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and L À 1. As a result, these models exhibit the ferromagnetic mean-field behavior.

Keywords: Ising model; random-current representation; lace expansion; ferromagnetic mean-field
behavior.

†Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600MB
Eindhoven, the Netherlands. sakai@eurandom.tue.nl

i



1 Introduction

The Ising model is a classical statistical mechanical model that was first introduced in [21]
as a model of magnets. We consider the d-dimensional integer lattice Zd, and a spin variable
ϕx = ±1 is assigned to each site x ∈ Zd. The energy of the system is formally given by
H(ϕ) = −∑

{x,y}⊂Zd Jx,yϕxϕy, where ϕ = {ϕx}x∈Zd is a spin configuration and each Jx,y ∈ R
is a given spin-spin coupling. If the model is ferromagnetic (i.e., Jx,y ≥ 0), then the energy
becomes lower as more spins align. In addition, if d ≥ 2 and the spin-spin coupling is
translation-invariant and summable (i.e.,

∑
x∈Zd Jo,x < ∞), then there is a critical inverse

temperature βc ∈ (0,∞) such that the susceptibility χ(β) is finite if and only if β < βc and
diverges as β ↑ βc (e.g., [1]). The susceptibility χ(β) is the sum of the two-point function
〈ϕoϕx〉β, where 〈f〉β denotes the thermal average of a function f = f(ϕ) at the inverse
temperature β.

We are interested in the critical phenomena around β = βc. For example, it is expected
that there is a critical exponent γ = γ(d) such that χ(β) ≈ (βc − β)−γ as β ↑ βc (in some
appropriate sense). Other observables, such as the spontaneous magnetization, are also
believed to exhibit power-law behavior characterized by their respective critical exponents
that depend only on d and are insensitive to the precise definition of Jo,x ≥ 0, as long as its
range is finite (universality).

For such ferromagnetic models, it was proved in [1, 4] that, if
∑

x∈Zd 〈ϕoϕx〉2β is bounded
uniformly in β < βc, then the aforementioned critical exponents take on their respective
d-independent mean-field values: e.g., γ = 1. This sufficient condition for the ferromagnetic
mean-field behavior has been verified above four dimensions for a class of models that
satisfy a special property, called the reflection positivity (e.g., [6, 8, 9]). However, more
general finite-range models do not always satisfy this property, and therefore their mean-
field behavior has not been completely established yet, even in high dimensions. If we believe
in universality, we expect that these finite-range models also exhibit the same mean-field
behavior, as soon as d > 4. (On the other hand, because of the hyperscaling inequalities in,
e.g., [28], the mean-field exponents for finite-range models are incompatible with d < 4.)

In this paper, we prove the lace expansion for the Ising model. The lace expansion has
been applied to various stochastic-geometrical models, such as self-avoiding walk and per-
colation, to prove their mean-field behavior above the upper-critical dimension (e.g., [18]).
The expansion obtained below for the two-point function gives rise to an identity that is
similar to the recursion equation for the random-walk Green’s function, and is valid inde-
pendently of the property of the spin-spin coupling: Jx,y is not required to be nonnegative,
translation-invariant or Zd-symmetric.

For the ferromagnetic case, we obtain bounds on the expansion coefficients in terms
of two-point functions, and prove that, assuming translation-invariance and Zd-symmetry
of the spin-spin coupling, the two-point function obeys a Gaussian infrared bound for the
nearest-neighbor model with d À 4 and for the spread-out model (defined below in Section 2)
with d > 4 and the range of interaction L À 1, and that 〈ϕoϕx〉βc

exhibits a Gaussian
asymptotics for the spread-out model with d > 4 and L À 1. As a result, the aforementioned
sufficient condition for the ferromagnetic mean-field behavior holds.

We emphasize that our approach using the lace expansion does not require the reflection
positivity of the spin-spin coupling, so that it can be used to prove the same results for,
e.g., the next-nearest-neighbor model with d À 4.
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In the next section, we define the model and state the main results.

2 Model and the main results

Let Λ be a finite subset of Zd containing the origin o ∈ Zd, such as a d-dimensional hypercube
centered at the origin. The Hamiltonian represents the energy of the system, and is defined
by

HΛ(ϕ) = −
∑

{x,y}⊂Λ

Jx,yϕxϕy (ϕ = {ϕx}x∈Λ ∈ {±1}Λ), (2.1)

where Jx,y ∈ R for x, y ∈ Zd is the spin-spin coupling. The partition function Zβ;Λ is defined
to be the expectation of the Boltzmann factor e−βHΛ(ϕ) with respect to the product of the
single-spin measures dµΛ(ϕ) =

∏
x∈Λ(1

2
1{ϕx=+1} + 1

2
1{ϕx=−1}), i.e.,

Zβ;Λ =

∫
dµΛ(ϕ) e−βHΛ(ϕ) = 2−|Λ|

∑

ϕ∈{±1}Λ
e−βHΛ(ϕ). (2.2)

We define the thermal average of a function f = f(ϕ) by

〈f〉β;Λ =
1

Zβ;Λ

∫
dµΛ(ϕ) f(ϕ) e−βHΛ(ϕ) =

2−|Λ|

Zβ;Λ

∑

ϕ∈{±1}Λ
f(ϕ) e−βHΛ(ϕ). (2.3)

In particular, the two-point function is defined by

〈ϕoϕx〉β;Λ =
2−|Λ|

Zβ;Λ

∑

ϕ∈{±1}Λ
ϕoϕx e−βHΛ(ϕ) (x ∈ Λ). (2.4)

In this paper, we prove the following identity for the two-point function, in which we use

τx,y = tanh(βJx,y). (2.5)

Theorem 2.1 (Lace expansion). For any Λ ⊂ Zd and j ≥ 0, there exist π(i)

β;Λ(x) and

R(j+1)

β;Λ (x) for x ∈ Λ and i = 0, . . . , j such that, by defining

Π(j)

β;Λ(x) =

j∑
i=0

(−1)i π(i)

β;Λ(x), (2.6)

we have

〈ϕoϕx〉β;Λ = Π(j)

β;Λ(x) +
∑

u,v∈Λ

Π(j)

β;Λ(u) τu,v 〈ϕvϕx〉β;Λ + (−1)j+1R(j+1)

β;Λ (x). (2.7)

Moreover, if the spin-spin coupling is nonnegative, then we have the bounds

π(i)

β;Λ(x) ≥ 0, 0 ≤ R(j+1)

β;Λ (x) ≤
∑

u,v∈Λ

π(j)

β;Λ(u) τu,v 〈ϕvϕx〉β;Λ. (2.8)
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We defer to Section 3.2.3 giving the exact expressions of π(i)

β;Λ(x) and R(j+1)

β;Λ (x), since we
need a certain representation to describe these functions. We introduce this representation
in Section 3.1 and complete the proof of Theorem 2.1 in Section 3.2.

Whether the above expansion is useful or not depends very much on the existence of
nice bounds on the expansion coefficients and the remainder. This is indeed the case for the
ferromagnetic models whose spin-spin coupling is translation-invariant and Zd-symmetric,
as explained below. Let

τ =
∑

x∈Zd

τo,x, D(x) =
τo,x

τ
, σ2 =

∑

x∈Zd

|x|2D(x), (2.9)

where | · | is the Euclidean norm, and let

Gβ(x) = lim
Λ↑Zd

〈ϕoϕx〉β;Λ, (2.10)

which exists as a nondecreasing limit, due to the second Griffiths inequality (e.g., [8, 9]).
For functions f, g on Zd, we write (f ∗g)(x) =

∑
y f(y) g(x−y) and f ∗(i+1)(x) = (f ∗i∗f)(x).

Proposition 2.2. Let Ju,v be nonnegative, translation-invariant and Zd-symmetric, and
define

F1(β) = τ − 1, F2(β) = sup
x

(D ∗G∗2
β )(x), F3(β) = sup

x 6=o

( |x|2
σ2

∨ 1

)
Gβ(x). (2.11)

Suppose

F (β) ≡ max
i=1,2,3

Fi(β) ≤ θ. (2.12)

Then, there is a θ-independent constant C < ∞ such that, for any Λ ⊂ Zd,

∑
x

π(i)

β;Λ(x) ≤
{

1 + (Cθ)2 (i = 0),

(Cθ)i (i ≥ 1),

∑
x

|x|2π(i)

β;Λ(x) ≤ (Cθ)i∨2σ2. (2.13)

This is a consequence of Proposition 4.1 below, which provides upper bounds on π(i)

β;Λ(x)

in terms of two-point functions (diagrammatic bounds). For π(0)

β;Λ(x), for example, Proposi-
tion 4.1 reads

π(0)

β;Λ(x) ≤ 〈ϕoϕx〉3β;Λ ≤ Gβ(x)3, (2.14)

where the last inequality is due to the second Griffiths inequality. These diagrammatic
bounds replace the results of the BK inequality for percolation [5]. For example, the zeroth
expansion coefficient for percolation is bounded, by using the BK inequality, as [16]

π(0)

p (x) ≤ Gp(x)2, (2.15)

where p is the bond-occupation parameter and the percolation two-point function Gp(x) is
the probability of o and x being connected by a sequence of occupied bonds. See [18, 26] for
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the diagrammatic bounds on the expansion coefficients for self-avoiding walk, lattice trees
and lattice animals.

We now briefly explain a consequence of Theorem 2.1 and Proposition 2.2. Suppose that
β < βc (i.e., χ(β) =

∑
x Gβ(x) < ∞) and θ in Proposition 2.2 is sufficiently small. Then,

by (2.8) and (2.13),
∑

x R(j+1)

β;Λ (x) decays as j ↑ ∞. By (2.10) and dominated convergence,

the Fourier transform of 〈ϕoϕx〉β;Λ converges to Ĝβ(k) ≡ ∑
x Gβ(x) eik·x, independently

of the choice of a sequence Λ1 ⊂ Λ2 ⊂ · · · ↑ Zd. Since Πβ;Λ(x) ≡ ∑∞
i=0(−1)iπ(i)

β;Λ(x) is

absolutely summable, there is a subsequence Λ′1 ⊂ Λ′2 ⊂ · · · ↑ Zd such that the limit
Πβ(x) ≡ limn↑∞ Πβ;Λ′n(x) exists for all x ∈ Zd (provided that Πβ;Λ′n(x) ≡ 0 for all x /∈ Λ′n,
for every n) and satisfies

∑
x |Πβ(x)| ≤ 1 + O(θ) and

∑
x |x|2|Πβ(x)| ≤ O(θ2)σ2. Then, by

dominated convergence, we have Π̂β(k) =
∑

x Πβ(x) eik·x, and hence

Ĝβ(k) = Π̂β(k) + Π̂β(k) τD̂(k) Ĝβ(k). (2.16)

Rearranging this identity and using Ĝβ(0) = χ(β), the symmetry of the model and then
(2.13), we obtain

|Ĝβ(k)| =
∣∣∣∣∣

Π̂β(k) Π̂β(0)−1

χ(β)−1 + τ(1− D̂(k)) + (Π̂β(0)− Π̂β(k))τD̂(k) Π̂β(0)−1

∣∣∣∣∣

≤ 1 + O(θ)

τ(1− D̂(k)−O(θ2)σ2d−1|k|2) . (2.17)

For the nearest-neighbor model (i.e., Jo,x = 1{|x|=1}), 1− D̂(k) ≥ 2π−2d−1|k|2, and thus

|Ĝβ(k)| ≤ 1 + O(θ)

τ(1− D̂(k))
. (2.18)

Note that we have obtained this Gaussian infrared bound under the assumption that (2.12)
holds. Now, we use (2.18) to verify this assumption. In fact, following the calculations in
the previous lace-expansion works (e.g., [22]), we obtain that F (β) is bounded by c(d−4)−1

for d > 4, where c < ∞ is independent of d and θ. This implies that, if θ in (2.12) is
initially chosen as, say, 2c(d − 4)−1, and if d is sufficiently large, then the stronger version
of (2.12) with θ = c(d − 4)−1 holds, i.e., F (β) /∈ c

d−4
(1, 2] if d À 4. Let β0 satisfy τ(β0) ≡∑

x tanh(β0Jo,x) = 1. It is not so hard to show that F (β0) is indeed bounded by c(d −
4)−1 using random-walk estimates (see the footnote around (4.4) below), and that F (β) is
continuous in β ∈ [β0, βc). Therefore, F (β) ≤ c(d− 4)−1 and (2.18) hold for all β ∈ [β0, βc)
if d À 4. (In particular, 1 ≤ τ(βc) = limβ↑βc τ(β) ≤ 1 + c(d− 4)−1.) As a result,

∑
x Gβ(x)2

is bounded uniformly in β < βc, and hence the critical exponents take on their respective
mean-field values [1, 2, 3, 4]1.

Another example is the following spread-out interaction (often called the Kac potential):

Jo,x = L−dρ(L−1x) (1 ≤ L < ∞), (2.19)

1Since there is a unique translation-invariant measure in the high-temperature phase, our Gβ(x) coincides
with the infinite-volume limit of the two-point function under the periodic-boundary condition, which was
used in [1, 2, 3, 4] to prove differential inequalities for χ(β) and other observables. These differential
inequalities are the foundation of the proof of the ferromagnetic mean-field behavior.
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where2 ρ : [−1, 1]d \ {o} 7→ [0,∞) is a bounded probability distribution, which is symmetric
under rotations by π/2 and reflections in coordinate hyperplanes, and is piecewise continuous
so that the Riemann sum L−d

∑
x∈Zd ρ(L−1x) approximates

∫
Rd ddx ρ(x) ≡ 1. The parameter

L is the range of the spin-spin coupling, and will be taken to be large in the analysis. The
simplest example would be

Jo,x =
1{0<|x|≤L}∑

z∈Zd 1{0<|z|≤L}
= O(L−d)1{0<|L−1x|≤1}. (2.20)

For this model with L À 1, 1− D̂(k) is bounded from below by σ2|k|2 ∧ 1 multiplied by a
d-dependent positive constant [19]. Following the same strategy as explained above for the
nearest-neighbor model, we obtain (2.18) with θ = O(L−d), uniformly in β < βc, if d > 4
and L À 1, and thus prove the ferromagnetic mean-field behavior.

Here, we summarize the above results.

Theorem 2.3 (Gaussian infrared bound and the mean-field behavior). For the
nearest-neighbor model (Jo,x = 1{|x|=1}) with d À 4 and the spread-out model (2.19) with
d > 4 and L À 1, the infrared bound (2.18), with θ = (d − 4)−1 and θ = L−d respectively,
holds uniformly in β < βc, and hence the susceptibility exponent γ and several other critical
exponents exist and take on their mean-field values. In addition, 1 ≤ τ(βc) ≤ 1 + O(θ).

We emphasize that, to arrive at the above conclusion, the reflection positivity of the
spin-spin coupling has not been required. The class of reflection-positive models includes
the nearest-neighbor model, a “variant” next-nearest-neighbor model, Yukawa potentials,
power-law decaying interactions, and their combinations [6]. For the reflection-positive
models, it has been proved [11] (see also [9]) that, for d > 2,

0 ≤ Ĝβ(k) ≤ const.

β|k|2 uniformly in β < βc, (2.21)

and hence the susceptibility exponent and several other critical exponents take on their
respective mean-field values for d > 4. However, since this class of models is rather restricted,
and in some cases the Gaussian infrared bound (2.21) is not expected to be sharp, it has
been longed to have different approaches than using the reflection positivity. Our approach
using the lace expansion is one of them.

