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Abstract

In this paper, we study a two-category classification problem. We indicate the cate-
gories by labels Y = 1 and Y = −1. We observe a covariate, or feature, X ∈ X ⊂ Rd.
Consider a collection {ha} of classifiers indexed by a finite-dimensional parameter a, and
the classifier ha∗ that minimizes the prediction error over this class. The parameter a∗ is
estimated by the empirical risk minimizer ân over the class, where the empirical risk is
calculated on a training sample of size n. We apply the Kim Pollard Theorem to show that
under certain differentiability assumptions, ân converges to a∗ with rate n−1/3, and also
present the asymptotic distribution of the renormalized estimator.

For example, let V0 denote the set of x on which, given X = x, the label Y = 1 is more
likely (than the label Y = −1). If X is one-dimensional, the set V0 is the union of disjoint
intervals. The problem is then to estimate the thresholds of the intervals. We obtain
the asymptotic distribution of the empirical risk minimizer when the classifiers have K
thresholds, where K is fixed. We furthermore consider an extension to higher-dimensional
X, assuming basically that V0 has a smooth boundary in some given parametric class.

We also discuss various rates of convergence when the differentiability conditions are
possibly violated. Here, we again restrict ourselves to one-dimensional X. We show that
the rate is n−1 in certain cases, and then also obtain the asymptotic distribution for the
empirical prediction error.
Keywords: Asymptotic distribution, classification theory, estimation error, nonparamet-
ric models, threshold-based classifiers

1. Introduction

In the theory of classification, the problem is to predict the unknown nature of a feature.
The topic plays a basic role in several fields, such as data mining, artificial intelligence and
neural networks. In this paper we discuss the classification problem from a parametric-
statistical point of view.

Let the training set (X1, Y1), · · · , (Xn, Yn) consist of n independent copies of the couple
(X, Y ) with distribution P , where X ∈ X ⊂ Rd is called a feature and Y ∈ {−1, 1} is the
label of X. A classifier h is a function h : X → {−1, 1}, attaching the label h(X) to the
feature X. The error, or risk, of a classifier h is defined as P (h(X) 6= Y ). Following Vapnik
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(2000) and Vapnik (1998), we consider the empirical counterpart of the risk which is the
number of misclassified examples, i.e.,

Pn(h(X) 6= Y ) :=
1
n

n∑

i=1

1(h(Xi) 6= Yi).

Here, and throughout, 1(A) denotes the indicator function of a set A. We will study em-
pirical risk minimization over a model class H of classifiers h. We take H to be parametric,
in the sense that

H = {ha : a ∈ A},
with A a subset of finite-dimensional Euclidean space.

Let
F0(x) := P (Y = 1|X = x) (1)

be the conditional probability of the label Y = 1 if the feature X has value x. Given a new
feature x ∈ X , we want to guess whether the label is Y = 1 or Y = −1. A natural solution
is to predict Y = 1 when the label Y = 1 is more likely than the label Y = −1 (Bayes rule).
Thus the set

V0 := {x ∈ X : F0(x) > 1/2}, (2)

plays a key role in classification. Bayes classifier is

h0 = 21{V0} − 1.

The collection H of classifiers is viewed as model class for h0. However, we will not require
that h0 ∈ H. If h0 /∈ H, the model is misspecified.

In the statistical theory of classification, rates of convergence of empirical classifiers
have been studied by a number of researchers, see for example Lugosi and Vayatis (2004),
Lugosi and Nobel (1999), Lugosi and Wegkamp (2004), Koltchinskii and Panchenko (2002),
Boucheron et al. (2005), Koltchinskii (2003b), Koltchinskii (2003a), Mohammadi (2004)
and Tsybakov and van de Geer (2005). These papers generally consider a high-dimensional
model class and use regularization to tackle the curse of dimensionality. Rates of conver-
gence for the regularized estimators are obtained, and also non-asymptotic bounds. In this
paper, we consider a low-dimensional model class. This means that we place the subject
in the context of classical parametric statistics. Under regularity assumptions, one can es-
tablish rates, as well as the asymptotic distributions. Indeed, our main aim is to show that
one can apply certain statistical results to the classification problem with parametric model
class. In practice, one may not be willing to assume a simple parametric model class, as
the complexity of the problem is not known a priori. In this sense, our study is primarily
a theoretical one.

In Section 2, we generalize the problem considered in Mohammadi and van de Geer
(2003). It gives an application of the cube root asymptotics derived by Kim and Pollard
(1990). We briefly explain the main idea of the Kim Pollard Theorem. Its exact conditions
are given in Section 4. We study in Subsection 2.1 the case where X is one-dimensional. The
set V0 ⊂ R is then a union of disjoint intervals, and our aim is to estimate the boundaries
of the intervals. These boundaries will be called thresholds. The situation that V0 is the
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union of intervals has also been considered in Breiman et al. (1984). They explain how to
use the training set to split the feature space X and construct trees. See also Kearns et al.
(1997) for a comparison of various algorithms in this case. A simple case, with just one
threshold, has been presented in Mohammadi and van de Geer (2003). We will establish
the asymptotic behavior of estimators of the thresholds, using the set of classifiers with K
thresholds as model class. Here K is fixed, and not bigger than, but not necessarily equal to,
the number of thresholds of Bayes classifier. We moreover assume that F0 is differentiable.
In Subsection 2.2, we extend the situation to higher-dimensional feature space, X := Rd,
d ≥ 1. The problem there is related to assuming a single index model for the regression of
Y on X, i.e.,

F0(x) = η0(xT a∗),

where a∗ is an unknown vector parameter, and η0 is an unknown (monotone) function. We
let X = (U, V ), with U ∈ Rd−1 and V ∈ R and minimize the empirical classification error
over the classifiers

ha(u, v) := 21{ka(u) ≥ v} − 1,

where a is an r-dimensional parameter and ka : Rd−1 → R is some given smooth function
of a. Under differentiability conditions, this will again lead to cube root asymptotics.

In Section 3, we study various other rates, and also the asymptotic distribution in the
case of a (1/n)-rate. We consider here only one-dimensional X . The Kim Pollard Theorem
and the proofs of the results in Section 2 are given in Section 4.

