Design and Analysis of a Class-aware Recursive Loop Scheduler
for Class-based Scheduling

Raphael Rom and Moshe Sidi
Department of Electrical Engineering
Technion, Israel Institute of Technology
Technion City 32000, Israel

Hwee Pink Tan*
EURANDOM, Eindhoven University of Technology,
P.0.Box 513, 5600 MB Eindhoven, The Netherlands

ABSTRACT

In this paper, we consider the problem of devising a loop scheduler that allocates slots to users according to their
relative weights as smoothly as possible. Instead of the existing notion of smoothness based on balancedness, we
propose a variance-based metric which is more intuitive and easier to compute.

We propose a recursive loop scheduler for a class-based scheduling scenario based on an optimal Weighted Round
Robin scheduler. We show that it achieves very good allocation smoothness with almost no degradation in intra-class
fairness. In addition, we also demonstrate the equivalence between our proposed metric and the balancedness-based
metric.

Keywords: Loop Scheduler, Smoothness, Recursive, Class-aware scheduling

1 Introduction bit-by-bit round-robin (BR) discipline, since at every in-
stant in time, each user is receiving its fair share. For
Consider a scenario where an indivisible resource Users that can be characterizedass (e.g., in a super-
(e.g., time slot) is to be shared amonkjatsers by means ~ market set-up), the Processor-sharing model (introduced
of time multiplexing. The components that are relevant to in [1] and generalized in [2]) is commonly used to eval-
this resource-allocation problem are #esvicediscipline ~ uate the efficiency of the BR discipline as the bit size
or schedulertheusersand theperformancemetrics. tends to zero. Recently, a resource-allocation queueing
Users can be characterized in terms of their type (jobs fairness measure (RAQFM) has been proposed in [3] that
vs streams) and arrival characteristics (time and size).&ccounts for both seniority differences (times of arrival)
The scheduler determines how much resource, whichand service-time differences (job sizes). The authors also
user and when to allocate the resource. The schedul-@nalyzed the fairness performance of fou_r basic queueing
ing mechanism may depend on the user characteristicSYStems, where the results shed some light on job-level
(online) or offline (independent of arrival characteris- Unfaimess as a function of the service discipline.
tics). Finally, such a system is usually evaluated in On the other hand, if each user corresponds to a
terms of itsefficiency(e.g., mean waiting time in the sys- streamof packets (e.g., in communication systems), the
tem) andfairness(e.g., how fairly each user is treated). notion of fairness is modified to take into account the idle
While efficiency has been extensively studied and is well- periods between packet arrivals to a user as follows: an
understood, there is still no commonly agreed upon the- allocation isfair if for an interval, 7, over which each
oretical yardsticks for measuring fairness in resource- yser is backlogged, it receives its fair share (fairness over
allocation systems. 7). Since sending packets in a bit-by-bit fashion is unre-
A common notion of fairness is the following: an al- alistic, packet-by-packet transmission schemes have been
location isfair if at every instant of time, each user is proposed to emulate the BR scheme, most of which are
receiving its fair share (instantaneous fairness). Assum-variants of the Weighted-Fair Queueing (WFQ) disci-
ing that each user has equajhts or priority to the re- pline [4]. This was extended in [5] with the Generalized
source, a hypothetical service discipline that is fair is a Processor Sharing (GPS) discipline (and corresponding

*Corresponding author. E-mail address: tan@eurandom.tue.nl. This work was carried out when the author was a PhD candidate in the Department

of Electrical Engineering, Technion, Israel Institute of Technology.

Packetized GPS (PGPS) schemes), where eachi iser
associated with its fair share’, wherex? # 7 for users
i, j. Most variants of the PGPS (or WFQ) schemes are
computationally-intensive to implement, since they re-
quire keeping track of the finishing times (or times of
departure) of packets in the corresponding (fluid) GPS
scheme. However, under heavy load, where all users can
be assumed to be continuously backlogged, the Weighted
Round Robin (WRR) scheduler (which iff-line, and
hence, independent of arrival characteristics) will be sim-
ilar to the WFQ if packets are of fixed size [6]. Such a
scheduler is simpler to implement and also analytically
tractable.

In this study, we consider the design of off-line sched-
ulers (such as WRR) and the analysis of their fairness per-

the base station, and its requested shefregan be
computed from the relative data arrival rates at all
cluster heads. A scheduler is required at the base
station to determine the cluster-head to transmit at
each time.

A schedule that is perfectly-fair ensures that each
cluster-head receives its requested share and this
minimizes the probability of packet lost due to
buffer overflow. In addition, a smooth schedule
spreads out the transmissions, and hence, maxi-
mizes the lifetime of the nodes, which is the bot-
tleneck in such networks.

However, a schedule that oth perfectly-fair and

formance for communications system, where each userperfectly-smooth is infeasible for mogt The design
comprises a stream of packets. Since the schedulers aref perfectly-smooth schedulers can be found in [7, 8,
off-line, the schedule (or assignment of time slots) is con- 9, 10, 11] and the design of aonline perfectly-fair

structed according to a giverr{z/} |, wherez/ is the

requested share of usjaer(:1 2/=1 andz’ < 2 if

scheduler that maximizes the throughput is considered in
[12, 13, 14]. Given that the packet arrival process to each

j<k. Such a schedule can be characterized in terms of itsuser is independent and identically distributed (i.i.d),

fairnessandsmoothnessvhich are defined as follows:

Fairness : A schedule isfgerfectly fair if the fraction of
time slots allocated to each ugeis (equa) close
to 27. This is similar to the notion of fairness over
7 defined above.

Smoothness : A schedule is fferfectly smooth if the
time slots allocated to each user areqqally
spaced as evenly spaced as possible. This is sim-
ilar to the notion of instantaneous fairness defined
above.

A schedule that isboth perfectly-fair and perfectly-
smooth is desirable in many communication problems,
for example,

QoS provisioning in TDMA-based wireless networks :
In such networks, we envisage packets of different
applications that differ in terms of data rates to
be delivered from/to a wired network via a base

e for K=2 and unit buffer size per user [12], the

schedule must bapen-loop(or de-centralized) and
conflict-free

o for K>2, an optimal schedule always exists and is

stationary anayclic(or loop) [13], i.e., there exists
anRsuch that for all, the user allocated to slots
also allocated to sla#R;

for K>2 and unlimited buffer size per user, the
mean packet delay is minimized with a perfectly-
smooth schedule [14]. A Golden Ratio Sched-
uler [14] is proposed that achieves a nearly-optimal
throughput and performs extremely well compared
to lower bounds for expected packet delay, al-
though it is not perfectly-smooth.

station to/from wireless receivers within its cov- As aresult, the original online problem is reduced to
erage. The base station comprises multiple input @nofflineone, where the objective is to determine a loop
gueues, where queu'econtains packets destined schedule of SiZR, giVen&, thatis perfectly-fair and max-

to wireless receivej and its requested share’, imally smooth. However, no metric was proposed that
can be computed from the relative data rates of all measures the extent of non-smoothness of a given sched-
queues. A scheduler is required at the base stationule-

to determine the queue to transmit at each time. In [15], the author defined the notion ofgularity

A schedule that is perfectly-fair ensures that each (equivalent to smoothness) fér=2. This notion is ap-

user receives its requested share (QoS). In addi-Plied in [16], where the authors defined the equivalent
tion. a smooth schedule minimizes the buffer re- Notion ofbalancedschedules foK>2. Recently, the au-

quirement at the wireless receiver since the jitter of thors in [17] introduced a new notion otbalancedness,

the inter-arrival intervals is minimized. where the value ofn (which is a non-negative integer)
gives a measure of smoothness of schedules forkany

Data forwarding in wireless sensor networks : We where a smaller value indicates a more balanced sched-

consider wireless sensor networks where sensorule. The authors also proposedmrbalanced scheduler

nodes are grouped into clusters. The cluster-headthat constructs a schedule with< K-1 for any givenz,

of clusterj is responsible for aggregating the data but highlighted the difficulty in finding a schedule with

collected within that cluster, and forwarding it to the smallest possibia.

1.1 Perfectly-Fair Loop Schedulers the smoothness of the schedules obtained with various
known loop schedulers. For a class-based scheduling sce-
nario, we propose a recursive class-aware loop scheduler
and demonstrate its performance gain over class-unaware

In this study, we focus on the special case where
comprises only rational elements. Then, we can wtite

as [%,%,- . ,%], where{rJ }le are positive integerf loop schedulers.

