Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data

Cristina BUTUCEA†
Mădălin GUTĂ‡
Luis ARTILES§

December 20, 2005

Abstract: We estimate the quantum state of a light beam from results of quantum homodyne measurements performed on identically prepared quantum systems. The state is represented through the Wigner function, a generalized probability density on \mathbb{R}^2 which may take negative values and must respect intrinsic positivity constraints imposed by quantum physics. The effect of the losses due to detection inefficiencies which are always present in a real experiment, is the addition to the tomographic data of independent Gaussian noise.

We construct a kernel estimator for the Wigner function, prove that it is minimax efficient for the pointwise risk over a class of infinitely differentiable functions, and implement it for numerical results. We construct adaptive estimators, i.e. which do not depend on the smoothness parameters, and prove that in some set-ups they attain the minimax rates for the corresponding smoothness class.

Keywords: Adaptive estimation, deconvolution, nonparametric estimation, infinitely differentiable functions, exact constants in nonparametric smoothing, minimax risk, quantum state, quantum homodyne tomography, Radon transform, Wigner function.

†Modal’X, Université Paris X, 200, avenue de la République, 92001 Nanterre Cedex, France and PMA, 175, rue de Chevaleret, 75013 Paris, France
‡Mathematical Institute, University of Utrecht, Budapestlaan 6, 3584 CD Utrecht, The Netherlands
§Eurandom, P.O. Box 513, 5600 MB Eindhoven, The Netherlands