We note here that we will mainly concentrate on the estimation of the parameter a∗ that
minimizes the prediction error over the class H. One may argue that the most interesting
and useful subject is perhaps not the convergence of the estimator ân to a∗, but rather the
convergence of the prediction error of (the classifier hân corresponding to) ân. We remark
however that our approach to study the former is via the latter. For example, in Corollary
2 the asymptotic distribution of the prediction error follows as a corollary.

The conclusion is that by considering some assumptions on the distribution of the data,
we can prove rates of convergence and asymptotic distributions. In computer learning the-
ory, usually no or minimal distributional assumptions are made. The results of the present
paper give more insight in the dependency of the asymptotic behavior on the underlying
distribution.

We consider asymptotics as n →∞, regarding the sample (X1, Y1), . . . , (Xn, Yn) as the
first n of an infinite sequence of i.i.d. copies of (X, Y ). The distribution of the infinite
sequence (X1, Y1), (X2, Y2), . . . is denoted by P. The marginal distribution function of X is
denoted by G. In case that the density of the distribution G of X with respect to Lebesgue
measure exists, it is denoted by g. The Euclidean norm is denoted by ‖ · ‖.

2. Cube root asymptotics

We first examine in Subsection 2.1 the case where the feature space X is the unit interval
in R so that Bayes rule is the union of some subintervals in [0, 1]. As model class, we take
the union of a, possibly smaller, number of subintervals. Next, we consider in Subsection
2.2 the situation where X = Rd with d > 1. Our model class is then the class of graphs

3



Mohammadi and van de Geer

of smooth parametric functions. In both situations, the class of classifiers H is parametric,
i.e. it is of the form

H = {ha : a ∈ A},
with A a subset of Rr, where the dimension r is fixed (not depending on n).

Define the empirical risk

Ln(a) := Pn(ha(X) 6= Y ), (3)

and the theoretical risk
L(a) := P (ha(X) 6= Y ). (4)

Moreover, let
ân = arg min

a∈A
Ln(a)

be the empirical risk minimizer, and let

a∗ = arg min
a∈A

L(a)

be its theoretical counterpart. We assume that a∗ exists and is unique. We also assume
that the estimator ân exists, but it need not be unique. In fact, in the situations that we
consider, there will be many solutions for ân. Our results will hold for any choice of ân.

We will derive cube root asymptotics. Let us first sketch where the n−1/3-rate of con-
vergence comes from. One may write down the equality

L(ân)− L(a∗) = − [νn(ân)− νn(a∗)] /
√

n + [Ln(ân)− Ln(a∗)] , (5)

with
νn(a) =

√
n [Ln(a)− L(a)] , a ∈ A,

being the empirical process indexed by A. Since Ln(ân)−Ln(a∗) ≤ 0, this equality implies

L(ân)− L(a∗) ≤ − [νn(ân)− νn(a∗)] /
√

n. (6)

Under regularity conditions L(a)−L(a∗) behaves like the squared distance ‖a−a∗‖2. More-
over, again under regularity conditions, the right hand side of (6) behaves in probability like
σ(ân)/

√
n, where σ(a) is the standard deviation of [νn(a) − νn(a∗)]. Due to the fact that

we are dealing with indicator functions, the standard deviation of [νn(a)− νn(a∗)] behaves
like the square root ‖a−a∗‖1/2 of the distance between a and a∗. Inserting this in (6) yields
that ‖ân − a∗‖2 is bounded by a term behaving in probability like ‖ân − a∗‖1/2/

√
n. But

this implies ‖ân − a∗‖ is of order n−1/3 in probability.
Let us continue with a rough sketch of the arguments used for establishing the asymptotic

distribution. We may write

ân = arg min
a

[
n

1
6
[
νn(a)− νn(a∗)

]
+ n

2
3
[
L(a)− L(a∗)

]]
.

When we already have the n−1/3-rate, it is convenient to renormalize to

n
1
3 (ân − a∗) = arg min

t

[
n

1
6
[
νn(a∗ + n−

1
3 t)− νn(a∗)

]
+ n

2
3
[
L(a∗ + n−

1
3 t)− L(a∗)

]]
.
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Now, under differentiability assumptions,

n
2
3
[
L(a∗ + n−

1
3 t)− L(a∗)

] ≈ tTVt/2,

where V is the matrix of second derivatives of L at a∗. Moreover, the process {n1/6[νn(a∗+
n−

1
3 t) − νn(a∗)] : t ∈ Rr} converges in distribution to some zero mean Gaussian process,

say W . We then apply the “Argmax” Theorem (“Argmin” Theorem in our case), see e.g.,
van der Vaart and Wellner (1996). The result is that n1/3(ân−a∗) converges in distribution
to the location of the minimum of {W (t) + tTVt/2 : t ∈ Rr}.

Kim and Pollard (1990) make these rough arguments precise. See Section 4 for the exact
conditions.

2.1 One-dimensional feature space

With a one-dimensional feature space, X = [0, 1], Bayes rule is described by the number,
say K0, and the locations, say a0 = (a0

1, . . . a
0
K0

)T , where 2F0 − 1 changes sign. We call the
locations of the sign changes thresholds. With a sign change we mean that the function
has strictly opposite sign in sufficiently small intervals to the left and right side of each
threshold. The boundary points a0

0 = 0 and a0
K0+1 = 1 are thus not considered as locations

of a sign change.
Let K ∈ N and UK be the parameter space

UK := {a = (a1, . . . , aK) ∈ [0, 1]K : a1 < . . . < aK}. (7)

Let for a ∈ UK

ha(x) :=
K+1∑

k=1

bk1{ak−1 ≤ x < ak},

where a0 = 0, aK+1 = 1 and b1 = −1, bk+1 = −bk, k = 2, . . . ,K. Let H be the collection
of classifiers

H = {ha : a ∈ UK}. (8)

Let
L(a) := P (ha(X) 6= Y ), Ln(a) := Pn(ha(X) 6= Y ). (9)

The empirical risk minimizer is

ân := arg min
a∈UK

Ln(a). (10)

We emphasize that we take the number of thresholds K in our model class fixed. Ideally,
one would like to choose K equal to K0, but the latter may be unknown. Kearns et al.
(1997), investigate an algorithm which calculates ân for all values of K, and a comparison of
various regularization algorithms for estimating K0. With a consistent estimator K̂ in our
model class, the asymptotics presented in this paper generally still go through. However,
Kearns et al. (1997) and also later papers, e.g. Bartlett et al. (2002) show that the choice of
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K is very important in practice. Non-asymptotic bounds for a related problem are in Birgé
(1987).

