
Design and Analysis of a Class-aware Recursive Loop Scheduler
for Class-based Scheduling

Raphael Rom and Moshe Sidi
Department of Electrical Engineering

Technion, Israel Institute of Technology
Technion City 32000, Israel

Hwee Pink Tan∗

EURANDOM, Eindhoven University of Technology,
P.O.Box 513, 5600 MB Eindhoven, The Netherlands

ABSTRACT

In this paper, we consider the problem of devising a loop scheduler that allocates slots to users according to their
relative weights as smoothly as possible. Instead of the existing notion of smoothness based on balancedness, we
propose a variance-based metric which is more intuitive and easier to compute.

We propose a recursive loop scheduler for a class-based scheduling scenario based on an optimal Weighted Round
Robin scheduler. We show that it achieves very good allocation smoothness with almost no degradation in intra-class
fairness. In addition, we also demonstrate the equivalence between our proposed metric and the balancedness-based
metric.

Keywords: Loop Scheduler, Smoothness, Recursive, Class-aware scheduling

1 Introduction

Consider a scenario where an indivisible resource
(e.g., time slot) is to be shared amongstK users by means
of time multiplexing. The components that are relevant to
this resource-allocation problem are theservicediscipline
or scheduler, theusersand theperformancemetrics.

Users can be characterized in terms of their type (jobs
vs streams) and arrival characteristics (time and size).
The scheduler determines how much resource, which
user and when to allocate the resource. The schedul-
ing mechanism may depend on the user characteristics
(online) or offline (independent of arrival characteris-
tics). Finally, such a system is usually evaluated in
terms of itsefficiency(e.g., mean waiting time in the sys-
tem) andfairness(e.g., how fairly each user is treated).
While efficiency has been extensively studied and is well-
understood, there is still no commonly agreed upon the-
oretical yardsticks for measuring fairness in resource-
allocation systems.

A common notion of fairness is the following: an al-
location is fair if at every instant of time, each user is
receiving its fair share (instantaneous fairness). Assum-
ing that each user has equalrights or priority to the re-
source, a hypothetical service discipline that is fair is a

bit-by-bit round-robin (BR) discipline, since at every in-
stant in time, each user is receiving its fair share. For
users that can be characterized asjobs (e.g., in a super-
market set-up), the Processor-sharing model (introduced
in [1] and generalized in [2]) is commonly used to eval-
uate the efficiency of the BR discipline as the bit size
tends to zero. Recently, a resource-allocation queueing
fairness measure (RAQFM) has been proposed in [3] that
accounts for both seniority differences (times of arrival)
and service-time differences (job sizes). The authors also
analyzed the fairness performance of four basic queueing
systems, where the results shed some light on job-level
unfairness as a function of the service discipline.

On the other hand, if each user corresponds to a
streamof packets (e.g., in communication systems), the
notion of fairness is modified to take into account the idle
periods between packet arrivals to a user as follows: an
allocation isfair if for an interval, τ , over which each
user is backlogged, it receives its fair share (fairness over
τ). Since sending packets in a bit-by-bit fashion is unre-
alistic, packet-by-packet transmission schemes have been
proposed to emulate the BR scheme, most of which are
variants of the Weighted-Fair Queueing (WFQ) disci-
pline [4]. This was extended in [5] with the Generalized
Processor Sharing (GPS) discipline (and corresponding

∗Corresponding author. E-mail address: tan@eurandom.tue.nl. This work was carried out when the author was a PhD candidate in the Department
of Electrical Engineering, Technion, Israel Institute of Technology.

Packetized GPS (PGPS) schemes), where each useri is
associated with its fair share,xi, wherexi 6= xj for users
i, j. Most variants of the PGPS (or WFQ) schemes are
computationally-intensive to implement, since they re-
quire keeping track of the finishing times (or times of
departure) of packets in the corresponding (fluid) GPS
scheme. However, under heavy load, where all users can
be assumed to be continuously backlogged, the Weighted
Round Robin (WRR) scheduler (which isoff-line, and
hence, independent of arrival characteristics) will be sim-
ilar to the WFQ if packets are of fixed size [6]. Such a
scheduler is simpler to implement and also analytically
tractable.

In this study, we consider the design of off-line sched-
ulers (such as WRR) and the analysis of their fairness per-
formance for communications system, where each user
comprises a stream of packets. Since the schedulers are
off-line, the schedule (or assignment of time slots) is con-
structed according to a givenx={xj}K

j=1, wherexj is the

requested share of userj,
∑K

j=1 xj=1 andxj ≤ xk if
j<k. Such a schedule can be characterized in terms of its
fairnessandsmoothness, which are defined as follows:

Fairness : A schedule is (perfectly) fair if the fraction of
time slots allocated to each userj is (equal) close
to xj . This is similar to the notion of fairness over
τ defined above.

Smoothness : A schedule is (perfectly) smooth if the
time slots allocated to each user are (equally
spaced) as evenly spaced as possible. This is sim-
ilar to the notion of instantaneous fairness defined
above.

A schedule that isboth perfectly-fair and perfectly-
smooth is desirable in many communication problems,
for example,

QoS provisioning in TDMA-based wireless networks :
In such networks, we envisage packets of different
applications that differ in terms of data rates to
be delivered from/to a wired network via a base
station to/from wireless receivers within its cov-
erage. The base station comprises multiple input
queues, where queuej contains packets destined
to wireless receiverj and its requested share,xj ,
can be computed from the relative data rates of all
queues. A scheduler is required at the base station
to determine the queue to transmit at each time.

A schedule that is perfectly-fair ensures that each
user receives its requested share (QoS). In addi-
tion, a smooth schedule minimizes the buffer re-
quirement at the wireless receiver since the jitter of
the inter-arrival intervals is minimized.

Data forwarding in wireless sensor networks : We
consider wireless sensor networks where sensor
nodes are grouped into clusters. The cluster-head
of clusterj is responsible for aggregating the data
collected within that cluster, and forwarding it to

the base station, and its requested share,xj , can be
computed from the relative data arrival rates at all
cluster heads. A scheduler is required at the base
station to determine the cluster-head to transmit at
each time.

A schedule that is perfectly-fair ensures that each
cluster-head receives its requested share and this
minimizes the probability of packet lost due to
buffer overflow. In addition, a smooth schedule
spreads out the transmissions, and hence, maxi-
mizes the lifetime of the nodes, which is the bot-
tleneck in such networks.

However, a schedule that isboth perfectly-fair and
perfectly-smooth is infeasible for mostx. The design
of perfectly-smooth schedulers can be found in [7, 8,
9, 10, 11] and the design of anonline perfectly-fair
scheduler that maximizes the throughput is considered in
[12, 13, 14]. Given that the packet arrival process to each
user is independent and identically distributed (i.i.d),

• for K=2 and unit buffer size per user [12], the
schedule must beopen-loop(or de-centralized) and
conflict-free;

• for K>2, an optimal schedule always exists and is
stationary andcyclic(or loop) [13], i.e., there exists
anRsuch that for alli, the user allocated to sloti is
also allocated to sloti+R;

• for K>2 and unlimited buffer size per user, the
mean packet delay is minimized with a perfectly-
smooth schedule [14]. A Golden Ratio Sched-
uler [14] is proposed that achieves a nearly-optimal
throughput and performs extremely well compared
to lower bounds for expected packet delay, al-
though it is not perfectly-smooth.

As a result, the original online problem is reduced to
anofflineone, where the objective is to determine a loop
schedule of sizeR, givenx, that is perfectly-fair and max-
imally smooth. However, no metric was proposed that
measures the extent of non-smoothness of a given sched-
ule.

In [15], the author defined the notion ofregularity
(equivalent to smoothness) forK=2. This notion is ap-
plied in [16], where the authors defined the equivalent
notion ofbalancedschedules forK>2. Recently, the au-
thors in [17] introduced a new notion ofm-balancedness,
where the value ofm (which is a non-negative integer)
gives a measure of smoothness of schedules for anyK,
where a smaller value indicates a more balanced sched-
ule. The authors also proposed anm-balanced scheduler
that constructs a schedule withm≤ K-1 for any givenx,
but highlighted the difficulty in finding a schedule with
the smallest possiblem.

1.1 Perfectly-Fair Loop Schedulers

In this study, we focus on the special case wherex
comprises only rational elements. Then, we can writex

as [r
1

R ,r2

R ,· · · ,rK

R], where{rj}K
j=1 are positive integers,R

=
∑K

j=1 rj , and the greatest common divisor of{rj}K
j=1

is 1.
In this way, we can defineFr as the class ofK-flow

perfectly-fair loop schedulers such that the following con-
ditions are satisfied for any integerz and 1≤ j ≤ K:

• rj slots are allocated to userj over any interval of
R slots (perfect-fairness overR);

• if slot i is allocated to userj, then slotsi+z · R are
also allocated to userj.

If nj
π(i) denotes the interval (in slots) between the

(i − 1)th and ith allocation to userj under a scheduler
π, then we have the following property:

Property 1 If π ∈ Fr, then for 1≤ j ≤ K,

nj
π(rj + i) = nj

π(i)
k+rj−1∑

i=k

nj
π(i) = R, for anyk > 0

Hence, the elements,{nj
π(i)}rj

i=1 (which we denote by
nj

π) are sufficient to characterize any schedulerπ ∈ Fr.