Furthermore, it has been known for the nearest-neighbor model [27] that the two-point
function also obeys the following x-space bound:

Gβ(x) ≤ const.

β|||x|||d−2
uniformly in β < βc, (2.22)

where ||| · ||| = | · | ∨ 1. There has been no similar result for the spread-out model. We can
improve this situation by using the lace expansion (2.7) and the following proposition:

Proposition 2.4. Let Ju,v be the spread-out interaction defined in (2.19). Suppose 1
2
d <

q < d and

τ ≤ 2, Gβ(x) ≤ δo,x + θ|||x|||−q. (2.23)

2For the Gaussian infrared bound, the finite-support condition on ρ can be replaced by the existence of
the (2 + ε)-moment for some ε > 0, but not for the x-space asymptotics (2.26) below.
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Then, there is a C = C(d, q) < ∞ such that, for any Λ ⊂ Zd and sufficiently small θ, with
θLd−q being bounded away from zero (which requires L to be large),

π(i)

β;Λ(x) ≤





δo,x + (Cθ)3|||x|||−3q (i = 0),

Cθδo,x + (Cθ)3|||x|||−3q (i = 1),

(Cθ)i|||x|||−3q (i ≥ 2).

(2.24)

Following the analysis of the lace expansion in [14], we can indeed prove that, if β < βc,
d > 4 and L À 1, then (2.23) with q = d−2 and θ = O(L−2+ε), where ε > 0 is an arbitrarily
small number, holds [25], and thus

|Πβ;Λ(x)− δo,x| ≤ Cθδo,x + O(θ2)|||x|||3(2−d) ( ∀Λ ⊂ Zd). (2.25)

Since 3(d − 2) = d + 2 + 2(d− 4) > d + 2 if d > 4, we can say that Πβ;Λ(x) is close to δo,x

up to the second moment. As a result, with the help of the continuity in β ≤ βc of Gβ(x),
we can prove the following x-space asymptotics at β = βc [25]:

Theorem 2.5 (Asymptotic behavior for the spread-out model). Fix κ = 2(d −
4) ∧ 2 > 0 and ε > 0, and let ad = d

2
π−d/2Γ(d

2
− 1). Then, there exist L0 = L0(d, ε) and

A = A(d, L, ε) = 1 + O(L−6+ε) such that, for L ≥ L0,

Gβc(x) =
A

τ(βc)

adσ
−2

|||x|||d−2

(
1 + O(Lκ|||x|||−κ+ε) + O(L2|||x|||−2+ε)

)
, (2.26)

where A− 1 and constants in the error terms in (2.26) depend on ε.

We note that the factor adσ
−2|||x|||−(d−2) in (2.26) is exactly equal to the leading asymp-

totics of the random-walk Green’s function [14]. Therefore, (2.26) reads that the anomalous
dimension η takes on the mean-field value η = 0. For the nearest-neighbor model, we may
obtain the same asymptotics for Gβc(x) (with different A and error estimates) by using the
method in [13].

In the next section, we prove the lace expansion (2.7). In Section 4, we prove the
diagrammatic bounds on the expansion coefficients, mentioned below Proposition 2.2. The
proof of Propositions 2.2 and 2.4 using these diagrammatic bounds is based on a common
philosophy, and is not so difficult as soon as we understand the composition of the diagrams
in terms of two-point functions. For simplicity, we will only prove Proposition 2.4 in detail
in Section 4.

3 Lace expansion

The lace expansion was first invented by Brydges and Spencer [7] to investigate weakly self-
avoiding walk for d > 4. Later, it was developed for various stochastic-geometrical models,
such as strictly self-avoiding walk for d > 4 (e.g., [17]), lattice trees and lattice animals for
d > 8 (e.g., [15]), unoriented percolation for d > 6 (e.g., [16]), oriented percolation for d > 4
(e.g., [23]) and the contact process for d > 4 (e.g., [24]). See [26] for an extensive list of
references. This is the first lace-expansion paper that deals with the Ising model.
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There might be several ways to obtain the lace expansion for 〈ϕoϕx〉β;Λ via, e.g., the
high-temperature expansion, the random-walk representation (e.g., [9]) or the FK random-
cluster representation (e.g., [10]). In this paper, we use the random-current representation
(Section 3.1), which applies to the models in the Griffiths-Simon class (e.g., [1, 4]). This
representation is similar in philosophy to the high-temperature expansion, but it turned out
to be much stronger in investigating the critical phenomena [1, 2, 3, 4]. The main advantage
in this representation is the source-switching lemma (Lemma 3.3 below in Section 3.2.2) by
which we have an identity for 〈ϕoϕx〉β;Λ − 〈ϕoϕx〉β;A with A ⊂ Λ. We will repeatedly use
this identity to complete the lace expansion for 〈ϕoϕx〉β;Λ in Section 3.2.3.

In the rest of this paper, we omit the subscript β and write, e.g., 〈ϕoϕx〉Λ = 〈ϕoϕx〉β;Λ.

3.1 Random-current representation

In this section, we describe the random-current representation and introduce some notation
that will be essential in the derivation of the lace expansion.

First, we consider the partition function. We call a pair of sites b = {u, v} with Jb > 0
a bond. For A ⊂ Λ, we denote by BA the set of bonds whose both endvertices are in A. By
expanding the Boltzmann factor in (2.2), the partition function ZA on A (i.e., Jb = 0 for
all b ∈ BΛ \ BA) can be written as

ZA = 2−|A|
∑

ϕ∈{±1}A

∏

{u,v}∈BA

( ∑

nu,v∈Z+

(βJu,v)
nu,v

nu,v!
ϕnu,v

u ϕnu,v
v

)

=
∑

n∈ZBA+

( ∏

b∈BA

(βJb)
nb

nb!

) ∏
v∈A

(
1

2

∑
ϕv=±1

ϕ
P

b3v nb
v

)
, (3.1)

where n = {nb}b∈BA is called a current configuration. Note that the single-spin average in
the second parentheses in the last line is 1 if

∑
b3x nb is an even integer, and 0 otherwise.

Denoting by ∂n the set of sources x ∈ Λ at which
∑

b3x nb is an odd integer, and defining

wA(n) =
∏

b∈BA

(βJb)
nb

nb!
(n ∈ ZBA+ ), (3.2)

we obtain

ZA =
∑

n∈ZBA+

wA(n)
∏
x∈A

1{Pb3x nb even} =
∑

∂n=∅
wA(n). (3.3)

To achieve the above representation, we have assumed that Jb = 0 for b ∈ BΛ \ BA.
Instead, we can think of ZA as the sum of wΛ(n) over n ∈ ZBΛ

+ satisfying n|Ac ≡ 0, where
n|Ac is the projection of n over the bonds incident on Ac ≡ Λ \ A, i.e.,

n|Ac = {nb : b ∈ BΛ \ BA}. (3.4)

By this observation, (3.3) can be written as

ZA =
∑

∂n=∅
n|Ac≡0

wΛ(n). (3.5)
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y

x

Figure 1: A current configuration with sources at x and y. The thick-solid line segments
stand for bonds with odd currents, while the thin-solid line segments stand for bonds with
positive even currents, which cannot be seen in the high-temperature expansion.

Following the same calculation, we can rewrite ZA〈ϕxϕy〉A for x, y ∈ A as

ZA〈ϕxϕy〉A =
∑

n∈ZBA+

( ∏

b∈BA

(βJb)
nb

nb!

) ∏
v∈A

(
1

2

∑
ϕv=±1

ϕ
1{v∈xMy}+

P
b3v nb

v

)

=
∑

∂n=xMy

wA(n) =
∑

∂n=xMy
n|Ac≡0

wΛ(n), (3.6)

where x M y is an abbreviation for {x}4{y}. If x or y is in Ac, then we define both sides
of (3.6) to be zero. This is consistent with the above representation when x 6= y, since, for
example, if x ∈ Ac, then the leftmost expression of (3.6) is a multiple of 1

2

∑
ϕx=±1 ϕx = 0,

while the last expression in (3.6) is also zero because there is no way of connecting x and y
on a current configuration n with n|Ac ≡ 0.

The key observation in the representation (3.6) is that the right-hand side is nonzero
only when x and y are connected by a chain of bonds with odd currents (see Figure 1). We
will exploit this peculiar underlying percolation picture to derive the lace expansion for the
two-point function.

3.2 Derivation of the lace expansion

In this subsection, we derive the lace expansion for 〈ϕoϕx〉Λ using the random-current rep-
resentation. In Section 3.2.1, we introduce some definition and perform the first stage of
the expansion, namely (2.7) for j = 0, simply by inclusion-exclusion. In Section 3.2.2,
we perform the second stage of the expansion, where the source-switching lemma plays a
significant role. Finally, in Section 3.2.3, we complete the proof of Theorem 2.1.

3.2.1 The first stage of the expansion

As mentioned in the previous section, the underlying picture in the random-current rep-
resentation is quite similar to percolation. We exploit this similarity to obtain the lace
expansion.

First, we introduce some notions and notation.

8



Definition 3.1. (i) Given a current configuration n ∈ ZBΛ
+ and a site set A ⊂ Λ, we say

that x is n-connected to y in A, and write x ←→
n

y in A, if either x = y ∈ A or there

is a path from x to y consisting of bonds b ∈ BA with nb > 0. If n ∈ ZBA+ , we omit “in
A” and simply write x ←→

n
y. We also define

{x A←→
n

y} = {x ←→
n

y} \ {x ←→
n

y in Ac}, (3.7)

and say that x is n-connected to y through A.

(ii) For an event E (i.e., a set of current configurations), we define {E off b} to be the set
of current configurations whose restriction to the bonds other than b are in E. Let
Cb
n(x) = {y ∈ Λ : x ←→

n
y off b}.

(iii) For a directed bond b = (u, v), we write b = u and b = v. We say that a directed
bond b is pivotal for x ←→

n
y from x, if {x ←→

n
b off b} ∩ {b ←→

n
y /∈ Cb

n(x)} occurs.

If {x ←→
n

y} occurs with no pivotal bonds, we say that x is n-doubly connected to y,

and write x ⇐⇒
n

y.

We begin with the first stage of the lace expansion. First, by using the above percolation
language, the two-point function can be written as

〈ϕoϕx〉Λ =
∑

∂n=oMx

wΛ(n)

ZΛ

=
∑

∂n=oMx

wΛ(n)

ZΛ

1{o←→
n

x}. (3.8)

We decompose the indicator on the right-hand side into two parts depending on whether
there is or is not a pivotal bond for o ←→

n
x from o; if there is, we take the first bond among

them. Then, we have

1{o←→
n

x} = 1{o⇐⇒
n

x} +
∑

b∈BΛ

1{o⇐⇒
n

b off b}1{nb>0}1{b←→
n

x/∈Cb
n(o)}. (3.9)

Let

π(0)

Λ (x) =
∑

∂n=oMx

wΛ(n)

ZΛ

1{o⇐⇒
n

x}. (3.10)

Substituting (3.9) into (3.8), we obtain (see Figure 2)

〈ϕoϕx〉Λ = π(0)

Λ (x) +
∑

b∈BΛ

∑

∂n=oMx

wΛ(n)

ZΛ

1{o⇐⇒
n

b off b}1{nb>0}1{b←→
n

x/∈Cb
n(o)}. (3.11)

Next, we consider the sum over n in (3.11). Since b is pivotal for o ←→
n

x from o (6= x,

due to the last indicator), nb is an odd integer. We alternate the parity of nb, with changing
the source constraint into o M b M x ≡ {o}4{b, b}4{x} and multiplying

∑
n odd(βJb)

n/n!∑
n even(βJb)n/n!

= tanh(βJb) ≡ τb. (3.12)
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xo = xo +
∑

b

o

b

x

Figure 2: A schematic representation of (3.11). The thick lines are connections consisting of
bonds with odd currents, while the thin lines are connections made of bonds with positive
(not necessarily odd) currents. The shaded region stands for Cb

n(o).

Then, the sum over n in (3.11) equals

∑

∂n=oMbMx

wΛ(n)

ZΛ

1{o⇐⇒
n

b off b} τb1{nb even}1{b←→
n

x/∈Cb
n(o)}. (3.13)

We note that there are no positive currents on the boundary bonds, except for b, of Cb
n(o).

Let Ā ⊂ Λ be the set of sites at which there is at least one bond that is incident on A, so
that BĀ = BΛ \ BAc . Conditioning on Cb

n(o) = A (with denoting k = n|A and m = n − k)
and then summing over A ⊂ Λ, we can write (3.13) as

∑
A⊂Λ

∑

∂k=oMb

∂m=bMx

ZAc wĀ(k)

ZΛ

wAc(m)

ZAc

1{o⇐⇒
k

b off b}∩ {Cb
k(o)=A} τb1{kb even}1{b←→

m
x in Ac}

=
∑
A⊂Λ

∑

∂n=oMb

wΛ(n)

ZΛ

1{o⇐⇒
n

b off b}∩ {Cb
n(o)=A} τb1{nb even}

∑

∂m=bMx

wAc(m)

ZAc

1{b←→
m

x}

=
∑
A⊂Λ

∑

∂n=oMb

wΛ(n)

ZΛ

1{o⇐⇒
n

b off b}∩ {Cb
n(o)=A} τb1{nb even} 〈ϕbϕx〉Ac

=
∑

∂n=oMb

wΛ(n)

ZΛ

1{o⇐⇒
n

b off b} τb1{nb even} 〈ϕbϕx〉Cb
n(o)c , (3.14)

where we have omitted “in Ac” in the second line, due to the abbreviation rule in Defini-
tion 3.1(i). Since 〈ϕbϕx〉Cb

n(o)c is zero on the event {o ⇐⇒
n

b}\{o ⇐⇒
n

b off b} ⊂ {b ∈ Cb
n(o)},

we can omit “off b” in the last line of (3.14). Moreover, with the help of the source constraint
∂n = o M b, we can also omit 1{nb even}. (If nb is odd, then again b is required to be in Cb

n(o),

since b is not a source.) Therefore, (3.14) equals

∑

∂n=oMb

wΛ(n)

ZΛ

1{o⇐⇒
n

b} τb 〈ϕbϕx〉Cb
n(o)c . (3.15)

By (3.11) and (3.15), we arrive at

〈ϕoϕx〉Λ = π(0)

Λ (x) +
∑

b∈BΛ

π(0)

Λ (b) τb 〈ϕbϕx〉Λ −R(1)

Λ (x), (3.16)
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where

R(1)

Λ (x) =
∑

b∈BΛ

∑

∂n=oMb

wΛ(n)

ZΛ

1{o⇐⇒
n

b} τb

(
〈ϕbϕx〉Λ − 〈ϕbϕx〉Cb

n(o)c

)
. (3.17)

This completes the proof of (2.7) for j = 0, with π(0)

Λ (x) defined in (3.10) and R(1)

Λ (x) defined
in (3.17).

3.2.2 The second stage of the expansion

To expand R(1)

Λ (x) further, we investigate the difference 〈ϕbϕx〉Λ − 〈ϕbϕx〉Cb
n(o)c in (3.17).

First, we prove the following key proposition3:

Proposition 3.2. For v, x ∈ Λ and A ⊂ Λ, we have

〈ϕvϕx〉Λ − 〈ϕvϕx〉Ac =
∑

∂m=∅
∂n=vMx

wAc(m)

ZAc

wΛ(n)

ZΛ

1{v A←→
m+n

x}. (3.18)

Proof. Since both sides of (3.18) are equal to 1{x∈A} when v = x (see below (3.6)), it suffices
to prove (3.18) when v 6= x.

