).Proof of Proposition 2.5. To prove (2.35), we �rst use the re
ursion relation (1.37) and the identity(1.38) to writevnun+1 �Bn+1 = v2n(�n � �n+1)�Bn+1= v2n� nXm=0 �mp
(�n � �n�m) + �n 1Xm=n+1 �mp
+ b(n+1)=2
Xm1=1 n+1Xm2=m1 �m1;m2�n+1�m1�n+1�m2 � en+1�� Bn+1: (2.43)16



The �rst equation in (2.32) 
an be rewritten asBn+1 = �Bn+1 n+1Xm=2m�mp
 + b(n+1)=2
Xm1=1 n+1Xm2=m1 �m1;m2: (2.44)Thus we may rewrite (2.43) asvnun+1 � Bn+1 = �v2nen+1 + vn 1Xm=n+1 �mp
 �Xn + Yn; (2.45)with Xn = nXm=0 �mp
 " vnvn�m (vn � vn�m)�Bn+1m# ; (2.46)Yn = b(n+1)=2
Xm1=1 n+1Xm2=m1 �m1;m2 " v2nvn+1�m1vn+1�m2 � 1# : (2.47)Note that the terms with m = 0; 1 and m1 = m2 = 1 vanish (re
all that �1 = 0). Thus, by(1.43){(1.44), Xn and Yn are both of order �.For the �rst term on the right-hand side of (2.45), we note that (2.37) supplies the hypothesisof Theorem 1.5(iii) with C� = 5 > 2=B (by (2.3)). It then follows from (1.45) thatjv2nen+1j � 4B2CeC3� [(n + 1)�1 + ��n+1℄: (2.48)The right-hand side of (2.48) has pre
isely the form of the right-hand side of (2.35). Similarly, these
ond term on the right-hand side of (2.45) 
an be estimated with the help of (1.43) asvn ��� 1Xm=n+1 �mp
��� � 2Bnp
 1Xm=n+1 j�mj � CC��(n+ 1)�(��2); (2.49)whi
h is of smaller order in n than the last term in (2.48) (re
all (1.42)).To estimate jXnj, we �rst rewrite the expression in square bra
kets in (2.46) asvnvn�m (vn � vn�m)�Bn+1m= vnvn�m [vn � vn�m �Bm℄�1 + Bmvn �+ vnvn�m B2m2vn + �Bn+1m: (2.50)Hen
e, using the lower bound vn � 12Bn of (2.37), we havejXnj � I + II + III (2.51)with I = 3p
 nXm=2 j�mj vnvn�m jvn � vn�m � Bmj;II = 2Bn p
 nXm=2m2j�mj vnvn�m ; (2.52)III = j�Bn+1jp
 nXm=2mj�mj:17



The easiest to estimate is III, for whi
h we use (1.43) and (2.39) to obtainIII � C(C� + C�)�2(n+ 1)�(��2); (2.53)whi
h is of smaller order, both in n and in �, than the right-hand side of (2.35).To estimate I and II, we �rst 
onsider the fa
tor vn=vn�m. Sin
e vn�m � 1, given any `0 � 1,it follows from (2.37) thatvnvn�m � vn � 2Bn � 2B`0nn+ 1�m (n+ 1�m � `0): (2.54)On the other hand, if we 
hoose `0 � N0(K), then it follows from (2.37) that vn�m � B(n�m)=2when n+ 1�m > `0. Therefore,vnvn�m � C(K)nn+ 1�m (2 � m � n): (2.55)It follows from (IH) thatjvn � vn�m � Bmj � nXj=n+1�m jvj � vj�1 � Bj � m � Kn + 2�m + CfK��n+2�m� ; (2.56)where we use that �j+1 is de
reasing in j for j large. From (1.43) and (2.55){(2.56) we obtainI � 3p
C�� nXm=2(m+ 1)�� C(K)nmn+ 1�m � Kn + 2�m + CfK��n+2�m�� CC(K)C�[K� + fK�2℄�n+1; (2.57)where we use (1.42) and the 
onvolution bounds (2.65){(2.66) stated in Lemma 2.6 below (witha = �� 1, b = 2, 
 = 0). Similarly, we obtainII � C(K)C���n+1: (2.58)Note that I 
arries an extra fa
tor � 
ompared to the se
ond term on the right-hand side of (2.35),while II does not.To estimate jYnj, we make the de
ompositionv2nvn+1�m1vn+1�m2 � 1 = vn � vn+1�m1vn+1�m1 + vn � vn+1�m2vn+1�m2 + vn � vn+1�m1vn+1�m1 vn � vn+1�m2vn+1�m2 : (2.59)We use (2.37) and (2.55){(2.56) to estimate0 � vn � vn+1�mvn+1�m = 1vn vnvn+1�m (vn � vn+1�m)� 2Bn C(K)nn+ 2�m(m� 1) �B + Kn + 3�m + CfK��n+3�m� (2.60)� m� 1n+ 2�mC(K)h1 + fK�i:18