The following theorem states that ân converges to the minimizer a∗ of L(a) with rate
n−1/3 and also provides its asymptotic distribution after renormalization. We assume in
this theorem that K ≤ K0. If K = K0, one can show that when the minimizer a∗ is unique,
it is equal to a0, i.e., then ha∗ is Bayes classifier. The case K < K0 is illustrated at the end
of this subsection.

Figure 1: F0 and the points at which 2F0 − 1 changes sign.

We use the notation 1(u, v > 0) for 1(u > 0)1(v > 0), for scalars u and v. Likewise, we
write 1(u, v < 0) for 1(u < 0)1(v < 0).

Theorem 1 Suppose F0(0) < 1/2, that

a∗ = (a∗1, a
∗
2, . . . , a

∗
K) := arg min

a∈UK

L(a), (11)

is the unique minimizer of L(a), that a∗ is in the interior of UK , and that L(a) is a con-
tinuous function of a. Suppose that F0 has non-zero derivative f0 in a neighborhood of a∗k,
k = 1, . . . , K. Let g(a∗k) > 0, for all k = 1, . . . ,K, where g, the density of G, is continuous
in a neighborhood of a∗. Then the process

{n2/3
[
Ln(a∗ + tn−1/3)− Ln(a∗)

]
: t ∈ RK}

(where we define Ln(a) = 0 for a /∈ UK), converges in distribution to a Gaussian process
{Z(t) : t ∈ RK} with continuous sample paths, and expected value EZ(t) = tTVt/2, where

V =




2f0(a∗1)g(a∗1) 0 . . . 0
0 −2f0(a∗2)g(a∗2) . . . 0
. . . . . . . . . . . .
0 0 . . . (−1)K−12f0(a∗K)g(a∗K)


 ,
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and covariance kernel H = [H(s, t)], where

H(s, t) =
K∑

k=1

g(a∗k)
[
min(sk, tk)1(sk, tk > 0)−max(sk, tk)1(sk, tk < 0)

]
.

Moreover,
n

1
3 (ân − a∗) →L arg minZ(t).

The proof can be found in Section 4, where it is also noted that the diagonal elements
of the matrix V are all positive.

Under the assumptions of Theorem 1

L(ân)− L(a∗) ≈ (ân − a∗)TV(ân − a∗)/2

for large n. The theorem therefore also provides us the rate n−2/3 for the convergence
of the prediction error L(ân) of the classifier hân , to the prediction error of ha∗ , and the
asymptotic distribution of the prediction error L(ân) after renormalization. We present this
asymptotic distribution in a corollary.

Corollary 2 Suppose the conditions of Theorem 1 are met. Then

n
2
3 [L(ân)− L(a∗)] →L UTVU/2,

where U = arg mint Z(t), and Z is defined in Theorem 1.

Recall that one of the conditions in the above theorem is that L has a unique minimizer
in the interior of UK . This implies that K should not be larger than K0. Let us consider
the situation K = 1,K0 = 2 and discuss when there is a unique minimizer.

Suppose K = 1 and

F0(x)
{

< 1/2 x 6∈ [a0
1, a

0
2],

> 1/2 x ∈ (a0
1, a

0
2),

(12)

where a0
1 and a0

2 are unknown and 0 < a0
1 < a0

2 < 1. Note that

L(a) = P (Y = 1, ha(X) = −1) + P (Y = −1, ha(X) = 1)

=
∫ a

0
F0dG +

∫ 1

a
(1− F0)dG

=
∫ a

0
(2F0 − 1)dG +

∫ 1

0
(1− F0)dG.

If
∫ 1
a0
1
(2F0 − 1)dG > 0, then a∗ = a0

1 is the unique minimizer of L. If
∫ 1
a0
1
(2F0 − 1)dG < 0,

then L has a unique minimum at 1. The minimizer is not in the open interval (0, 1), and
Theorem 1 indeed fails. In this case, the convergence result is the same as Theorem 5 below
(under its assumptions). If

∫ 1
a0
1
(2F0 − 1)dG = 0, then L has two minima at 1 and a0

1.
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2.2 Higher-dimensional feature space

In this subsection, X ⊂ Rd with d > 1, and we write for X ∈ X ,

X = (U, V ), U ∈ Rd−1, V ∈ R.

Consider given functions
ka : Rd−1 → R, a ∈ A,

and classifiers
ha = 21{Ca} − 1, a ∈ A,

where
Ca := {(u, v) : v ≤ ka(u)}, a ∈ A.

This kind of classifiers has been frequently considered and discussed in classification theory.
We study the case where the parameter space is finite-dimensional, say A = Rr. A famous
example is when ka is linear in a, see for instance Hastie et al. (2001). Tsybakov and
van de Geer (2005) consider this case for large r, depending on n. In contrast, we assume
throughout that r is fixed.

Let again
a∗ = arg min

a
L(a),

be the minimizer of the theoretical risk L(a), and

ân = arg min
a

Ln(a)

be the empirical risk minimizer. We would like to know the asymptotic distribution of ân.
In this subsection, we suppose that the class {Ca : a ∈ Rr} is VC, i.e., that {ka(u) :

a ∈ Rr} is VC-subgraph. We also suppose that ka is a regular function of the parameter
a ∈ Rr, i.e., the gradient

∂

∂a
ka(u) = k′a(u) (13)

of ka(u) exists for all u, and also its Hessian

∂2

∂a∂aT
ka(u) = k′′a(u). (14)

We will need to exchange the order of differentiation and integration of certain functions.
To be able to do so, we require locally dominated integrability, which is defined as follows.

