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Abstract. We prove a stochastic decomposition formula for the number of customers in an
M/G/∞ system with service speeds depending on the state of an independent random environ-
ment. In addition, we present a new technique to analyze this kind of queues and apply it to
solve some examples of M/M/∞ queues in random environment.

1. Introduction

Stochastic decomposition formulas were obtained for the M/G/1; for example the M/G/1
queue with vacations has been studied by Fuhrmann [1984], Fuhrmann and Cooper [1985] and
Levy and Yechiali [1975]. Kella and Whitt [1991] generalized the stochastic decomposition to the
case when the input process is a Lévy process with non negative jumps. In this paper we focus
our attention on the M/G/∞ system. This system has the nice property that the customers’
lifetimes are mutually independent random variables. This makes it possible to find stochastic
decompositions in a more general setting than the M/G/1 case. In Baykal-Gursoy and Xiao [2004]
the special case of the M/M/∞ queue in an ON-OFF Markovian random environment has been
analyzed and an explicit expression for the stationary probability distribution function of the
number of customers in the system has been obtained. In this paper we generalize the stochastic
decomposition to the M/G/∞ queue and in addition we show that it is not necessary to require
that the random environment is Markovian. The environment can indeed be a general stochastic
process as long as it is independent of the queueing process. Finally we study some examples
of M/M/∞ queues in a random environment for which we are able to compute explicitly the
stationary probability distribution function for the additional number of customers in the system
with respect to the isolated one. One example is the queue already studied in Baykal-Gursoy and
Xiao [2004], we obtain for it a slightly different decomposition by using a different technique that
we believe gives better probabilistic understanding of the analyzed queueing process.

The paper is organized as follows. In Section 2 we introduce the model, we prove stability
and derive the general stochastic decomposition formula. In Section 3 we look at the special case
when the service times are exponentially distributed.

2. M/G/∞ case

We consider an M/G/∞ queue where customers arrive according to a Poisson process with
constant rate λ and require independent service, σ, that is distributed according to a general
probability function G(dσ). The queue is supposed to operate in a random environment Γ(t)
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that is a non-negative stochastic process independent of the arrival process. We denote the space
of the sample paths of Γ(t) by G. We assume that at time t all servers operate at the same
speed, ν(Γ(t)), that is a function of the random environment. In particular we suppose that
ν : [0,∞) → [0, 1]. Before proving the stochastic decomposition formula for the M/G/∞ queue,
we first prove the stability of the queue in a more general setting. We suppose that the queue is
of G/G/∞ kind, whose input is a stationary marked point process with intensity λ, and whose
service speeds depend on the stationary and ergodic process Γ(t). The number of customers in
the system is denoted by N .

Theorem 2.1. Consider a G/G/∞ queue with service rate depending on a function ν : [0,∞) →
[0, 1] of a stationary and ergodic stochastic process Γ(t), independent of the arrival process. Sup-
pose that ν̃ := E[ν(Γ(0))] > 0. If λ < ∞ and σ is integrable, then

(2.1) P {N < ∞} = 1

and therefore, in this sense, the queue is stable.

Proof. In order to prove (2.1) we first show that for almost every sample path the first moment
of N is finite. Let us denote by N|γ the restriction of the random variable N to the set {Γ = γ},
then we have

(2.2) N|γ =
∑

n∈Z
fγ (Tn, σn) ,

where {Tn}n∈Z is the sequence of the arrival points and the function fγ is given by

fγ(t, σ) =
{

1, t < 0 and σ >
∫ 0
−t ν(γ(τ))dτ ;

0, otherwise.

In the following to write formulas in a more compact way we denote by Fγ(t) =
∫ 0
t ν(x(τ))dτ .