First, we let

Z̃ = ZΛ − ZAc =
∑

∂n=∅
wΛ(n)−

∑

∂n=∅
n|A≡0

wΛ(n) =
∑

∂n=∅
n|A 6≡0

wΛ(n), (3.19)

where we have used the representation (3.5). Similarly, we let WAc = ZAc〈ϕvϕx〉Ac and

W̃ = ZΛ 〈ϕvϕx〉Λ −WAc =
∑

∂n={v,x}
wΛ(n)−

∑

∂n={v,x}
n|A≡0

wΛ(n) =
∑

∂n={v,x}
n|A 6≡0

wΛ(n), (3.20)

where we have used (3.6). Then, we obtain

〈ϕvϕx〉Λ − 〈ϕvϕx〉Ac =
WAc + W̃

ZAc + Z̃
− WAc

ZAc

=
ZAcW̃ −WAcZ̃

ZAcZΛ

, (3.21)

where the numerator is

ZAcW̃ −WAcZ̃ =
∑

∂m=∅, m|A≡0
∂n={v,x}, n|A 6≡0

wΛ(m) wΛ(n)−
∑

∂m={v,x}, m|A≡0
∂n=∅, n|A 6≡0

wΛ(m) wΛ(n). (3.22)

We note that the only difference between these two terms is the alternation of the source
constraints.

3The differential inequalities mentioned in the footnote at the end of the paragraph below (2.18) can be
derived, under the free-boundary condition as well, by simply using Proposition 3.2, instead of using the
random-walk representation introduced in [2, 3, 4].

11



Next, we consider the second term of (3.22), whose explicit form is

∑

∂m={v,x}, m|A≡0
∂n=∅, n|A 6≡0

( ∏

b∈BΛ\BAc

(βJb)
nb

nb!

)( ∏

b∈BAc

(βJb)
mb+nb

mb! nb!

)
=

∑

∂N={v,x}
N|A 6≡0

wΛ(N)
∑

∂m={v,x}
m|A≡0

∏

b∈BAc

(
Nb

mb

)
.

(3.23)

The following is a variant of the source-switching lemma [1, 12] and allows us to change the
source constraints in (3.23).

Lemma 3.3 (Source-switching lemma).

∑

∂m={v,x}
m|A≡0

∏

b∈BAc

(
Nb

mb

)
= 1{v←→

N
x in Ac}

∑

∂m=∅
m|A≡0

∏

b∈BAc

(
Nb

mb

)
. (3.24)

We refer the readers to [1, Lemma 3.1] for more general cases in which the number of
sources in m is more than two. Lemma 3.3 will be explained after completing the proof of
Proposition 3.2.

We continue with the proof of Proposition 3.2. Substituting (3.24) into (3.23), we obtain

∑

∂N={v,x}
N|A 6≡0

wΛ(N)1{v←→
N

x in Ac}
∑

∂m=∅
m|A≡0

∏

b∈BAc

(
Nb

mb

)
=

∑

∂m=∅, m|A≡0
∂n={v,x}, n|A 6≡0

wΛ(m) wΛ(n)1{v←→
m+n

x in Ac}.

(3.25)

Note that the source constraint in the right-hand side is identical to that in the first term
of (3.22), under which 1{v←→

m+n
x} is always 1. Using (3.7), we can rewrite (3.21) as

〈ϕvϕx〉Λ − 〈ϕvϕx〉Ac =
∑

∂m=∅, m|A≡0
∂n={v,x}, n|A 6≡0

wΛ(m)

ZAc

wΛ(n)

ZΛ

1{v A←→
m+n

x}. (3.26)

We can omit “n|A 6≡ 0” because 1{v A←→
m+n

x} = 0 when m|A ≡ n|A ≡ 0 and v 6= x. Finally, by

using (3.3) and (3.5) to replace wΛ(m) in (3.26) with wAc(m) and omit m|A ≡ 0, we arrive
at (3.18). This completes the proof of Proposition 3.2.

Sketch of the proof of Lemma 3.3. We briefly explain the meaning of the identity (3.24) and
the idea of its proof. Given N = {Nb}b∈BΛ

, we denote by GN the graph consisting of Nb

labeled edges between b and b for every b ∈ BΛ (see Figure 3). For a subgraph S ⊂ GN, we
denote by ∂S the set of vertices at which the total number of incident edges in S is odd, and
by S|A the subgraph consisting of all edges in S that are incident on A. Then, the left-hand
side of (3.24) is equivalent to the cardinality |S| of

S = {S ⊂ GN : ∂S = {v, x}, S|A = ∅}, (3.27)

and the sum in the right-hand side of (3.24) is the cardinality |S′| of

S′ = {S ⊂ GN : ∂S = ∅, S|A = ∅}. (3.28)
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Figure 3: N = {Nb}5
b=1 = (3, 3, 1, 5, 1) is an example of a current configuration on [0, 5]∩Z+

satisfying ∂N = {0, 5}, and GN is the corresponding labeled graph consisting of edges
e = b`b, where `b ∈ {1, . . . , Nb}. The third and fourth pictures show the relation between
a subgraph S with ∂S = {0, 5} and its image S4ω in (3.29), where ω is a path of edges
(11, 21, 31, 41, 51).

We note that |S| is zero when there are no paths on GN between v and x consisting of edges
whose both endvertices are in Ac, while |S′| may not be zero. The identity (3.24) reads
that |S| equals |S′| if we compensate this discrepancy.

Suppose that there is a path ω from v to x consisting of edges in GN whose both
endvertices are in Ac. Then, the map

S ∈ S 7→ S4ω ∈ S′ (3.29)

is a bijection [1, 12], and therefore |S| = |S′|. This implies (3.24).

We now start with the second stage of the expansion by using Proposition 3.2 and
applying inclusion-exclusion as in the first stage of the expansion in Section 3.2.1. First, we
decompose the indicator in (3.18) into two parts depending on whether there is or is not a

pivotal bond b for v ←→
m+n

x from v such that v
A←→

m+n
b. Let

En(v, x;A) = {v A←→
n

x} ∩ {@ pivotal bond b for v ←→
n

x from v such that v
A←→
n

b}.
(3.30)

On the event {v A←→
m+n

x} \Em+n(v, x;A), we take the first pivotal bond b for v ←→
m+n

x from

v satisfying v
A←→

m+n
b. Similarly to (3.9), we have

1{v A←→
m+n

x} = 1Em+n(v,x;A) +
∑

b∈BΛ

1{Em+n(v,b;A) off b}1{mb+nb>0}1{b←→
m+n

x/∈Cb
m+n(v)}. (3.31)
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xv = v x +
∑

b
b

v x

Figure 4: A schematic representation of (3.33). The dashed lines stand for A, the thick-solid
lines stand for connections consisting of bonds b′ such that mb′ + nb′ is odd, and the thin-
solid lines are connections made of bonds b′′ such that mb′′ + nb′′ is positive (not necessarily
odd). The shaded region stands for Cb

m+n(v).

Let

Θv,x;A[X] =
∑

∂m=∅
∂n=vMx

wAc(m)

ZAc

wΛ(n)

ZΛ

1Em+n(v,x;A) X(m + n), Θv,x;A = Θv,x;A[1]. (3.32)

Then, by substituting (3.31) into (3.18), we obtain (see Figure 4)

〈ϕvϕx〉Λ − 〈ϕvϕx〉Ac (3.33)

= Θv,x;A +
∑

b∈BΛ

∑

∂m=∅
∂n=vMx

wAc(m)

ZAc

wΛ(n)

ZΛ

1{Em+n(v,b;A) off b}1{mb even, nb odd}1{b←→
m+n

x/∈Cb
m+n(v)},

where we have replaced “mb + nb > 0” by “mb even, nb odd” that is the only possible
combination which is consistent with the source constraints and the conditions in the indi-
cators. As in (3.13), we alternate the parity of nb, with changing the source constraint into
∂n = v M b M x and multiplying τb. Then, as in (3.14), by conditioning on Cb

m+n(v) = B,
multiplying (ZBc/ZBc)2 ≡ 1 and summing over B ⊂ Λ, we can rewrite the sum over m,n in
(3.33) by

∑
B⊂Λ

∑

∂m=∅
∂n=vMbMx

wAc(m)

ZAc

wΛ(n)

ZΛ

1{Em+n(v,b;A) off b}∩ {Cb
m+n(v)=B} τb1{mb,nb even}1{b←→

m+n
x in Bc}

=
∑
B⊂Λ

∑

∂m=∅
∂n=vMb

wAc(m)

ZAc

wΛ(n)

ZΛ

1{Em+n(v,b;A) off b}∩ {Cb
m+n(v)=B} τb1{mb,nb even} 〈ϕbϕx〉Bc

=
∑

∂m=∅
∂n=vMb

wAc(m)

ZAc

wΛ(n)

ZΛ

1Em+n(v,b;A) τb 〈ϕbϕx〉Cb
m+n(v)c , (3.34)

where we have omitted “off b” and 1{mb,nb even} in the last line using the source constraints

on m,n and the fact that 〈ϕbϕx〉Cb
m+n(v)c is zero whenever b ∈ Cb

m+n(v) (cf., the derivation

of (3.15) from (3.14)). By (3.32)–(3.34), we finally arrive at

〈ϕvϕx〉Λ − 〈ϕvϕx〉Ac = Θv,x;A +
∑

b∈BΛ

Θv,b;A τb 〈ϕbϕx〉Λ

−
∑

b∈BΛ

τb Θv,b;A
[
〈ϕbϕx〉Λ − 〈ϕbϕx〉Cb

m+n(v)c

]
, (3.35)
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where Cb
m+n(v) is the variable of the operation Θv,b;A[ · · · ]. This completes the second stage

of the expansion.

3.2.3 Completion of the lace expansion

For notational convenience, we let w∅(m)/Z∅ = 1{m≡0}. Then, since En(o, x; Λ) = {o ⇐⇒
n

x} (cf., (3.30)), we can write

π(0)

Λ (x) = Θo,x;Λ. (3.36)

Repeated application of (3.35) to (3.16)–(3.17) results in (2.6)–(2.7) in Theorem 2.1 with,
for j ≥ 1,

π(j)

Λ (x) =
∑

b1,...,bj

Θ(0)

o,b1;Λ

[
τb1Θ

(1)

b1,b2;C̃0

[
· · · τbj−1

Θ(j−1)

bj−1,bj ;C̃j−2

[
τbj

Θ(j)

bj ,x;C̃j−1

]
· · ·

]]
, (3.37)

R(j)

Λ (x) =
∑

b1,...,bj

Θ(0)

o,b1;Λ

[
τb1Θ

(1)

b1,b2;C̃0

[
· · · τbj−1

Θ(j−1)

bj−1,bj ;C̃j−2

[
τbj

(
〈ϕbj

ϕx〉
Λ
− 〈ϕbj

ϕx〉C̃c
j−1

)]
· · ·

]]
,

(3.38)

where the operation Θ(i) determines the variable C̃i = Cbi+1

mi+ni
(bi) (provided that b0 = o).

If every Jb is nonnegative, then, by definition, τb and wA(n) for any A ⊂ Λ and n ∈ ZBA+

are nonnegative. This proves the first inequality in (2.8) and the nonnegativity of R(j+1)

Λ (x).
To prove the upper bound on R(j+1)

Λ (x), we simply ignore 〈ϕbj
ϕx〉C̃c

j−1

in (3.38) and replace

j by j + 1, where bj+1 = {u, v}. This completes the proof of Theorem 2.1.

4 Bounds on the expansion coefficients

From now on, we assume that the spin-spin coupling is nonnegative. Then, by (2.8), we
only need to control the expansion coefficients (3.36)–(3.37). In this section, we prove
diagrammatic bounds on the expansion coefficients, and then apply these bounds to prove
Proposition 2.4.

Before going into details, we compare the expansion coefficients (3.36)–(3.37) for the
Ising model with those for percolation; the jth-expansion coefficient for percolation is (cf.,
[16])

π(j)

p (x) =





E(0)

p

[
1{o⇐⇒

n0
x}

] ≡ Pp(o ⇐⇒ x) (j = 0),

∑

b1,...,bj

E(0)

p

[
1{o⇐⇒

n0
b1} pb1E(1)

p

[
1En1 (b1,b2;C̃0) · · · pbj

E(j)

p

[
1Enj (bj ,x;C̃j−1)

]
· · ·

]]
(j ≥ 1),

(4.1)

where each E(i)
p denotes the expectation with respect to the product of the Bernoulli measures∏

b(pb1{ni(b)=1}+(1−pb)1{ni(b)=0}), with the bond-occupation parameter p =
∑

x∈Zd po,x (see
(2.15)). Since we exploited the underlying percolation picture to derive (2.7) for the Ising
model, it is not so surprising that the expansion coefficients for both models are quite similar;
in particular, the events involved in (3.36)–(3.37) are identical to those in (4.1). However,
they are indeed different. The major differences between these two models are the following:
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(a) Each current configuration must satisfy not only the conditions in the indicators, but
also its source constraint that is absent in percolation.

(b) An operation Θ is not an expectation, since the source constraints in the numerator
and denominator in the definition (3.32) of Θ are different.

(c) In each Θ(i) for i ≥ 1, the sum mi + ni of two current configurations is coupled with
mi−1 +ni−1 via the cluster C̃i−1 determined by mi−1 +ni−1. (By contrast, in each E(i)

p in

(4.1), a single percolation configuration ni is coupled with ni−1 via C̃i−1 = Cbi
ni−1

(bi−1).)
In addition, mi is nonzero only on bonds in BC̃c

i−1
, while the current configuration ni

has no such restriction.

Take π(0)

Λ (x) for example, which is

π(0)

Λ (x) =

∑
∂n=oMx wΛ(n)1{o⇐⇒

n
x}

∑
∂n=∅wΛ(n)

. (4.2)

Due to the indicator function, every current configuration n ∈ ZBΛ
+ that gives nonzero

contribution to the numerator has at least two bond-disjoint paths ζ1, ζ2 from o to x such
that nb > 0 for all b ∈ ζ1 ∪̇ ζ2. Also, due to the source constraint, there should be at least
one path ζ from o to x such that nb is odd for all b ∈ ζ. Suppose, for example, that ζ = ζ1

and that nb for b ∈ ζ2 are all positive-even. Since a positive-even integer can split into two
odd integers, on the labeled graph Gn with ∂Gn = o M x (recall the notation introduced
above (3.27)) there are at least three edge-disjoint paths from o to x. This observation leads
us to expect that π(0)

Λ (x) is bounded by 〈ϕoϕx〉3Λ, as in (2.14), for the ferromagnetic Ising
model.