Definition 3 Let {fa : a ∈ A}, A ⊂ Rr, be a collection of functions on some measurable
space (U , µ). It is called locally dominated integrable with respect to the measure µ and
variable a if for each a there is a neighborhood I of a and a nonnegative µ-integrable function
g1 such that for all u ∈ U and b ∈ I,

|fb(u)| ≤ g1(u).
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The probability of misclassification using the classifier ha is

L(a) = P (ha(X) 6= Y ) =
∫

Ca

(1− F0)dG +
∫

Cc
a

F0dG

=
∫

Ca

(1− 2F0)dG + P (Y = 1).

Suppose that the density g of G, with respect to Lebesgue measure, exists. We use the
notation

m(x) := (1− 2F0(x))g(x). (15)

Assumption A: Assume existence of the derivatives (13) and (14) and also of

m′(u, v) :=
∂

∂v
m(u, v).

Assume furthermore that the functions m(u, ka(u))k′a(u) and ∂
∂aT [m(u, ka(u))k′a(u)] are lo-

cally dominated integrable with respect to Lebesgue measure and variable a. Also, assume
that the function

∫
k′a(u)g(u, ka(u))du is uniformly bounded for a in a neighborhood of a∗,

and that for each u, m′(u, ka(u)) and k′′a(u) are continuous in a neighborhood of a∗.

Write

Va :=
∂2

∂a∂aT
L(a).

Then

Va =
∫

Σa(u)m(u, ka(u))du, (16)

where

Σa(u) = k′a(u)k′Ta (u)
m′(u, ka(u))
m(u, ka(u))

+ k′′a(u). (17)

In the following theorem, we show that n
1
3 (ân − a∗) converges to the location of the

minimum of some Gaussian process.

Theorem 4 Suppose that L has a unique minimum at a∗ and that it is continuous at a∗.
Assume that for all u, the density g(u, v) is continuous as a function of v at v = ka∗(u).
Let Va be continuous at a∗ and V := Va∗ be positive definite. Under Assumption A, we have

n
1
3 (ân − a∗) →L arg min

t∈Rr
Z(t)

where {Z(t) : t ∈ Rr} is a Gaussian process with EZ(t) = tTVt/2, t ∈ Rr, and with
continuous sample paths and covariance structure

Cov(Z(t), Z(s)) =
∫

g(u, ka∗(u))αT (u, t, s)k′a∗(u)du, t, s ∈ Rr,
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with

α(u, t, s) =





−s tT k′a∗(u) ≤ sT k′a∗(u) ≤ 0
−t sT k′a∗(u) ≤ tT k′a∗(u) ≤ 0
t 0 ≤ tT k′a∗(u) ≤ sT k′a∗(u)
s 0 ≤ sT k′a∗(u) ≤ tT k′a∗(u)
0 o.w..

(18)

The proof is given in Section 4.

As an example of Theorem 4, suppose r = d and ka is the linear function

ka(u) := a1u1 + . . . + ar−1ur−1 + ar.

It is interesting to compute the matrix V (see (16) and (17)) in this case. Using our
notations, we have

k′a(u) = [u1 u2 . . . ur−1 1]T .

Let f0(u, v) := ∂
∂vF0(u, v) and g′(u, v) := ∂

∂vg(u, v) exist. Then by (15), we have

m′(u, v) = −2f0(u, v)g(u, v) + (1− 2F0(u, v))g′(u, v)

and by (16) and (17)

V =
[ ∫

uiuj(−2f0(u, ka0(u))g(u, ka0(u)) + (1− 2F0(u, ka0(u)))g′(u, ka0(u)))du1 . . . dur−1

]
,

where we define ur := 1.

3. Other rates of convergence

In this section, we will investigate the rates that can occur if we do not assume the differen-
tiability conditions needed for the Kim Pollard Theorem. We will restrict ourselves to the
case of a one-dimensional feature space, with X = [0, 1].

We first assume K = 1, and that 2F0 − 1 has at most one sign change (i.e. K0 ≤ 1).
Then, we briefly discuss what happens for general K0 and K.

3.1 The case of one threshold and at most one sign change

Let K = 1 and K0 ≤ 1. Now, either 2F0 − 1 changes sign at a∗ ∈ (0, 1) or there are no
sign changes in (0, 1), i.e. K0 = 0. In the first case, we assume F0(x) < 1/2 near 0. In the
latter case, we assume F0(x) < 1/2 for all x ∈ (0, 1), and let a∗ = 1, or F0(x) > 1/2 for all
x ∈ (0, 1) and let a∗ = 0. One easily verifies that a∗ is the minimizer of L(a) over a ∈ [0, 1].
However, if F0 is not differentiable at a∗, Theorem 1 can not be applied. In this section, we
impose the margin condition of Tsybakov (2004) (see also Mammen and Tsybakov (1999)).
It can also be found on papers concerned with estimation of density level sets, see Polonik
(1995) and Tsybakov (1997). In our context, this margin assumption is Assumption B
below. Throughout, a neighborhood of a∗ is some set of the form (a∗ − δ, a∗ + δ), δ > 0,
intersected with [0, 1].
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Assumption B: Let there exist c > 0 and ε ≥ 0 such that

|1− 2F0(x)|g(x) ≥ c|x− a∗|ε, (19)

for all x in a neighborhood of a∗.

In Section 2, we assumed differentiability of F0 in a neighborhood of a∗ ∈ (0, 1), with
positive derivative f0. This corresponds to the case ε = 1. We have ε = 0 if F0 has a jump
at a∗, and also if a∗ ∈ {0, 1}. In general, Assumption B describes how well a∗ is identified:
large values of ε correspond to less identifiability.

Recall now equality (6):

L(ân)− L(a∗) ≤ − [νn(ân)− νn(a∗)] /
√

n. (20)

Let σ(a) be the standard deviation of [νn(a)− νn(a∗)]. Let

ψ(r) = E
(

sup
a: σ(a)≤r

∣∣νn(a)− ν(a)
∣∣
)

, r > 0. (21)

It will follow from the proof of Theorem 5 below, that ψ(r) ∼ r. Moreover, the standard
deviation σ(a) behaves like ‖a − a∗‖1/2. Therefore. as we already stated in Section 2, the
right hand side of (20) behaves in probability like ‖ân − a∗‖1/2/

√
n. From Assumption B,

we see that the left hand side behaves like ‖ân − a∗‖1+ε. This leads to the rate n−
1+ε
1+2ε .