Let us first prove that E
[
N|γ

]
< ∞ for every γ ∈ G. By Campbell’s formula [cf. Baccelli and

Brémaud, 2003], we have

E
[
N|γ

]
= λ

∫ 0

−∞

(∫ ∞

Fγ(−t)
G{σ ∈ dσ}

)
dt = λ

∫ 0

−∞
Ḡ(Fγ(−t))dt,

where Ḡ(s) := 1 − G(s) denotes the tail probability of the service times. For the ergodicity of
Γ(t) we have P-a.s. that

lim
t→∞Fγ(−t)/t = ν̃,

so for fixed 0 < ε < ν̃, there exist tγ > 0 s.t. Fγ(−t) ≥ (ν̃ − ε)t for every t > tγ . It follows that

(2.3) E
[
N|γ

] ≤ λtγ + λ

∫ 0

−∞
Ḡ ((ν̃ − ε)t) dt = λtγ +

λE[σ]
ν̃ − ε

< ∞.

Finally to prove that P {N < ∞} = 1 we have

E [1{N < ∞}] = E [E [1{N < ∞}|Γ]] ,

with 1{· } the indicator function of the set {· }. The proof follows from the fact that Equation
(2.3) implies P-a.s. that E [1{N < ∞}|Γ] = E

[
1

{
N|Γ < ∞}]

= 1. ¤
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In the sequel we restrict our attention to the M/G/∞ queue where the arrival process is a
Marked Poisson process. It implies that given the sample path of the environment the arrival
process induces a Poisson random measure on the space R× R+. The property of this measure,
i.e. that the numbers of points belonging to either one of two disjoint sets are independent,
implies the required stochastic independence. The next theorem more formally restates this idea.

Theorem 2.2. Consider an M/G/∞ system with service rate depending via a function ν :
[0,∞) → [0, 1] on a stationary and ergodic stochastic process Γ(t), independent of the arrival
process. Suppose that ν̃ := E[ν(Γ(0))] > 0, then the following stochastic decomposition holds:

(2.4) N
d= N1 + Nν ,

with N1 and Nν two independent and non negative random variables. N1 is the number of
customers in a stationary M/G/∞ queue with service speed constant equal to 1, i.e. it is a
Poisson distributed r.v. with parameter λE[σ]. Nν is instead a Randomized Poisson (RP) random
variable.

Figure 1. Area decomposition.

Proof. If we fix the sample path for the environment process, γ ∈ G, according to (2.2), we
have that the stationary number of customers in the queue N|γ is given by the Poisson Random
Measure (PRM) N{· }, induced by the arrival Marked Poisson process [cf. Baccelli and Brémaud,
2003], evaluated on the set Cγ = {(t, σ) : t < 0, σ ≥ Fγ(−t)}, as shown in Figure 1. We denote
by λ{·} = E[N{·}] the intensity measure of the PRM N , and by |A| the measure of the set A
under the intensity measure λ, i.e. |AΓ| := λ{AΓ}. In our case we have λ{dt× dσ} = λdtG(dσ).
Since ν(γ) ≤ 1 we can always decompose Cγ = A1 ∪ Aγ where A1 = {(t, σ) : t < 0, σ ≥ −t} and
Aγ = Ac

1 ∩Cγ . From the properties of the Poisson random measure, since A1 and Aγ are disjoint
sets, the random variables N{A1} and N{Aγ} are independent and Poisson distributed with
parameters respectively |A1| and |Aγ |.

Since A1 does not depend on γ and ∀γ ∈ G the set Aγ ⊂ Ac
1, the independence can be extended

to N1 = N{A1} and Nν = N{AΓ}. Indeed by looking at the characteristic functions we have

E
[
zN1+Nν

]
= E

[
E

[
zN1+Nν

∣∣Γ
]]

= E
[
E

[
zN1

]
E

[
zNν

∣∣Γ
]]

= E
[
zN1

]
E

[
zNν

]
,
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and we finally get the following stochastic decomposition

N = N1 + Nν

with N1 ∼ Poisson(λE[σ]). Nν is then a Randomized Poisson random variable whose parameter
is the random variable |AΓ|. ¤

Remark 2.3. To have a practical interpretation of the last theorem, we can just look at the
customer in the system as belonging to two classes, the ones whose service time is such that they
would have been in the system despite the slowing down of service speed, and the rest. As the
latter are completely independent in the arrival times and service amounts from the former, we
get the stochastic decomposition.

3. M/M/∞ in an ON-OFF random environment

In this section we focus our attention on the M/M/∞ case where the random environment
is a general renewal ON-OFF process. We shall derive an integral equation for the generating
function of the excess customer r.v. Nν .