1.2 Class-based Scheduling Scenario

In any K-flow scheduling scenario given byr, all
usersj,k with rj=rk can be grouped into the same class,
based on the paradigm of service classes [18]. As a result,
we propose an alternative class-based specification of the
scenario given byκ={κc}C

c=1, r̃={r̃c}C
c=1, such that class

c comprisesκc flows whose indices are defined byCc,
where

Cc = {
c−1∑
y=1

κy + 1,

c−1∑
y=1

κy + 2, · · · ,

c∑
y=1

κy}

r̃c=rj if j ∈ Cc and
∑C

c=1 κc=K. The special case of
κ={1,· · · ,1} corresponds to the original (class-less) sce-
nario.

Such a class-based specification enables the definition
of aclass-awarescheduling paradigm, where slots are al-
located to flows within each classindependentlyof other
classes (intra-class scheduling) and the allocation vec-
tors obtained are subsequentlycombinedin an optimal
way (inter-class scheduling). This may result in a gain
in performance and reduction in complexity overclass-
unawareschedulers.

1.3 Contribution of This Paper

In this paper, we consider the design of perfectly-fair
loop schedulers (or loop schedulers in short). We pro-
pose a variance-based smoothness metric, and analyze

the smoothness of the schedules obtained with various
known loop schedulers. For a class-based scheduling sce-
nario, we propose a recursive class-aware loop scheduler
and demonstrate its performance gain over class-unaware
loop schedulers.

The paper is organized as follows: We define our
scheduling problem, where we consider the design of
perfectly-fair loop schedulers to maximize allocation
smoothness while maintaining intra-class fairness in a
class-based scheduling scenario, in Section 2. We de-
scribe the mechanism and properties of several loop
schedulers in Section 3. In Section 4, we propose a re-
cursive loop scheduler that achieves good performance
in terms of both smoothness and intra-class fairness in a
class-based scheduling scenario. In Section 5, we com-
pare the performance of various loop schedulers in terms
of numerical results. Finally, some concluding remarks
are given in Section 6.

2 Problem Definition

Given r, our objective is to design a loop scheduler
that generates a schedule that is as smooth as possible. In
addition toabsolute(ensemble) smoothness,intra-class
fairness(which pertains torelative smoothness) is a de-
sirable property in a class-based scheduling scenario. A
loop scheduler is intra-class fair if the resulting schedule
is equally smooth with respect to (i.e., has the same per-
user smoothness for) all users in the same class, for all
classes.

2.1 Smoothness Metrics

In this section, we describe metrics for evaluating per-
user smoothness, from which the ensemble smoothness
can be obtained. We propose a variance-based metric and
then describe an existing metric that uses the notion of
m-balancedness [17].

2.1.1 Variance-based metric

A schedule that is perfectly-smooth with respect to
userj has equally-spaced allocations to userj, i.e., zero
variance ofnj

π (denoted byV ar[nj
π]). However, as

the evenness (or smoothness) is reduced,V ar[nj
π] is in-

creased. Hence, we define a metric (denoted bysj
π) to

evaluate the smoothness of a given schedule with respect
to userj as follows:

sj
π = V ar[nj

π] = E[(nj
π)2]− (E[nj

π])2 (1)

where E[(nj
π)x] =

∑rj

i=1(n
j
π(i))x

rj is thexth moment ofnj
π

and according to Property 1, we have the following:

E[nj
π] =

∑rj

i=1 nj
π(i)

rj

=
R

rj
independent ofπ

Although sj
π=0 with perfect-smoothness, the actual

lower bound onsj
π (denoted bysj

min) for a givenr is
achieved according to the following theorem:

Theorem 1 The minimum value ofsj
π for all π ∈ Fr is

achieved withnj
π∗ given as follows:

nj
π∗ = {

rjb R

rj c+rj−R

︷ ︸︸ ︷
bR

rj
c, · · · , bR

rj
c, dR

rj
e, · · · , dR

rj
e

︸ ︷︷ ︸
R−rjb R

rj c

} (2)

where the order of the elements innj
π∗ is unimportant,

and its value is:

sj
π∗ = sj

min

=
R(2Q + 1)− rjQ(Q + 1)

rj
− (

R

rj
)2

where Q =b R
rj c.

Proof. We consider the following cases:

R≡ 0 (modulo rj) : Perfect-smoothness is achieved
for userj when the inter-allocation interval is con-
stant, i.e.,nj

π∗(k) = nj
π∗(i). This is achieved if and

only if nj
π∗(k) = R

rj for 1≤ k ≤ rj .

R≡ y (modulo rj), 1≤ y ≤ rj-1 : In this case, a con-
stant inter-allocation interval for userj cannot be
achieved. We thus have to find an optimal set of
values fornj

π∗(k).

Let us define nj
π∗ as comprising m values,

{ak}m
k=1, where each valueak has multiplicityzk,

whereak, zk ∈ Z+. Without loss of generality,
we can assumeav > aw for v>w, which means
that the set can be written as{a1 + dk}m

k=1 and
d1=0,dv > dw for v>w. Clearly,

∑m
k=1 zk=rj and∑m

k=1 zk(a1 + dk)=R.

The corresponding expression for E[nj
π∗]

2 is given
as follows:

rjE[(nj
π∗)

2] =
m∑

k=1

zk(a1 + dk)2

=
m∑

k=1

zkd2
k + a1(2R− a1r

j)

<

m∑

k=1

zkdkdm + a1(2R− a1r
j)

= dm(R− a1r
j) + a1(2R− a1r

j)

It follows that to minimize E[(nj
π∗)

2], we have
to minimize dm, which is bounded from below
by dm−1. But settingdm equal todm−1 actually
means reducing the dimensionality ofnj

π∗ (it is in-
teresting to note that the bound is independent of

explicit zk). Sinced1=0, we can continue this un-
til m=2, where E[(nj

π∗)
2] is minimized by setting

d2=1. Hence, by settingQ=a1, we have

nj
π∗ = {

z1︷ ︸︸ ︷
Q, · · · , Q, Q + 1, · · · , Q + 1︸ ︷︷ ︸

rj−z1

}

(3)

Then, since
∑rj

k=1 nj(k) = R, we have the follow-
ing:

z1 ·Q + (rj − z1) · (Q + 1) = R

from which we have

z1 = rj ·Q + rj −R

However, since 1≤ z1 ≤ rj-1, we have the follow-
ing constraints onQ:

R

rj
− 1 +

1
rj
≤ Q ≤ R

rj
− 1

rj
(4)

Sinceb R
rj c -1 < R

rj − 1 + 1
rj andd R

rj e > R
rj − 1

rj ,
the only integerQ that can satisfy Eq. (4) isQ =
b R

rj c.
Substituting these values into Eq. (3) results in the ex-
pression given in Eq. (2). The corresponding expression
for sj

min can be obtained by substitutingnj
π∗ into Eq. (1).

¤
We define a general ensemble smoothness metric,

sπ, in terms of{sj
π}K

j=1 and per-user weighting factors,

{wj}K
j=1, where

∑K
j=1 wj=1, as follows:

sπ =
K∑

j=1

wj · sj
π (5)

2.1.2 m-balancedness

Let aπ denote the schedule (comprisingR slots) ac-
cording to schedulerπ ∈ Fr. If y denotes a sub-schedule
(sequence of consecutive slots) inaπ, then |y| is the
length ofy, jyj is another sub-schedule that begins and
terminates withj and|y|j is the number of occurrences of
j in y.

According to [17], we have the following definition:

Definition 1 For a non-negative integermj
π, a schedule,

aπ, is mj
π-balanced with respect to user j if the follow-

ing condition holds: for any sub-schedule,jyj in aπ, any
other sub-schedule,y′ in aπ such that|y′| = |y|+mj

π+1
satisfies|y′|j ≥ |y|j+1.

We note thatmj
π = 0 if aπ is perfectly-smooth with

respect to userj; otherwise, the pseudocode for comput-
ing mj

π is given below:

Algorithm for Computation of mj
π, 1≤ j ≤ K

Initialize {mj
π}K

j=1 = 0
Seta = b = 1
while a≤ K

M(a, b) = max
1≤u≤ra

u+b∑
y=u+1

na
π(y)

M(a, b) = min
1≤u≤ra

u+b∑
y=u+1

na
π(y)

ma
π = max (M(a, b)-M(a, b), ma

π)
if b = b ra

2 c or M(a, b)-M(a, b) = 0
a = a + 1

else
b = b + 1

According to the above algorithm, for a givennj
π, the

value ofmj
π depends on theorder of the elements innj

π,
and we have the following corollary to Theorem 1:

Corollary 1 If nj
π∗ comprises the elements given in Eq.

(2), thenmj
π∗ satisfies the following properties, where V

= min {rjb R
rj c + rj-R, R-rj b R

rj c}:
m = V, V ≤ 2;
d rj+1

2 e − V ≤ mj
π∗ ≤ V, V > 2.