Theorem 5 Consider the class H defined in (8), with K = 1 and b1 = −1. Under As-
sumption B,

‖ân − a∗‖ = OP(n−
1

1+2ε ), L(ân)− L(a∗) = OP(n−
1+ε
1+2ε ).

Proof We use the inequality (20):

L(ân)− L(a∗) ≤ −[νn(ân)− νn(a∗)]/
√

n, (22)

with νn(a) :=
√

n[Ln(a)− L(a)]. By Assumption B, we have the lower bound

L(ân)− L(a∗) ≥ c‖ân − a∗‖1+ε

for the left hand side of of (22).
To find an upper bound for the right hand side of (20), we apply Theorem 5.12 of van de

Geer (2000). Define

G := {φ : φ(x, y) := 1(ha(x) 6= y), a ∈ [0, 1]}

and for φ∗(x, y) = 1(ha∗(x) 6= y) and δ > 0,

G(δ) := {φ− φ∗ : φ ∈ G, ‖a− a∗‖ ≤ δ2}.

11
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Let {HB(u,G1(δ), P ), u > 0} be the entropy with bracketing, for the metric induced by the
L2(P ) norm, of the class G(δ). It is easy to see that for some constant c1, and for all δ > 0,

HB(u,G1(δ), P ) ≤ 2 log
c1δ

u
, ∀u ∈ (0, δ).

Set δn = n−1/2. We may select T , C, C0 and C1 such that for a := C1T
2δn and R := Tδn,

the conditions of Theorem 5.11 of van de Geer (2000) hold. This theorem then gives that
for large T and large n,

P

(
sup

‖a−a∗‖≤δ2
n

|νn(a)− νn(a∗)| ≥ C1T
2δn

)
≤ C exp(−T ).

Now, by the peeling device, see for example van de Geer (2000), we can show that

lim
T→∞

lim sup
n→∞

P
(

sup√
‖a−a∗‖>δn

|νn(a)− νn(a∗)|√
‖a− a∗‖ ≥ T

)
= 0.

So,
|νn(ân)− νn(a∗)|√
‖ân − a∗‖ ∨ δn

= OP(1). (23)

Combining this with (22) and Assumption B yields

c‖ân − a∗‖1+ε ≤ (
√
‖ân − a∗‖+ δn)OP(1)/

√
n

or ‖ân − a∗‖ = OP(n−1/(1+2ε)). Using (23) and (22), we can calculate L(ân) − L(a∗) =
OP(n−

1+ε
1+2ε ). ¥

Theorem 5 can be refined to a non-asymptotic bound, for example in the following way.
Let ψ̄ be the smallest concave majorant of ψ defined in (21), and let w(·) be the smallest
concave upper-bound of

r 7→ sup
L(a)−L(a∗)≤r2

σ(a).

(In our situation, w(r) ∼ r
1

1+ε .) Let r∗ be the positive solution of

r2 = ψ̄(w(r))/
√

n.

Then, from Massart (2003), Koltchinskii (2003a), or Bartlett et al. (2004), we obtain that

P
(

L(ân)− L(a∗) > r2
∗ +

w(r∗)
r2∗

2x

n

)
≤ e−x, x > 0.

When F0 has a jump at a∗, we have the case ε = 0. Under the conditions of Theorem 5
with ε = 0, we derive the asymptotic distribution of the renormalized empirical risk, locally
in a neighborhood of order 1/n of a∗, the local empirical risk. The rescaled estimator
n(ân − a∗) remains bounded in probability. However, since the local empirical risk has

12
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a limit law which has no unique minimum, n(ân − a∗) generally does not converge in
distribution. Similar results can be derived when a∗ is one of the boundary points 0 or 1.
For simplicity we only consider the right hand side limit. We assume that F0 and g are
right continuous.

In Theorem 6 below, convergence in distribution is to be understood in the sense given
e.g. in Barbour et al. (1992).

Theorem 6 Consider the class H defined in (8), with K = 1 and b1 = −1. Assume that
a∗ ∈ (0, 1), 1/2 < F0(a∗) < 1, g and F0 are right continuous at a∗ and g(a∗) > 0. Let

λ1 := F0(a∗)g(a∗), λ2 := (1− F0(a∗))g(a∗).

Let Zn(t) = n[Ln(a∗ + t/n) − Ln(a∗)], t > 0. The process Zn converges in distribution to
Z1 − Z2, where Zi is a Poisson process with intensity λi, i = 1, 2, and Z1(t) and Z2(s) are
independent for all s, t > 0.

Proof We have for t > 0

Zn(t) =
∑

Yi=1

1(a∗ ≤ Xi < a∗ + t/n)−
∑

Yi=−1

1(a∗ ≤ Xi < a∗ + t/n).

Define

In(t) :=
∑

Yi=1

1(a∗ ≤ Xi < a∗ + t/n), Jn(t) :=
∑

Yi=−1

1(a∗ ≤ Xi < a∗ + t/n). (24)

The random variable In(t) has a binomial distribution with parameters n and p1, where

p1 := P (Y = 1, a∗ ≤ X < a∗ + t/n) =
∫ a∗+t/n

a∗
F0dG. (25)

For large n, p1 is close to λ1t/n. Similarly, for large n, Jn(t) has binomial distribution
with parameters n and p2 := λ2t/n. We know that B(n, λt/n), for large n and small t, is
approximately Poisson(λt), i.e. the total variation distance between the two distributions
goes to zero as n →∞.