We assume that the process Γ(t) is ON-OFF alternatively assuming values respectively 1 and 0.
We denote by H a general ON period, and we assume it is distributed according to distribution
FH , and by L the general OFF period with distribution FL. The customer service times are
independent exponential random variables with parameter µ. We assume that the rate function
is given by

ν(γ) =
{

β, γ = 0;
1, γ = 1,

with 0 ≤ β < 1. When β = 0 we have the special case when all servers periodically break down
for a random time while still keeping the customers in service, when β > 0 they periodically slow
down from speed µ to speed βµ.

Figure 2. Areas for ON-OFF Random Environment.

When Γ is an ON-OFF process the set AΓ has the following expression

(3.1) AΓ = AON 1{Γ(0) = 1}+ AOFF 1{Γ(0) = 0}
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where

AON =
∞⋃

k=0

{
−Sk+1 ≤ σ + t

1− β
< −Sk; σ + βt > (1− β)(H∗ + Tk)

}

AOFF =
{
−L∗ ≤ σ + t

1− β
< 0; σ + βt > 0

}
∪

∞⋃

k=0

{
−(L∗ + Sk+1) ≤ σ + t

1− β
< −(L∗ + Sk); σ + βt > (1− β)Tk+1

}
.

In the previous expressions, L∗ denotes a residual lifetime for an OFF period, distributed accord-
ing to F ∗

L(x) = r
∫ x
0 F̄L(y)dy and H∗ denotes a residual lifetime for an ON period distributed

according to F ∗
H(x) = f

∫ x
0 F̄H(y)dy. The random variables {Sk}k and {Tk}k are defined recur-

sively, i.e. Sk+1 = Sk + Lk, S0 = 0 and Tk+1 = Tk + Hk, T0 = 0. A graphical interpretation of
the sets AON and AOFF is given in Figure 2.

By changing variables x = β/(1−β)(σ + t), y = σ, we have that the given expressions simplify
to

AON =
∞⋃

k=0

{−βSk+1 ≤ x < −βSk; y + x > H∗ + Tk}

AOFF = {−βL∗ ≤ x < 0; y + x > 0} ∪
∞⋃

k=0

{−β(L∗ + Sk+1) ≤ x < −β(L∗ + Sk); y + x > Tk+1} .

The intensity measure in the plane (x, y) ∈ R× R+ is given by λ′{dx× dy} = 1−β
β λdxG(dy).

Figure 3 shows the random sets AON and AOFF in the (x, y) space.

Figure 3. Areas for ON-OFF Random Environment.

If we focus now on the case with exponential service times, i.e. G(dy) = µe−µydy, the intensity
measure simplifies and we get the following important property whose proof is trivial.
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Lemma 3.1. Given the transformation Ts,t that translates the set A ⊂ R×R+ in the set Ts,tA =
{(x, y) : (x + s, y − t) ∈ A}, in the case of G(dy) = µe−µydy, we have that

(3.2) |Ts,tA| = e−µt |A| .
If we define

ÃON =
∞⋃

k=0

{−βSk+1 ≤ x < −βSk; y + x > Tk + 1}

we can easily realize that

AON
d= {−βL ≤ x < 0; y + x > H∗} ∪ TβL,H∗+βLÃON

AOFF
d= {−βL∗ ≤ x < 0; y + x > 0} ∪ TβL∗,βL∗ÃON.

Hence we readily get the following

|AON| d= e−µH∗ λ

µ

1− β

β

(
1− e−βµL

)
+ e−µ(H∗+βL)

∣∣∣ÃON

∣∣∣

|AOFF| d=
λ

µ

1− β

β

(
1− e−βµL∗

)
+ e−βµL∗

∣∣∣ÃON

∣∣∣ ,

and, cf. Figure 4,
∣∣∣ÃON

∣∣∣ d= e−µH λ

µ

1− β

β

(
1− e−βµL

)
+ e−µ(H+βL)

∣∣∣ÃON

∣∣∣ .

Figure 4. Area ÃON.