The lower and upper bounds formj
π∗ are obtained when

nj
π∗ are given respectively as follows (where the order of

the elements are important):

nj
π∗ = [

rjb R

rj c+rj−R

︷ ︸︸ ︷
bR

rj
c, · · · , bR

rj
c, dR

rj
e, · · · , dR

rj
e

︸ ︷︷ ︸
R−rjb R

rj c

]

nj
π∗ = [bR

rj
c, dR

rj
e, bR

rj
c, dR

rj
e, · · · , bR

rj
c, dR

rj
e]

As in Eq. (5), the corresponding ensemble smooth-
ness metric,mπ, can be defined as follows:

mπ =
K∑

j=1

wj ·mj
π

A specific ensemble smoothness metric is proposed in
[17] as follows:

mπ = max
1≤j≤K

mj
π (6)

which corresponds to the following weighting factors:

wj =

{
1, j = arg max

1≤i≤K
mi

π;

0, otherwise.

2.1.3 Comparison betweenmj
π and sj

π

According to Sections 2.1.2 and 2.1.1, both metrics,
mj

π andsj
π, can be computed givennj

π. However, accord-
ing to Theorem 1 and Corollary 1, for the set of elements,
nj

π∗ , given in Eq. 2, while the value ofsj
π∗ is unique, the

corresponding value ofmj
π∗ can only be given in terms

of a range. This is true for any validnj
π, i.e.,sj

π is unique
whilemj

π depends on theorderof the individual elements
in nj

π. This imposes much more stringent conditions on
nj

π (and therefore, it is harder to construct a schedule) to
achieve optimality in terms ofmj

π.
In the subsequent analysis, we will quantify the per-

user smoothness of various loop schedulers in terms
of the variance-based metric; the correspondingm-
balancedness metric will be computed for the purpose of
comparison.

2.2 Intra-class Unfairness Metric

Let dc
π denote the number ofdistinct values of per-

user smoothness (sj
π or mj

π) for all usersj ∈ Cc with
schedulerπ, where 1≤ dc

π ≤ κc.
Sinceπ is intra-class fair ifaπ achieves the same per-

user smoothness for all users in the same class, for all
classes, i.e.,dc

π=1, 1≤ c ≤ C, a larger value ofdc
π indi-

cates larger intra-class unfairness for classc. Hence, we
define the following measure to quantify the level of un-
fairness over the ensemble of all classes with scheduler
π:

uπ =
1
K

C∑
c=1

dc
π

According to the definition ofdc
π, the unfairness metric,

uπ, is bounded as follows:

C

K
≤ uπ ≤ 1

We use the notationsuπ(s) anduπ(m) to denote the un-
fairness metrics based onsj

π andmj
π respectively.

2.3 Problem Formulation

Since our objective is to determine a scheduler that
minimizes both the smoothness and intra-class unfairness
metrics, it can be formulated as an optimization problem
as follows:

K-flow Loop Scheduling Problem

Determine the scheduleaπ∗ such that
sπ∗ = min

π∈Fr
sπ

and
uπ∗ = min

π∈Fr
uπ

To assess the size of the problem, letA = {aπ : π ∈
Fr}. Then, we have the following:

|A| =
R!∏K

j=1 rj !

We note that a number ofaπ ∈ A are equivalent since
they are identical under rotation with respect to the per-
formance metrics. However, even after eliminating these,
the resultant space is still non-tractable for largeR.

A dynamic programming approach to derive an opti-
mal scheduler requires the definition of an additive objec-
tive function, i.e., one which is computed incrementally.
However, the per-flow smoothness metric,sj

π, is a cumu-
lative quantity, which renders the approach unsuitable.

Therefore, our approach is to evaluate the perfor-
mance of various known loop schedulers in terms of
both smoothness and intra-class unfairness, benchmarked
against the respective lower bounds.

3 Description of K-flow Loop
Schedulers

In this section, we describe the mechanism and study
the per-user smoothness (according to the variance-based
metric) and intra-class fairness properties of several loop
schedulers.

3.1 K-flow Deficit Round Robin Scheduler
(DRRK)

Fair-queueing schedulers (e.g., Weighted-Fair Queue-
ing (WFQ)) achieve nearly-perfect fairness, but they are
usually expensive to implement.DRRK [19] is an online
scheduler that is an approximation to fair-queueing which
is simple to implement and yet achieves good fairness and
can also be implemented as a loop scheduler. Within the
scope of our scheduling problem, theDRRK scheduler
reduces to a Weighted Round Robin (WRR) policy, which
simply allocates a block ofr1 slots to user 1 followed by
a block ofr2 slots to user 2 and so on. Hence, each user
j is allocated slots in blocks of sizerj , with an interval
of R-rj slots between successive blocks. Therefore, we
have the following:

nj
DRRK

= {
rj−1︷ ︸︸ ︷

1, · · · , 1, R− rj + 1} (7)

The performance of theDRRK is given by the fol-
lowing theorem:

Theorem 2 The DRRK scheduler ensures intra-class
fairness, but exhibits the worst smoothness amongstπ ∈
Fr, i.e., for 1≤ j ≤ K, its value is given by:

sj
DRRK

=
rj + (R− rj)2 + 2(R− rj)

rj
− (

R

rj
)2

= max
π∈Fr

sj
π (8)

Proof. The expression forsj
DRRK

given in Eq. (8) can
be computed by substituting Eq. (7) into Eq. (1).

Let us consider an arbitrary schedulerπ ∈ Fr with nj
π

given as follows:

nj
π = {1 + z1, · · · , 1 + zrj−1, R− rj + 1−

rj−1∑
y=1

zy}

wherezy ∈ Z+, 1≤ y ≤ rj-1. We note that forzy=0,
1≤ y ≤ rj-1, π = DRRK .

We can expresssj
π in terms ofsj

DRRK
as follows:

sj
π = sj

DRRK
(9)

+

rj−1∑
y=1

z2
y + [

rj−1∑
y=1

zy]2 − 2(R− rj)
rj−1∑
y=1

zy

rj

Since nj
π corresponds to inter-allocation intervals, we

have the following constraint:

R− rj + 1−
rj−1∑
y=1

zy ≥ 1

In addition, according to the triangular inequality, we
have:

rj−1∑
y=1

z2
y ≤ [

rj−1∑
y=1

zy]2

Substituting into Eq. (9), we have the following:

sj
π ≤ sj

DRRK
+

rj−1∑
y=1

z2
y + [

rj−1∑
y=1

zy]2 − 2[
rj−1∑
y=1

zy]2

rj

= sj
DRRK

+

rj−1∑
y=1

z2
y − [

rj−1∑
y=1

zy]2

rj

≤ sj
DRRK

According to Eq. (8), the per-user smoothness metric for
user j is a function ofrj only and hence, theDRRK

scheduler ensures intra-class fairness.¤

3.2 K-flow Credit Round Robin Scheduler
(CRRK)

The motivation to design theCRRK scheduler [20]
was to reduce the latency of theDRRK scheduler. As
with theDRRK scheduler, theCRRK scheduler can be
implemented as a loop scheduler, and the pseudo-code is
given as follows:

K-flow Credit Round Robin Scheduler (CRRK)

Initialize yj = rj

rK , 1≤ j ≤ K
Seti=1, SP=K, count=0
while i ≤ R

if count< K
if ySP < 1

count= count+ 1
else

aCRRK (i) = SP,
ySP = ySP - 1, i = i + 1, count= 0

SP= SP- 1 (moduloK)
elseyj = yj + rj

rK ∀ j, count= 0

TheCRRK scheduler possesses the following prop-
erty for 1≤ j ≤ K-1 [21]:

Property 2 The ith allocation of user j always occurs
between thed irK

rj e th andd irK

rj e - 1 th allocation of user
K, 1≤ i≤ rj .

Property 2 can be generalized for a class-based sce-
nario as follows:

Property 3 For the CRRK scheduler, users within each
class are allocated in blocks, where the order within
classCu is

∑u−1
i=1 κi + 1,

∑u−1
i=1 κi+2, · · · , ∑u

i=1 κi for
1≤ u ≤ C. In addition, theith block ofCu will reside be-
tween thed i·r̃C

r̃u eth andd i·r̃C

r̃u e − 1th block ofCC , where
1≤ i ≤ r̃u.

We note from Property 3 that users within each class
are always transmitted in blocks, where each user from
that class is allocated exactly once and the order within
each block is constant. Hence, the per-user smoothness
for users belonging to the same class are identical, i.e.,
intra-class fairness is maintained.

3.3 K-flow Smoothed Round Robin Sched-
uler (SRRK)

The SRRK scheduler [22] is a variant of the stan-
dard WRR scheduler, aimed at reducing the latter’s out-
put burstiness and short-term unfairness (i.e., improving
allocation smoothness). A Weight Spread Sequence (S)
that distributes the allocation to each user evenly and a
Weight Matrix (M) that is a binary representation ofr
are two key structures of the scheduler. The pseudo-code
for the SRRK scheduler is described as follows, where
the functiondec2bin(i, k) converts the integeri into its
binary representation withk bits:

K-flow SRR Scheduler (SRRK)

rmax = max1≤j≤K rj

k = dlog2(rmax + 1)e
S = []
for i=1:k

S = [S i S]
M = []
for j=1:K

M = [M ; dec2bin(rj ,k)]
a=[]
for i=1:length(S)

index = find(M(:,S(i))==1)
a = [a index]

According to the above algorithm, theSRRK sched-
uler possesses the following property for a class-based
scenario:

Property 4 For theSRRK scheduler, users within each
class are allocated in blocks, where the order within
classCu is

∑u−1
i=1 κi + 1,

∑u−1
i=1 κi+2, · · · , ∑u

i=1 κi for
1≤ u ≤ C.