Note that when m1 � m2 � n+ 1 we havem1 � 1n+ 2�m1 � m2 � 1n + 2�m2 ; (2.61)and when m1 � b(n + 1)=2
 we have m1 � 1n+ 2�m1 � C: (2.62)Combining (1.44), (2.47) and (2.59){(2.62), we �nd thatjYnj � C(K)h1 + fK�iC�� b(n+1)=2
Xm1=1 n+1Xm2=m1(m1 + 1)�(��1)(m2 �m1 + 1)�(��1) m2 � 1n + 2�m2 : (2.63)With the bound (2.67) stated in Lemma 2.6 below, this implies thatjYnj � C(K)h1 + fK�iC���n+1: (2.64)This is of the same order as the estimate for I in (2.57).Finally, re
alling (2.45) and 
olle
ting the estimates in (2.48){(2.49), (2.51), (2.53), (2.57){(2.58) and (2.63), we see that we have proved the 
laim in (2.35), provided we take �3 suÆ
ientlysmall depending on fK.The following elementary lemma was used in the proof of Proposition 2.5.Lemma 2.6. (i) For a; b > 1 and 
 � 0,nXm=2(m + 1)�a(n+ 2�m)�b[log (n+ 2�m)℄
 � C(n+ 1)�a^b[log (n + 1)℄
: (2.65)(ii) For � > 2, nXm=2(m+ 1)�(��1)(n + 1�m)�1�n+2�m � Cn + 1�n+1: (2.66)(iii) For � > 2,b(n+1)=2
Xm1=1 n+1Xm2=m1(m1 + 1)�(��1)(m2 �m1 + 1)�(��1) m2 � 1n+ 2�m2 � C�n+1: (2.67)Proof. (i) The inequality (2.65) is obtained by estimating the logarithmi
 fa
tor on the left side bythe logarithmi
 fa
tor on the right-hand side, and then 
onsidering separately the 
ases m � n=2(for whi
h (n+ 2�m)�b � C(n + 1)�b) and m > n=2 (for whi
h (m+ 1)�a � C(n+ 1)�a).(ii) The inequality (2.66) follows from (2.65) and the de�nition of �n in (1.42).(iii) For the inequality (2.67), the 
ontribution to the sum due to m2 � b(n+ 1)=2
 is at mostC b(n+1)=2
Xm1=1 (m1 + 1)�(��1)(b(n+ 1)=2
 �m1 + 1)�(��1) n+1Xm2=b(n+1)=2
 nn+ 2�m2� C(n + 1)�(��2) log(n+ 1) � C�n+1; (2.68)19



where we use (2.65) to perform the sum over m1. The 
ontribution due to m2 < b(n+ 1)=2
 is atmost C b(n+1)=2
Xm1=1 b(n+1)=2
Xm2=m1 (m1 + 1)�(��1)(m2 �m1 + 1)�(��1)m2 � 1n + 1 : (2.69)Sin
e m2 � 1 � (m1 + 1) + (m2 �m1 + 1), this is at mostCn + 1 b(n+1)=2
Xm1=1 (m1 + 1)�(��2) b(n+1)=2
Xm2=m1 (m2 �m1 + 1)�(��1)+ Cn+ 1 b(n+1)=2
Xm1=1 (m1 + 1)�(��1) b(n+1)=2
Xm2=m1 (m2 �m1 + 1)�(��2): (2.70)In the �rst term, the sum over m2 is bounded by C, and the sum over m1 together with the fa
tor(n+ 1)�1 is at most C�n+1. The se
ond term is similar.3 Criti
al exponent for size of 
luster of originProof of Corollary 1.4. For the upper bound, we writeP�n � P((0; 0) �! pn) + P(jC(0; 0)j � n; (0; 0) �!= pn): (3.1)By (1.1), the �rst term on the right-hand side de
ays like (Bpn)�1[1 + o(1)℄. By the Markovinequality and (1.13), the se
ond term 
an be bounded byP(jC(0; 0)j � n; (0; 0) �!= pn) � n�1E (jC(0; 0)jI[(0; 0) �!= pn℄)� n�1 pnXm=0 Xx2Zd �m(x) = Apn [1 + o(1)℄: (3.2)This proves the upper bound.For the lower bound, given C1 > 0, we de�neXn = #f(x;m) 2 C(0; 0) : C1pn � m � 2C1png: (3.3)Then, for C2 � 1,P�n � P�n � Xn � C2n� � (C2n)�1E�XnI[n � Xn � C2n℄�= (C2n)�1�E (Xn)� E�XnI[1 � Xn < n℄�� E�XnI[Xn > C2n℄��: (3.4)The �rst term on the right-hand side isE (Xn) = 2C1pnXm=C1pn Xx2Zd �m(x) = AC1pn[1 + o(1)℄: (3.5)20



The se
ond term 
an be bounded byE�XnI[1 � Xn < n℄� � nP(Xn � 1) = n�C1pn = pnBC1 [1 + o(1)℄: (3.6)The third term 
an be bounded, using (1.14), byE�XnI[Xn > C2n℄� � (C2n)�1E (X2n) = (C2n)�1 2C1pnXm1=C1pn 2C1pnXm2=C1pn Xx1;x22Zd � (3)m1;m2(x1; x2)� (C2n)�1(C1pn)2A3V (2C1pn)[1 + o(1)℄ = 2A3V C31C2 pn[1 + o(1)℄: (3.7)Combining (3.4){(3.7), we arrive atP�n � 1C2�C1A� 1BC1 � 2A3V C31C2 � 1pn [1 + o(1)℄: (3.8)The desired lower bound now follows if we �rst 
hoose C1 large and then 
hoose C2 large 
omparedto C1.A
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