Define φON(s) = E
[
e−s|AON|], φOFF(s) = E

[
e−s|AOFF|], and φ̃ON(s) = E

[
e−s|ÃON|], the char-

acteristic functions of the corresponding random areas. By using the previous relations we can
directly get the following result.

Theorem 3.2. In the case of exponential service times, the characteristic functions of the random
sets AON and AOFF satisfy the following equations

φON(s) = E
[
φ̃ON

(
se−µ(H∗+βL)

)
e
−s λ

µ
1−β

β
e−µH∗(1−e−βµL)

]
(3.3)

φOFF(s) = E
[
φ̃ON

(
se−µβL∗

)
e
−s λ

µ
1−β

β

�
1−e−βµL∗

�]
(3.4)
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where φ̃ON satisfies the following integral equation

(3.5) φ̃ON(s) = E
[
φ̃ON

(
se−µ(H+βL)

)
e
−s λ

µ
1−β

β
e−µH(1−e−βµL)

]
.

Remark 3.3. It is worth noticing that when the random variable H is exponentially distributed
we have that H∗ d= H and hence AON

d= ÃON.

Remark 3.4. Modifying the definition of ÃON and requiring that it starts with a regular OFF
period instead of a regular ON period, it is possible to define an additional random area, ÃOFF,
whose characteristic function satisfies the following recursive equation

(3.6) φ̃OFF(s) = E
[
φ̃OFF

(
se−µ(H+βL)

)
e
−s λ

µ
1−β

β (1−e−βµL)
]
.

As noticed in the previous remark, in case L is exponentially distributed we get that
AOFF

d= ÃOFF, and hence φOFF(s) would satisfy (3.6) as well.

Remark 3.5. All the computation done to get the results of Theorem 3.2 can be easily restated
in algebraic terms instead of using the chosen set arguments. It would be enough to express the
measures of the random areas in the following ways,

|AON| =
∞∑

h=0

λ
1− β

β

∫ βSh+1

βSh

P {σ > x + H∗ + Th} dx

|AOFF| = λ
1− β

β

∫ βL∗

0
P {σ > x} dx +

∞∑

h=0

λ
1− β

β

∫ βL∗+βSh+1

βL∗+βSh

P {σ > x + Th+1} dx

∣∣∣ÃON

∣∣∣ =
∞∑

h=0

λ
1− β

β

∫ βSh+1

βSh

P {σ > x + Th+1} dx.

Having obtained an integral equation for φ̃ON, in the sequel we are going to study two special
cases where it can be explicitly solved. The first refers to the case L has a general distribution
while H is exponentially distributed and β = 0, the second one deals with the case both L and
H are exponentially distributed.

3.1. β = 0 and H exponential. In the following we are going to study the characteristic
function φ(z) = E

[
zN
ν

]
of the stationary number of supplemental customers in the system in a

Random Environment with respect to the isolated system. We are going to suppose that β = 0
and P{H > x} = e−fx. We define ψ(s) = E

[
e−sL

]
the characteristic function for the general

OFF period L with E[L] = r−1, and ψ∗(s) = r 1−ψ(s)
s the one of the residual lifetime L∗.

Theorem 3.6. The number of excess customers in the system, Nν , at equilibrium has the form

(3.7) Nν
d= B Y1 + (1−B) (Y2 + X)

where B, X, Y1 and Y2 are positive and independent random variables. B is Bernoulli with
parameter r/(r + f), Y1 and Y2 are RP’s with ch.f. R(z) = e

f
µ 1

r

∫ λ(1−z)
0 ψ∗(s)ds and X is RP

with ch.f. ψ∗(λ(1− z)).

Proof. By substituting β = 0 in Equation (3.5) we have

φ̃ON(s) = E
[
φ̃ON(se−µH)ψ(λse−µH)

]
= f

∫ ∞

0
φ̃ON(se−µh)ψ(λse−µh)e−fhdh,
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and using the variable changing y = se−µh we get

s
f
µ φ̃ON(s) =

f

µ

∫ s

0
φ̃ON(y)ψ(λy)

dy

y
.