As with theCRRK scheduler, we can deduce from
Property 4 that intra-class fairness is maintained for the
SRRK scheduler.

3.4 K-flow Weighted Round Robin with
WFQ-like spreading Scheduler (WRR-
spK)

The WRR-spK scheduler [23] is another variant of
the standard WRR scheduler, in which the service order
amongst the users is identical to WFQ. The algorithm for
theWRR-spK scheduler is described as follows:

K-flow WRR with spreading Scheduler (WRR-spK)

Let the arrayy contain the sequence
< q

rj , j >: q ∈ {1, · · · , rj}, 1≤ j ≤ K
sorted in lexicographic order.
The vectoraWRR−spK

is constructed as follows:
aWRR−spK (i) = j if y(i) =< q

rj , j >

According to the algorithm, the sequence< q
rj , j >

is sorted inlexicographicorder, i.e., they are sorted in
ascending order (primary sorting) according to the first
component (i.e., q

rj) of each element (qrj ,j) and in the
event of a tie, the elements will be sorted in ascending
order (secondarysorting) according to the second com-
ponent (i.e.,j).

The WRR-spK scheduler possesses the following
property for 1≤ j ≤ K-1 [21]:

Property 5 The ith allocation of user j always occurs
between thed irk

rj e th andd irk

rj e - 1 th allocation of user
k, where k>j, 1≤ i≤ rj .

Property 5 can be generalized for a class-based sce-
nario as follows:

Property 6 For the WRR-spK scheduler, users within
each class are allocated in blocks, where the order within
classCu is

∑u−1
i=1 κi + 1,

∑u−1
i=1 κi+2, · · · , ∑u

i=1 κi for
1≤ u ≤ C. In addition, theith block ofCu will reside
between thed i·r̃y

r̃u eth andd i·r̃y

r̃u e− 1th block ofCy, where
y>u and 1≤ i ≤ r̃u.

As with theCRRK scheduler, we can deduce from
Property 6 that intra-class fairness is maintained for the
WRR-spK scheduler.

We propose a genericWRR-spK scheduler (de-
noted by WRR-spK(%), 1≤ % ≤ K) such that
the secondary sorting is performed in the order
[%,%+1,%+2,· · · ,K,1,2,· · · ,%-1]. We define a maximally-
smoothWRR-spK(%) scheduler (denoted byWRR −
sp∗K) as follows:

sWRR−sp∗K = min
1≤%≤K

sWRR−spK(%)

We note that Property 6 is preserved with theWRR−
sp∗K scheduler.

3.5 K-flow Golden Ratio (GRK) Scheduler

The Golden Ratio Scheduler was proposed in [13] and
is described as follows:

K-flow Golden Ratio Scheduler (GRK)

Let z = 0.6180339887 andw(m) = frac(m · z)
wherefrac(y) = y − byc
Let the arrayy contain the sequencew(m),
0≤ m ≤ R-1, sorted in ascending order.
The vectoraGRK

is constructed as follows:
aGRK

(i) = j

if
∑j−1

k=1
rk

R ≤ y(i) ≤ ∑j
k=1

rk

R , 1≤ j ≤ K

It was established in [14] that ifR is a Fibonacci num-
ber, thennj

GRK
comprises at most three values for each

j; otherwise, more values are generated.

3.6 K-flow Short-term Fair Scheduler
(STFK)

We can characterize the throughput-fairness(as op-
posed to the notion of intra-class fairness defined in Sec-
tion 2 that pertains to smoothness) of any loop scheduler
in terms of thecumulative service-deficit, sdj(i), which
measures the discrepancy between the requested and al-
located share for userj up to sloti, 1≤ i ≤ R. If yj(i)
denotes the cumulative number of slots allocated to user
j up to and including sloti, then we have the following:

sdj(i) =
rj

R
− yj(i)

i

A positive(negative) value ofsdj(i) implies that userj
has receivedless(more) than its requested share up to slot
i. Hence, we consider a scheduler that allocates each slot
to the user with maximum instantaneous service-deficit
so as to achieve maximum throughput-fairness (Short-
term Fair orSTFK scheduler). Whenever there is a tie,
priority for allocation is given to the user with the highest
flow index. The pseudo-code for theSTFK scheduler is
given as follows:

K-flow Short-term Fair Scheduler (STFK)

Initialize yj(0) = 0, 1≤ j ≤ K
for i=1:R

yj(i) = yj(i− 1), 1≤ j ≤ K

sdj(i) = rj

R - yj(i)
i , 1≤ j ≤ K

aSTFK
(i) = arg max

1≤j≤K
sdj(i)

yaST FK
(i)(i) = yaST FK

(i)(i)+1

This scheduler was first suggested in [13], where
the authors conjectured, based on numerical calculations,
that it is a promising scheduler. However, no analysis of
the scheduler was provided in terms of smoothness.

According to our analysis [21], theSTFK scheduler
possesses the following property:

Property 7 For any two-class scheduling scenario
(C=2), users within classC2 are allocated in blocks,

where the order within each block is K,K-1,K-2,· · · ,K-κ1;
Users within classC1 are always allocated in the order
κ1,κ1-1,· · · ,1 and the maximum number of users in class
C1 allocated between two successiveC2 blocks isκ1.

We can deduce from Property 7 that intra-class fairness
is maintained for two-class scheduling with theSTFK

scheduler.

3.7 K-flow m-Balanced Scheduler
(MBALK)

The m-balanced scheduler was proposed in [17] and
its pseudocode is given as follows:

K-flow m-Balanced Scheduler (MBALK)

Initialize φ = {φ1, φ2, · · · , φK} s.t.
φj is uniformly distributed on [0,Rrj), 1≤ j ≤ K
for i = 1:R

y = arg min
1≤j≤K

φ

aMBALK
(i) = y

φy = φy + R
ry

The smoothness metric corresponding to the schedule
constructed by the algorithm is upper-bounded according
to the following property:

Property 8 According to the metric defined in Eq. (6),
the worst-case m-balancedness of theMBALK sched-
uler is K-1, i.e.,mMBALK ≤ K-1.

It is difficult to find an initial value forφ that achieves
the best possible smoothness. Hence, the authors pro-
posed iterating the algorithm over a predetermined num-
ber of runs (denoted byITER) in an attempt to improve
the schedule.

3.8 K-flow Random (RNDK) Scheduler

The loop schedulers considered so far aredeterminis-
tic since the scheduleaπ ∈ A is fixed. In this section,
we define arandomscheduler,RNDK , whose sched-
ule,aRNDK

, is uniformlyselected fromA. We note that
RNDK ∈ Fr because the selectedaRNDK

is used for
allocation in each loop.

The per-user smoothness metric for each userj is
given as follows [21]:

sj
RNDK

=
R(2R− rj + 1)

rj(rj + 1)
− (

R

rj
)2 (10)

By comparing Eq. (10) with Theorem 2, we have the fol-
lowing corollary:

Corollary 2 The per-user smoothness metric for the
RNDK scheduler is upper-bounded by that of the
DRRK scheduler, i.e., for 1≤ j ≤ K,

sj
RNDK

≤ sj
DRRK

4 Design of Class-aware Loop
Scheduler

Our analysis in Section 3 suggests that theGRK ,
MBALK and RNDK schedulers do not ensure intra-
class fairness, which is a desirable property in a class-
based scheduling scenario. On the other hand, while
theSTFK scheduler guarantees intra-class fairness only
for a two-class scenario (C=2), theCRRK , SRRK and
WRR − spK schedulers are intra-class fair for anyC.
Hence, the latter schedulers are suitable as bases for con-
structingclass-awareloop schedulers. We begin with the
design forC=2, and then extrapolate the design to the
multi-class (C>2) scenario.

4.1 An Optimal Two-Class Loop Scheduler
(C=2)

Comparing Property 3 and Property 6, it can be de-
duced that theCRRK andWRR − spK are equivalent
for two-class scheduling, and hence, we restrict our con-
sideration to the latter scheduler.