To state bounds on the expansion coefficients, we first introduce diagrammatic functions
consisting of two-point functions. Let

G̃Λ(y, x) =
∑

b:b=y

τb 〈ϕbϕx〉Λ =
∑

b:b=x

〈ϕyϕb〉Λτb. (4.3)

We note that 〈ϕyϕx〉Λ ≤ G̃Λ(y, x) for y 6= x, since4

〈ϕyϕx〉Λ ≤ δy,x +
∑

b:b=y

∑

∂n=yMx
nb odd

wΛ(n)

ZΛ

= δy,x +
∑

b:b=y

τb

∑

∂n=bMx
nb even

wΛ(n)

ZΛ

≤ δy,x + G̃Λ(y, x). (4.4)

Using this notation, we let

ψΛ(y, x) =
∞∑

j=0

(
G̃2

Λ

)∗j
(y, x) ≡ δy,x +

∞∑
j=1

∑
u0,...,uj

u0=y, uj=x

j∏

l=1

G̃Λ(ul−1, ul)
2, (4.5)

and define (see the first line in Figure 5)

P (1)

Λ (v1, v
′
1) =

(
ψΛ(v1, v

′
1)− δv1,v′1

) 〈ϕv1ϕv′1〉Λ, (4.6)

4Repeated application of (4.4) results in the random-walk bound: 〈ϕoϕx〉Λ ≤
∑∞

n=0 τnD∗n(x) for Λ ⊂ Zd,
τ ≤ 1 and d > 2.
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P (1)

Λ (v1, v
′
1) =

v1 v’1
P (2)

Λ (v1, v
′
2) =

v

v’

)1v’(

2

1

(v2)

P (3)

Λ (v1, v
′
3) =

)2

(v3)
1v v’3

(

v( (v’2

v’1)

)

P ′(1)
Λ;u(v1, v

′
1) =

u

v1 v’1
P ′′(1)

Λ;u,v(v1, v
′
1) = )(v’

v

u
1v’1v

+ other possible combinations

Figure 5: Schematic representations of P (j)

Λ (v1, v
′
j) for j = 1, 2, 3, as well as those of

P ′(1)
Λ;u(v1, v

′
1) and P ′′(1)

Λ;u,v(v1, v
′
1), where the labels in the parentheses stand for the vertices

that are summed over, the sequence of bubbles from vi and v′i represents ψΛ(vi, v
′
i)− δvi,v′i ,

and the sequence of bubbles from v′ to v in P ′′(1)
Λ;u,v(v1, v

′
1) is ψΛ(v′, v).

and, for j ≥ 2,

P (j)

Λ (v1, v
′
j) =

∑
v2,...,vj

v′1,...,v′j−1

(
ψΛ(v1, v

′
1)− δv1,v′1

) 〈ϕv1ϕv2〉Λ 〈ϕv2ϕv′1〉Λ

×
( j−1∏

i=2

(
ψΛ(vi, v

′
i)− δvi,v′i

) 〈ϕv′i−1
ϕvi+1

〉
Λ
〈ϕvi+1

ϕv′i〉Λ
)

× (
ψΛ(vj, v

′
j)− δvj ,v′j

) 〈ϕv′j−1
ϕv′j〉Λ, (4.7)

where, by convention, the empty product for j = 2 is 1. Then, we define P ′(j)
Λ;u(v1, v

′
j)

by replacing one of the 2j − 1 two-point functions explicitly consisting of P (j)

Λ (v1, v
′
j) in

(4.6)–(4.7), say, 〈ϕzϕz′〉Λ (e.g., (z, z′) = (v1, v
′
1) for j = 1, and either (z, z′) = (v1, v2),

(z, z′) = (v2, v
′
1) or (z, z′) = (v′1, v

′
2) for j = 2, and so on) with 〈ϕzϕu〉Λ〈ϕuϕz′〉Λ, and

then summing over all 2j − 1 choices of this replacement (see the second line in Figure 5).
Similarly, we define P ′′(j)

Λ;u,v(v1, v
′
j) by replacing two distinct two-point functions consisting

of P (j)

Λ (v1, v
′
j), one of which is among the aforementioned 2j − 1 two-point functions and

the other is among those of which ψΛ(vi, v
′
i) − δvi,v′i for i = 1, . . . , j are composed, say,∏

i=1,2 〈ϕzi
ϕz′i〉Λ, with 〈ϕz1ϕu〉Λ〈ϕuϕz′1〉Λ

∑
v′ 〈ϕz2ϕv′〉Λ〈ϕv′ϕz′2〉ΛψΛ(v′, v), and then summing

over all possible combinations of these two distinct two-point functions (see the second line
in Figure 5 again). Moreover, we let

P ′(0)
Λ;u(y, x) = 〈ϕyϕx〉2Λ 〈ϕyϕu〉Λ 〈ϕuϕx〉Λ, (4.8)

P ′′(0)
Λ;u,v(y, x) = 〈ϕyϕx〉Λ 〈ϕyϕu〉Λ 〈ϕuϕx〉Λ

∑

v′
〈ϕyϕv′〉Λ 〈ϕv′ϕx〉Λ ψΛ(v′, v), (4.9)

and define

P ′
Λ;u(y, x) =

∑
j≥0

P ′(j)
Λ;u(y, x), P ′′

Λ;u,v(y, x) =
∑
j≥0

P ′′(j)
Λ;u,v(y, x), (4.10)
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π(1)

Λ (x) .
o x

b( 1)

π(2)

Λ (x) .
o

x

)2(b

b )1(

+
o

x
)1(b

b )2(

Figure 6: Leading diagrammatic bounds on π(1)

Λ (x) and π(2)

Λ (x), where, in particular, the line
segments that terminate with bi for i = 1, 2 represent δ + G̃Λ (cf., (4.11)–(4.12)). The labels
in the parentheses stand for the bonds that are summed over.

where, as shown below in Section 4.3, P ′(0)
Λ;u(y, x) and P ′′(0)

Λ;u,v(y, x) are the leading contributions
to P ′

Λ;u(y, x) and P ′′
Λ;u,v(y, x), respectively. Finally, we define

Q′
Λ;u(y, x) =

∑
z

(
δy,z + G̃Λ(y, z)

)
P ′

Λ;u(z, x), (4.11)

Q′′
Λ;u,v(y, x) =

∑
z

(
δy,z + G̃Λ(y, z)

)
P ′′

Λ;u,v(z, x) +
∑

v′,z

〈ϕyϕv′〉Λ G̃Λ(v′, z) P ′
Λ;u(z, x) ψΛ(v′, v).

(4.12)

Now, we can state diagrammatic bounds on the expansion coefficients as follows (see
Figure 6):

Proposition 4.1 (Diagrammatic bounds). For the ferromagnetic Ising model, we have

π(j)

Λ (x) ≤





P ′(0)
Λ;o (o, x) ≡ 〈ϕoϕx〉3Λ (j = 0),

∑

b1,...,bj
v1,...,vj

P ′(0)
Λ;v1

(o, b1)

( j−1∏
i=1

τbi
Q′′

Λ;vi,vi+1
(bi, bi+1)

)
τbj

Q′
Λ;vj

(bj, x) (j ≥ 1),
(4.13)

where, by convention, the empty product for j = 1 is 1.

We prove (4.13) for j = 0 in Section 4.1 and (4.13) for j ≥ 1 in Section 4.2. Then, in
Section 4.3, we use Proposition 4.1 to prove Proposition 2.4.

4.1 Bound on π(0)

Λ (x)

The key ingredient of the proof of (4.13) is Lemma 4.2 below, which is an extension of the
GHS idea used in the proof of Lemma 3.3. In this subsection, we demonstrate how this
extension works to prove the bound on π(0)

Λ (x) and the inequality

∑

∂n=oMx

wΛ(n)

ZΛ

1{o⇐⇒
n

x}∩ {o←→
n

y} ≤ P ′(0)
Λ;y (o, x), (4.14)

which will be used in Section 4.2 to obtain the bounds on π(j)

Λ (x) for j ≥ 1.
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Proof of (4.13) for j = 0. Since the inequality is trivial if x = o, we restrict our attention
to the case of x 6= o.

We note that, for each current configuration n that satisfies ∂n = {o, x} and 1{o⇐⇒
n

x} = 1,

there are at least three edge-disjoint paths on Gn between o and x. (See the first term on
the right-hand side in Figure 2. For example, if the thick line in that picture, referred to
as λ1 and decomposed as λ11 ∪̇ λ12 ∪̇ λ13 from o to x, consists of bonds b with nb = 1,
and if the thin lines, referred to as λ2 and λ3 that terminate at o and x, respectively,
consist of bonds b′ with nb′ = 2, then the decomposition into three edge-disjoint paths is
{λ2 ∪̇ λ13, λ

′
2 ∪̇ λ12 ∪̇ λ3, λ11 ∪̇ λ′3}, where λ′i is the duplication of λi.) Multiplying π(0)

Λ (x) by
two dummies (ZΛ/ZΛ)2 (≡ 1), we obtain

π(0)

Λ (x) =
∑

∂n={o,x}
∂m′=∂m′′=∅

wΛ(n)

ZΛ

wΛ(m′)
ZΛ

wΛ(m′′)
ZΛ

1{o⇐⇒
n

x}

=
∑

∂N={o,x}

wΛ(N)

Z3
Λ

∑

∂n={o,x}
∂m′=∂m′′=∅
N≡n+m′+m′′

1{o⇐⇒
n

x}
∏

b∈BΛ

Nb!

nb! m′
b! m′′

b !
, (4.15)

where the sum over n,m′,m′′ in the second line equals the cardinality of the following set
of partitions:

{
(S0, S1,S2) : GN =

⋃̇
i=0,1,2

Si, ∂S = {o, x}, ∂S1 = ∂S2 = ∅, o ⇐⇒ x in S0

}
, (4.16)

where “o ⇐⇒ x in S0” means that there are at least two bond -disjoint paths in S0. We

prove below that the cardinality of (4.16) is bounded from above by
∣∣∣∣
{

(S0,S1,S2) : GN =
⋃̇

i=0,1,2

Si, ∂S0 = ∂S1 = ∂S2 = {o, x}
}∣∣∣∣ =

∑

∂n={o,x}
∂m′=∂m′′={o,x}
N≡n+m′+m′′

∏

b∈BΛ

Nb!

nb! m′
b! m

′′
b !

.

(4.17)

This implies (4.13) for j = 0, since

∑

∂N={o,x}

wΛ(N)

Z3
Λ

∑

∂n=∂m′=∂m′′={o,x}
N≡n+m′+m′′

∏

b∈BΛ

Nb!

nb! m′
b! m′′

b !
= 〈ϕoϕx〉3Λ. (4.18)

It remains to prove that the cardinality of (4.16) is bounded from above by (4.17). For
this, we use the following lemma, in which we denote the set of paths on GN from z to z′

by ΩN
z→z′ and write ω ∩ ω′ = ∅ to mean that ω and ω′ are edge-disjoint (not necessarily

bond -disjoint).

Lemma 4.2. Given N ∈ ZBΛ
+ , k ≥ 1, V ⊂ Λ and zi 6= z′i ∈ Λ for i = 1, . . . , k, we let

S =



(S0,S1, . . . , Sk) :

GN =
⋃̇k

i=0 Si, ∂S0 = V , ∂Si = ∅ ∀i = 1, . . . , k
∃ωi ∈ ΩN

zi→z′i
∀i = 1, . . . , k s.t. ωi ∩ ωj = ∅ ∀i 6= j

ωi ⊂ S0 ∪̇ Si
∀i = 1, . . . , k



 , (4.19)
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and let S′ be the right-hand side of (4.19) with “∂S0 = V, ∂Si = ∅ ∀i = 1, . . . , k” being
replaced by “∂S0 = V 4{z1, z

′
1}4 · · · 4 {zk, z

′
k}, ∂Si = {zi, z

′
i} ∀i = 1, . . . , k”. Then,

|S| = |S′|.
We prove this lemma at the end of this subsection.
Now, we use Lemma 4.2 with k = 2 and V = {z1, z

′
1} = {z2, z

′
2} = {o, x}. Note that

(4.16) is a subset of S, since S includes the partitions (S0,S1,S2) in which there does not
exist two bond -disjoint paths on S0. In addition, S′ is trivially a subset of the set in the
left-hand side of (4.17). Therefore, the cardinality of (4.16) is bounded from above by (4.17).
This completes the proof of (4.13) for j = 0.

Here, we summarize the basic steps that we have followed to bound π(0)

Λ (x) and which
we generalize to prove (4.14) below and the bounds on π(j)

Λ (x) for j ≥ 1 in Section 4.2.2.

(i) Count the number, say, k+1, of edge-disjoint paths on Gn that satisfies the source con-
straint (as well as other additional conditions, if there are) of the considered function
f(x), such as π(0)

Λ (x) = 1
ZΛ

∑
∂n={o,x} wΛ(n)1{o⇐⇒

n
x} with k = 2.

(ii) Multiply f(x) by (ZΛ

ZΛ
)k =

∏k
i=1(

1
ZΛ

∑
∂m(i)=∅wΛ(m(i))) (≡ 1), and then overlap the k

dummies m(1), . . . ,m(k) over the original current configuration n. Choose any k paths
among the (k +1)-edge-disjoint paths on Gn+

Pk
i=1 m(i) , and denote them by ω1, . . . , ωk.

(iii) Use Lemma 4.2 to exchange the occupation status of edges on ωi between Gn and
Gm(i) for every i = 1, . . . , k. The current configurations after the mapping, denoted by
ñ, m̃(1), . . . , m̃(k), satisfy ∂ñ = ∂n M ∂ω1 M · · · M ∂ωk and ∂m̃(i) = ∂ωi for i = 1, . . . , k.

Proof of (4.14). When y = o or x, (4.14) is reduced to the inequality for π(0)

Λ (x). Also, the
case of o = x 6= y is trivial, since

∑

∂n=∅

wΛ(n)

ZΛ

1{o←→
n

y} ≤
∑

∂n=∂m=∅

wΛ(n)

ZΛ

wΛ(m)

ZΛ

1{o←→
n+m

y} = 〈ϕoϕy〉2Λ, (4.20)

due to Lemma 3.3. Therefore, we can assume o 6= x 6= y 6= o.
We follow the three steps described above.
(i) Because of the source constraint ∂n = {o, x} and the events in the indicator function,

there are at least 4 (= k +1) edge-disjoint paths on Gn, one of which is from o to y, another
is from y to x, and the remaining two are from o to x. (It is not so hard to realize that there
is an edge-disjoint cycle, o → y → x → o, due to the fact that y is not a source, but o and x
are. Since a cycle does not have a source, the existence of another edge-disjoint connection
from o to x is assured by the source constraint ∂n = {o, x}.)

(ii) Then, by multiplying (ZΛ

ZΛ
)3, the inequality (4.14) is equivalent to

∑

∂N={o,x}

wΛ(N)

Z4
Λ

∑

∂n={o,x}
∂m(i)=∅ ∀i=1,2,3

N=n+
P3

i=1 m(i)

1{o⇐⇒
n

x}∩ {o←→
n

y}
∏

b∈BΛ

Nb!

nb! m
(1)

b ! m(2)

b ! m(3)

b !

≤
∑

∂N={o,x}

wΛ(N)

Z4
Λ

∑

∂n=∂m(3)={o,x}
∂m(1)={o,y}, ∂m(2)={y,x}

N=n+
P3

i=1 m(i)

∏

b∈BΛ

Nb!

nb! m
(1)

b ! m(2)

b ! m(3)

b !
. (4.21)
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Therefore, it suffices to prove that the second sum on the left-hand side is less than or equal
to that on the right-hand side.

(iii) We note that the second sum on the left-hand side of (4.21) equals the cardinality
of

{
(S0, S1,S2,S3) :

GN =
⋃̇3

i=0 Si, ∂S0 = {o, x}, ∂S1 = ∂S2 = ∂S3 = ∅
o ⇐⇒ x in S0, o ←→ y in S0

}
, (4.22)

and the second sum on the right-hand side of (4.21) equals the cardinality of

{
(S0,S1, S2,S3) : GN =

⋃̇3
i=0 Si, ∂S0 = {o, x}, ∂S1 = {o, y}, ∂S2 = {y, x}, ∂S3 = {o, x}

}
.