= Zjil r7, and the greatest common divisor{fof } 1, The paper is organized as follows: We define our

is 1. scheduling problem, where we consider the design of
In this way, we can definB" as the class okK-flow perfectly-fair loop schedulers to maximize allocation

perfectly-fair loop schedulers such that the following con- smoothness while maintaining intra-class fairness in a

ditions are satisfied for any integeand 1< j < K: class-based scheduling scenario, in Section 2. We de-

scribe the mechanism and properties of several loop
schedulers in Section 3. In Section 4, we propose a re-
cursive loop scheduler that achieves good performance
e if slot i is allocated to use, then slotd+z - R are in terms of both smoothness and intra-class fairness in a
also allocated to usgr class-based scheduling scenario. In Section 5, we com-
, pare the performance of various loop schedulers in terms
If n7 (i) denotes the interval (in slots) between the of numerical results. Finally, some concluding remarks
(i — 1) andi"" allocation to usef under a scheduler are given in Section 6.
m, then we have the following property:

e 17 slots are allocated to usgover any interval of
R slots (perfect-fairness ov&);

Property 1 If 7 € F-, then for KK j <K, 2 Problem Definition

ng(rf +4) = ng(i) _ o .
fird 1 Givenr, our objective is to design a loop scheduler
Z ni(i) = R, foranyk >0 that generates a schedule that is as smooth as possible. In

addition toabsolute(ensemble) smoothnessira-class

_ fairness(which pertains taelative smoothness) is a de-
Hence, the elementgn? (i)}7., (which we denote by sirable property in a class-based scheduling scenario. A
n?) are sufficient to characterize any scheduler F-. loop scheduler is intra-class fair if the resulting schedule
is equally smooth with respect to (i.e., has the same per-
user smoothness for) all users in the same class, for all
classes.

i=k

1.2 Class-based Scheduling Scenario

In any K-flow scheduling scenario given by, all
usersj,k with »7=r* can be grouped into the same class, .
based on the paradigm of service classes [18]. As a result,2'1 Smoothness Metrics
we propose an alternati\ée cle}ss:baged specification of the |n this section, we describe metrics for evaluating per-
scenario given by={r°}c_, 7={r“};_;, such thatclass yser smoothness, from which the ensemble smoothness

¢ comprisess© flows whose indices are defined Bf, can be obtained. We propose a variance-based metric and
where then describe an existing metric that uses the notion of
c—1 c—1 c m-balancedness [17].
C o= D ALY K42 K}
v=1 v=1 v=1 2.1.1 Variance-based metric
~C—p.] if i c C Cc— H . .
re=rl if j € C°and} ., x°=K. The special case of A schedule that is perfectly-smooth with respect to
£={1,--,1} corresponds to the original (class-less) sce- yserj has equally-spaced allocations to uieire., zero
nario. variance ofn/ (denoted byVar[nl]). However, as

Such a class-based specification enables the definitionne evenness (or smoothness) is redudéd;[n’] is in-
of aclass-awarescheduling paradigm, where slots are al- creased. Hence, we define a metric (den&g@byto

located to flows within each clagsdependentlpf other eyajuate the smoothness of a given schedule with respect
classes ifitra-class scheduling) and the allocation vec- g yseyj as follows:

tors obtained are subsequentdgmbinedin an optimal

way (inter-class scheduling). This may result in a gain sl = Varpl] = E[(nd)?] - (E[ni)? (1)

in performance and reduction in complexity owdass- o

unawareschedulers. where E[@7)*] = M is thez!" moment ofn’.
and according to Property 1, we have the following:

S, ma i)

rl

1.3 Contribution of This Paper

In this paper, we consider the design of perfectly-fair E[n]] =
loop schedulers (or loop schedulers in short). We pro-
pose a variance-based smoothness metric, and analyze

% independent ofr

Although s7=0 with perfect-smoothness, the actual
lower bound ons?. (denoted bysmm) for a givenr is
achieved accordlng to the following theorem:

Theorem 1 The minimum value o, for all 7 € F-is
achieved with?.. given as follows:

rd L%j+rj—R

; R R R R
—_——
Rfrﬂ[%j

where the order of the elementsir.. is unimportant,
and its value is:

Sre = Shin
_ RRQ+1-rQ@+Y _ Ry,
ri ri
where Q = £ .
Proof. We consider the following cases:
R =0 (modulorf) : Perfect-smoothness is achieved

for userj when the inter-allocation interval is con-
stant, i.e.n’.. (k) =nl.(i). This is achieved if and
only if nZ. (k) = £ for1< k<.

R=y(modulor?), 1<y < rJ-1: In this case, a con-
stant inter-allocation interval for us¢rcannot be
achieved. We thus have to find an optimal set of
values forn?. (k).

Let us define @ﬁr as comprisingm values,
{ar}}"_,, where each value; has multiplicity z;,
whereay, z, € ZT. Without loss of generality,
we can assume, > a, for v>w, which means
that the set can be written d&; + di}}, and
d1=0,d, > d,, for v>w. Clearly, Zk | 2=’ and

>ohey zk(ar +di)=R.

The corresponding expression fomEIT[ﬂ]2 is given
as follows:

r E[(n].)’] > zk(ar +di)?
k=1

Z zkdi + a1 (2R — ar?)
k=1

szdkd + aq 2R—a1r3)
k=1

dm(R —a1m?) 4+ a1 (2R — ayr?)
It follows that to minimize E{n’.)2], we have
to minimize d,,, which is bounded from below
by d,,—1. But settingd,,, equal tod,,_, actually
means reducing the dimensionality,ef. (it is in-

explicit z). Sinced;=0, we can continue this un-
til m=2, where E{n’.)?] is minimized by setting
ds=1. Hence, by settin@=a,, we have

Z1

. —
Eﬁr* = {Qa7Q3Q+177Q+1}
—_— ———
3
Then, s;incezzjz1 n’ (k) = R, we have the follow-
ing:
21-Q+ (7 —2z)-(Q+1) = R

from which we have

21 = - Q+r —R

However, since & z; < r7-1, we have the follow-
ing constraints o1Q:

R 1 R 1
oot sesg oS

(4)

Since| £]-1< £ -1+ Land[£]> & — L,

the only integerQ that can sat|sfy Eq. (4) iQ =
[]-

Substituting these values into Eq. (3) results in the ex-
pression given in Eqg. (2). The corresponding expression
for s/, ,,, can be obtained by substituting.. into Eq. (1).
O

We define a general ensemble smoothness metric,
s, In terms of{s?. le and per-user weighting factors,

{wl},, Whereri1 w’=1, as follows:

K

E i gl
w’ - 8]

Jj=1

®)

2.1.2 m-balancedness

Let a,. denote the schedule (comprisiRgslots) ac-
cording to scheduler € F-. If y denotes a sub-schedule
(sequence of consecutive slots) dn, then |y| is the
length ofy, jyj is another sub-schedule that begins and
terminates with) and|y|; is the number of occurrences of
jiny.

According to [17], we have the following definition:
Definition 1 For a non-negative integer’ , a schedule,
a.., is mi-balanced with respect to user j if the follow-
ing condition holds: for any sub-schedujg;j in a., any
other sub-scheduley in a, such thatly’| = |y|+mi+1
satisfiesy’|; > |y[;+1.

We note thatn’ = 0 if o, is perfectly-smooth with
respect to user, otherwise, the pseudocode for comput-

teresting to note that the bound is independent of ing m? is given below:

Algorithm for Computation of m?, 1< j <K

Initialize {m? }/<, =0
Seta=b=1
whilea < K
- u+b
M(a,b) = lg}fgia S (y)
)= min S nay)
b) = min n2(y
1Sl§7'a y=u+1
= max (M(a,b)-M(a,b), m2)

| or M(a,b)-M(a,b) =0

a
™

2

According to the above algorithm, for a gives, the
value ofm? depends on therder of the elements im?,
and we have the following corollary to Theorem 1:

Corollary 1 If n’. comprises the elements given in Eq.
(2), thenm?... satisfies the following properties, where V
= min {77 % |+ 7r-R, RyJ LIE,J}

=V, V<2

PV <ml. <V, V>2.

The lower and upper bounds fmfr* are obtained when
n? . are given respectively as follows (where the order of
the elements are important):

r-iL%jJrrij
A RN EIN RN
Rri| £ |
whe = (o] T, L] [0, L), 1]

As in Eqg. (5), the corresponding ensemble smooth-
ness metricin,, can be defined as follows:

K
my; = E w? - m
Jj=1

A specific ensemble smoothness metric is proposed in
[17] as follows:

(6)

max m’

m
T 1<G<K T

which corresponds to the following weighting factors:

{

2.1.3 Comparison betweemn’ and s/

1) = arg max mi]
0 J 1<i<k "
07

otherwise

w =

According to Sections 2.1.2 and 2.1.1, both metrics,
m? ands’, can be computed giveri.. However, accord-
ing to Theorem 1 and Corollary 1, for the set of elements,
nl., givenin Eq. 2, while the value of... is unique the
corresponding value ofi’.. can only be given in terms

of arange This is true for any valigi/ , i.e., s’ is unique
while mZ. depends on therder of the individual elements

in nZ. This imposes much more stringent conditions on
nd (and therefore, it is harder to construct a schedule) to
achieve optimality in terms of/..

