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Abstract

We estimate the quantum state of a light beam from results of quantum
homodyne measurements performed on identically prepared quantum systems.
The state is represented through the Wigner function, a generalized probabil-
ity density on R2 which may take negative values and must respect intrinsic
positivity constraints imposed by quantum physics. The effect of the losses due
to detection inefficiencies which are always present in a real experiment, is the
addition to the tomographic data of independent Gaussian noise.

We construct a kernel estimator for the Wigner function, prove that it is
minimax efficient for the pointwise risk over a class of infinitely differentiable
functions, and implement it for numerical results. We construct adaptive esti-
mators, i.e. which do not depend on the smoothness parameters, and prove that
in some set-ups they attain the minimax rates for the corresponding smoothness
class.

Short title: QHT with noisy data
1Mathematics Subject Classifications 2000: 62G05, 62G20, 81V80
2Key Words: Adaptive estimation, deconvolution, nonparametric estimation, infinitely dif-

ferentiable functions, exact constants in nonparametric smoothing, minimax risk, quantum state,

quantum homodyne tomography, Radon transform, Wigner function.
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1 Introduction

In 1932 Wigner [26] published a seminal paper in which he introduced a fundamental
tool for quantum mechanics known these days as the Wigner function. Glauber
extended such techniques to quantum optics where phase space representations of
quantum states play an important role in detecting quantum effects in light.

Quantum homodyne tomography (QHT) is a technique for reconstructing the state
of a quantum system from measurement data, which was theoretically proposed in
Vogel et al. [25] and put in practice for the first time by Smithey et al. [22]. This
method allows quantum opticians to visualize the Wigner function of newly created
states of light and verify wether the theoretical predictions agree with the statistical
findings. We mention a few experiments such as the creation of squeezed states
Breitenbach et al. [5] and of single-photon-added coherent states Zavatta et al. [27].

Various aspect of the corresponding ill posed inverse problem have been analyzed
by D’Ariano et al. [8], Leonhardt et al. [20] and different estimation methods have
been proposed by Banaszek et al. [2] and Lvovsky [21]. For an overview of the
QHT problem in quantum optics we refer to Leonhardt [19] and for more recent
developements to Beck and Raymer [4].

This paper addresses the statistical problem of estimating the Wigner function of
a beam of light from results of QHT measurements on independent, identically
prepared beams.

One way to think about quantum tomography as a statistical problem is as follows:
the unknown parameter is a joint density W of two variables Q and P . We observe
the random variable (X,Φ) = (cos(Φ)Q + sin(Φ)P,Φ) where Φ is chosen indepen-
dently of (Q,P ), and uniformly in the interval [0, π]. The joint density of (X,Φ)
can be expressed mathematically in terms of the joint density W of (Q,P ) which
is allowed to take negative as well as positive values, subject to certain restrictions
which guarantee that (X,Φ) does have a proper probability density. In an ideal
situation W would be a density function and then the statistical problem would
be to estimate W from independent samples of (X,Φ). In the context of positron
emission tomography this problem has been addressed in Cavalier [7] which pro-
vides minimax rates for the pointwise risk on a class of “very smooth” probability
densities. The quantum tomography version where W is a proper Wigner function
is treated along similar lines in Guţă and Artiles [14] with the important difference
that the proof of the lower bound requires the construction of a “worst parametric
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family” of Wigner functions rather than probability densities.

In this paper we consider a statistical problem which is more relevant for the
experimentalist confronted with various noise sources corrupting the ideal data
(X,Φ). It turns out that a good model for a realistic quantum tomography mea-
surement amounts to replacing (X,Φ) by the noisy observations (Y,Φ), where Y :=
√
ηX +

√
(1− η)/2 ξ with ξ a standard Gaussian random variable independent of

(X,Φ). The parameter 0 < η < 1 is called the detection efficiency and represents
the proportion of photons which are not detected due to the losses in the measure-
ment process. This is the statistical problem of this paper, a combination of two
classical problems: noise deconvolution and PET tomography. The non-classical
feature is that though all the one-dimensional projections of W are indeed bona-fide
probability densities, the underlying two-dimensional “joint density” need not itself
be a bona-fide joint probability density, but can have small patches of “negative
probability”.

So far there has been little attention paid to this problem by statisticians, although
on the one hand it is an important statistical problem coming up in modern physics,
and on the other hand it is “just” a classical nonparametric statistical inverse prob-
lem. A first step in the direction of estimating ρ has been made in Artiles et al. [1]
where consistency results are presented for linear and sieve maximum likelihood
estimators. We recommend this paper as a complement to the present one.

Section 2 starts with a short introduction to quantum mechanics followed by the
particular problem of estimating the Wigner function in quantum homodyne tomog-
raphy. In subsection 2.3 we describe some features of Wigner functions and show
to what extent these functions differ from probability densities on the plane. The
section ends with a description of the experimental set-up and the derivation of the
Gaussian noise from physical principles.

Section 3 contains the main results of this paper. We assume that the unknown
Wigner function belongs to a class A(β, r, L) of “very smooth” functions similar
to those of Cavalier [7], Butucea and Tsybakov [6], Guţă and Artiles [14]. The
estimator has a standard kernel-type form performing in one step the deconvolution
and the inverse Radon transform. In Proposition 1 we compute upper bounds for
the pointwise risk. Theorem 1 establishes the lower bound and gives the minimax
rate which is slower than any power of 1/n but faster than any power of 1/ log n.
Rates with a similar behavior have been obtained in Butucea and Tsybakov [6]
which inspired some of the results obtained in this paper. Adaptive estimators can
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be derived in some cases (when r ≤ 1), see Theorem 2, converging at the same rates
as their non-adaptive correspondents.