(4.23)

Now, we use Lemma 4.2 with k = 3 and V = {z3, z
′
3} = {o, x}, {z1, z

′
1} = {o, y} and

{z2, z
′
2} = {y, x}. Since (4.22) is a subset of S for this setting, while S′ is a subset of (4.23),

we obtain (4.21). This completes the proof of (4.14).

Proof of Lemma 4.2. For every ΩN
zi→z′i

, we introduce an arbitrarily fixed order. For ω, ω′ ∈
ΩN

zi→z′i
, we write ω ≺ ω′ if ω is earlier than ω′ in this order. For ω1 ∈ ΩN

z1→z′1
, we denote by

ΩN;ω1

z2→z′2
the set of paths ω ∈ ΩN

z2→z′2
such that ω ∩ω1 = ∅ and that ζ 6⊂ ω for any ζ ∈ ΩN

z1→z′1
with ζ ≺ ω1. Moreover, for 1 < l < k, we define ΩN;~ωl

zl+1→z′l+1
, where ~ωl = (ω1, . . . , ωl) with

ω1 ∈ ΩN
z1→z′1

, ω2 ∈ ΩN;ω1

z2→z′2
, . . . , ωl ∈ Ω

N;~ωl−1

zl→z′l
, to be the set of paths ζ ∈ ΩN

zl+1→z′l+1
such that

ζ ∩ ⋃̇l
i=1 ωi = ∅ and that ξ 6⊂ ζ for any ξ ∈ Ω

N;~ωi−1

zi→z′i
satisfying ξ ≺ ωi, for every i = 1, . . . , l,

where we have denoted ΩN;~ω0

z1→z′1
= ΩN

z1→z′1
.

Using the above notation, we decompose S(′) disjointly as follows. Given ω1 ∈ ΩN
z1→z′1

, . . . ,

ωk ∈ Ω
N;~ωk−1

zk→z′k
, we denote by S

(′)
~ωk

the set of partitions (S0,S1, . . . , Sk) ∈ S(′) such that ωi is

the earliest element of Ω
N;~ωi−1

zi→z′i
contained in S0 ∪̇ Si, for every i = 1, . . . , k. Then, S(′) can

be decomposed as

S(′) =
⋃̇

ω1∈ΩN
z1→z′1

⋃̇

ω2∈Ω
N;ω1
z2→z′2

· · ·
⋃̇

ωk∈Ω
N;~ωk−1

zk→z′
k

S
(′)
~ωk

. (4.24)

The proof of Lemma 4.2 will be completed if we can find a bijection from S~ωk
to S′

~ωk

for every ~ωk. For (S0, . . . , Sk) ∈ S~ωk
, we define

F~ωk
(S0, . . . , Sk) ≡

(
F (0)

~ωk
(S0), . . . , F

(k)

~ωk
(Sk)

)
=

(
S04

⋃̇k
i=1 ωi, S14ω1, . . . , Sk4ωk

)
, (4.25)

where ∂F (0)

~ωk
(S0) = V 4{z1, z

′
1}4 · · · 4 {zk, z

′
k} and ∂F (i)

~ωk
(Si) = {zi, z

′
i} for i = 1, . . . , k.

Note that, by definition, we have F~ωk
(F~ωk

(S0, . . . , Sk)) = (S0, . . . , Sk). Also, by simple
arithmetic using ωi ∩ ωj = Si ∩ Sj = ∅ and ωj ⊂ S0 ∪̇ Sj for 1 ≤ j ≤ k and i 6= j, we have

F (i)

~ωk
(Si) ∩ F (j)

~ωk
(Sj) = ∅, F (0)

~ωk
(S0) ∪̇ F (j)

~ωk
(Sj) =

(
S04

⋃̇
i6=j ωi

)
∪̇ Sj. (4.26)
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Since ωj ⊂ S0 ∪̇Sj and ωj ∩
⋃̇

i6=j ωi = ∅, we have ωj ⊂ F (0)

~ωk
(S0) ∪̇F (j)

~ωk
(Sj). In addition, since

Ω
N;~ωj−1

zj→z′j
is a set of paths that do not use any edge in

⋃̇
i<j ωi, its earliest element contained

in (S04
⋃̇

i<j ωi) ∪̇ Sj is ωj. Furthermore, since each Ω
N;~ωi−1

zi→z′i
for i > j is a set of paths

that do not fully contain ωj or any earlier element of Ω
N;~ωj−1

zj→z′j
as a subset, ωj is the earliest

element of ((
S04

⋃̇
i<j ωi

)
∪̇ Sj

)
4

( ⋃̇
i>j ωi

)
≡

(
S04

⋃̇
i6=j ωi

)
∪̇ Sj. (4.27)

Therefore, F~ωk
is a bijection from S~ωk

to S′
~ωk

. This completes the proof of Lemma 4.2.

4.2 Bounds on π(j)

Λ (x) for j ≥ 1

In this subsection, we prove (4.13) for j ≥ 1 using the following two lemmas, in which we
use

E ′
n(z, x;A) = {z A←→

n
x} ∩ {z ⇐⇒

n
x}, E ′′

n(z, x, v;A) = E ′
n(z, x;A) ∩ {z ←→

n
v},

(4.28)

Θ′
z,x;A =

∑

∂m=∅
∂n=zMx

wAc(m)

ZAc

wΛ(n)

ZΛ

1E′m+n(z,x;A), Θ′′
z,x,v;A =

∑

∂m=∅
∂n=zMx

wAc(m)

ZAc

wΛ(n)

ZΛ

1E′′m+n(z,x,v;A).

(4.29)

Lemma 4.3. For the ferromagnetic Ising model, we have

Θy,x;A ≤
∑

z

(
δy,z + G̃Λ(y, z)

)
Θ′

z,x;A, (4.30)

Θy,x;A
[
1{y←→v}

] ≤
∑

z

(
δy,z + G̃Λ(y, z)

)
Θ′′

z,x,v;A +
∑

v′,z

〈ϕyϕv′〉Λ G̃Λ(v′, z) Θ′
z,x;A ψΛ(v′, v).

(4.31)

Lemma 4.4. For the ferromagnetic Ising model, we have

Θ′
y,x;A ≤

∑
u∈A

P ′
Λ;u(y, x), Θ′′

y,x,v;A ≤
∑
u∈A

P ′′
Λ;u,v(y, x). (4.32)

Proof of (4.13) for j ≥ 1 assuming Lemmas 4.3–4.4. Recalling (3.37) and using (4.30), (4.32)
and (4.11), we obtain

Θ(j−1)

bj−1,bj ;C̃j−2
[τbj

Θ(j)

bj ,x;C̃j−1
] ≤

∑
z

(
δbj ,z + G̃Λ(bj, z)

)
Θ(j−1)

bj−1,bj ;C̃j−2

[
τbj

∑

vj∈C̃j−1

P ′
Λ;vj

(z, x)

]

≤
∑
vj

Θ(j−1)

bj−1,bj ;C̃j−2

[
1{bj−1←→vj}

]
τbj

Q′
Λ;vj

(bj, x). (4.33)

If j = 1, we use (4.14). Otherwise, we use (4.11)–(4.12) and (4.31)–(4.32) j − 1 times and
at last use (4.14). This completes the proof of (4.13) for j ≥ 1.

We prove Lemma 4.3 in Section 4.2.1, and Lemma 4.4 in Section 4.2.2.
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4.2.1 Proof of Lemma 4.3

Proof of (4.30). Recalling (3.30) and (4.28), we have

En(y, x;A) = E ′
n(y, x;A) (4.34)

∪̇
⋃̇

b∈BΛ

{
{E ′

n(b, x;A) off b} ∩ {nb > 0} ∩ {
y ←→

n
b in Ac, b /∈ Cb

n(x)
}}

.

Therefore, we obtain

Θy,x;A = Θ′
y,x;A (4.35)

+
∑

b∈BΛ

∑

∂m=∅
∂n=yMx

wAc(m)

ZAc

wΛ(n)

ZΛ

1{E′m+n(b,x;A) off b}1{mb+nb>0}1{y←→
m+n

b in Ac, b/∈Cb
m+n(x)}.

It remains to bound the second line of (4.35), which is nonzero only if mb is even and nb

is odd, due to the source constraints and the conditions in the indicators. By alternating
the parity of nb with changing the source constraint into ∂n = y M b M x and multiplying
τb as in (3.33), and then conditioning on Cb

m+n(x) as in (3.34), the second line of (4.35) can
be written as

∑

b∈BΛ

∑

∂m=∅
∂n=bMx

wAc(m)

ZAc

wΛ(n)

ZΛ

1{E′m+n(b,x;A) off b} τb1{mb,nb even}

×
∑

∂h=∅
∂k=yMb

wAc∩Cb
m+n(x)c(h)

ZAc∩Cb
m+n(x)c

wCb
m+n(x)c(k)

ZCb
m+n(x)c

1{y←→
h+k

b in Ac∩Cb
m+n(x)c}

=
∑

b∈BΛ

∑

∂m=∅
∂n=eMx

wAc(m)

ZAc

wΛ(n)

ZΛ

1{E′m+n(b,x;A) off b} τb1{mb,nb even} 〈ϕyϕb〉Ac∩Cb
m+n(x)c

, (4.36)

where we have used Lemma 3.3 for y 6= b to obtain the last line. Since 〈ϕyϕb〉Ac∩Cb
m+n(x)c

is

zero on the event E ′
m+n(b, x;A) \ {E ′

m+n(b, x;A) off b} ⊂ {b ∈ Cb
m+n(x)}, or on the event

that mb or nb is odd (cf., the argument below (3.14) or below (3.34)), we can omit “off b”
and 1{mb,nb even} to obtain that (4.36) is

∑

b∈BΛ

∑

∂m=∅
∂n=bMx

wAc(m)

ZAc

wΛ(n)

ZΛ

1E′m+n(b,x;A) τb 〈ϕyϕb〉Ac∩Cb
m+n(x)c

≤
∑

b∈BΛ

〈ϕyϕb〉Λτb Θ′
b,x;A, (4.37)

due to the second Griffiths inequality. This complets the proof of (4.30).

Proof of (4.31). Recall (4.34). Since b in (4.34) is the last pivotal bond for y ←→
n

x from y,

we have

En(y, x;A) ∩ {y ←→
n

v} (4.38)

= E ′′
n(y, x, v;A) ∪̇

⋃̇

b∈BΛ

{
{E ′′

n(b, x, v;A) off b} ∩ {nb > 0} ∩ {
y ←→

n
b in Ac, b /∈ Cb

n(x)
}}

∪̇
⋃̇

b∈BΛ

{
{E ′

n(b, x;A) off b} ∩ {nb > 0} ∩ {
y ←→

n
b in Ac, y ←→

n
v, b /∈ Cb

n(x)
}}

,
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where v ∈ Cb
n(x) in the event subject to the first big union, and v ∈ Cb

n(y) in the event
subject to the second big union. By the same computation between (4.35) and (4.37), the
contribution from the second line of (4.38) is bounded by

Θ′′
y,x,v;A +

∑

b∈BΛ

∑

∂m=∅
∂n=bMx

wAc(m)

ZAc

wΛ(n)

ZΛ

1E′′m+n(b,x,v;A) τb 〈ϕyϕb〉Ac∩Cb
m+n(x)c

≤
∑

z

(
δy,z + G̃Λ(y, z)

)
Θ′′

z,x,v;A. (4.39)

Similarly, the contribution from the third line of (4.38) is bounded by

∑

b∈BΛ

∑

∂m=∅
∂n=bMx

wAc(m)

ZAc

wΛ(n)

ZΛ

1{E′m+n(b,x;A) off b} τb1{mb,nb even}

×
∑

∂h=∅
∂k=yMb

wAc∩Cb
m+n(x)c(h)

ZAc∩Cb
m+n(x)c

wCb
m+n(x)c(k)

ZCb
m+n(x)c

1{y←→
h+k

b in Ac∩Cb
m+n(x)c, y←→

h+k
v (in Cb

m+n(x)c)}

≤
∑

b∈BΛ

∑

∂m=∅
∂n=bMx

wAc(m)

ZAc

wΛ(n)

ZΛ

1E′m+n(b,x;A) τb Ψy,b,v;A,Cb
m+n(x), (4.40)

where we have omitted “off b” and 1{mb,nb even} using 0 ≤ Ψy,b,v;A,Cb
m+n(x) ≤ 〈ϕyϕb〉Cb

m+n(x)c

and the fact that 〈ϕyϕb〉Cb
m+n(x)c

is zero when b ∈ Cb
m+n(x), where

Ψy,z,v;A,B =
∑

∂h=∅
∂k=yMz

wAc∩Bc(h)

ZAc∩Bc

wBc(k)

ZBc

1{y←→
h+k

v}. (4.41)

To complete the proof of (4.31), it thus suffices to show

Ψy,z,v;A,B ≤
∑

v′
〈ϕyϕv′〉Λ 〈ϕv′ϕz〉Λ ψΛ(v′, v). (4.42)

We note that, by Lemma 3.3, Ψy,z,v;B,B = 〈ϕyϕv〉Bc〈ϕvϕz〉Bc . However, to deal with a general
A ⊂ Λ, we use

{y ←→
h+k

v} = {y ←→
k

v} ∪̇ {{y ←→
h+k

v} \ {y ←→
k

v}}, (4.43)

and consider the two events in the right-hand side separately.
The contribution to (4.41) from {y ←→

k
v} is bounded, similarly to (4.20), by

∑

∂k=yMz

wBc(k)

ZBc

1{y←→
k

v} ≤
∑

∂k=yMz
∂k′=∅

wBc(k)

ZBc

wBc(k′)
ZBc

1{y←→
k+k′

v} = 〈ϕyϕv〉Bc 〈ϕvϕz〉Bc

≤ 〈ϕyϕv〉Λ 〈ϕvϕz〉Λ, (4.44)
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due to the second Griffiths inequality.
Next, we consider the contribution from {y ←→

h+k
v} \ {y ←→

k
v} in (4.43). We denote by

Ck(y) the set of k-connected sites from y. Since y is (h+k)-connected, but not k-connected,
to v, there is a nonzero alternating chain of mutually-disjoint h-connected clusters and
mutually-disjoint k-connected clusters, from some u0 ∈ Ck(y) to v. Therefore, we have

1{y←→
h+k

v}\{y←→
k

v} ≤
∞∑

j=1

∑
u0,...,uj

ul 6=ul′
∀l 6=l′

uj=v

1{y←→
k

u0}

(∏

l≥0

1{u2l←→
h

u2l+1}

)(∏

l≥1

1{u2l−1←→
k

u2l}

)

×
( ∏

l,l′≥0
l 6=l′

1{Ch(u2l)∩Ch(u2l′ )=∅}1{Ck(u2l)∩Ck(u2l′ )=∅}

)
. (4.45)

Because of this bound, we can now treat the sums over h and k in (4.41) separately.
Fix j ≥ 1 and a sequence of distinct sites u0, . . . , uj (= v), and consider the contribution

to the sum over k in (4.41) from the relevant indicators in the right-hand side of (4.45),
which is

∑

∂k=yMz

wBc(k)

ZBc

1{y←→
k

u0}

( ∏

l≥1

1{u2l−1←→
k

u2l}

)( ∏

l,l′≥0
l 6=l′

1{Ck(u2l)∩Ck(u2l′ )=∅}

)
. (4.46)

Conditioning over Uk;1 ≡
⋃̇

l≥1 Ck(u2l) and using (4.44), we obtain

∑

∂k=∅

wBc(k)

ZBc

( ∏

l≥1

1{u2l−1←→
k

u2l}

)( ∏

l,l′≥1
l 6=l′

1{Ck(u2l)∩Ck(u2l′ )=∅}

) ∑

∂k′=yMz

wBc∩Uc
k;1

(k′)

ZBc∩Uc
k;1

1{y←→
k′

u0}

≤ 〈ϕyϕu0〉Λ 〈ϕu0ϕz〉Λ
∑

∂k=∅

wBc(k)

ZBc

( ∏

l≥1

1{u2l−1←→
k

u2l}

)( ∏

l,l′≥1
l 6=l′

1{Ck(u2l)∩Ck(u2l′ )=∅}

)
.