In the subsequent analysis, we will quantify the per-
user smoothness of various loop schedulers in terms
of the variance-based metric; the corresponding
balancedness metric will be computed for the purpose of
comparison.

2.2

Let dS denote the number dfistinct values of per-
user smoothness or m?) for all usersj € C¢ with
schedulerr, where K d < k°.

Sincer is intra-class fair itz,. achieves the same per-
user smoothness for all users in the same class, for all
classes, i.ed5=1, 1< ¢ < C, a larger value ofi¢ indi-
cates larger intra-class unfairness for classlence, we
define the following measure to quantify the level of un-
fairness over the ensemble of all classes with scheduler
T

Intra-class Unfairness Metric

1 C
Un %2
c=1
According to the definition ofi¢, the unfairness metric,
ur, is bounded as follows:

*S uﬂ' S]-

K
We use the notations, (s) andu., (m) to denote the un-
fairness metrics based @ andm?. respectively.

2.3 Problem Formulation

Since our objective is to determine a scheduler that
minimizes both the smoothness and intra-class unfairness
metrics, it can be formulated as an optimization problem
as follows:

K-flow Loop Scheduling Problem

Determine the schedute,. such that
Sp+ = min §
s T{'EFL s
and
Upr = MIN Uy
TeERT

To assess the size of the problem,Aet {a, : 7 €

FZ}. Then, we have the following:
R!
Hf:l rl!
We note that a number ef, € A are equivalent since
they are identical under rotation with respect to the per-

formance metrics. However, even after eliminating these,
the resultant space is still non-tractable for laRye

Al

A dynamic programming approach to derive an opti-
mal scheduler requires the definition of an additive objec-
tive function, i.e., one which is computed incrementally.
However, the per-flow smoothness metsg, is a cumu-
lative quantity, which renders the approach unsuitable.

Therefore, our approach is to evaluate the perfor-
mance of various known loop schedulers in terms of

both smoothness and intra-class unfairness, benchmarke%Ince nl

against the respective lower bounds.

3 Description of

Schedulers

K-flow Loop

In this section, we describe the mechanism and study

- ; _
We can express;, in terms ofsp, . as follows:

Sy = S]DRRK)
rl—1 ri—1 ri—1
X ot X nl 2R 1) Z 2y
y=1 y=1
+ 3

corresponds to inter-allocation intervals, we

have the following constraint:

ri—1
R—T]+1—Zzy > 1

y=1

In addition, according to the triangular inequality, we

ave:
the per-user smoothness (according to the variance- baseg

metric) and intra-class fairness properties of several loop
schedulers.

3.1 K-flow Deficit Round Robin Scheduler
(DRRk)

Fair-queueing schedulers (e.g., Weighted-Fair Queue-
ing (WFQ)) achieve nearly-perfect fairness, but they are
usually expensive to implemenD RRy [19] is an online
scheduler that is an approximation to fair-queueing which
is simple to implement and yet achieves good fairness and
can also be implemented as a loop scheduler. Within the
scope of our scheduling problem, theR R scheduler
reduces to a Weighted Round Robin (WRR) policy, which
simply allocates a block af' slots to user 1 followed by
a block ofr? slots to user 2 and so on. Hence, each user
j is allocated slots in blocks of siz€, with an interval
of R-r7 slots between successive blocks. Therefore, we
have the following:

ri—1
—— .
{1ﬂ"'713R77‘j+1} (7)

The performance of th® RRy is given by the fol-
lowing theorem:

J
ﬁDFi’RK

Theorem 2 The DRRx scheduler ensures intra-class
fairness, but exhibits the worst smoothness amomngst

J_1 rl—1
> < (AP
y=1 y=1

Substituting into Eq. (9), we have the following:

ri—1) rl—1) ri—1 9
Z_:l Zy + [Z_:l zy)® = 2| Z_:l 2]
Sy < SDRR T T L _
R oy
ri—1) rl—1)
PO DN
. J y=1 y=1
= SDRRx T 3
< S%RRK

According to Eq. (8), the per-user smoothness metric for

userj is a function ofr/ only and hence, th®RRg

scheduler ensures intra-class fairnéss.

3.2 K-flow Credit Round Robin Scheduler
(CRR)

The motivation to design th€ RRy scheduler [20]

was to reduce the latency of tHeRRy scheduler. As
with the DRRk scheduler, th€ RR i scheduler can be

implemented as a loop scheduler, and the pseudo-code is
given as follows:

FZ, i.e., for I< j < K, its value is given by:

j M+ (R—1)24+2(R—17) R,
SDRRK = Tj - (7“7)
= maxs’ (8
TEFT

Proof. The expression f05]bRRK given in Eq. (8) can
be computed by substituting Eq. (7) into Eq. (1).

Let us consider an arbitrary schedutee FZ with n/.
given as follows:

ri—1

A4z, R—1r1 41— Zzy}

W= (-

K-flow Credit Round Robin Scheduler (C RR)

Initialize y/ = 1%, 1< j < K
Seti=1, SP=K, count0
whilei <R
if count< K
if 457 <1
count=count+ 1
else
acrRy (i) = SP,
y3P =¢5P - 1i=i+1,count=0
SP=SP- 1 (moduloK)

y=1

elsey’ =yJ + IV j, count=0

wherez, € Z*, 1< y < r/-1. We note that for, =0,
1<y <7ri-1,7= DRRk.

The C RRy scheduler possesses the following prop-
erty for 1< j < K-1[21]:

Property 2 The i*" allocation of user j always occurs
K - K .

between thé 1 " and [“-] - 1 ‘" allocation of user

K, 1<i< I,

Property 2 can be generalized for a class-based sce
nario as follows:

Property 3 For the CRR; scheduler, users within each
class are allocated in blocks, where the order within
classC" is YV kP 41, S0 K42, -, SO K for
1< u < C. In addition, thei*" block ofC* will reside be-
tween thel Z2° 1t and [2] — 1" block of C”, where
1< < 7v

We note from Property 3 that users within each class
are always transmitted in blocks, where each user from
that class is allocated exactly once and the order within
each block is constant. Hence, the per-user smoothnes
for users belonging to the same class are identical, i.e.,
intra-class fairness is maintained.

3.3 K-flow Smoothed Round Robin Sched-
uler (SRRg)

The SRRk scheduler [22] is a variant of the stan-
dard WRR scheduler, aimed at reducing the latter's out-
put burstiness and short-term unfairness (i.e., improving
allocation smoothness). A Weight Spread Sequefge (

As with the CRRx scheduler, we can deduce from
Property 4 that intra-class fairness is maintained for the
SRRk scheduler.

3.4 K-flow Weighted Round Robin with
WFQ-like spreading Scheduler WRR-

SPK)

The WRRspg scheduler [23] is another variant of
the standard WRR scheduler, in which the service order
amongst the users is identical to WFQ. The algorithm for
theWRRspg scheduler is described as follows:

K-flow WRR with spreading Scheduler WRR-sp)

Let the arrayy contain the sequence

<L, j>qe{l,.- 1} 1<j<K

s sorted in lexicographic order.

The vectoray, g, 1S COnstructed as follows:

awRR—spy (1) =] If y(i) =< L, 5 >

T3

According to the algorithm, the sequence?, j >

is sorted inlexicographicorder, i.e., they are sorted in
ascending orderpfimary sorting) according to the first
component (i.e.;) of each element-{,j) and in the
event of a tie, the elements will be sorted in ascending
order Gecondarysorting) according to the second com-
ponent (i.e.j).

The WRRspg scheduler possesses the following

that distributes the allocation to each user evenly and aproperty for K ;7 < K-1[21]:

Weight Matrix (M) that is a binary representation of

are two key structures of the scheduler. The pseudo-codeProperty 5 Thei*" allocation of user j always occurs

for the SRR scheduler is described as follows, where
the functiondec2bin(i, k) converts the integerinto its
binary representation witk bits:

K-flow SRR Scheduler SRR)

Tmazr = MaX]1<j<K Tj
k= ”OgQ(Tmaa: + 1)-|
S=]
fori=1k
S=[Si5]
M =]
forj=1K
M =[M; dec2birgr’ k)]
a=[]
for i=1:lengthS)
index = find(M(:,S(i))==1)
a=[aindex]

According to the above algorithm, tH8R R sched-

between théij—_f] th and [i’f—ﬁ - 1t allocation of user
k, where k-j, 1< i< 7.