Note that for every 0 < t1 < t2 < 1,

nP (Y = 1, a∗ + t1/n ≤ X ≤ a∗ + t2/n) = n

∫ a∗+t2/n

a∗+t1/n
F0dG → λ1(t2 − t1)

and

nP (Y = −1, a∗ + t1/n ≤ X ≤ a∗ + t2/n) = n

∫ a∗+t2/n

a∗+t1/n
(1− F0)dG → λ2(t2 − t1)

as n → ∞. Now by Theorem 5.2.4, Remark 4 and Proposition A2.12 of Embrechts et al.
(1997), we conclude that the whole process In (Jn) converges weakly to a Poisson process

13
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with intensity λ1 (λ2). (See also Barbour et al. (1992).) With the method of moment gener-
ating functions we can prove that the processes In and Jn are asymptotically independent,
i.e., for any t1, ..., tm, s1, ..., sk,

E(exp(r1In(t1) + ... + rmIn(tm) + l1Jn(s1) + ... + lkJn(sk)))

converges to

E(exp(r1Z1(t1) + ... + rmZ1(tm)))E(exp(l1Z2(s1) + ... + lkZ2(sk))).

Thus, In−Jn converges weakly to the difference of two independent Poisson processes with
intensities λ1 and λ2. ¥

3.2 Extension to several thresholds and sign changes

Recall that K0 is the number of sign changes of 2F0 − 1, and that K is the number of
thresholds in the model class H defined in (8). Below, whenever we mention the rate n−1/3

or n−1, we mean the rate can be obtained under some conditions on F0 and g (see Theorem
1 (where ε = 1), and Theorem 5 with ε = 0). Recall that a0 denotes the K0-vector of the
locations of the sign changes of 2F0 − 1.

1. Let K ≤ K0 and a∗ is an interior point of UK . In this case, ân converges to a∗. The
rate is n−1/3.

2. Let K = K0 + 1. Then, K0 of the elements of ân converge to a0, and either â1,n

converges to 0 or âK,n converges to 1. The rate of convergence to the interior points is n−1/3

and the rate of convergence to the boundary point is n−1.

3. Let K > K0 + 1. In this case, K0 of the elements of ân converge to a0 with rate
n−1/3. If K −K0 is odd, one element of ân converges to one of the boundary points 0 or 1.

4. Proof of Theorem 1 and Theorem 4

We start out with presenting the Kim Pollard Theorem (Kim and Pollard (1990)) in a
general context. Let ξ1, ξ2, . . . be a sequence of independent copies of a random variable ξ,
with values in some space S. Let φ(·, a) : S → R be a collection of functions indexed by a
parameter a ∈ A ⊂ Rr. Define Ln(a) =

∑n
i=1 φ(ξi, a)/n and L(a) = Eφ(ξ, a). Moreover,

let
νn(a) =

√
n[Ln(a)− L(a)], a ∈ A.

Define
GR := {φ(·, a) : |ak − a∗k| ≤ R, k = 1, ..., r}, R > 0. (26)

The envelope GR of this class is defined as

GR(·) = sup
φ∈GR

|φ(·)|.

Theorem 1.1 in Kim and Pollard (1990) requires uniform manageability of a class of func-
tions. The definition of uniform manageability can be found in Pollard (1989) and Pollard
(1990). If G is VC-subgraph, then a sufficient condition for the class GR to be uniformly
manageable is that its envelope function GR is uniformly square integrable for R near zero.

14
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Theorem 7 ( Kim and Pollard (1990)) Let {ân} be a sequence of estimators for which
(i) Ln(ân) ≤ infa∈A Ln(a) + oP (n−2/3),
(ii) ân converges in probability to the unique a∗ that minimizes L(a),
(iii) a∗ is an interior point of A.
Let φ(·, a∗) = 0 and suppose
(iv) L(a) is twice differentiable with positive definite second derivative matrix V at a∗,
(v) H(s, t) = limτ→∞ τEφ(ξ, a + s/τ)φ(ξ, a + t/τ)) exists for each s, t in Rd and

lim
τ→∞ τEφ(ξ, a∗ + s/τ)21{|φ(ξ, a∗ + s/τ)| > ητ}) = 0

for each η > 0 and s in Rr,
(vi) E|φ(ξ, a)− φ(ξ, b)| = O(‖a− b‖) near a∗,
(vii) the classes GR in (26), for R near zero, are uniformly manageable for the envelopes
GR and satisfy E(G2

R) = O(R) as R → 0, and for each η > 0 there is a constant C such
that E(G2

R1{GR > C}) < ηR for R near zero.
Then the process {n2/3[Ln(a∗ + tn−1/3) − Ln(a∗)] : t ∈ Rr}, (where we take Ln(a) = 0 if
a /∈ A}), converges in distribution to a Gaussian process {Z(t) : t ∈ Rr} with continuous
sample paths, expected value EZ(t) = tTVt/2 and covariance kernel H. If Z has non-
degenerate increments, then n1/3(ân − a∗) converges in distribution to the (almost surely
unique) random vector that minimizes {Z(t) : t ∈ Rr}.

Proof of Theorem 1 We apply the Kim Pollard Theorem to the function

φ(x, y, a) := 1(ha(x) 6= y)− 1(ha∗(x) 6= y),

Condition (i) is met by the definition of ân. To check Condition (ii), we note that,
because {φ(·, a) : a ∈ UK} is a uniformly bounded VC-subgraph class, we have the uniform
law of large numbers

sup
a∈UK

|Ln(a)− L(a)| → 0, a.s..

Since we assume that a∗ ∈ UK is unique and L is continuous., this implies

ân → a∗, a.s..

Condition (iii) is satisfied by assumption.
To check Condition (iv), for odd i, we have

∂

∂ai
P (ha(X) 6= Y ) = (2F0(ai)− 1)g(ai)

so
∂2

∂a2
i

P (ha(X) 6= Y )
∣∣∣∣
ai=a∗i

=
([

2f0(ai)g(ai) + (2F0(ai)− 1)g′(ai)
])∣∣∣∣

ai=a∗i

= −2f0(a∗i )g(a∗i ).

15
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For even i, these terms are symmetric. Thus (iv) is satisfied with

V :=




2f0(a∗1)g(a∗1) 0 . . . 0
0 −2f0(a∗2)g(a∗2) . . . 0

. . . . . . . . . . . .
0 0 . . . (−1)K−12f0(a∗K)g(a∗K)


 .