(4.47)

Then, by conditioning on Uk;2 ≡
⋃̇

l≥2 Ck(u2l), following the same computation as above and
using (4.4), the sum in (4.47) is bounded by

∑

∂k=∅

wBc(k)

ZBc

( ∏

l≥2

1{u2l−1←→
k

u2l}

)( ∏

l,l′≥2
l 6=l′

1{Ck(u2l)∩Ck(u2l′ )=∅}

) ∑

∂k′=∅

wBc∩Uc
k;2

(k′)

ZBc∩Uc
k;2

1{u1←→
k′

u2}

≤ G̃Λ(u1, u2)
2

∑

∂k=∅

wBc(k)

ZBc

( ∏

l≥2

1{u2l−1←→
k

u2l}

)( ∏

l,l′≥2
l 6=l′

1{Ck(u2l)∩Ck(u2l′ )=∅}

)
. (4.48)

We repeat this computation until all the indicators for k are used up. Also, we apply the
same argument to the indicators for h. Summarizing these bounds with (4.44) and replacing
u0 in (4.45)–(4.47) by v′, we obtain (4.42). This completes the proof of (4.31).
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4.2.2 Proof of Lemma 4.4

We note that the common factor 1{y⇐⇒
m+n

x} in Θ′
y,x;A and Θ′′

y,x,v;A can be divided as

1{y⇐⇒
m+n

x} = 1{y⇐⇒
n

x} + 1{y⇐⇒
m+n

x}\{y⇐⇒
n

x}. (4.49)

We first estimate the contribution from 1{y⇐⇒
n

x} to Θ′
y,x;A and Θ′′

y,x,v;A, and then estimate

the contribution from 1{y⇐⇒
m+n

x}\{y⇐⇒
n

x} to Θ′
y,x;A and Θ′′

y,x,v;A.

Contribution to Θ′
y,x;A from 1{y⇐⇒

n
x}. For a set of events E1, . . . , EN , let E1 ◦ · · · ◦ EN be

the event that E1, . . . , EN occur bond -disjointly. Then, we have

1{y A←→
m+n

x}∩ {y⇐⇒
n

x} ≤ 1{y A←→
n

x}∩ {y⇐⇒
n

x} ≤
∑
u∈A

1{y←→
n

u} ◦ {u←→
n

x} ◦ {y←→
n

x}, (4.50)

where the right-hand side does not depend on m. Therefore, the contribution to Θ′
y,x;A is

bounded by

∑
u∈A

∑

∂n=yMx

wΛ(n)

ZΛ

1{y←→
n

u} ◦ {u←→
n

x} ◦ {y←→
n

x} ≤
∑
u∈A

P ′(0)
Λ;u(y, x), (4.51)

where we have applied the same argument used in the proof of (4.14).

Contribution to Θ′′
y,x,v;A from 1{y⇐⇒

n
x} of (4.49). First, by using (4.43), we have

1{y A←→
m+n

x}∩ {y⇐⇒
n

x}∩ {y←→
m+n

v} ≤ 1{y A←→
n

x}∩ {y⇐⇒
n

x}
(
1{y←→

n
v} + 1{y←→

m+n
v}\{y←→

n
v}

)
. (4.52)

We investigate the contributions from the two indicators in the parentheses separately.
We begin with the contribution from 1{y←→

n
v}, which is independent of m. Since

{y ⇐⇒
n

x} ∩ {y ←→
n

v} ⊂ {y ←→
n

x} ◦ {y ←→
n

x, y ←→
n

v}, (4.53)

{y A←→
n

x} ⊂
⋃
u∈A

{y ←→
n

u} ◦ {u ←→
n

x}, (4.54)

the contribution to Θ′′
y,x,v;A is bounded by

∑
u∈A

∑

∂n=yMx

wΛ(n)

ZΛ

1{y←→
n

u} ◦ {u←→
n

x} ◦ {y←→
n

x, y←→
n

v}. (4.55)

We follow Steps (i)–(iii) described in Section 4.1. Without loss of generality, we can assume
that all four sites y, u, x and v are different; otherwise, the argument below can be simplified.
Similarly to the argument below (4.20), since y and x are sources, but u and v are not, there
is an edge-disjoint cycle y → u → x → v → y, with an extra edge-disjoint path from y to x.
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Therefore, we have in total at least 5 (= 4 + 1) edge-disjoint paths. By multiplying (ZΛ

ZΛ
)4,

(4.55) equals

∑
u∈A

∑

∂N=yMx

wΛ(N)

Z5
Λ

∑

∂n=yMx
∂m(i)=∅ ∀i=1,...,4

N=n+
P4

i=1 m(i)

1{y←→
n

u} ◦ {u←→
n

x} ◦ {y←→
n

x, y←→
n

v}
∏

b∈BΛ

Nb!

nb!
∏4

i=1 m(i)

b !
, (4.56)

where the sum over n,m(1), . . . ,m(4) is bounded by the cardinality of S in Lemma 4.2 with
k = 4, V = {y, x}, {z1, z

′
1} = {y, u}, {z2, z

′
2} = {u, x}, {z3, z

′
3} = {y, v} and {z4, z

′
4} =

{v, x}. Bounding |S′| for this setting, we obtain that (4.56) is bounded by

∑
u∈A

∑

∂N=yMx

wΛ(N)

Z5
Λ

∑

∂n=yMx
∂m(1)=yMu, ∂m(2)=uMx
∂m(3)=yMv, ∂m(4)=vMx

N=n+
P4

i=1 m(i)

∏

b∈BΛ

Nb!

nb!
∏4

i=1 m(i)

b !

≤
∑
u∈A

〈ϕyϕx〉Λ 〈ϕyϕu〉Λ 〈ϕuϕx〉Λ 〈ϕyϕv〉Λ 〈ϕvϕx〉Λ. (4.57)

Next, we investigate the contribution from 1{y←→
m+n

v}\{y←→
n

v} of (4.52). On the event

{y ⇐⇒
n

x} ∩ {{y ←→
m+n

v} \ {y ←→
n

v}}, there exists a v0 such that {y ←→
n

x} ◦ {y ←→
n

x, y ←→
n

v0} occurs and that v0 and v are connected via a nonzero alternating chain of

mutually-disjoint m-connected clusters and mutually-disjoint n-connected clusters. There-

fore, by using (4.45) and {y A←→
n

x} ⊂ ⋃
u∈A{y ←→n u} ◦ {u ←→

n
x}, we obtain (cf., (4.55))

1{y A←→
n

x}∩ {y⇐⇒
n

x}∩ {{y←→
m+n

v}\{y←→
n

v}}

≤
∑
u∈A

∑
j≥1

∑
v0,...,vj

vl 6=vl′
∀l 6=l′

vj=v

1{y←→
n

u} ◦ {u←→
n

x} ◦ {y←→
n

x, y←→
n

v0}

( ∏

l≥0

1{v2l←→m v2l+1}

)

×
( ∏

l≥1

1{v2l−1←→n v2l}

)( ∏

l,l′≥0
l 6=l′

1{Cm(v2l)∩Cm(v2l′ )=∅} 1{Cn(v2l)∩Cn(v2l′ )=∅}

)
. (4.58)

For the products of indicators, we repeatedly use the “conditioning-over-clusters” argument,
as in (4.46)–(4.48). As a result, because the first indicator in the right-hand side of (4.58)
does not depend on m, we can apply (4.55)–(4.57) to obtain

∑

∂m=∅
∂n=yMx

wAc(m)

ZAc

wΛ(n)

ZΛ

1{y A←→
n

x}∩ {y⇐⇒
n

x}∩ {{y←→
m+n

v}\{y←→
n

v}}

≤
∑
v0

(
ψΛ(v0, v)− δv0,v

) ∑
u∈A

∑

∂n=yMx

wΛ(n)

ZΛ

1{y←→
n

u} ◦ {u←→
n

x} ◦ {y←→
n

x, y←→
n

v0}

≤
∑

u∈A, v0

(
ψΛ(v0, v)− δv0,v

) 〈ϕyϕx〉Λ 〈ϕyϕu〉Λ 〈ϕuϕx〉Λ 〈ϕyϕv0〉Λ 〈ϕv0ϕx〉Λ. (4.59)
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0 8

Figure 7: An element in L(4)

[0,8], which consists of s1t1 = {0, 3}, s2t2 = {2, 4}, s3t3 = {4, 6}
and s4t4 = {5, 8}.

Summarizing (4.52), (4.57) and (4.59), we arrive at

∑

∂m=∅
∂n=yMx

wAc(m)

ZAc

wΛ(n)

ZΛ

1{y A←→
m+n

x}∩ {y⇐⇒
n

x}∩ {y←→
m+n

v} ≤
∑
u∈A

P ′′(0)
Λ;u,v(y, x). (4.60)

This complets the bound on the contribution to Θ′′
y,x,v;A from 1{y⇐⇒

n
x} of (4.49).

Contribution to Θ′
y,x;A from 1{y⇐⇒

m+n
x}\{y⇐⇒

n
x} of (4.49). When 1{∂n=yMx}\{y⇐⇒

n
x} = 1, then y

is n-connected, but not n-doubly connected, to x, and therefore there exists at least one
pivotal bond for y ←→

n
x. Given an ordered set ~bT = (b1, . . . , bT ), we define

Hn;~bT
(y, x) = {y ⇐⇒

n
b1} ∩

T⋂
i=1

{
{bi ⇐⇒n bi+1} ∩

{
nbi

> 0, bi is pivotal for y ←→
n

x
}}

,

(4.61)

where, by convention, bT+1 = x. Then, the contribution to Θ′
y,x;A can be written as

∑
T≥1

∑

~bT

∑

∂m=∅
∂n=yMx

wAc(m)

ZAc

wΛ(n)

ZΛ

1{y A←→
m+n

x}∩H
n;~bT

(y,x)∩{{y⇐⇒
m+n

x}\{y⇐⇒
n

x}}. (4.62)

On the event Hn;~bT
(y, x), we denote the n-double connections between the pivotal bonds

b1, . . . , bT by

Dn;i =





Cb1
n (y) (i = 0),

Cbi+1
n (y) \ Cbi

n (y) (i = 1, . . . , T − 1),

Cn(y) \ CbT
n (y) (i = T ).

(4.63)

We can think of Cn(y) as the interval [0, T ], where each integer i ∈ [0, T ] corresponds to
Dn;i and the unit interval (i − 1, i) ⊂ [0, T ] corresponds to the pivotal bond bi. Since y is
(m+n)-doubly connected to x, for every bi there must be an (m+n)-bypath (i.e., an (m+n)-
connection that does not go through bi) from some z ∈ Dn;s with s ∈ {0, . . . , i− 1} to some
z′ ∈ Dn;t with t ∈ {i, . . . , T}. Let L(1)

[0,T ] = {{0T}}, L(2)

[0,T ] = {{0t1, s2T} : 0 < s2 ≤ t1 < T}
and, generally for j ≤ T (see Figure 7),

L(j)

[0,T ] =
{{siti}j

i=1 : 0 = s1 < s2 ≤ t1 < s3 ≤ · · · ≤ tj−2 < sj ≤ tj−1 < tj = T
}
. (4.64)
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By this definition, we have
⋃

st∈Γ[s, t] = [0, T ] for any Γ ∈ L(j)

[0,T ], for every j ∈ {1, . . . , T}.
Using this notation and 1{y A←→

m+n
x}∩ {∂n=yMx} ≤ 1{y A←→

n
x}∩ {∂n=yMx} and conditioning over Cn(y),

we can bound (4.62) by

∑
T≥1

∑

~bT

∑

∂n=yMx

wΛ(n)

ZΛ

1{y A←→
n

x}∩H
n;~bT

(y,x)

T∑
j=1

∑

L(j)
[0,T ]

={siti}j
i=1

∑
z1,...,zj

z′1,...,z′j

( j∏
i=1

1{zi∈Dn;si , z′i∈Dn;ti}

)

×
∑

∂m=∂k=∅

wAc(m)

ZAc

wCn(y)c(k)

ZCn(y)c

( j∏
i=1

1{zi←→
m+k

z′i}

)( ∏

i6=l

1{Cm+k(zi)∩Cm+k(zl)=∅}

)
, (4.65)

where the first line determines Cn(y) that contains vertices zi, z
′
i for i = 1, . . . , j in a specific

manner, and the second line determines the bypathes Cm+k(zi), for i = 1, . . . , j, joining zi

and z′i.
First, we estimate the second line of (4.65). Since Cm+k(zi) for i = 1, . . . , j are mutually-

disjoint, we can treat each cluster separately by using the “conditioning-over-clusters” argu-
ment. By abbreviating Cn(y) to C and conditioning over Vm+k ≡

⋃̇
i≥2 Cm+k(zi), the second

line of (4.65) equals

∑

∂m=∂k=∅

wAc(m)

ZAc

wCc(k)

ZCc

( j∏
i=2

1{zi←→
m+k

z′i}

)( ∏

i,l≥2
i6=l

1{Cm+k(zi)∩Cm+k(zl)=∅}

)

×
∑

∂m′=∂k′=∅

wAc∩Vc
m+k

(m′)

ZAc∩Vc
m+k

wCc∩Vc
m+k

(k′)

ZCc∩Vc
m+k

1{z1 ←→
m′+k′

z′1}. (4.66)

Since z1 6= z′1 ∈ C ≡ Cn(y), they are connected via a nonzero alternating chain, which
starts and ends with m′-connected clusters (possibly with a single m′-connected cluster), of
mutually-disjoint m′-connected clusters and mutually-disjoint k′-connected clusters. Fol-
lowing the argument around (4.45)–(4.48), we can bound the second line of (4.66) by∑

l≥1

(
G̃2

Λ

)∗(2l−1)
(z1, z

′
1). By repeating this argument, (4.66) is bounded by

j∏
i=1

( ∑

l≥1

(
G̃2

Λ

)∗(2l−1)
(zi, z

′
i)

)
≤

( ∏
i=1,j

∑

l≥1

(
G̃2

Λ

)∗(2l−1)
(zi, z

′
i)

)( j−1∏
i=2

(
ψΛ(zi, z

′
i)− δzi,z′i

))
,

(4.67)

where, by convention, the empty product is regarded as 1.
Therefore, (4.65) is bounded by

∑
j≥1

∑
z1,...,zj

z′1,...,z′j

( ∏
i=1,j

∑

l≥1

(
G̃2

Λ

)∗(2l−1)
(zi, z

′
i)

)( j−1∏
i=2

(
ψΛ(zi, z

′
i)− δzi,z′i

)) ∑

∂n=yMx

wΛ(n)

ZΛ

1{y A←→
n

x}

×
∑
T≥j

∑

~bT

∑

L(j)
[0,T ]

={siti}j
i=1

1H
n;~bT

(y,x)

j∏
i=1

1{Dn;si3zi, Dn;ti3z′i}, (4.68)
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I1(y, z, x) = xy

z

I2(y, z′, x) = y x

z’

I3(y, z, z′, x) = y

z z’

x

⋃
y

z’ z

x

Figure 8: Schematic representations of I1(y, z, x), I2(y, z′, x) and I3(y, z, z′, x).

which depends only on a single current configuration, and hence we can apply the GHS idea
to obtain its upper bound. To do so, we first simplify the second line of (4.68), which is, by
definition, equal to the indicator of the event

⋃̇
T≥j

⋃̇

~bT

⋃̇

L(j)
[0,T ]

={siti}j
i=1

{
Hn;~bT

(y, x) ∩
j⋂

i=1

{Dn;si
3 zi, Dn;ti3 z′i

}}

=
⋃̇

e1,...,ej

{ ⋃̇
T≥j

⋃̇

~bT

⋃̇

L(j)
[0,T ]

={siti}j
i=1

bti+1=ei+1
∀i

{
Hn;~bT

(y, x) ∩
j⋂

i=1

{Dn;si
3 zi, Dn;ti3 z′i

}}}
, (4.69)

where, by convention, t0 = 0. On the left-hand side, the first two unions are for the number
and location of pivotal bonds for y ←→

n
x, while the third union identifies the double

connections that are associated to zi, z
′
i for i = 1, . . . , j. Let (see Figure 8)

I1(y, z, x) = {y ⇐⇒
n

x, y ←→
n

z}, I2(y, z′, x) =
⋃
u

{{y ←→
n

u} ◦ I1(u, z′, x)
}
, (4.70)

I3(y, z, z′, x) =
⋃
u

{
{I2(y, z, u) ◦ I2(u, z′, x)} ∪ {{y ←→

n
u} ◦ {I1(u, z, x) ∩ I1(u, z′, x)}}

}
.