Property 5 can be generalized for a class-based sce-
nario as follows:

Property 6 For the WRRspx scheduler, users within
each class are allocated in blocks, where the order within
classC"is S0 Kk 4+ 1, S0 P2, -, S0 K for

1< u < C. In addition, theit” block of C* will reside
between thé 22"t and [2] — 1" block ofCY, where
y>uand K ¢ < 7,

As with the CRRx scheduler, we can deduce from
Property 6 that intra-class fairness is maintained for the
WRRspg scheduler.

We propose a generitWRRspyx scheduler (de-
noted by WRRspk(0), 1< o < K) such that
the secondary sorting is performed in the order
[0,0t1,0+2,-- K, 1,2;--,0-1]. We define a maximally-

uler possesses the following property for a class-basedsmoothWRRspx (¢) scheduler (denoted b RR —

scenario:

Property 4 For the SRRk scheduler, users within each
class are allocated in blocks, where the order within
classC" is YU kP 41, S0 K42, -, SO K for
1<u <C.

spy;) as follows:

SWRR—sp}, = 12)1<DK SWRR—spk (o)

We note that Property 6 is preserved with t(heR R —
spj; scheduler.

3.5 K-flow Golden Ratio (GRy) Scheduler

The Golden Ratio Scheduler was proposed in [13] and
is described as follows:

K-flow Golden Ratio Scheduler GRg)

Letz=0.6180339887 and(m) = frac(m - z)
wherefrac(y) =y — |y|
Let the arrayy contain the sequenae(m),
0< m < R-1, sorted in ascending order.
The vectora , is constructed as follows:
aGRy (1) =] ‘
it % <y S Vil S i< K
It was established in [14] thatRis a Fibonacci num-
ber, thennz, , - comprises at most three values for each
j; otherwise, more values are generated.

3.6 K-flow Short-term Fair Scheduler

(STFk)

We can characterize the throughgairness(as op-
posed to the notion of intra-class fairness defined in Sec-
tion 2 that pertains to smoothness) of any loop scheduler
in terms of thecumulative service-defigitd’ (i), which

where the order within each block is K,K-1,K-2, K-x!;
Users within clas<C! are always allocated in the order
sb,k1-1, - -,1 and the maximum number of users in class
C! allocated between two successtieblocks isk!.

We can deduce from Property 7 that intra-class fairness
is maintained for two-class scheduling with th& F'
scheduler.

3.7 K-flow m-Balanced Scheduler

(MBALy)

The m-balanced scheduler was proposed in [17] and
its pseudocode is given as follows:

K-flow m-Balanced Scheduler {/ BAL k)

Initialize ¢ = {p*, ¢2,--- , %} st
¢’ is uniformly distributed on [0%), 1< j <K
fori=1R

y=ors i o

amMBALk (1) =Y
V=gV + L

measures the discrepancy between the requested and al- The smoothness metric corresponding to the schedule

located share for usgrp to sloti, 1< i < R. If 47 (i)

constructed by the algorithm is upper-bounded according

denotes the cumulative number of slots allocated to usert© the following property:

j up to and including slat, then we have the following:

yi
R

A positive(negative) value ofd’ (i) implies that usef
has receivetess(more) than its requested share up to slot

sd’ ()

Property 8 According to the metric defined in Eq. (6),
the worst-case m-balancedness of HeB AL i sched-
uleris K-1, i.e.,mMBALK < K-1.

It is difficult to find an initial value for¢ that achieves
the best possible smoothness. Hence, the authors pro-

i. Hence, we consider a scheduler that allocates each sloposed iterating the algorithm over a predetermined num-

to the user with maximum instantaneous service-deficit
so as to achieve maximum throughput-fairness (Short-
term Fair orST F scheduler). Whenever there is a tie,
priority for allocation is given to the user with the highest
flow index. The pseudo-code for tl&" F', scheduler is
given as follows:

K-flow Short-term Fair Scheduler (ST F)

Initialize ¥/ (0) =0,1< j < K
fori=1:R
Y()=y(i—1),1<j < K
sdi(i)=" -0 1< j < K
R S
asrry (%) arg1l<r;‘82XK sd’ ()

yrsre (i) = yore O (i) +1

This scheduler was first suggested in [13], where
the authors conjectured, based on numerical calculations
that it is a promising scheduler. However, no analysis of
the scheduler was provided in terms of smoothness.

According to our analysis [21], th&€T Fx scheduler
possesses the following property:

Property 7 For any two-class scheduling scenario
(C=2), users within clas<C? are allocated in blocks,

ber of runs (denoted b ER) in an attempt to improve
the schedule.

3.8 K-flow Random (RN Dg) Scheduler

The loop schedulers considered so fardgterminis-
tic since the schedule, € A is fixed. In this section,
we define arandomscheduler,RN Dy, whose sched-
ule,arnp, - is uniformly selected fromA. We note that
RNDg € F* because the selecteg; . is used for
allocation in each loop.

The per-user smoothness metric for each ysisr
given as follows [21]:

R,

rJ

R(2R — 17 +1)

J _
SRNDK Tj(’l“j + 1) ((10)
By comparing Eq. (10) with Theorem 2, we have the fol-

lowing corollary:

Corollary 2 The per-user smoothness metric for the
RN Dy scheduler is upper-bounded by that of the
DRRg scheduler, i.e., ford j < K,

J J
SENDx = SDRRx

4 Design of Class-aware Loop 4.2 A Recursive Class-aware Loop Sched-
Scheduler uler for Multi-class Scenario (C>2)

o) In this section, we construct a class-aware scheduler
Our analysis in Section 3 suggests that ti&y, for a multiple-class scenari€€2). In order to exploit
MBALk and RN Dy schedulers do not ensure intra- the smoothness property of the optimal two-class sched-

class fairness, .which is a desirable property in a clas.s—mer (OPTs), we propose aecursiveapproach that (a)
based scheduling scenario. On the other hand, whilepaitions the originaC-class problem into smaller sub-

the ST Fx scheduler gyarantees intra-class fairness Onlyproblems at various level§grward) (b) solves each sub-
for a two-class scenari®2), theCRRy, SRRk and proplem, beginning with the lowest leveSglutior) and
WRR — spx schedulers are intra-class fair for ady (¢ supstitutes the solutions obtained in the return path
Hence, the latter schedulers are suitable as bases for cong, gpiain the required schedule for the original problem
structingclass-awardoop schedulers. We begin with the (Retur).
design forC=2, and then extrapolate the design to the ~ \yg describe the approaches for each stage as follows,
multi-class C>2) scenario. where the notatioREQ([), I € C={1,2;--,C}, repre-
sents anl|-class scheduling problem.

4.1 An Optimal Two-Class Loop Scheduler
(C=2) 4.2.1 Forward

Comparing Property 3 and Property 6, it can be de- ~ We begin by partitioning th€-class (level 0) prob-
duced that the’RRx andW RR — spy are equivalent lem, RJ?C(Q)- into level 1 ?ub-?roblems,ldenloted by
for two-class scheduling, and hence, we restrict our con- REC(Ly), REC(I3), wherel; U I;=C andl; N I,={}.
sideration to the latter scheduler. As far as this stage is concerned, we can in-

Using Property 6 and Theorem &, . ., and terpret REC(I}), REC(I,) as comprising two inde-

; - N pendent problemsREC(I}) and REC(I}), each of
n’. can be computed and are given in Eq. (11) and (12) " =1/ - N2

’T . ; which can be further partitioned into level 2 sub-
respectively on the next page. Comparing these equa- 1 o .