Now, a∗ minimizes L(a) for a in the interior of UK , so 2F0 − 1 changes sign from negative
to positive at a∗k for odd k, and it changes sign from positive to negative at a∗k for even k.
Hence f0(a∗k) > 0 for odd k and f0(a∗k) < 0 for even k and therefore V is positive definite.

Next, we study the existence of the covariance kernel H, required in Condition (v).
Consider t, s ∈ R and large τ > 0 so that a∗ + t/τ, a∗ + s/τ ∈ UK . First we note that the
product of the brackets is the same for Y = 1 and for Y = −1. For a1 < a2, b1 < b2, a

∗
1 < a∗2,

we have
[
1(a∗1 ≤ x < a∗2)− 1(a1 ≤ x < a2)

][
1(a∗1 ≤ x < a∗2)− 1(b1 ≤ x < b2)

]

=
[
1(x ≥ a1)− 1(x ≥ a2)− 1(x ≥ a∗1) + 1(x ≥ a∗2)

]

×
[
1(x ≥ b1)− 1(x ≥ b2)− 1(x ≥ a∗1) + 1(x ≥ a∗2)

]

= A(x)−B(x)− C(x) + D(x),

where
A(x) := (1(x ≥ a1)− 1(x ≥ a∗1))(1(x ≥ b1)− 1(x ≥ a∗1))

= 1[min(a1, a
∗
1), max(a1, a

∗
1))1[min(b1, a

∗
1), max(b1, a

∗
1))

= 1[a∗1, min(a1, b1))1(a∗1 < min(a1, b1)) + 1[max(a1, b1), a∗1)1(a∗1 > max(a1, b1)),

D(x) := (1(x ≥ a2)− 1(x ≥ a∗2))(1(x ≥ b2)− 1(x ≥ a∗2))

= 1[min(a2, a
∗
2), max(a2, a

∗
2))1[min(b2, a

∗
2), max(b2, a

∗
2))

= 1[a∗2, min(a2, b2))1(a∗2 < min(a2, b2)) + 1[max(a2, b2), a∗2)1(a∗2 > max(a2, b2)),

B(x) := (1(x ≥ a1)− 1(x ≥ a∗1))(1(x ≥ b2)− 1(x ≥ a∗2)),

and
C(x) := (1(x ≥ a2)− 1(x ≥ a∗2))(1(x ≥ b1)− 1(x ≥ a∗1)).

Assume that a1 = a∗1 + s1/τ, a2 = a∗2 + s2/τ, b1 = a∗1 + t1/τ, b2 = a∗2 + t2/τ . When τ tends
to infinity, we have

∫
BdG =

∫
CdG = 0. Moreover,

∫
(A + D)dG

=
[
1(0 < s1, t1)

∫ a∗1+min(s1,t1)/τ

a∗1
dG + 1(0 > s1, t1)

∫ a∗1

a∗1+max(s1,t1)/τ
dG
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+1(0 < s2, t2)
∫ a∗2+min(s2,t2)/τ

a∗2
dG + 1(0 > s2, t2)

∫ a∗2

a∗2+max(s2,t2)/τ
dG

]
.

= min(s1, t1)g(a∗1)1(0 < s1, t1)−max(s1, t1)g(a∗1)1(0 > s1, t1)

+min(s2, t2)g(a∗2)1(0 < s2, t2)−max(s2, t2)g(a∗2)1(0 > s2, t2). (27)

Let m be the integer part of (K + 1)/2. Now, we obtain

Eφ(X, Y, a∗ + s/τ)φ(X,Y, a∗ + t/τ)

= E

[
1
(
X ∈ ∪m

i=1[a
∗
2i−1 + s2i−1/τ, a∗2i + s2i/τ)

)− 1(
X ∈ ∪m

i=1[a
∗
2i−1, a

∗
2i)

)]

×
[
1
(
X ∈ ∪m

i=1[a
∗
2i−1 + t2i−1/τ, a∗2i + t2i/τ)

)− 1(
X ∈ ∪m

i=1[a
∗
2i−1, a

∗
2i)

)]

=
K∑

k=1

E

[
1
(
X ∈ [a∗k, a

∗
k + min(sk, tk))

)
1(0 < sk, tk)

−1(
X ∈ [a∗k + max(sk, tk), a∗k)

)
1(0 > sk, tk)

]
(28)

(for large τ). Finally, by (27) and (28), the limit of τEφ(X, Y, a∗+ s/τ)φ(X, Y, a∗+ t/τ) as
τ →∞ becomes

H(s, t) =
K∑

k=1

[
min(sk, tk)g(a∗k)1(0 < sk, tk)

−max(sk, tk)g(a∗k)1(0 > sk, tk)
]

So, the first part of condition (v) is satisfied. As for the second part of condition (v), for
any ε and τ > 1/ε, and t ∈ R, we have

E

[
12(ha∗+ t

τ
(X) 6= Y )1(1(ha∗+ t

r
(X) 6= Y ) > τε)

]
= 0.

To show that Condition (vi) is satisfied, we note that for any a, b ∈ UK ,

E

[∣∣1(ha(X) 6= Y )− 1(hb(X) 6= Y )
∣∣
]
≤

K∑

k=1

E

[
1
(
X ∈ [min(ak, bk), max(ak, bk))

)]

≤
K∑

k=1

|ak − bk|g(ξk)

for some ξk ∈ [min(ak, bk), max(ak, bk)]. Hence

E

(∣∣1(ha(X) 6= Y )− 1(hb(X) 6= Y )
∣∣
)

= O(‖a− b‖),

for a and b near a∗.
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Now we calculate an upper bound for the envelope function. Fix (x, y) ∈ X × {−1, 1}.
To maximize the function φ(x, y, a) = 1(ha(x) 6= y) − 1(ha∗(x) 6= y)|, note that for y = 1,
this function is increasing in ak’s for even k and decreasing in ak’s for odd k. To simplify,
assume K is odd. Over GR, φ(x, y, a) is maximized when

a1 = a∗1 −R, a2 = a∗2 + R, a3 = a∗3 −R, . . . , aK = a∗K −R. (29)

For y = −1, it is maximized when

a1 = a∗1 + R, a2 = a∗2 −R, a3 = a∗3 + R, . . . , aK = a∗K + R. (30)

Similarly, 1(ha∗(x) 6= y)−1(ha(x) 6= y) is maximized for y = 1, in case (30) and for y = −1,
it is maximized in case (29). So, the maximum of |φ(x, y, a))| is the maximum of

1

(
x ∈ [a∗1 −R, a∗1] ∪ [a∗2, a

∗
2 + R] ∪ . . . ∪ [a∗K −R, a∗K ]

)

and

1

(
x ∈ [a∗1, a

∗
1 + R] ∪ [a∗2 −R, a∗2] ∪ . . . ∪ [a∗K , a∗K + R]

)
.