(4.71)

Then, (4.69) becomes a subset of

⋃̇
e1,...,ej

{{
I1(y, z1, e1) ◦ I3(e1, z2, z

′
1, e2) ◦ · · · ◦ I3(ej−1, zj, z

′
j−1, ej) ◦ I2(ej, z

′
j, x)

}

∩
j⋂

i=1

{
nei

> 0, ei is pivotal for y ←→
n

x
}}

. (4.72)

To bound the sum over n in (4.68) using the GHS idea, we further consider an event that
contains (4.72) as a subset. Without loss generality, we can assume that y 6= e1, ei−1 6= ei

for i = 2, . . . , j, and ej 6= x; otherwise, the argument below can be simplified. Since every
nei

is an odd integer, to consider each event Ii in (4.70)–(4.71) individually, we can assume
that y and x are the only sources of ∂n. On I1(y, z, x), according to the observation in

30



Step (i) described below (4.20), we have two edge-disjoint connections from y to z, one of
which may go through x, and another edge-disjoint connection from y to x. Therefore,

I1(y, z, x) ⊂ {∃ω1, ω2 ∈ Ωn
y→z

∃ω3 ∈ Ωn
y→x such that ωi ∩ ωl = ∅ (i 6= l)

}
. (4.73)

Similarly, we have (cf., Figure 8)

I2(y, z′, x) ⊂ {∃ω1, ω2 ∈ Ωn
x→z′

∃ω3 ∈ Ωn
y→x such that ωi ∩ ωl = ∅ (i 6= l)

}
. (4.74)

On I3(y, z, z′, x), there are three edge-disjoint paths, from y to z, from z to z′, and from z′

to x. This is not so difficult to be seen from
⋃

u{I2(y, z, u) ◦ I2(u, z′, x)} in (4.71). For the
remaining event in (4.71), take a look at the last picture in Figure 8 for one of the worst
topological situation to extract such three edge-disjoint paths. Since there are at least three
edge-disjoint paths between u and x, say, ζ1, ζ2 and ζ3, we can go from y to z via ζ1 and a
part of ζ2, and go from z to z′ via the middle part of ζ2, and then go from z′ to x via the
remaining part of ζ2 and ζ3. The other cases can be dealt with similarly. As a result, we
have

I3(y, z, z′, x) ⊂ {∃ω1 ∈ Ωn
y→z

∃ω2 ∈ Ωn
z→z′

∃ω3 ∈ Ωn
z′→x such that ωi ∩ ωl = ∅ (i 6= l)

}
.

(4.75)

Since
⋃
e

{{{∃ω ∈ Ωn
z→e} ◦ {∃ω ∈ Ωn

e→z′}
} ∩ {ne > 0}

}
⊂ {∃ω ∈ Ωn

z→z′}, (4.76)

the event (4.72) is a subset of

Ĩ (j)

~zj ,~z′j
(y, x) =





∃ω1, ω2 ∈ Ωn
z1→y

∃ω3 ∈ Ωn
y→z2

∃ω4 ∈ Ωn
z2→z′1

∃ω5 ∈ Ωn
z′1→z3

· · ·
· · · ∃ω2j ∈ Ωn

zj→z′j−1

∃ω2j+1 ∈ Ωn
z′j−1→x

∃ω2j+2, ω2j+3 ∈ Ωn
x→z′j

such that ωi ∩ ωl = ∅ (i 6= l)





, (4.77)

where ~z
(′)
j = (z

(′)
1 , . . . , z

(′)
j ). Therefore, the sum over n in (4.68) is bounded by

∑

∂n=yMx

wΛ(n)

ZΛ

1{y A←→
n

x}1Ĩ
(j)

~zj,~z′
j
(y,x). (4.78)

Now, we apply the GHS idea to bound (4.78). For the moment, we ignore the first
indicator in (4.78) and consider the contribution from the second one. Without losing
generality, we assume that the sites y, x, zi, z

′
i for i = 1, . . . , j are all different. Since there

are 2j + 3 edge-disjoint paths on Gn as in (4.77), we first multiply (4.78) by (ZΛ

ZΛ
)2j+2

following Step (ii) of the strategy described in Section 4.1. Overlapping these 2j +3 current
configurations and using Lemma 4.2 with k = 2j + 2, V = {y, x} and so on, we obtain

∑

∂n=yMx

wΛ(n)

ZΛ

1Ĩ
(j)

~zj,~z′
j
(y,x) ≤ 〈ϕz1ϕy〉2Λ 〈ϕyϕz2〉Λ 〈ϕz2ϕz′1〉Λ 〈ϕz′1ϕz3〉Λ · · ·

· · · 〈ϕzj
ϕz′j−1

〉
Λ
〈ϕz′j−1

ϕx〉
Λ
〈ϕxϕz′j〉

2

Λ
. (4.79)
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Therefore, (4.68) (= (4.78)) without 1{y A←→
n

x} is bounded by

∑
j≥1

∑
z2,...,zj

z′1,...,z′j−1

( j−1∏
i=2

(
ψΛ(zi, z

′
i)− δzi,z′i

))( ∑
z1

〈ϕyϕz1〉2Λ
∑

l≥1

(
G̃2

Λ

)∗(2l−1)
(z1, z

′
1)

)
(4.80)

× 〈ϕyϕz2〉Λ · · · 〈ϕz′j−1
ϕx〉

Λ

( ∑

z′j

〈ϕxϕz′j〉
2

Λ

∑

l≥1

(
G̃2

Λ

)∗(2l−1)
(zj, z

′
j)

)
≤

∑
j≥1

P (j)

Λ (y, x).

If 1{y A←→
n

x} is present in the above argument, then at least one of the paths ωi for i =

3, . . . , 2j + 1 has to go through A. For example, if ω3 goes through A, then we can split
it into two edge-disjoint paths at some u ∈ A, such as ω′3 ∈ ΩN

y→u and ω′′3 ∈ ΩN
u→z2

. The
contribution from this case is bounded, by following the same argument as above, by (4.79)
with 〈ϕyϕz2〉Λ being replaced by

∑
u∈A 〈ϕyϕu〉Λ〈ϕuϕz2〉Λ. Bounding the other 2j − 2 cases

similarly and summing these bounds over j ≥ 1, we obtain that (4.68) is bounded by∑
u∈A

∑
j≥1 P ′(j)

Λ;u(y, x). This, together with (4.51), completes the proof of the bound on
Θ′

y,x;A in (4.32).

Contribution to Θ′′
y,x,v;A from 1{y⇐⇒

m+n
x}\{y⇐⇒

n
x} of (4.49). By using (4.61), the contribution

to Θ′′
y,x,v;A can be written, similarly to (4.62), as

∑
T≥1

∑

~bT

∑

∂m=∅
∂n=yMx

wAc(m)

ZAc

wΛ(n)

ZΛ

1{y A←→
m+n

x}∩H
n;~bT

(y,x)∩{{y⇐⇒
m+n

x}\{y⇐⇒
n

x}}∩ {y←→
m+n

v}. (4.81)

To bound this, we will also use a similar expression to (4.65). We split (4.81) depending
on whether or not there is a “cluster” that corresponds to Cm+k(zi) in (4.65) for some
i ∈ {1, . . . , j} such that v ∈ Cm+k(zi).

(i) If there is such a cluster, then we use 1{y A←→
m+n

x}∩ {∂n=yMx} ≤ 1{y A←→
n

x}∩ {∂n=yMx}, as in

(4.65), to bound the contribution from this case to (4.81) by

∑
T≥1

∑

~bT

∑

∂n=yMx

wΛ(n)

ZΛ

1{y A←→
n

x}∩H
n;~bT

(y,x)

T∑
j=1

∑

{siti}j
i=1∈L

(j)
[0,T ]

∑
z1,...,zj

z′1,...,z′j

( j∏
i=1

1{zi∈Dn;si , z′i∈Dn;ti}

)

×
∑

∂m=∅
∂k=∅

wAc(m)

ZAc

wCn(y)c(k)

ZCn(y)c

( j∏
i=1

1{zi←→
m+k

z′i}

)(∏

i 6=l

1{Cm+k(zi)∩Cm+k(zl)=∅}

) j∑
i=1

1{Cm+k(zi)3v}.

(4.82)

Consider the contribution from 1{Cm+k(z1)3v}. Then, as in (4.66), by abbreviating Cn(y) to C
and conditioning over Vm+k ≡

⋃̇
i≥2 Cm+k(zi), the contribution to the second line of (4.82)
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equals

∑

∂m=∂k=∅

wAc(m)

ZAc

wCc(k)

ZCc

( j∏
i=2

1{zi←→
m+k

z′i}

)( ∏

i,l≥2
i6=l

1{Cm+k(zi)∩Cm+k(zl)=∅}

)

×
∑

∂m′=∂k′=∅

wAc∩Vc
m+k

(m′)

ZAc∩Vc
m+k

wCc∩Vc
m+k

(k′)

ZCc∩Vc
m+k

1{z1 ←→
m′+k′

z′1}1{z1 ←→
m′+k′

v}. (4.83)

If the last indicator is absent, then, as discussed below (4.66), the second line of (4.83) is

bounded by a “chain of bubbles”
∑

l≥1

(
G̃2

Λ

)∗(2l−1)
(z1, z

′
1). If 1{z1 ←→

m′+k′
v} = 1, then one of the

bubbles has an extra vertex v′ that is connected to v with another chain of bubbles ψΛ(v′, v).
(This argument can be made precise following the argument around (4.45)–(4.48).) That
is, the effect of the last indicator in (4.83) is to replace one of the G̃Λ’s in the bound, say,
G̃Λ(a, a′), by

∑
v′ G̃Λ(a, v′) 〈ϕv′ϕa′〉ΛψΛ(v′, v). The remaining terms in (4.82)–(4.83) can be

estimated in the same way as before.
(ii) If there are no such clusters containing v, i.e., v /∈ Cm+k(zi) for all i ∈ {1, . . . , j}, then

there is a v′ ∈ Dn;l for some l ∈ {0, . . . , T} such that v′ ←→
m+k

v and Cm+k(v
′)∩Cm+k(zi) = ∅

for all i. In addition, since all connections on Cn(y) ∪ ⋃̇j

i=1 Cm+k(zi) from y to x have to go

through A, there is an i ∈ {1, . . . , j} such that zi
A←→

m+k
z′i. Therefore, the contribution from

this case to (4.81) is bounded by

∑
T≥1

∑

~bT

∑

∂n=yMx

wΛ(n)

ZΛ

1H
n;~bT

(y,x)

T∑
j=1

∑

{siti}j
i=1∈L

(j)
[0,T ]

∑

v′,z1,...,zj

z′1,...,z′j

( j∏
i=1

1{zi∈Dn;si , z′i∈Dn;ti}

) T∑

l=0

1{v′∈Dn;l}

×
∑

∂m=∅
∂k=∅

wAc(m)

ZAc

wCn(y)c(k)

ZCn(y)c

( j∏
i=1

1{zi←→
m+k

z′i}

)( ∏

i 6=i′
1{Cm+k(zi)∩Cm+k(zi′ )=∅}

)( j∑
i=1

1{zi
A←→

m+k
z′i}

)

× 1{v′←→
m+k

v}

j∏
i=1

1{Cm+k(v′)∩Cm+k(zi)=∅}. (4.84)

The contribution from the indicators in the third line is bounded, by the conditioning-
over-clusters argument, by ψΛ(v′, v). Then, as in (4.66) and (4.83), by abbreviating Cn(y)

to C and conditioning over Im+k(i) ≡
⋃̇

i′ 6=i Cm+k(zi′), the second line of (4.84) is bounded
by

j∑
i=1

∑

∂m=∂k=∅

wAc(m)

ZAc

wCc(k)

ZCc

( ∏

i′ 6=i

1{zi′←→
m+k

z′
i′}

)( ∏

i′,i′′ 6=i
i′ 6=i′′

1{Cm+k(zi′ )∩Cm+k(zi′′)=∅}

)

×
∑

∂m′=∂k′=∅

wAc∩Im+k(i)c(m
′)

ZAc∩Im+k(i)c

wCc∩Im+k(i)c(k
′)

ZCc∩Im+k(i)c
1{zi

A←→
m′+k′

z′i}. (4.85)
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If we ignore “through A” in the last indicator, then, as discussed above, the second line

of (4.85) is bounded by
∑

l≥1

(
G̃2

Λ

)∗(2l−1)
(zi, z

′
i). However, because of this “through A”-

condition, one of the G̃Λ’s in the bound, say, G̃Λ(a, a′), is replaced by
∑

u∈A G̃Λ(a, u) 〈ϕuϕa′〉Λ.

Then, the summand of
∑j

i=1 in the first line of (4.85) is bounded by a product of “chains
of bubbles”, similarly to (4.67).

Therefore, (4.84) is bounded by

∑
j≥1

∑

v′,z1,...,zj

z′1,...,z′j

ψΛ(v′, v)×
(
bounds described below (4.85)

)

×
∑

∂n=yMx

wΛ(n)

ZΛ

∑
T≥j

∑

~bT

∑

{siti}j
i=1∈L

(j)
[0,T ]

T∑

l=0

1H
n;~bT

(y,x)1{Dn;l3v′}

j∏
i=1

1{Dn;si3zi, Dn;ti3z′i}. (4.86)

The desired bound on the second line can be obtained by reproducing the argument between
(4.68) and (4.80), and we refrain from giving its details.