. J j . problems. For exampl&® EC(I;) can be partitioned into
tions, we note thatty, ., 7 7. forls j < Kand g ooy pper2) wherer2 U 12=1" andi2 N 12={}
hence, theWRRspy scheduler is not optimal in terms S/ SR AS2) 1 os2mel AL 2L
of per-user smoothness. However, whér1 (+1=K-1) One particular approach for partitioning [21] is that

P ' .’ ’ for each levely sub-problem, REC(IY), REC(I})
the WRRspg scheduler offers optimal per-user smooth- Vo> 1 mind | 7V] 7Y [=1 ' =1/ =2/
ness for users i€? (C'). Hence, since!=1 =K-1 when y > 1, min{ |1}, |I}§]}=1.
K=2, theWRRsp, scheduler offers optimal smoothness
for all users, i.e., 4.2.2 Solution

SgV‘VRR_ ' — min s/ Let us consider the levely sub-problem,
Pz mefr T REC(1Y),REC(IY). In order to solve this problem,
(_((ve first computeizpc(rv) andagpe (ry) independently
intra-class scheduling), and then combine these sched-
ules to obtaini g (1v), rREC(12) (INter-class scheduling).
The respective functions are described as follows:

Hence, we can construct a class-aware scheduler (se

Section 1.2) for a two-class scenario by (a) defining an

equivalent two-flow scenario (K=2) and (b) construct-

ing a schedule using th& RRsp, scheduler (inter-class

scheduling) and (c) substituting for the indices of the

users (intra-class scheduling). Denoted®¥T5, it can

be shown thany,,,, = nJ. as given in Eq. (12) for

1< j < K, i.e., theOPT, scheduler achieves optimal

issmgoi\?g;nngo\]:\?r;\é\gﬁ:?nsgsl SC;‘le‘f":E' ;hghpésig?rc;—code until levell, such that for each levékub-problem,
) . >~ : - 1 l 1 l —

sponding scheduler fot' - 71 > k2 - #2 can be obtained REC(L), REC(Ly), max{| L1}, | 5[} = 2.

by interchanging the indices 1 and 2): As such, we begin theolutionphase at levdl and

intra-class scheduling : According to Section 4.1, the
OPT, scheduler achieves optimal smoothness for
any two-class scheduling scenario. Hence ftire
ward phase of the recursive scheduler is executed

- the resulting schedulesg, 1y anda 1,
Optimal Two-Class Loop Scheduler Q.PT>) will be optimally smooth{zEVCV(élr)wote thgtEaC(sliQ&]ple
Setr = [x! - 7', K2 - 2] Round-Robin scheduler suffices to.en.sure optimal

i 2 smoothness for a one-class scenario, ilé}71.
—_——~
Definel! =[C',... ,C!],1?2=[C? ... ,C? inter-class scheduling : There are many different ways
Computeay pr—sp, = WRRspa(r) to combine agpc(rvy and agpe(ry) to obtain
fory=1:2 arpc(r),REC(1Y)- One approach is to construct
index = find@y g sp, ==Y) an equivalent two-user scheduling problem by ag-
aopr,(index) =1Y gregating the users ifY and IY respectively, and

apply theWRRsp, scheduler to obtain a two-user

A7
1 2 2 1 2 7:2 1 2 FQ 1 2 7:2 . 1
"+) om + 5 _ﬁj,;‘i +K fﬁ}n + K [7?11}’ jecCh;
E%’VRRfspK R ’F2_((%]_1);1 (11)
#2K—R
e
———
{H2a"'aﬁ2aKa"'aK}7]€C2
———
R,:lz;,z
PR S22)+ R
22 252 22 252
R™T R™Tr R™T R™Tr 1
{K1+|_ 7l J7 v’il+|_ 7l Jaﬁl"_(7l L 751+|— 7l ~|}7 J eC 5
: Rt (w14 | 3£)
e = P)+ R (12)
lﬂlfl /ﬁ;lfl lﬂlfl H:17*;1)
{H2+L 72 Ja 7’€2+ L,FTJ”{z‘F’V 72 L 7H2+(72 —I}v J €C2
R—72(s2+ |])

schedule, aThe slots allocated to user ‘1’ and ‘2’
are substituted with the indices @f and I} re-
spectively. The pseudo-code (similar to th& T,
scheduler) is given below:

Function a = inter-c(a;v,a;y)

Setr=[> k-7, > k®-7]

cely cell
Computetyy i sp, = WRRspa(r)
forq=1:2

index = find@y g sp, ==0)
a(index) =a,,

An alternative approach for inter-class scheduling
(denoted byinter-c) is proposed in [21], and it is
applicable if the following condition holds:

min{|Ly|, [15]} 1 (13)

To illustrate the approach, let us assume that
1I5|=1, andlag eyl < larpcy)l- fwe lety =
arpe(ry) @Ndz = arpe(vy. then our objective is

to insert the elements afinto v so that successive
elements ofv are as uniformly-spaced as possible
in the combined vectotiz (1), rEC(12), 1-€., We
attempt to maximize smoothness with respeat.to
This is illustrated in Fig. 1, wherB=[2] andQ is
given as follows: a

- |

For the case wher| > |z|, we simply swap the
definitions ofv andz.

P, lz| = |ul;
P —1, otherwise

4.2.3 Return

Upon completion of the solution phase with all level
| sub-problems, we begin theeturn phase, which com-
putes the schedule for each leyel sub-problem using
the solutions of its levey sub-problems iteratively until
we arrive at the schedule for the original problem.

Let us consider a levell-1 sub-problem,
REC(I1™Y),REC(IL"). Assume thaREC(I™!) is
partitioned into level sub-problemsREC (1)), REC(I})
and REC(IL), REC(I'). We apply the solution phase
on each of the above levelsub-problems to obtain the
respective schedules:

Si7' = Aarpow),rEC(Y); SRECUL) RECUL) }

Similarly, REC(I5™") is partitioned into levell sub-
problemsREC(IL), REC(I5) andREC(I%), REC(I}),
and the respective solutions are given as follows:

Sy {arBcwy).rREC(L)} OREC(L) REC(LL) }

In order to obtairgREC(lz;l)’REC@Z;), we have to de-
termine the combinationa; € S!™!, a, € Si™1), that
results in a schedul@ter-c(a, ,a,), with the best smooth-
ness, i.e., i, is the smoothness metric corresponding to
the schedule, then:

min

ar,
gb -1 1—1
b, €57 " ,byES,

Sinter—c(gl 1) Sinter—c(gl ,b5)

(14)

Once we have obtained the required schedules for all
level I-1 sub-problems, they are returned to the corre-
sponding level-2 sub-problems in the same way until
we arrive at the original problem.

]]

P

4 REC(P\).REC(P

=2

|:| Slot allocated to users in classes ¢ € r, -

Slots allocated to users in classes ¢ € P,

Figure 1:lllustration of the inter-class scheduler, inter-c’(), for the REC(C) scheduler.

4.3 Variants of Recursive Class-aware
Loop Schedulers

According to Section 4.2, we may define variants of
the REC(C) that differ in terms of (a) the approach for
partitioning in theforward phase and (b) the inter-class
scheduling function in theolutionphase. In this section,
we define variants considered in this study @3 and
C=4.
C=3: In this case, there is only one approach for par-
titioning, and this is illustrated in Fig. 2. How-

ever, since each sub-problem satisfies Eq. (13), we

can define two variants (denoted B'C; (C) and
REC,(C)) that employsinter-clasg) and inter-
class() respectively for inter-class scheduling.

C=4: In this case, two approaches for partitioning ex-
ist, as illustrated in Fig. 3 (a) and (b) respectively.
With approach (a), onlynter-clasg) is valid, and

we denote the resulting scheduler B&C; (C).

We define variousC-class scheduling scenarios,
whereC € {3, 4}, and the user composition is assumed
to be uniform, i.e.,x¢ = k for 1 < ¢ < C. For C=4,
each class comprises users from each of the above ap-
plications, and the scheduling scenario is defined by
[128,300,400,500] = [32,75,100,125]. F6r3, multi-
ple scheduling scenarios are possible. For example, if we
consider Residual Voice, Video Telephony and Interac-
tive Games, then we have[300,400,500 [3,4,5].

The weighting factorsfw? }le, are chosen to be pro-
portional to the relative demand of each user as follows:
rd
R
For theM BAL scheduler, we set the number of itera-
tions, ITER to 1000. This number has to be sufficiently
large so that it is more likely to obtain the best possible

scheduler; however, this is achieved at the expense of in-
creased computational complexity.

w?

On the other hand, with approach (b), since each 5.1 Performance of Variants of Recursive

sub-problem satisfies Eq. (13), we can define two

variants (denoted bREC>)(C) and REC5(C))
that employsnter-clasg) andinter-class() respec-
tively for inter-class scheduling.

We summarize the properties of variants of REC(C)
scheduler forC=3 andC=4 in Table 1. In general, the
computational requirement of thBREC(C) is upper-

Class-aware Loop Schedulers

We begin by comparing the smoothness)(and
intra-class unfairness.f) achieved with the variants of
recursive class-aware loop schedulers defined in Section
4.3. The results for the 4-class scheduling scenario,
7 = [32,75,100,125], are plotted in Fig. 4. The cor-
responding results for the 3-class scheduling scenario,

bounded by the variant where each sub-problem satisfies’=[32,75,125], are shown in Fig. 5.

Eqg. 13, and the algorithm requir¢§) runs of OPT5(),
C(2°~1-C) runs ofinter-c() and 1 +3"0 ' [[7 o, i
runs ofmin() (Eq. (14)). The fact that is usually small
makes the problem tractable in practical cases.

5 Numerical Results

We consider the following broadband applications
with the corresponding typical bandwidth requirements
in kbps [24]: Streaming Video (Internet Quality) (128),
Residential Voice (300), Video Telephony (400) and In-
teractive Games (500).