Using Property 6 and Theorem 1,nj
WRR−spK

and

nj
π∗ can be computed and are given in Eq. (11) and (12)

respectively on the next page. Comparing these equa-
tions, we note thatnj

WRR−spK
6= nj

π∗ for 1≤ j ≤ K and
hence, theWRR-spK scheduler is not optimal in terms
of per-user smoothness. However, whenκ1=1 (κ1=K-1),
theWRR-spK scheduler offers optimal per-user smooth-
ness for users inC2 (C1). Hence, sinceκ1=1 =K-1 when
K=2, theWRR-sp2 scheduler offers optimal smoothness
for all users, i.e.,

sj
WRR−sp2

= min
π∈Fr

sj
π

Hence, we can construct a class-aware scheduler (see
Section 1.2) for a two-class scenario by (a) defining an
equivalent two-flow scenario (K=2) and (b) construct-
ing a schedule using theWRR-sp2 scheduler (inter-class
scheduling) and (c) substituting for the indices of the
users (intra-class scheduling). Denoted byOPT2, it can
be shown thatnj

OPT2
= nj

π∗ as given in Eq. (12) for
1≤ j ≤ K, i.e., theOPT2 scheduler achieves optimal
smoothness for two-class scheduling. The pseudo-code
is given below, assumingκ1 · r̃1 ≤ κ2 · r̃2 (the corre-
sponding scheduler forκ1 · r̃1 > κ2 · r̃2 can be obtained
by interchanging the indices 1 and 2):

Optimal Two-Class Loop Scheduler (OPT2)

Setr = [κ1 · r̃1, κ2 · r̃2]

DefineI1 = [

r̃1

︷ ︸︸ ︷
C1, · · · , C1], I2 = [

r̃2

︷ ︸︸ ︷
C2, · · · , C2]

ComputeaWRR−sp2
= WRR-sp2(r)

for y = 1:2
index = find(aWRR−sp2

==y)
aOPT2 (index) =Iy

4.2 A Recursive Class-aware Loop Sched-
uler for Multi-class Scenario (C>2)

In this section, we construct a class-aware scheduler
for a multiple-class scenario (C>2). In order to exploit
the smoothness property of the optimal two-class sched-
uler (OPT2), we propose arecursiveapproach that (a)
partitions the originalC-class problem into smaller sub-
problems at various levels (Forward) (b) solves each sub-
problem, beginning with the lowest level (Solution) and
(c) substitutes the solutions obtained in the return path
to obtain the required schedule for the original problem
(Return).

We describe the approaches for each stage as follows,
where the notationREC(I), I ∈ C={1,2,· · · ,C}, repre-
sents an|I|-class scheduling problem.

4.2.1 Forward

We begin by partitioning theC-class (level 0) prob-
lem, REC(C), into level 1 sub-problems, denoted by
REC(I1

1), REC(I1
2), whereI1

1 ∪ I1
2=C andI1

1 ∩ I1
2={}.

As far as this stage is concerned, we can in-
terpret REC(I1

1), REC(I1
2) as comprising two inde-

pendent problems,REC(I1
1) and REC(I1

2), each of
which can be further partitioned into level 2 sub-
problems. For example,REC(I1

1) can be partitioned into
REC(I2

1), REC(I2
2), whereI2

1∪ I2
2=I1

1 andI2
1∩ I2

2={}.
One particular approach for partitioning [21] is that

for each level y sub-problem, REC(Iy
1), REC(Iy

2),
∀ y ≥ 1, min{|Iy

1|, |Iy
2|}=1.

4.2.2 Solution

Let us consider the level y sub-problem,
REC(Iy

1), REC(Iy
2). In order to solve this problem,

we first computeaREC(Iy
1) andaREC(Iy

2) independently
(intra-class scheduling), and then combine these sched-
ules to obtainaREC(Iy

1),REC(Iy
2) (inter-class scheduling).

The respective functions are described as follows:

intra-class scheduling : According to Section 4.1, the
OPT2 scheduler achieves optimal smoothness for
any two-class scheduling scenario. Hence, thefor-
ward phase of the recursive scheduler is executed
until level l, such that for each levell sub-problem,
REC(I l

1), REC(I l
2), max{|I l

1|, |I l
2|} = 2.

As such, we begin thesolutionphase at levell, and
the resulting schedules,aREC(Il

1)
and aREC(Il

2)
,

will be optimally smooth. We note that a simple
Round-Robin scheduler suffices to ensure optimal
smoothness for a one-class scenario, i.e.,|I l|=1.

inter-class scheduling : There are many different ways
to combine aREC(Iy

1) and aREC(Iy
2) to obtain

aREC(Iy
1),REC(Iy

2). One approach is to construct
an equivalent two-user scheduling problem by ag-
gregating the users inIy

1 andIy
2 respectively, and

apply theWRR-sp2 scheduler to obtain a two-user

nj
WRR−spK

=





{

r̃1d r̃2

r̃1 e−r̃2

︷ ︸︸ ︷
κ1 + κ2b r̃

2

r̃1
c, · · · , κ1 + κ2b r̃

2

r̃1
c, κ1 + κ2d r̃

2

r̃1
e · · ·κ1 + κ2d r̃

2

r̃1
e

︸ ︷︷ ︸
r̃2−(d r̃2

r̃1 e−1)r̃1

}, j ∈ C1;

{

r̃2K−R

κ1︷ ︸︸ ︷
κ2, · · · , κ2,K, · · · ,K︸ ︷︷ ︸

R−κ2r̃2

κ1

}, j ∈ C2.

(11)

nj
π∗ =





{

r̃1(κ1+bκ2r̃2

r̃1 c)+r̃1−R

︷ ︸︸ ︷
κ1 + bκ

2r̃2

r̃1
c, · · · , κ1 + bκ

2r̃2

r̃1
c, κ1 + dκ

2r̃2

r̃1
e, · · · , κ1 + dκ

2r̃2

r̃1
e

︸ ︷︷ ︸
R−r̃1(κ1+bκ2r̃2

r̃1 c)

}, j ∈ C1;

{

r̃2(κ2+bκ1r̃1

r̃2 c)+r̃2−R

︷ ︸︸ ︷
κ2 + bκ

1r̃1

r̃2
c, · · · , κ2 + bκ

1r̃1

r̃2
c, κ2 + dκ

1r̃1

r̃2
e, · · · , κ2 + dκ

1r̃1

r̃2
e

︸ ︷︷ ︸
R−r̃2(κ2+bκ1r̃1

r̃2 c)

}, j ∈ C2.

(12)

schedule, a. The slots allocated to user ‘1’ and ‘2’
are substituted with the indices ofIy

1 and Iy
2 re-

spectively. The pseudo-code (similar to theOPT2

scheduler) is given below:

Function a = inter-c(aIy
1
,aIy

2
)

Setr = [
∑

c∈Iy
1

κc · r̃c,
∑

c∈Iy
2

κc · r̃c]

ComputeaWRR−sp2
= WRR-sp2(r)

for q = 1:2
index = find(aWRR−sp2

==q)
a(index) =aIy

q

An alternative approach for inter-class scheduling
(denoted byinter-c’) is proposed in [21], and it is
applicable if the following condition holds:

min{|Iy
1|, |Iy

2|} = 1 (13)

To illustrate the approach, let us assume that
|Iy

2|=1, and|aREC(Iy
2)| ≤ |aREC(Iy

1)|. If we letv =
aREC(Iy

2) andz = aREC(Iy
1), then our objective is

to insert the elements ofz into v so that successive
elements ofv are as uniformly-spaced as possible
in the combined vector,aREC(Iy

1),REC(Iy
2), i.e., we

attempt to maximize smoothness with respect tov.
This is illustrated in Fig. 1, whereP=d z

v e andQ is
given as follows:

Q =
{

P, |z| = |v|;
P − 1, otherwise.

For the case where|v| > |z|, we simply swap the
definitions ofv andz.

4.2.3 Return

Upon completion of the solution phase with all level
l sub-problems, we begin thereturn phase, which com-
putes the schedule for each levely-1 sub-problem using
the solutions of its levely sub-problems iteratively until
we arrive at the schedule for the original problem.

Let us consider a level l-1 sub-problem,
REC(I l−1

1), REC(I l−1
2). Assume thatREC(I l−1

1) is
partitioned into levell sub-problems,REC(I l

1), REC(I l
2)

andREC(I l
3), REC(I l

4). We apply the solution phase
on each of the above levell sub-problems to obtain the
respective schedules:

Sl−1
1 = {aREC(Il

1),REC(Il
2)

; aREC(Il
3),REC(Il

4)
}

Similarly, REC(I l−1
2) is partitioned into levell sub-

problems,REC(I l
5), REC(I l

6) andREC(I l
7), REC(I l

8),
and the respective solutions are given as follows:

Sl−1
2 = {aREC(Il

5),REC(Il
6)

; aREC(Il
7),REC(Il

8)
}

In order to obtainaREC(Il−1
1),REC(Il−1

2), we have to de-

termine the combination,(a1 ∈ Sl−1
1 , a2 ∈ Sl−1

2), that
results in a schedule,inter-c(a1,a2), with the best smooth-
ness, i.e., ifsa is the smoothness metric corresponding to
the schedulea, then:

sinter−c(a1,a2)
= arg min

b1∈Sl−1
1 ,b2∈Sl−1

2

sinter−c(b1,b2)

(14)

Once we have obtained the required schedules for all
level l-1 sub-problems, they are returned to the corre-
sponding levell-2 sub-problems in the same way until
we arrive at the original problem.

����� ���

���

� � �

�

� � �

�������������	����
����
����������� ��
�

��� ������

���	 ��
�

�

��������������	����
����
����������� ��
�

���	 ��
�

����	 ��

�

�

���	 ��
�

�

Figure 1:Illustration of the inter-class scheduler, inter-c’(), for the REC(C) scheduler.

4.3 Variants of Recursive Class-aware
Loop Schedulers

According to Section 4.2, we may define variants of
theREC(C) that differ in terms of (a) the approach for
partitioning in theforward phase and (b) the inter-class
scheduling function in thesolutionphase. In this section,
we define variants considered in this study forC=3 and
C=4.

C=3 : In this case, there is only one approach for par-
titioning, and this is illustrated in Fig. 2. How-
ever, since each sub-problem satisfies Eq. (13), we
can define two variants (denoted byREC1(C) and
REC2(C)) that employsinter-class() and inter-
class‘() respectively for inter-class scheduling.