Differentiating both sides we have

φ̃′ON(s)
φ̃ON(s)

= −f

µ

1− ψ(λs)
s

,

that together with the initial condition φ̃ON(0) = 1 gives the following solution

φ̃ON(s) = e
− f

µ

R λs
0

1−ψ(y)
y

dy = e
− f

r
1
µ

R λs
0 ψ∗(y)dy

.

Finally Equation (3.7) is obtained via Equation (3.1) noticing that φON(s) = φ̃ON(s) and that
Equation (3.4) for β = 0 factorizes in

φOFF(s) = φON(s) ψ∗(λs).
¤

3.2. L and H exponential. In the sequel we suppose that both L and H are exponentially
distributed with mean respectively r−1 and f−1. For this case Baykal-Gursoy and Xiao [2004]
already obtained a similar decomposition by using Markov chains arguments. The method we
use here is to compute the random variable |AΓ|. In the following by truncated beta random
variable TB(a, b, c) we mean a positive random variable with density

fTB(x) =
(x/c)a−1(1− x/c)b−1

cB(a, b)
,

with B(a, b) = Γ(a)Γ(b)/Γ(b + a) the Beta function. In Baykal-Gursoy and Xiao [2004], it is
shown that the characteristic function of a r.v. Z ∼ TB(a, b, c) is given by

E
[
e−sZ

]
= M(a, b + a,−c s)

where the function y(x) = M(a, b, x) is called Kummer’s function [Abramovits and Stegun, 1964]
and it is one solution of Kummer’s differential equation

xy′′(x) + (b− x)y′(x)− ay(x) = 0.

Theorem 3.7. The number of excess customers in the system, Nν , at equilibrium has the form

(3.8) Nν
d= B Y1 + (1−B) (Y2 + X)

where B, X, Y1 and Y2 are positive and independent random variables. B is Bernoulli with
parameter r/(r + f), Y1 and Y2 are Randomized Poisson whose parameters are Truncated Beta
distributions respectively TB

(
f
µ , r

βµ + 1, λ
µ

1−β
β

)
and TB

(
f
µ + 1, r

βµ , λ
µ

1−β
β

)
.

Proof. Starting from Equation (3.5) and using the fact that H is exponentially distributed we
get

φON(s) = f

∫ ∞

0
E

[
φON

(
se−µhe−µβL

)
e
se−µh λ

µ
1−β

β
e−µβL

]
e
−se−µh λ

µ
1−β

β e−fhdh

=
f

µ

∫ s

0
E

[
φON

(
ye−µβL

)
e
y λ

µ
1−β

β
e−µβL

]
e
−y λ

µ
1−β

β

(y

s

) f
µ dy

y
.



STOCHASTIC DECOMPOSITION OF THE M/G/∞ QUEUE IN A RANDOM ENVIRONMENT 9

By differentiating and simplifying we obtain the following differential equation

e
s λ

µ
(1−β)

β

[
φON(s) +

µ

f
sφ′ON(s)

]
= E

[
e

λ
µ

(1−β)
β

se−µβL

φON

(
se−µβL

)]
.

By repeating the same procedure for the random variable L we finally get the following differential
equation

s φ′′ON(s) + φ′ON(s)
[(

f

µ
+

r

βµ
+ 1

)
+

λ

µ

1− β

β
s

]
+ φON(s)

f

µ

λ

µ

1− β

β
= 0.

By expressing the last equation in terms of the function φON

(
−

(
λ
µ

1−β
β

)−1
s

)
, it reduces into

Kummer’s differential equation and hence using the condition φON(0) = 1 we obtain that the
solution is

φON(s) = M

(
f

µ
,
f

µ
+

r

βµ
+ 1,−λ

µ

1− β

β
s

)
.

As for φOFF(s), we use the recursion equation (3.6) and carrying out the same computations
as before we finally get the following differential equation

s φ′′OFF(s) + φ′OFF(s)
[(

f

µ
+

r

µβ
+ 1

)
+

λ

µ

1− β

β
s

]
+ φOFF(s)

(
f

µ
+ 1

)
λ

µ

1− β

β
= 0

whose solution is

φOFF(s) = M

(
f

µ
+ 1,

f

µ
+

r

βµ
+ 1,−λ

µ

1− β

β
s

)
,

and the proof follows from the decomposition equation (3.1). ¤
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