C=4: In terms of smoothness, using the partitioning
approach that satisfies Eq. 13 (.REG2 and
REG3), we note thaREG?2 (that usesnter-¢())
achieves better performance tHaRG 3 (that uses
inter-c()). This is expected sincinter-o) is de-
rived from theOPT-2 scheduler, which achieves

optimal smoothness for two-class scheduling.

Comparing between the partitioning approaches,
theREG2 scheduler performs better than REG

1 scheduler at the expense of computational com-
plexity, since theREG2 scheduler is computation-
ally more expensive (See Table 1).

REC(1,2,3)

Original Problem

Level 1 Sub-problems REC(1,2), REC(3) REC(1,3), REC(2) REC(2,3), REC(1)

Figure 2:Partitioning approach for the REC/(C) scheduler (C=3).

Original Problem REC(1,2,3.4)
Frablems REC(1,2), REC(3.4) REC(1,3), REC(2,4) REC(1,4), REC(2,3)
problems b ’) ; 4), ,
(a)
REC(1,2,3.4)

Original Problem

Level 1 Sub- REC(2,3,4), REC(1) REC(1,3,4), REC(2) REC(1,2,4), REC(3) REC(1,2.3), REC(4)

___broblems A A T
REC(3,4), m, REC(4) REC(2,4), REC(1) REC(1,2), REC(4)

REC(1,4), REC(2)

Level 2 Sub-
problems REC(3,4), REC(1) \ REC(1,3), REC(4)
REC(1,4), REC(3)
(b)
Figure 3:Approaches for partitioning for the REC/(C) scheduler (C=4).
. Variants of Partitioning anoroach Inter-class Computational Bequirements (No of run.s)
REC(C) oning approac scheduler OPT,() 11}ter-c() or min() in
2 inter-¢’() Eqn (6)
3 REC-1 All sub-problems satisfy inter-c() 3 3 !
REC-2 Eqn (3) inter-c’()
No sub-problem .
REC-1 satisfies Eqn (5) inter-c() 6 3 1
4 REC-2 i
) All sub-problems satisfy inter-c() 6 16 5
REC-3 Eqn (3) inter-c*()
Table 1:Properties of variants of REC(C) scheduler (C=3,4)
In terms of fairnessiREG-1 andREG2 are less un- for C=4.
fair than REG3, which once again demonstrates
the superiority ofinter-o() over inter-c() (imple- In terms of fairnesREG1 is less unfair thaREG
mented inREG 3). 2, which once again demonstrates the superiority of

inter-¢() overinter-c() (implemented inREG2).
3: Since the partitioning approach is unique, the re-
cursive schedulers are distinguished according to
the inter-class scheduling function implemented. Table 2 summarizes the comparison between both
We note thaREG1 (that usesnter-¢()) achieves variants of recursive schedulers for 3-class scheduling
better smoothness performance tHRBEG2 (that scenarios. The above observations@s13 are consistent
usesnter-c()). This concurs with the observations over the various 3-class scheduling scenarios.

10 ‘ ‘ ‘ : 0.35
% REC-1
=, REC-2
7 REC-3 0.3
107 1
0 @ 025
g ok
s £ 02
2 107 12
£ 2
£ o 0.15
S £
S £
= y &
| S o1
0.05
10_6 L L L L 0 L L L L
0 10 20 30 40 50 0 10 20 30 40 50
Number of Users Per Class, k Number of Users Per Class, k
Figure 4: Comparison of s, (left) and u, (right) amongst variants of recursive loop schedulers for 7 = [32,75,100,125] in 4-class
scheduling.
107 ; ; ‘ 0.4
-% REC-1
<= REC-2 0.35)
. 03f
" @1:
-3
5101 E
£ 5025
= X g
g > 0.2r
[%]
£ g
3 £ 0.15¢
O 4 &
£10 i E
@ 0.1f
0.05f
K
107 ‘ ‘ ‘ ‘ 0 : . . ‘
0 10 20 20 20 50 0 10 20 30 40 50

Number of Users Per Class, k

Number of Users Per Class, k

Figure 5:Comparison of s (left) and u, (right) amongst variants of recursive loop schedulers for 7 = [32,75,125] in 3-class scheduling.

Metric S(REC-1/S(REC-2) Urec-1(8)/Urec-2(8)

K 5 [10 [20 [3 [40 [50 5 [10 20 [3 [40 [50
[75,100,125] 1

[32,75,100] 0.6000 | 0.3749 | 0.1240 | 0.0505 | 0.0207 | 0.0111 | 0.6250 | 0.2857 | 0.1579 | 0.1667 | 0.0938 | 0.0682
[32,75,125] 0.7826 | 0.5571 | 0.1315 | 0.0808 | 0.0458 | 0.0310 | 0.6667 | 0.4444 | 0.2667 | 0.1429 | 0.1538 | 0.1212
[32,100,125] 1.0000 | 0.9401 | 0.5698 | 0.6098 | 0.3012 | 0.2306 | 0.5714 | 0.4000 | 0.2000 | 0.1739 | 0.1200 | 0.0938

for various 3-class scheduling scenarios.

Table 2:Table of SEEC=1 gnq “REC-1(5)
SREC —

2 urgCc—2(s)

5.2 Performance Comparison between
Class-aware and Class-unaware Loop
Schedulers

configurationsx = {1,5,10,20, for s,). Hence, we de-
fine a representative Round-Robin scheduler (denoted by
+*RR) with performance metrics, r g, , defined as fol-
lows, wheres € {s, m}:
Next, we compare the smoothness and fairness per- 1
formance in terms of. andm, between 'Fhe ‘best’ vari- g[o’SRRK + OWRR-spi, + OCRRx]
ant of recursive loop scheduler (according to the results
in Section 5.1 and denoted bR ECk) and the class- In addition, theRN Dy scheduler performs signifi-
unaware loop schedulers defined in Section 3. cantly worse than the deterministic schedulers (exclud-
Our computations show that the performance of the ing the DRRg scheduler) in terms of smoothness, and
variants of Round-Robin schedulelSKR i, WRRspj, this performance gap widens as the number of users
and CRRg) are similar (within 14 over all the user per class,x, increases. To quantify this, we evaluate

OxRRx

ARSE, = mi“"e{RECK'MB‘;LRI;]’;TFK**RR%GRK}S” and Since the M BALy scheduler exhibits the worst
5 fairness performance foF = [32,75,125], we tab-
ulate the metrics,u"ﬂ and —4=(m) =

Amm — MaXre{REC) ,MBAL ,STFy ,xRRy ,GRi } 57 and
RNDg SRND

the results are shown in Table 3. We observe that the MBAL(S) unpaL(m)’

performance gap between theV Dy scheduler and the ¥, STFrk, GR, RECK }, for each of the remain-
deterministic schedulers widens as the number of userdnd 3-class scheduling scenarios in Table 5. We show that
per class,, increases. However, even fer= 1, the the above observations are consistent over all the 3-class

worst-case smoothness metric obtained with determinis-Scheduling scenarios.

tic schedulers is less than #of the corresponding met- Overall, the superior smoothness performance
fic obtained withRN Dy schedulers. Hence, for easier achieved with thell BALx scheduler is traded off with
comparison of the relative performance of the remaining Unfairness and computational complexity (dudt&R)

schedulers, both theN D andDRR schedulers have ~ compared with thesRRx and ST'Fx schedulers. In
been deliberately omitted from the figures. addition, while theGRx scheduler performs poorly in
terms of smoothness and fairness, our proposed recursive

scheduler achieves the best smoothness with almost no
5.2.1 Allocation Smoothness degradation in fairness.

The results for allocation smoothness for the 4-class)]
scheduling scenario are plotted in Fig. 6. The corre- 5.3 Performance Comparison with GPS
sponding results fof = [32,75,125] in 3-class scheduling and PGPS schedulers
is shown in Fig. 7.