C=4 : In this case, two approaches for partitioning ex-
ist, as illustrated in Fig. 3 (a) and (b) respectively.
With approach (a), onlyinter-class() is valid, and
we denote the resulting scheduler asREC1(C).
On the other hand, with approach (b), since each
sub-problem satisfies Eq. (13), we can define two
variants (denoted byREC2)(C) and REC3(C))
that employsinter-class() andinter-class‘() respec-
tively for inter-class scheduling.

We summarize the properties of variants of theREC(C)
scheduler forC=3 andC=4 in Table 1. In general, the
computational requirement of theREC(C) is upper-
bounded by the variant where each sub-problem satisfies
Eq. 13, and the algorithm requires

(
C
2

)
runs ofOPT2(),

C(2C−1-C) runs of inter-c() and 1 +
∑C−4

q=0

∏C
i=C−q i

runs ofmin() (Eq. (14)). The fact thatC is usually small
makes the problem tractable in practical cases.

5 Numerical Results

We consider the following broadband applications
with the corresponding typical bandwidth requirements
in kbps [24]: Streaming Video (Internet Quality) (128),
Residential Voice (300), Video Telephony (400) and In-
teractive Games (500).

We define variousC-class scheduling scenarios,
whereC ∈ {3, 4}, and the user composition is assumed
to be uniform, i.e.,κc = κ for 1 ≤ c ≤ C. For C=4,
each class comprises users from each of the above ap-
plications, and the scheduling scenario is defined byr̃ =
[128,300,400,500] = [32,75,100,125]. ForC=3, multi-
ple scheduling scenarios are possible. For example, if we
consider Residual Voice, Video Telephony and Interac-
tive Games, then we havẽr=[300,400,500]≡ [3,4,5].

The weighting factors,{wj}K
j=1, are chosen to be pro-

portional to the relative demand of each user as follows:

wj =
rj

R

For theMBALK scheduler, we set the number of itera-
tions, ITER, to 1000. This number has to be sufficiently
large so that it is more likely to obtain the best possible
scheduler; however, this is achieved at the expense of in-
creased computational complexity.

5.1 Performance of Variants of Recursive
Class-aware Loop Schedulers

We begin by comparing the smoothness (sπ) and
intra-class unfairness (uπ) achieved with the variants of
recursive class-aware loop schedulers defined in Section
4.3. The results for the 4-class scheduling scenario,
r̃ = [32,75,100,125], are plotted in Fig. 4. The cor-
responding results for the 3-class scheduling scenario,
r̃=[32,75,125], are shown in Fig. 5.

C=4 : In terms of smoothness, using the partitioning
approach that satisfies Eq. 13 (i.e.,REC-2 and
REC-3), we note thatREC-2 (that usesinter-c())
achieves better performance thanREC-3 (that uses
inter-c’()). This is expected sinceinter-c() is de-
rived from theOPT-2 scheduler, which achieves
optimal smoothness for two-class scheduling.

Comparing between the partitioning approaches,
theREC-2 scheduler performs better than theREC-
1 scheduler at the expense of computational com-
plexity, since theREC-2 scheduler is computation-
ally more expensive (See Table 1).

���������	

�������	�
�����	 �������	�
�����	 �������	�
�����	

��
�
���
�������

�����
�
������������

Figure 2:Partitioning approach for the REC(C) scheduler (C=3).

����������	

�������
��������	
 �������
��������	
 ������	
���������

�
��������
�����

������������

�
������

��

����������	

��������	
�������
 ��������	
�������
 ��������	
�������
 ���������
������	

������	
�������

������	
�������

�������
������	

������	
�������

������	
�������

�������
������	

������	
�������

������	
�������

�������
������	

�������
�������

�������
������	

�������
�������

�
��������
�����

������������

�
������

������������

�
������

��

Figure 3:Approaches for partitioning for the REC(C) scheduler (C=4).

�
��������	
�

�
����
�������
����	����
���

�����������

���������

�
�������
���	������������	��
	
�	�����

�

�

�
��

�
��!

�
��

�
��!

�
���

"��	��#���
#����	������$

��	�%�

"��	��#���
#����	������$

��	�%�

�
	��#���
#���

���������	
��	�%�

���������

�������&��

���������

�������&��

���������

'�(
!
��

���������	
�

�������&��

�����	��

��	�)�

� �

)

)

�

) %

Table 1:Properties of variants of REC(C) scheduler (C=3,4)

In terms of fairness,REC-1 andREC-2 are less un-
fair than REC-3, which once again demonstrates
the superiority ofinter-c() over inter-c’() (imple-
mented inREC-3).

C=3 : Since the partitioning approach is unique, the re-
cursive schedulers are distinguished according to
the inter-class scheduling function implemented.
We note thatREC-1 (that usesinter-c()) achieves
better smoothness performance thanREC-2 (that
usesinter-c’()). This concurs with the observations

for C=4.

In terms of fairness,REC-1 is less unfair thanREC-
2, which once again demonstrates the superiority of
inter-c() over inter-c’() (implemented inREC-2).

Table 2 summarizes the comparison between both
variants of recursive schedulers for 3-class scheduling
scenarios. The above observations forC=3 are consistent
over the various 3-class scheduling scenarios.

0 10 20 30 40 50
10

−6

10
−5

10
−4

10
−3

10
−2

Number of Users Per Class, κ

S
m

oo
th

ne
ss

 M
et

ric
, s

π
REC−1
REC−2
REC−3

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Users Per Class, κ

U
nf

ai
rn

es
s

M
et

ric
, u

π(s
)

REC−1
REC−2
REC−3

Figure 4: Comparison of sπ (left) and uπ (right) amongst variants of recursive loop schedulers for r̃ = [32,75,100,125] in 4-class

scheduling.

0 10 20 30 40 50
10

−5

10
−4

10
−3

10
−2

Number of Users Per Class, κ

S
m

oo
th

ne
ss

 M
et

ric
, s

π

REC−1
REC−2

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Users Per Class, κ

U
nf

ai
rn

es
s

M
et

ric
, u

π(s
)

REC−1
REC−2

Figure 5:Comparison of sπ (left) and uπ (right) amongst variants of recursive loop schedulers for r̃ = [32,75,125] in 3-class scheduling.

Metric

κ 5 10 20 30 40 50 5 10 20 30 40 50

[75,100,125]

[32,75,100] 0.6000 0.3749 0.1240 0.0505 0.0207 0.0111 0.6250 0.2857 0.1579 0.1667 0.0938 0.0682

[32,75,125] 0.7826 0.5571 0.1315 0.0808 0.0458 0.0310 0.6667 0.4444 0.2667 0.1429 0.1538 0.1212

[32,100,125] 1.0000 0.9401 0.5698 0.6098 0.3012 0.2306 0.5714 0.4000 0.2000 0.1739 0.1200 0.0938

s(REC-1)/s(REC-2) uREC-1(s)/uREC-2(s)

1

Table 2:Table of
sREC−1
sREC−2

and
uREC−1(s)

uREC−2(s)
for various 3-class scheduling scenarios.

5.2 Performance Comparison between
Class-aware and Class-unaware Loop
Schedulers

Next, we compare the smoothness and fairness per-
formance in terms ofsπ andmπ between the ‘best’ vari-
ant of recursive loop scheduler (according to the results
in Section 5.1 and denoted byRECK) and the class-
unaware loop schedulers defined in Section 3.

Our computations show that the performance of the
variants of Round-Robin schedulers (SRRK , WRR-sp∗K
and CRRK) are similar (within 14% over all the user

configurations,κ = {1,5,10,20}, for sπ). Hence, we de-
fine a representative Round-Robin scheduler (denoted by
∗RRK) with performance metric,σ∗RRK , defined as fol-
lows, whereσ ∈ {s,m}:

σ∗RRK =
1
3
[σSRRK + σWRR−sp∗K + σCRRK]

In addition, theRNDK scheduler performs signifi-
cantly worse than the deterministic schedulers (exclud-
ing theDRRK scheduler) in terms of smoothness, and
this performance gap widens as the number of users
per class,κ, increases. To quantify this, we evaluate

∆max
RNDK

=
minπ∈{RECK ,MBALK ,ST FK ,∗RRK ,GRK} sπ

sRNDK
and

∆min
RNDK

=
maxπ∈{RECK ,MBALK ,ST FK ,∗RRK ,GRK} sπ

sRNDK
and

the results are shown in Table 3. We observe that the
performance gap between theRNDK scheduler and the
deterministic schedulers widens as the number of users
per class,κ, increases. However, even forκ = 1, the
worst-case smoothness metric obtained with determinis-
tic schedulers is less than 40% of the corresponding met-
ric obtained withRNDK schedulers. Hence, for easier
comparison of the relative performance of the remaining
schedulers, both theRNDK andDRRK schedulers have
been deliberately omitted from the figures.

5.2.1 Allocation Smoothness

The results for allocation smoothness for the 4-class
scheduling scenario are plotted in Fig. 6. The corre-
sponding results for̃r = [32,75,125] in 3-class scheduling
is shown in Fig. 7.

We observe that the schedulers can be ranked
based on their relative smoothness performance
(beginning with the best smoothness) as follows:
{RECK , MBALK , STFK , ∗RRK , GRK}, and such
a ranking is consistent in terms of both smoothness met-
rics and for both scheduling scenarios. This shows that
there is some equivalence between the variance-based
smoothness metric we proposed, and the notion of bal-
anceness.