Summarizing the above (i) and (ii), we finally obtain that (4.81) is bounded by

∑
j≥1

∑
u∈A

P ′′(j)
Λ;u,v(y, x). (4.87)

This, together with (4.60), completes the proof of the bound on Θ′′
y,x,v;A in (4.32).

4.3 Proof of Proposition 2.4

In this subsection, we prove Proposition 2.4 using Proposition 4.1 and the following:

Proposition 4.5. (i) Let a ≥ b > 0 and a + b > d. There is a C = C(a, b, d) such that

∑
y

1

|||y − v|||a
1

|||x− y|||b ≤
C

|||x− v|||(a∧d+b)−d
. (4.88)

(ii) Let 1
2
d < q < d. There is a C ′ = C ′(d, q) such that

∑
z

1

|||x− z|||q
1

|||x′ − z|||q
1

|||z − y|||q
1

|||z − y′|||q ≤
C ′

|||x− y|||q|||x′ − y′|||q . (4.89)

Proof. The inequality (4.88) is identical to [14, Proposition 1.7(i)]. We use this to prove
(4.89). By the triangle inequality, we have 1

2
|||x(′) − y(′)||| ≤ |||x(′) − z||| ∨ |||z − y(′)|||. Suppose

that |||x − z||| ≤ |||z − y||| and |||x′ − z||| ≤ |||z − y′|||. Then, by (4.88) with a = b = q, the
contribution from this case is bounded by

22q

|||x− y|||q|||x′ − y′|||q
∑

z

1

|||x− z|||q
1

|||x′ − z|||q ≤
22qC|||x− x′|||d−2q

|||x− y|||q|||x′ − y′|||q , (4.90)

where |||x− x′|||d−2q ≤ 1, due to d− 2q < 0. The other three possible cases can be estimated
similarly (see Figure 9(a)). This completes the proof.
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(a)
∑

z
z

x y

y’x’

.
x y

y’x’

(b)
∑
uj ,vj

j-1

x

u

v j-1

v j

uj

.
∑
vj x

j-1

v j-1

v j
u

.
xj-1u

j-1v

Figure 9: (a) A schematic representation of (4.89). (b) A schematic representation of (4.106),
which is a result of successive application of (4.89), with x = x′ or y = y′.

Before going into the proof of Proposition 2.4, we summarize a few prerequisites. Recall
that (4.11)–(4.12) involve G̃Λ, and note that

〈ϕoϕx〉3Λ ≤ δo,x + G̃Λ(o, x)3. (4.91)

We first show

G̃Λ(o, x) ≤ O(θ)

|||x|||q ,
∑

b:b=o

τb

(
δb,x + G̃Λ(b, x)

) ≤ O(θ)

|||x|||q . (4.92)

Proof. By (2.23), we have

G̃Λ(o, x) = τD(x) +
∑

y 6=o,x

τD(y) 〈ϕyϕx〉Λ ≤ 2D(x) +
∑

y 6=o,x

2D(y) G(x− y), (4.93)

where, and from now on without stating explicitly, we use the second Griffiths inequality
and the translation invariance of G(x). Using the definition (2.19) and the assumption in
the statement of Proposition 2.4 that θLd−q, with q < d, is bounded away from zero, we
obtain

D(x) ≤ O(L−d)1{0<‖x‖∞≤L} ≤ O(L−d+q)

|||x|||q ≤ O(θ)

|||x|||q . (4.94)

For the last term in (4.93), we consider the cases of |x| ≤ 2
√

dL and |x| ≥ 2
√

dL separately.
When |x| ≤ 2

√
dL, we use (4.94), (2.23) and (4.88) with 1

2
d < q < d to obtain

∑

y 6=o,x

D(y) G(x− y) ≤
∑

y

O(L−d+q)

|||y|||q
θ

|||x− y|||q ≤
O(θL−d+q)

|||x|||2q−d
≤ O(θ)

|||x|||q . (4.95)

When |x| ≥ 2
√

dL, we use the triangle inequality |x − y| ≥ |x| − |y| and the fact that
D(y) is nonzero only when 0 < ‖y‖∞ ≤ L (so that |y| ≤

√
d‖y‖∞ ≤

√
dL ≤ 1

2
|x|). Then,

we obtain
∑

y 6=o,x

D(y) G(x− y) ≤
∑

y

D(y)
2qθ

|||x|||q =
2qθ

|||x|||q . (4.96)

This completes the proof of the first inequality in (4.92). The second inequality can be
proved similarly.
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By repeated use of (4.92) and (4.88) with a = b = 2q (or (4.89) with x = x′ and y = y′),
we obtain

ψΛ(v′, v) ≤ δv′,v +
O(θ2)

|||v − v′|||2q
. (4.97)

Together with the naive bound G(x) ≤ O(1)|||x|||−q (cf., (2.23)), we also obtain

∑

v′
G(v′ − y) G(z − v′) ψΛ(v′, v) ≤ G(v − y) G(z − v) +

∑

v′

O(θ2)

|||v′ − y|||q|||z − v′|||q|||v − v′|||2q

≤ O(1)

|||v − y|||q|||z − v|||q , (4.98)

where we have used (4.89) (with x = x′ or y = y′). The O(1) term in the right-hand side
is replaced by O(θ) or O(θ2) depending on the number of replacement of G by G̃Λ in the
left-hand side.

Proof of Proposition 2.4. Since (4.91)–(4.92) immediately imply the bound on π(0)

Λ (x), it
suffices to prove the bounds on π(i)

Λ (x) for i ≥ 1. To do so, we first estimate the building
blocks of the diagrammatic bound (4.13):

∑
b:b=y τb Q′

Λ;u(b, x) and
∑

b:b=y τb Q′′
Λ;u,v(b, x).

Recall (4.8)–(4.12). First, by using G(x) ≤ O(1)|||x|||−q and (4.98), we obtain

P ′(0)
Λ;u(y, x) ≤ O(1)

|||x− y|||2q|||u− y|||q|||x− u|||q , (4.99)

P ′′(0)
Λ;u,v(y, x) ≤ O(1)

|||x− y|||q|||u− y|||q|||x− u|||q|||v − y|||q|||x− v|||q . (4.100)

We will show at the end of this subsection that, for j ≥ 1,

P ′(j)
Λ;u(y, x) ≤ O(j) O(θ2)j

|||x− y|||2q|||u− y|||q|||x− u|||q , (4.101)

P ′′(j)
Λ;u,v(y, x) ≤ O(j2) O(θ2)j

|||x− y|||q|||u− y|||q|||x− u|||q|||v − y|||q|||x− v|||q . (4.102)

As a result, P ′(0)
Λ;u(y, x) (resp., P ′′(0)

Λ;u,v(y, x)) is the leading term of P ′
Λ;u(y, x) (resp., P ′′

Λ;u,v(y, x)),
which thus obeys the same bound as in (4.99) (resp., (4.100)), with a different constant in
O(1). Combining these bounds with (4.92) and (4.98) (with both G in the left-hand side
being replace by G̃Λ), and then using (4.89), we obtain

∑

b:b=y

τb Q′
Λ;u(b, x) ≤

∑
z

O(θ)

|||z − y|||q|||x− z|||2q|||u− z|||q|||x− u|||q ≤
O(θ)

|||x− y|||q|||x− u|||2q
,

(4.103)
∑

b:b=y

τb Q′′
Λ;u,v(b, x) ≤

∑
z

(
O(θ)

|||z − y|||q|||x− z|||q|||u− z|||q|||x− u|||q|||v − z|||q|||x− v|||q

+
O(θ2)

|||v − y|||q|||z − v|||q|||x− z|||2q|||u− z|||q|||x− u|||q
)

≤ O(θ)

|||v − y|||q|||x− v|||q|||x− u|||2q
. (4.104)
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This completes the bounds on the building blocks.
Now, we prove the bounds on π(j)

Λ (x) for j ≥ 1. For the bounds on π(j)

Λ (x) for j ≥ 2,
we simply apply (4.99) and (4.103)–(4.104) to the diagrammatic bound (4.13). Then, we
obtain

π(j)

Λ (x) ≤
∑

u1,...,uj
v1,...,vj

O(1)

|||u1|||2q|||v1|||q|||u1 − v1|||q
( j−1∏

i=1

O(θ)

|||vi+1 − ui|||q|||ui+1 − vi+1|||q|||ui+1 − vi|||2q

)

× O(θ)

|||x− uj|||q|||x− vj|||2q
(j ≥ 2). (4.105)

First, we consider the sum over uj and vj. By successive application of (4.89) (with x = x′

or y = y′), we obtain (see Figure 9(b))

∑
vj

∑
uj

O(θ)

|||vj − uj−1|||q|||uj − vj|||q|||uj − vj−1|||2q

O(θ)

|||x− uj|||q|||x− vj|||2q

≤
∑
vj

O(θ2)

|||vj − uj−1|||q|||vj−1 − vj|||q|||x− vj−1|||q|||x− vj|||2q
≤ O(θ2)

|||x− uj−1|||q|||x− vj−1|||2q
.

(4.106)

This implies that the right-hand side of (4.105) is bounded by itself with j being replaced
by j − 1, multiplied by an extra O(θ). Therefore, by repeating the application of (4.89), we
end up with

π(j)

Λ (x) ≤
∑
v1

∑
u1

O(1)

|||u1|||2q|||v1|||q|||u1 − v1|||q
O(θ)j

|||x− u1|||q|||x− v1|||2q
≤ O(θ)j

|||x|||3q
. (4.107)

For the bound on π(1)

Λ (x), instead of using (4.99), we use

P ′(0)
Λ;v (o, u) = δo,uδo,v + (1− δo,uδo,v) P ′(0)

Λ;v (o, u) ≤ δo,uδo,v +
O(θ2)

|||u|||2q|||v|||q|||u− v|||q , (4.108)

where O(θ)2 arises when u = o and v 6= o, and is due to (4.4) and (4.92). In addition,
instead of using (4.103), we use

∑

b:b=u

τb Q′
Λ;v(b, x) ≤

∑
z

O(θ)

|||z − u|||q
(

δz,vδz,x + (1− δz,vδz,x) P ′(0)
Λ;v (z, x) +

∑
j≥1

P ′(j)
Λ;v(z, x)

)

≤ O(θ)

|||x− u|||q δv,x +
∑

z

O(θ3)

|||z − u|||q|||x− z|||2q|||v − z|||q|||x− v|||q

≤ O(θ)

|||x− u|||q δv,x +
O(θ3)

|||x− u|||q|||x− v|||2q
, (4.109)

due to (4.92), (4.101) and (4.108). Applying (4.108)–(4.109) to (4.13) and then using (4.89),
we end up with

π(1)

Λ (x) ≤ O(θ) δo,x +
O(θ3)

|||x|||3q
+

∑
u,v

O(θ2)

|||u|||2q|||v|||q|||u− v|||q
(

O(θ) δv,x

|||x− u|||q +
O(θ3)

|||x− u|||q|||x− v|||2q

)

≤ O(θ) δo,x +
O(θ3)

|||x|||3q
. (4.110)
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To complete the proof of Proposition 2.4, it remains to show (4.101)–(4.102). To do so, we
first recall P (j)

Λ (y, x) in (4.6)–(4.7) and the definition of P ′(j)
Λ;u(y, x) and P ′′(j)

Λ;u,v(y, x) described
below (4.7). Then, by recalling the pictures in the second line of Figure 5, (4.101)–(4.102) for
j = 1 follow from (2.23), (4.97)–(4.98) and the following bound on ψΛ(y, x)−δy,x with one of
the consisting G̃Λ, say, G̃Λ(uk−1, uk), being replaced by

∑
v′ G̃Λ(uk−1, v

′) 〈ϕv′ϕuk
〉Λ ψΛ(v′, v):

∞∑

l=1

l∑

k=1

∑

u0,...,ul,v
′

u0=y, ul=x

( ∏

i=1,...,l
i6=k

G̃Λ(ui−1, ui)
2

)
G̃Λ(uk−1, uk) G̃Λ(uk−1, v

′) 〈ϕv′ϕuk
〉Λ ψΛ(v′, v)

≤
∞∑

l=1

l∑

k=1

∑

u0,...,ul,v
′

u0=y, ul=x

( ∏

i=1,...,l
i6=k

O(θ2)

|||ui − ui−1|||2q

)
O(θ2)

|||uk − uk−1|||q|||v − uk−1|||q|||uk − v|||q

≤
∞∑

l=1

O(l) O(θ2)l

|||x− y|||q|||v − y|||q|||x− v|||q ≤ O(θ2)

|||x− y|||q|||v − y|||q|||x− v|||q , (4.111)

where we have used (4.89).
For (4.101)–(4.102) with j ≥ 2, we first note that P (j)

Λ (y, x) is bounded, by using (4.97),
as

P (j)

Λ (y, x) ≤
∑

v2,...,vj

v′1,...,v′j−1

O(θ2)

|||v′1 − y|||2q|||v2 − y|||q|||v′1 − v2|||q
( j−1∏

i=2

O(θ2)

|||v′i − vi|||2q|||vi+1 − v′i−1|||q|||v′i − vi+1|||q
)

× O(θ2)

|||x− vj|||2q|||x− v′j−1|||q
(j ≥ 2). (4.112)

By definition, the bound on P ′(j)
Λ;u(y, x) is obtained by “embedding u” in one of the 2j − 1

factors of ||| · · · |||q (not ||| · · · |||2q) and then summing over all these 2j−1 choices. For example,
the contribution from the case in which |||v2−y|||q is replaced by |||u−y|||q|||v2−u|||q is bounded,
similarly to (4.107), by

∑

v2,v′1

O(θ2)

|||v′1 − y|||2q|||u− y|||q|||v2 − u|||q|||v′1 − v2|||q
O(θ2)j−1

|||x− v′1|||q|||x− v2|||2q

≤
∑

v′1

O(θ2)j

|||v′1 − y|||2q|||u− y|||q|||x− u|||q|||x− v′1|||2q
≤ O(θ2)j

|||x− y|||2q|||u− y|||q|||x− u|||q . (4.113)

The other 2j− 2 contributions can be estimated in a similar way, with the same form of the
bound. This completes the proof of (4.101).

With the help of (4.111), the bound on P ′′(j)
Λ;u,v(y, x) is also obtained by “embedding u and

v” in one of the 2j − 1 factors of ||| · · · |||q and one of the j factors of ||| · · · |||2q in (4.112), and
then summing over all these combinations. For example, the contribution from the case in
which |||v2 − y|||q and |||v′1 − y|||2q in (4.112) are replaced, respectively, by |||u − y|||q|||v2 − u|||q
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and |||v′1 − y|||q|||v − y|||q|||v′1 − v|||q, is bounded by

∑

v2,v′1

O(θ2)

|||v′1 − y|||q|||v − y|||q|||v′1 − v|||q|||u− y|||q|||v2 − u|||q|||v′1 − v2|||q
O(θ2)j−1

|||x− v′1|||q|||x− v2|||2q

≤
∑

v′1

O(θ2)j

|||v′1 − y|||q|||v − y|||q|||v′1 − v|||q|||u− y|||q|||x− u|||q|||x− v′1|||2q

≤ O(θ2)j

|||x− y|||q|||u− y|||q|||x− u|||q|||v − y|||q|||x− v|||q . (4.114)

The other 2(j − 1)2 contributions can be estimated similarly, with the same form of the
bound. This completes the proof of (4.102) and thus Proposition 2.4.
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