We observe that the schedulers can be ranked X) .)
based on their relative smoothness performancemer is anidealizedscheduler where multiple users are
(beginning with the best smoothness) as follows: servedsimultaneouslyand the traffic is assumed to be in-

{RECyx, MBALy, STFx,*RR,GR)}, and such finitely divisible (bits as opposed to packets). .

a ranking is consistent in terms of both smoothness met- N Our context, users are assumed to be continuously
rics and for both scheduling scenarios. This shows that Packlogged andjW|t_h GPS scheduling, each yseith
there is some equivalence between the variance-based€!ative demand’ will be continuously served ateon-

smoothness metric we proposed, and the notion of bal-Stantrate x7. As a result, the GPS scheduler exhibits
anceness ’ ideal smoothness and fairness, i;ps = mgps = 0

. . andu = min,cpr Uy.
In addition, we note that due to its class-awareness, GPS mefFs Y

our proposed recursive scheduler gains in smoothness as I FP. Is the time at which packet will depart (fm- .
the user populations, increases, while the converse is ish service) under GPS, then a very good approximation

true for the other class-unaware schedulers. Hence, theOf GPS would be a work-conserving scheme that serves

recursive scheduler ensursability under high load con- packets in. increasing order &,. These packgtized im-
y g plementations of GPS are known as Packetized GPS (or

The Generalized Processor Sharing (GPS) [5] sched-

ditions. . . .
Since the G/, scheduler_extibits the worst ¢ R TR LB B0 e and conetant
smoothness performance forf = [32,75,125], P Y 99

packet (slot) size, it can be shown that PGPS schemes are

1 Sm_ mx
we tabulate the metrics, and e, 7w € equivalent to th&VRRspx scheduler.

{*RRy, STFy, MBALy, RECx}, for each of the
remaining 3-class scheduling scenarios in Table 4. We
show that the above observations are consistent over all :

the 3-class scheduling scenarios. 6 Conclusions

In this paper, we consider the design of a perfectly-

5.2.2 Unfairness fair loop scheduler, where the time-slot assignment

amongstK users is weighted according to the relative

The results for unfairness for the 4-class scheduling bandwidth requirement, is periodic and is as evenly-
scenario are plotted in Fig. 9. The corresponding resultsspaced (smooth) with respect to each user as possi-
for 7 = [32,75,125] in 3-class scheduling is shown in Fig. ble. Such schedules are useful for QoS provisioning in

10. cellular-type wireless networks and for data forwarding
According to Fig. 9 and 10, if we categorize in wireless sensor networks. We consider a class-based
the schedulers into two groupA={M BALk,GRk} scheduling scenario where users are grouped according

andB={*RR,STFx,RECK}, then we notice that the to their relative bandwidth demands. In addition to (abso-
GroupB schedulers achieve better fairness than Gisup lute) allocation smoothness, it is desirable for the sched-
schedulers in terms of both variance-based and balanceule to ensure intra-class fairness, where users in the same
based metrics. Hence, as with allocation smoothness.class have the same allocation smoothness.

there is some equivalence between the variance-based While the allocation smoothness has been quantified
smoothness metric we proposed, and the notion of bal-based on the concept of balancedness in existing litera-
ancedness. ture, we propose an alternative smoothness metric based

K 1 5 10 20.00

ArnD A™ e | A™ b | A™mno | A™Rnp | A™ R | A™ R | A" Rnp | A™ RND
[75,100,125] 0.092 0.184 0.001 0.126 0.000 0.119 0.000 0.117
[32,75,100] 0.100 0.274 0.003 0.158 0.001 0.156 0.000 0.156
[32,75,125] 0.116 0.254 0.002 0.148 0.001 0.142 0.000 0.139
[32,100,125] 0.104 0.195 0.002 0.158 0.001 0.154 0.000 0.150
[32,75,100,125] | 0.139 0.386 0.002 0.251 0.001 0.246 0.000 0.241

Table 3:Performance gap in terms of smoothness between RN Dy and the deterministic schedulers in 3-class scheduling.

0 3

10 i i i i 10
ol 0—9 2 2 =]
L — 10" ¢
E E
[£
g 10 G /
3 510" ¢+ =t = £]
= = E/E/B/—u
§ 10 ¢ ﬁ ¢ *RR
£ 1 S0 L —+ STF
g . <] GR
£10 ¢ g -5 MBAL
] %]
-1
5 10 'k
10 4
1076 L L L L 10 2 L L L
0 10 20 30 40 50 0 10 20 30 40 50
Number of Users Per Class, k Number of Users Per Class, k

Figure 6:Smoothness Performance of various = € FZ for 7 = [32,75,100,125] in 4-class scheduling in terms of s (left) and m (right).

10° ; ; ‘ ; 10°
10 1 O O O O O pY 102 F
" f
5 T L T E
) = *RR 1S
g , — STF S
510 - CR g10 ¢ 4
> -8 MBAL =
P =% REC 9 - *RR
2 o —+ STF
£10° £10° | - GR
g 8 B MBAL
5 n UE) - REC
107 10°
4
_5 r -2
10 , , , , 10 , , , ,
0 10 20 30 40 50 0 10 20 30 40 50
Number of Users Per Class, k Number of Users Per Class, k

Figure 7:Smoothness Performance of various = € F~ for 7 = [32,75,125] in 3-class scheduling in terms of s, (left) and m.. (right).

on the second moment of the inter-allocation distance for ~ We then compare the performance of the above sched-
each user, which is more intuitive and also easier to com-ulers with other existing loop schedulers. Our proposed
pute. We analyze the allocation smoothness of a weightedscheduler achieves significantly superior smoothness per-
round robin with spreading/l{RRspg) scheduler for a formance with almost no degradation in intra-class fair-
two-class scenario. Based on these properties, we conness. This highlights the importance of class-awareness
struct an optimal scheduler that employs IN&RRsp in the scheduler design for class-based scenarios. In ad-
scheduler as an inter-class scheduler, and also suggest agiition, we also demonstrate the equivalence between our
enhancement to th&/RRspx scheduler. We then pro- proposed metric and the existing smoothness measure
pose a recursive class-aware scheduler based on the twddased on balancedness, since the relative performance of
class optimal scheduler for a multiple-class scenario. the schedulers is similar under both types of metrics.

10

=
o
iy
T

b

Smoothness Metric, s

™ <>

™ <>

0 0
Number of Users Per Class, k

350

300r

m
N Nt
o 3]
S o
T T

Smoothness Metric,
&
=)

o el e

% % % h2) 28

Number of Users Per Class, k

Figure 8:Smoothness Performance of various = € F- for 7 = [32,75,100] in 3-class scheduling in terms of s, (left) and m. (right).

[75,100,125] |[s./sar my/Maa
X 5 10 20 30 40 50 5 10 20 30 40 50
*RR 0.9820] 0.9962| 0.9947| 0.7725| 0.7725] 0.9962| 1.2463| 1.1845] 1.1547| 0.8871] 0.8896| 1.1475
STF 0.8065 0.8182 0.8170 0.8182 0.8182 0.8182 0.7105 0.7143 0.7170 0.7217 0.7238 0.7255
MBAL 0.0398 0.0202 1.0000 0.0062 0.0048 0.0038 0.1723 0.1246 0.0808 0.0747 0.0747 0.0602
REC 0.0059] 0.0015] 0.0000] 0.0000] 0.0000] 0.0001] 0.0533] 0.0268] 0.0000[0.0000] 0.0000] 0.0054
[32,75,100] S+/SGR m,/Mgr
K 5 10 20 30 40 50 5 10 20 30 40 50
*RR 0.5004 0.4866 0.4913 0.4903 0.4900 0.4903 0.2555 0.2356 0.2259 0.2227 0.2210 0.2200
STF 0.3763 0.3608 0.3629 0.3615 0.3606 0.3608 0.2579 0.2538 0.2549 0.2547 0.2538 0.2538
MBAL 0.0204] 0.0124] 1.0000] 0.0040[0.0031] 0.0025] 0.0609] 0.0409] 0.0292] 0.0255] 0.0202] 0.0170
REC 0.0169 0.0046 0.0009 0.0004 0.0002 0.0046 0.0223 0.0023 0.0003 0.0003 0.0001 0.0000
[32,100,125] [s./sar M./Mar
X 5 10 20 30 40 50 5 10 20 30 40 50
“RR 0.4506] 0.4427] 0.4446] 0.4443] 0.4440] 0.4443] 0.2634] 0.2557] 0.2535] 0.2527] 0.2521] 0.2518
STF 0.3427] 0.3345] 0.3345| 0.3357] 0.3340] 0.3343] 0.2642] 0.2677| 0.2714] 0.2657] 0.2688] 0.2658
MBAL 0.0310 0.0125 1.0000 0.0034 0.0030 0.0028 0.0544 0.0453 0.0307 0.0253 0.0234 0.0184
REC 0.0148 0.0040 0.0005 0.0005 0.0001 0.0001 0.0098 0.0018 0.0003 0.0002 0.0001 0.0000
Table 4:Table of SSG and 7:2;12 , for various loop schedulers in 3-class scheduling.
1 : : : : 0.7 ; ‘ ‘ ‘
0.9F i
== *RR 06
0.81 xsw i
> GR = L
20.7¢ -8B MBAL 1 & 05
Z - REC 3
go6f 1 £ oaf
[} [}
=05¢ 1 2
% & 03,
co.4r g -
8 8
50.3r 1 5 oz2f
0.2+
0.1f
0.1+
0 ‘ ‘ % 10 20 30 40 50
0 10 20 30 40 50

Number of Users Per Class, k

Number of Users Per Class, k

Figure 9:Fairness Performance of various = € F- for 7 = [32,75,100,125] in 4-class scheduling in terms of s, (left) and m. (right).