In addition, we note that due to its class-awareness,
our proposed recursive scheduler gains in smoothness as
the user population,κ, increases, while the converse is
true for the other class-unaware schedulers. Hence, the
recursive scheduler ensuresstabilityunder high load con-
ditions.

Since the GRK scheduler exhibits the worst
smoothness performance for̃r = [32,75,125],
we tabulate the metrics, sπ

sGR
and mπ

mGR
, π ∈

{∗RRK , STFK ,MBALK , RECK}, for each of the
remaining 3-class scheduling scenarios in Table 4. We
show that the above observations are consistent over all
the 3-class scheduling scenarios.

5.2.2 Unfairness

The results for unfairness for the 4-class scheduling
scenario are plotted in Fig. 9. The corresponding results
for r̃ = [32,75,125] in 3-class scheduling is shown in Fig.
10.

According to Fig. 9 and 10, if we categorize
the schedulers into two groups:A={MBALK ,GRK}
andB={∗RRK ,STFK ,RECK}, then we notice that the
GroupB schedulers achieve better fairness than GroupA
schedulers in terms of both variance-based and balance-
based metrics. Hence, as with allocation smoothness,
there is some equivalence between the variance-based
smoothness metric we proposed, and the notion of bal-
ancedness.

Since theMBALK scheduler exhibits the worst
fairness performance for̃r = [32,75,125], we tab-
ulate the metrics, uπ(s)

uMBAL(s) and uπ(m)
uMBAL(m) , π ∈

{∗RRK , STFK , GRK , RECK}, for each of the remain-
ing 3-class scheduling scenarios in Table 5. We show that
the above observations are consistent over all the 3-class
scheduling scenarios.

Overall, the superior smoothness performance
achieved with theMBALK scheduler is traded off with
unfairness and computational complexity (due toITER)
compared with the∗RRK and STFK schedulers. In
addition, while theGRK scheduler performs poorly in
terms of smoothness and fairness, our proposed recursive
scheduler achieves the best smoothness with almost no
degradation in fairness.

5.3 Performance Comparison with GPS
and PGPS schedulers

The Generalized Processor Sharing (GPS) [5] sched-
uler is anidealizedscheduler where multiple users are
servedsimultaneouslyand the traffic is assumed to be in-
finitely divisible (bits as opposed to packets).

In our context, users are assumed to be continuously
backlogged and with GPS scheduling, each userj with
relative demandxj will be continuously served at acon-
stant rate xj . As a result, the GPS scheduler exhibits
ideal smoothness and fairness, i.e.,sGPS = mGPS = 0
anduGPS = minπ∈Fr uπ.

If Fp is the time at which packetp will depart (fin-
ish service) under GPS, then a very good approximation
of GPS would be a work-conserving scheme that serves
packets in increasing order ofFp. These packetized im-
plementations of GPS are known as Packetized GPS (or
PGPS) [5] or Weighted-Fair Queueing [4]. Under the as-
sumption of continuously-backlogged users and constant
packet (slot) size, it can be shown that PGPS schemes are
equivalent to theWRR-spK scheduler.

6 Conclusions

In this paper, we consider the design of a perfectly-
fair loop scheduler, where the time-slot assignment
amongstK users is weighted according to the relative
bandwidth requirement, is periodic and is as evenly-
spaced (smooth) with respect to each user as possi-
ble. Such schedules are useful for QoS provisioning in
cellular-type wireless networks and for data forwarding
in wireless sensor networks. We consider a class-based
scheduling scenario where users are grouped according
to their relative bandwidth demands. In addition to (abso-
lute) allocation smoothness, it is desirable for the sched-
ule to ensure intra-class fairness, where users in the same
class have the same allocation smoothness.

While the allocation smoothness has been quantified
based on the concept of balancedness in existing litera-
ture, we propose an alternative smoothness metric based

κ

∆RND ∆
max

RND ∆
min

RND ∆
max

RND ∆
min

RND ∆
max

RND ∆
min

RND ∆
max

RND ∆
min

RND

[75,100,125] 0.092 0.184 0.001 0.126 0.000 0.119 0.000 0.117

[32,75,100] 0.100 0.274 0.003 0.158 0.001 0.156 0.000 0.156

[32,75,125] 0.116 0.254 0.002 0.148 0.001 0.142 0.000 0.139

[32,100,125] 0.104 0.195 0.002 0.158 0.001 0.154 0.000 0.150

[32,75,100,125] 0.139 0.386 0.002 0.251 0.001 0.246 0.000 0.241

1 5 10 20.00

Table 3:Performance gap in terms of smoothness between RNDK and the deterministic schedulers in 3-class scheduling.

0 10 20 30 40 50
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of Users Per Class, κ

S
m

oo
th

ne
ss

 M
et

ric
, s

π

*RR
STF
GR
MBAL
REC

0 10 20 30 40 50
10

−2

10
−1

10
0

10
1

10
2

10
3

Number of Users Per Class, κ

S
m

oo
th

ne
ss

 M
et

ric
, m

π
*RR
STF
GR
MBAL
REC

Figure 6:Smoothness Performance of various π ∈ Fr for r̃ = [32,75,100,125] in 4-class scheduling in terms of sπ (left) and mπ (right).

0 10 20 30 40 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of Users Per Class, κ

S
m

oo
th

ne
ss

 M
et

ric
, s

π

*RR
STF
GR
MBAL
REC

0 10 20 30 40 50
10

−2

10
−1

10
0

10
1

10
2

10
3

Number of Users Per Class, κ

S
m

oo
th

ne
ss

 M
et

ric
, m

π

*RR
STF
GR
MBAL
REC

Figure 7:Smoothness Performance of various π ∈ Fr for r̃ = [32,75,125] in 3-class scheduling in terms of sπ (left) and mπ (right).

on the second moment of the inter-allocation distance for
each user, which is more intuitive and also easier to com-
pute. We analyze the allocation smoothness of a weighted
round robin with spreading (WRR-spK) scheduler for a
two-class scenario. Based on these properties, we con-
struct an optimal scheduler that employs theWRR-spK

scheduler as an inter-class scheduler, and also suggest an
enhancement to theWRR-spK scheduler. We then pro-
pose a recursive class-aware scheduler based on the two-
class optimal scheduler for a multiple-class scenario.

We then compare the performance of the above sched-
ulers with other existing loop schedulers. Our proposed
scheduler achieves significantly superior smoothness per-
formance with almost no degradation in intra-class fair-
ness. This highlights the importance of class-awareness
in the scheduler design for class-based scenarios. In ad-
dition, we also demonstrate the equivalence between our
proposed metric and the existing smoothness measure
based on balancedness, since the relative performance of
the schedulers is similar under both types of metrics.

0 10 20 30 40 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of Users Per Class, κ

S
m

oo
th

ne
ss

 M
et

ric
, s

π *RR
STF
GR
MBAL
REC

0 10 20 30 40 50
0

50

100

150

200

250

300

350

Number of Users Per Class, κ

S
m

oo
th

ne
ss

 M
et

ric
, m

π

*RR
STF
GR
MBAL
REC

Figure 8:Smoothness Performance of various π ∈ Fr for r̃ = [32,75,100] in 3-class scheduling in terms of sπ (left) and mπ (right).

[75,100,125]

κ 5 10 20 30 40 50 5 10 20 30 40 50

*RR 0.9820 0.9962 0.9947 0.7725 0.7725 0.9962 1.2463 1.1845 1.1547 0.8871 0.8896 1.1475

STF 0.8065 0.8182 0.8170 0.8182 0.8182 0.8182 0.7105 0.7143 0.7170 0.7217 0.7238 0.7255

MBAL 0.0398 0.0202 1.0000 0.0062 0.0048 0.0038 0.1723 0.1246 0.0808 0.0747 0.0747 0.0602

REC 0.0059 0.0015 0.0000 0.0000 0.0000 0.0001 0.0533 0.0268 0.0000 0.0000 0.0000 0.0054

[32,75,100]

κ 5 10 20 30 40 50 5 10 20 30 40 50

*RR 0.5004 0.4866 0.4913 0.4903 0.4900 0.4903 0.2555 0.2356 0.2259 0.2227 0.2210 0.2200

STF 0.3763 0.3608 0.3629 0.3615 0.3606 0.3608 0.2579 0.2538 0.2549 0.2547 0.2538 0.2538

MBAL 0.0204 0.0124 1.0000 0.0040 0.0031 0.0025 0.0609 0.0409 0.0292 0.0255 0.0202 0.0170

REC 0.0169 0.0046 0.0009 0.0004 0.0002 0.0046 0.0223 0.0023 0.0003 0.0003 0.0001 0.0000

[32,100,125]

κ 5 10 20 30 40 50 5 10 20 30 40 50

*RR 0.4506 0.4427 0.4446 0.4443 0.4440 0.4443 0.2634 0.2557 0.2535 0.2527 0.2521 0.2518

STF 0.3427 0.3345 0.3345 0.3357 0.3340 0.3343 0.2642 0.2677 0.2714 0.2657 0.2688 0.2658

MBAL 0.0310 0.0125 1.0000 0.0034 0.0030 0.0028 0.0544 0.0453 0.0307 0.0253 0.0234 0.0184

REC 0.0148 0.0040 0.0005 0.0005 0.0001 0.0001 0.0098 0.0018 0.0003 0.0002 0.0001 0.0000

sπ/sGR mπ/mGR

sπ/sGR mπ/mGR

sπ/sGR mπ/mGR

Table 4:Table of sπ
sGR

and mπ
mGR

, for various loop schedulers in 3-class scheduling.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Users Per Class, κ

U
nf

ai
rn

es
s

M
et

ric
, u

π(s
)

*RR
STF
GR
MBAL
REC

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Users Per Class, κ

U
nf

ai
rn

es
s

M
et

ric
, u

π(m
)

*RR
STF
GR
MBAL
REC

Figure 9:Fairness Performance of various π ∈ Fr for r̃ = [32,75,100,125] in 4-class scheduling in terms of sπ (left) and mπ (right).