So the envelope GR of GR satisfies
GR ≤ G′

R

where

G′
R = 1

(
x ∈ ∪K

k=1[a
∗
k −R, a∗k + R]

)
.

Now, note that

E(G′2
R) ≤

K∑

k=1

P (a∗k −R ≤ X ≤ a∗k + R)

and
P (a∗k −R ≤ X ≤ a∗k + R)

R
=

2Rg(a′k)
R

< R∗, ∃R∗ < ∞,

for some a′k ∈ (a∗k − R, a∗k + R), when R is close to zero. We thus have E(G2
R) = O(R).

Since G′
R is bounded by one, it is also easy to see that G′

R is uniformly square integrable
for R close to zero. Finally, since G is VC-subgraph, we conclude that GR is uniformly
manageable for the envelope GR. ¥

Proof of Theorem 4
Checking the Conditions (i)-(vii) of the Kim Pollard Theorem is very similar to the proof

of Theorem 1. We consider again φ(x, y, a) = P (ha(X) 6= Y )− P (ha∗(X) 6= Y ). Condition
(i) is clearly true. Because the class {Ca : a ∈ Rr} is VC and L is continuous at a∗, we
know by the same argument as in the proof of Theorem 1 that ân → a∗ almost surely. So,
Condition (ii) is met. Condition (iii) is met because Rr is open. The function L is twice
differentiable with positive definite second derivative matrix V at a∗. So, (iv) is satisfied.
To show that (v) is satisfied, we consider the covariance structure of φ(X,Y, a). Now,

Cov
(
φ(X, Y, a)], φ(X, Y, ã)

)
= I − II,
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where
I := E

[
φ(X,Y, a)φ(X, Y, ã)

]

and
II :=

[
L(a)− L(a∗)

][
L(ã)− L(a∗)

]
= O(τ−4),

for ‖a − a∗‖ = O(1/τ) and ‖ã − a∗‖ = O(1/τ). As for I, write C = Ca, C̃ = Cã, and
C∗ = Ca∗ , then

I = P (Y = 1, X ∈ Cc ∩ C̃c)− P (Y = 1, X ∈ Cc ∩ Cc
0)

−P (Y = 1, X ∈ Cc
0 ∩ C̃c) + P (Y = 1, X ∈ Cc

∗)

+P (Y = −1, X ∈ C ∩ C̃)− P (Y = −1, X ∈ C ∩ C∗)

−P (Y = −1, X ∈ C0 ∩ C̃) + P (Y = −1, X ∈ C∗).

It is easy to see that

I =
∫ [∫

v≥ka(u),v≥kã(u)
F0(u, v)−

∫

v≥ka(u),v≥ka∗ (u)
F0(u, v)

−
∫

v≥ka∗ (u),v≥kã(u)
F0(u, v) +

∫

v≥ka∗ (u)
F0(u, v)

+
∫

v<ka(u),v<kã(u)
(1− F0(u, v))−

∫

v<ka(u),v<ka∗ (u)
(1− F0(u, v))

−
∫

v<ka∗ (u),v<kã(u)
(1− F0(u, v)) +

∫

v<ka∗ (u),
(1− F0(u, v))

]
g(u, v)dudv.

=
∫

ka(u)≤kã(u)≤ka∗ (u)

∫ ka0(u)

kã(u)
g(u, v)dvdu +

∫

kã(u)≤ka(u)≤ka∗ (u)

∫ ka∗ (u)

ka(u)
g(u, v)dvdu

+
∫

ka∗ (u)≤ka(u)≤kã(u)

∫ ka(u)

ka∗ (u)
g(u, v)dvdu +

∫

ka∗ (u)≤kã(u)≤ka(u)

∫ kã(u)

ka∗ (u)
g(u, v)dvdu.

For each s, t ∈ Rr, and for sequences {ā(τ)} and {a(τ)} with

lim
τ→∞ ā(τ) = lim

τ→∞ a(τ) = a∗,

we have

lim
τ→∞ τ

∫

ka∗+s/τ (u)≤ka∗+t/τ (u)≤ka∗ (u)

∫ ka∗ (u)

ka∗+t/τ (u)
g(u, v)dvdu

= lim
τ→∞ τ

∫

ka∗+s/τ (u)≤ka∗+t/τ (u)≤ka∗ (u)

(
ka∗(u)− ka∗+t/τ (u)

)
g(u, kā(τ)(u))du

= lim
τ→∞ τ

∫

ka∗+s/τ (u)≤ka∗+t/τ (u)≤ka∗ (u)

(−tT /τ
)
k′a(τ)(u)g(u, kā(τ)(u))du. (31)
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When τ →∞, the conditions ka0+s/τ (u) ≤ ka∗+t/τ (u) and ka∗+t/τ (u) ≤ ka∗(u) becomes
(−sT + tT )k′a∗(u) ≥ 0 and −tT k′a∗(u) ≥ 0, respectively. So the limit in (31) becomes

−
∫

0≥tT k′
a∗ (u)≥sT k′

a∗ (u)
tT k′a∗(u)g(u, ka∗(u))du.

Hence, have shown that

lim
τ→∞ τCov

(
φ(X,Y, a∗ + s/τ), φ(X, Y, a∗ + t/τ)

)

=
∫

αT (u, t, s)k′a∗(u)g(u, ka∗(u))du,

where α is defined in (18). The second part of Condition (v) is true because the functions
φ(·, a) are bounded. We conclude that Condition (v) is satisfied.

Conditions (vi) and (vii) are verified in the same way as in the proof of Theorem 1. ¥
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