References

[1] L. Kleinrock, “Time-shared Systems: A Theoreti-

cal Treatment,”Journal of the ACMvol. 14, no. 2,

pp. 242-261, April 1967.

Figure 10:Fairness Performance of various 7 € FZ for 7 = [32,75,125] in 3-class scheduling in terms of s (left) and m.

o
2}
T

o

Unfairness Metric, un(m)

Unfairness Metric

0 ,
20 30
Number of Users Per Class, k

40

o
3

o
o

o
3]
T

o
»
T

o
w

o
)

0.1f

10 20

Number of Users Per Class, k

50

(right).

[75,100,125] |ux(s)/umpac(s) Uz(M)/upar(m)

K 5 10 20 30 40 50 5 10 20 30 40 50
“RR 0.2727]_0.1500] _0.0833] _0.0526] _0.0435] _0.0345] 0.3750] _0.2308] _0.1200] _0.0938] _0.0882] _0.1619
STF 0.2727] _0.1500] _0.0833] _0.0526] 0.0435] 0.0345] 0.3750] 0.2308] _0.1200] _0.0938] _0.0882] _0.0857
GR 1.3636] 1.5000] 1.6667| 1.5789] 1.7391| 1.7241] 0.7500] 0.5385] 0.2400] 0.2500| 0.2059] 0.1429
REC 0.2727 0.1500 0.0833 0.0526 0.0435 0.0345 0.3750 0.3077 0.1200 0.0938 0.0882 0.1143
[32,75,100] Ur(s)/upgaL(S) Ux(m)/uygaL(m)

K 5 10 20 30 40 50 5 10 20 30 40 50
“RR 0.3000] _0.1250] _0.0732] 0.0441] 0.0236] 0.0638] 0.8095] 0.6296] 0.4722| 0.4048] 0.3148] _0.2833
STF 04000 _0.1667] _0.0976] _0.0588] _0.0315] _0.1064] 0.7143] _0.4444] 04167 0.3571] _0.2222] _0.2000
GR 1.5000 1.2500 1.4634 1.3235 1.1811 1.7021 1.2857 1.0000 1.0833 0.9286 0.6111 0.4500
REC 0.5000] _0.1667] _0.0732] 0.0319] _0.0236] _0.0851| 0.7143] 0.5556] 04167 0.3571] 0.2778] _0.2000
[32,100,125] |ux(s)/umpaL(s) Uz(M)/upar(m)

« 5 10 20 30 40 50 5 10 20 30 40 50
“RR 0.2143]_0.1111] _0.0577] _0.0462] 0.0313[_0.0236] 0.6667| 0.5185] 0.3889] 0.2917| 0.2745] _0.2456
STF 0.2857| 0.1481| 0.0962] 0.0769] 0.0521] 0.0394] 0.8571| 0.6667] 0.5000] 0.3750] 0.3529] 0.3158
GR 1.0714 1.1111 1.1538 1.3846 1.2500 1.1811 1.4286 1.4444 1.0833 0.9375 0.8235 0.7895
REC 0.2857]_0.1481] _0.0577] _0.0615] _0.0313] _0.0236] _0.7143] _0.6667] _0.5000] _0.3750] _0.3529] _ 0.2632

Table 5:Table of —¥x() ux(m) __ for various loop schedulers in 3-class scheduling.
uMBAL(S) upMBAL (M)

[2] J. W. Cohen, “The Multiple Phase Service Network [6] S. Lu, V. Bharghavan, and R. Srikant, “Fair schedul-
with Generalized Processor Sharing&cta Infor- ing in wireless packet networksProc. of the ACM
maticg vol. 12, pp. 245-284, 1979. SIGCOMM pp. 63—-74, August 1997.

[7] S. Baruah, G. Buttazzo, S. Gorinsky, and G. Lipari,

[3] D. Raz, H. Levy, and B. Avi-ltzhak, “A Resource- “Scheduling periodic task systems to minimize out-
Allocation Queueing Fairness Measuré?foceed- put jitter,” Proc. of the IEEE International Confer-
ings of SIGMETRIC/Performance 2Q0gp. 130- ence on Real-Time Computing Systems and Appli-
141, June 2004. cations pp. 62—69, December 1999.

[8] A. Bar-Noy, R. Bhatia, J. Naor, and B. Schieber,

[4]

[5]

A. Demers, S. Keshev, and S. Shenker, “Analy-
sis and simulation of a Fair Queueing Algorithm,”
Journal of Internetworking: Research and Experi-
ance vol. 1, pp. 3—-26, October 1990.

A. K. Parekh and R. G. Gallager, “A General-
ized Processor Sharing Approach to Flow Control
in Integrated Services Networks - the Single Node
Case,” IEEE/ACM Transanctions on Networking
vol. 1, no. 3, pp. 344-357, June 1993.

(9]

[10]

“Minimizing Service and Operation Cost of Peri-
odic Scheduling,”Proc. of the ACM Symposium on
Discrete Algorithmspp. 11-20, January 1998.

Z. Brakerski, A. Nisgav, and B. Patt-Shamir, “Gen-
eral Perfectly Periodic Scheduling,Proc. of the
ACM Symposium on Principles of Distributed Com-
puting pp. 163-172, July 2002.

A. Bar-Noy, A. Nisgav, and B. Patt-Shamir, “Nearly
Optimal Perfectly-Periodic Schedule®toc. of the

[11]

[12]

[13]

[14]

[15]

[16]

[17]

ACM Symposium on Principles of Distributed Com-
puting pp. 107-116, August 2001.

A. Bar-Noy, V. Dreizin, and B. Patt-Shamir, “Ef-
ficient Periodic Scheduling by TreesProc. of the
IEEE INFOCOM vol. 2, pp. 791-800, June 2002.

Z. Rosberg, “Optimal Decentralized Control in
a Multiaccess Channel with Partial Information,”
IEEE Transactions on Automatic Controlol. 28,
no. 2, pp. 187-193, February 1983.

A. ltai and Z. Rosberg, “A Golden Ratio Control
Policy for a Multiple-Access ChannelEEE Trans.
Information Theory vol. 33, no. 3, pp. 341-349,
May 1987.

M. Hofri and Z. Rosberg, “Packet Delay under the
Golden Ratio Weighted TDM Policy in a Multiple-
Access Channel JEEE Trans. Information Theory
vol. 33, no. 3, pp. 341-349, May 1987.

B. Hajek, “Extremal Splittings of Point Processes,”
Mathematics of Operations Reseayebl. 10, no. 4,
pp. 543-556, November 1985.

E. Altman, B. Gaujal, and A. Hordijk, “Balanced
Sequences and Optimal RoutingJournal of the
ACM, vol. 47, no. 4, pp. 752-775, July 2000.

S. Sano, N. Miyoshi, and R. KataokayBalanced
words: A generalization of balanced wordslhe-
oretical Computer Sciengevol. 314, no. 1-2, pp.
97-120, February 2004.

[18] Y. Guo and H. Chaskar,

[19]

[20]

[21]

[22]

[23]

[24]

“Class-based Quality
of Service over Air Interfaces in 4G Mobile Net-
works,” IEEE Communications Magazineol. 40,
no. 3, pp. 132-137, March 2002.

M. Shreedhar and G. Varghese, “Efficient Fair
Queueing Using Deficit Round RobinEEE/ACM
Transanctions on Networkingvol. 4, no. 3, pp.
375-385, June 1996.

V. Do and K. Yun, “An Efficient Frame-Based
Scheduling Algorithm: Credit Round RobirRroc.
of the IEEE Workshop on HPSPp. 103-110, June
2003.

R. Rom, M. Sidi, and H. P. Tan, “Performance
Analysis of a Recursive Cyclic Scheduler for Class-
based Scheduling,Proc. of thel6” ITC Special-

ist Seminar on Performance Evaluation of Wireless
and Mobile Systemgp. 43-54, August 2004.

C. Guo, “SRR: AnO(1) Complexity Packet Sched-
uler for Flows in Multi-Service Packet Networks,”
Proc. of the ACM SIGCOMpp. 211-222, August
2001.

H. Zhang, “Service disciplines for guaranteed per-
formance service in packet - switching networks,”
Proceeding of the IEEEvol. 83, no. 10, pp. 1374~
1399, October 1995.

S. Viswanathan, “Future View of Broadband
Demand,” FCC TAC Meeting, Intel, April 2003,
Available at http://www.fcc.gov/oet/
tac/TAC_III_04_17_03/Future_View_

of Broadband_De%mand.ppt