References

[1] L. Kleinrock, “Time-shared Systems: A Theoreti-
cal Treatment,”Journal of the ACM, vol. 14, no. 2,

pp. 242–261, April 1967.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Users Per Class, κ

U
nf

ai
rn

es
s

M
et

ric
, u

π(s
)

*RR
STF
GR
MBAL
REC

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Users Per Class, κ

U
nf

ai
rn

es
s

M
et

ric
, u

π(m
)

*RR
STF
GR
MBAL
REC

Figure 10:Fairness Performance of various π ∈ Fr for r̃ = [32,75,125] in 3-class scheduling in terms of sπ (left) and mπ (right).

[75,100,125]

κ 5 10 20 30 40 50 5 10 20 30 40 50

*RR 0.2727 0.1500 0.0833 0.0526 0.0435 0.0345 0.3750 0.2308 0.1200 0.0938 0.0882 0.1619

STF 0.2727 0.1500 0.0833 0.0526 0.0435 0.0345 0.3750 0.2308 0.1200 0.0938 0.0882 0.0857

GR 1.3636 1.5000 1.6667 1.5789 1.7391 1.7241 0.7500 0.5385 0.2400 0.2500 0.2059 0.1429

REC 0.2727 0.1500 0.0833 0.0526 0.0435 0.0345 0.3750 0.3077 0.1200 0.0938 0.0882 0.1143

[32,75,100]

κ 5 10 20 30 40 50 5 10 20 30 40 50

*RR 0.3000 0.1250 0.0732 0.0441 0.0236 0.0638 0.8095 0.6296 0.4722 0.4048 0.3148 0.2833

STF 0.4000 0.1667 0.0976 0.0588 0.0315 0.1064 0.7143 0.4444 0.4167 0.3571 0.2222 0.2000

GR 1.5000 1.2500 1.4634 1.3235 1.1811 1.7021 1.2857 1.0000 1.0833 0.9286 0.6111 0.4500

REC 0.5000 0.1667 0.0732 0.0319 0.0236 0.0851 0.7143 0.5556 0.4167 0.3571 0.2778 0.2000

[32,100,125]

κ 5 10 20 30 40 50 5 10 20 30 40 50

*RR 0.2143 0.1111 0.0577 0.0462 0.0313 0.0236 0.6667 0.5185 0.3889 0.2917 0.2745 0.2456

STF 0.2857 0.1481 0.0962 0.0769 0.0521 0.0394 0.8571 0.6667 0.5000 0.3750 0.3529 0.3158

GR 1.0714 1.1111 1.1538 1.3846 1.2500 1.1811 1.4286 1.4444 1.0833 0.9375 0.8235 0.7895

REC 0.2857 0.1481 0.0577 0.0615 0.0313 0.0236 0.7143 0.6667 0.5000 0.3750 0.3529 0.2632

uπ(s)/uMBAL(s) uπ(m)/uMBAL(m)

uπ(s)/uMBAL(s) uπ(m)/uMBAL(m)

uπ(s)/uMBAL(s) uπ(m)/uMBAL(m)

Table 5:Table of uπ(s)
uMBAL(s)

and uπ(m)
uMBAL(m)

, for various loop schedulers in 3-class scheduling.

[2] J. W. Cohen, “The Multiple Phase Service Network
with Generalized Processor Sharing,”Acta Infor-
matica, vol. 12, pp. 245–284, 1979.

[3] D. Raz, H. Levy, and B. Avi-Itzhak, “A Resource-
Allocation Queueing Fairness Measure,”Proceed-
ings of SIGMETRIC/Performance 2004, pp. 130–
141, June 2004.

[4] A. Demers, S. Keshev, and S. Shenker, “Analy-
sis and simulation of a Fair Queueing Algorithm,”
Journal of Internetworking: Research and Experi-
ance, vol. 1, pp. 3–26, October 1990.

[5] A. K. Parekh and R. G. Gallager, “A General-
ized Processor Sharing Approach to Flow Control
in Integrated Services Networks - the Single Node
Case,” IEEE/ACM Transanctions on Networking,
vol. 1, no. 3, pp. 344–357, June 1993.

[6] S. Lu, V. Bharghavan, and R. Srikant, “Fair schedul-
ing in wireless packet networks,”Proc. of the ACM
SIGCOMM, pp. 63–74, August 1997.

[7] S. Baruah, G. Buttazzo, S. Gorinsky, and G. Lipari,
“Scheduling periodic task systems to minimize out-
put jitter,” Proc. of the IEEE International Confer-
ence on Real-Time Computing Systems and Appli-
cations, pp. 62–69, December 1999.

[8] A. Bar-Noy, R. Bhatia, J. Naor, and B. Schieber,
“Minimizing Service and Operation Cost of Peri-
odic Scheduling,”Proc. of the ACM Symposium on
Discrete Algorithms, pp. 11–20, January 1998.

[9] Z. Brakerski, A. Nisgav, and B. Patt-Shamir, “Gen-
eral Perfectly Periodic Scheduling,”Proc. of the
ACM Symposium on Principles of Distributed Com-
puting, pp. 163–172, July 2002.

[10] A. Bar-Noy, A. Nisgav, and B. Patt-Shamir, “Nearly
Optimal Perfectly-Periodic Schedules,”Proc. of the

ACM Symposium on Principles of Distributed Com-
puting, pp. 107–116, August 2001.

[11] A. Bar-Noy, V. Dreizin, and B. Patt-Shamir, “Ef-
ficient Periodic Scheduling by Trees,”Proc. of the
IEEE INFOCOM, vol. 2, pp. 791–800, June 2002.

[12] Z. Rosberg, “Optimal Decentralized Control in
a Multiaccess Channel with Partial Information,”
IEEE Transactions on Automatic Control, vol. 28,
no. 2, pp. 187–193, February 1983.

[13] A. Itai and Z. Rosberg, “A Golden Ratio Control
Policy for a Multiple-Access Channel,”IEEE Trans.
Information Theory, vol. 33, no. 3, pp. 341–349,
May 1987.

[14] M. Hofri and Z. Rosberg, “Packet Delay under the
Golden Ratio Weighted TDM Policy in a Multiple-
Access Channel,”IEEE Trans. Information Theory,
vol. 33, no. 3, pp. 341–349, May 1987.

[15] B. Hajek, “Extremal Splittings of Point Processes,”
Mathematics of Operations Research, vol. 10, no. 4,
pp. 543–556, November 1985.

[16] E. Altman, B. Gaujal, and A. Hordijk, “Balanced
Sequences and Optimal Routing,”Journal of the
ACM, vol. 47, no. 4, pp. 752–775, July 2000.

[17] S. Sano, N. Miyoshi, and R. Kataoka, “m-Balanced
words: A generalization of balanced words,”The-
oretical Computer Science, vol. 314, no. 1-2, pp.
97–120, February 2004.

[18] Y. Guo and H. Chaskar, “Class-based Quality
of Service over Air Interfaces in 4G Mobile Net-
works,” IEEE Communications Magazine, vol. 40,
no. 3, pp. 132–137, March 2002.

[19] M. Shreedhar and G. Varghese, “Efficient Fair
Queueing Using Deficit Round Robin,”IEEE/ACM
Transanctions on Networking, vol. 4, no. 3, pp.
375–385, June 1996.

[20] V. Do and K. Yun, “An Efficient Frame-Based
Scheduling Algorithm: Credit Round Robin,”Proc.
of the IEEE Workshop on HPSR, pp. 103–110, June
2003.

[21] R. Rom, M. Sidi, and H. P. Tan, “Performance
Analysis of a Recursive Cyclic Scheduler for Class-
based Scheduling,”Proc. of the16th ITC Special-
ist Seminar on Performance Evaluation of Wireless
and Mobile Systems, pp. 43–54, August 2004.

[22] C. Guo, “SRR: AnO(1) Complexity Packet Sched-
uler for Flows in Multi-Service Packet Networks,”
Proc. of the ACM SIGCOMM, pp. 211–222, August
2001.

[23] H. Zhang, “Service disciplines for guaranteed per-
formance service in packet - switching networks,”
Proceeding of the IEEE, vol. 83, no. 10, pp. 1374–
1399, October 1995.

[24] S. Viswanathan, “Future View of Broadband
Demand,” FCC TAC Meeting, Intel, April 2003,
Available at http://www.fcc.gov/oet/
tac/TAC_III_04_17_03/Future_View_
of_Broadband_De%mand.ppt .