In Section 4 we present results of computer simulations for a few some quantum
states, among which the Schrödinger cat state which is expected to be produced in
the lab in the future. Section 5 collects the proof of Propositions 1 and a sketch of
the proof of the adaptive upper bounds.

Section 6 concentrates on the proof of the lower bound for the pointwise risk. For
this we construct a pair of Wigner functions W1,2 belonging to the class A(β, r, L)
such that the distance between them is large enough and the χ2 distance between
the likelihoods of the corresponding models is small. It is now a well-known lower-
bounds principle that the best rate of estimation can be viewed as the largest dis-
tance between parameters in order to detect the change in the statistical model.
This construction is original in the statistics literature as it relies on the positivity
of the corresponding density matrices ρ1 and ρ2 rather than of the Wigner functions
themselves.

2 Physical background of the quantum tomography

In this section we present a short introduction to quantum mechanics in as far as it
is needed for understanding the background of our statistical problem. The reader
who is not interested in the physics can skip this section and continue with Section 3.
In Subsection 2.2 we describe the measurement technique called quantum homodyne
tomography and show how this can be used to estimate the Wigner function which
is a particular parametrization of the quantum state of a monochromatic pulse of
light. More details on Wigner functions can be found in Subsection 2.3. The main
issue tackled in this paper is the influence of noise due to the detection process
onto the estimation of the Wigner function. The experimental set-up of quantum
homodyne tomography with noisy observations is discussed in Subsection 2.4.

For more background material we refer to the textbook by Leonhardt [19] on quan-
tum optics and quantum tomography, the paper Artiles et al. [1] which deals with
the problem of quantum tomography from a statistical perspective, the review paper
on quantum statistical inference Barndorff-Nielsen et al. [3] and the classic textbooks
on quantum statistics by Helstrom [15] and Holevo [16].
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2.1 Short excursion into quantum mechanics

Quantum mechanics is the theory which describes the physical phenomena taking
place at the microscopic level such as the emission and absorption of light by indi-
vidual atoms, the detection of light photons. As a theory about the physical reality,
quantum mechanics makes predictions about the results of measurements performed
in the lab. Such predictions are statistical in nature in the sense that in general we
cannot infer the result of a measurement on a single quantum system but only the
probability distribution of results of identical measurements performed on a statis-
tical ensemble of identically prepared systems. Any such distribution is a function
of the state in which the system is prepared, and of the performed measurement.
Our statistical problem can then be briefly described as follows: estimate the state
based on results of measurements on a number of identically prepared systems.

Mathematically, the main concepts of quantum mechanics are formulated in the
language of selfadjoint operators acting on Hilbert spaces. The reader who is not
familiar with this theory may think of finite dimensional Hilbert spaces Cd, and d×d
matrices as operators on Cd. To every quantum system one can associate a complex
Hilbert space H with inner product 〈·, ·〉 whose vectors represent the wave functions
of the system or pure states as we will see below. In general, a state is described by a
density matrix, which is a compact operator ρ on H having the following properties:

1. Selfadjoint: ρ = ρ∗, where ρ∗ is the adjoint of ρ.

2. Positive: ρ ≥ 0, or equivalently 〈ψ, ρψ〉 ≥ 0 for all ψ ∈ H.

3. Trace one: Tr(ρ) = 1.

The positivity property implies that all the eigenvalues of ρ are nonegative and by
the trace property, they sum up to one. The reader may have noticed that the above
requirements are reminiscent of the properties of probability distributions, and this
connection will be strengthened in a moment when we discuss the distribution of
measurement results.

Before that we will take a look at the structure of the space of states on a given
Hilbert space H. Clearly, the convex combination λρ1 + (1 − λ)ρ2 of two density
matrices ρ1 and ρ2 is a density matrix again and it corresponds to the state ob-
tained as result of randomly performing one of the two preparation procedures with
probabilities λ and respectively 1 − λ. The extremals of the convex set of states
are called pure states and are represented by one dimensional orthogonal projection
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operators. Indeed an arbitrary density matrix can be brought to the diagonal form

ρ =
dimH∑
i=1

λiPi,

where Pi is the projection onto the one dimensional space generated by the eigen-
vector ei ∈ H of ρ and λi ≥ 0 is the corresponding eigenvalue, i.e. ρei = λiei.

The predictions made by quantum mechanics can be tested in the lab by performing
measurements on quantum systems. We will now give the mathematical description
of a measurement with space of outcomes given by the measure space (Ω,Σ). If
the system prepared in the state ρ then the result is random and has probability
distribution Pρ over (Ω,Σ) such that the map ρ 7→ Pρ, is affine, i.e. it maps a con-
vex combination of states into the corresponding convex combination of probability
distributions. This can be naturally interpreted as saying that for any mixed state
λρ1+(1−λ)ρ2, the distribution of the results will reflect the randomized preparation
procedure.

The most common measurement is that of an observable such as energy, position,
spin, etc. An observable is described by a selfadjoint operator X = X∗ on the Hilbert
space H and we suppose here for simplicity that it has a discrete spectrum, that is,
it can be written in the diagonal form

X =
dimH∑
a=1

xaPa. (1)

with xa ∈ R the eigenvalues of X, and Pa one dimensional projections onto the
eigenvectors of X. The result of the measurement of the observable X will be
denoted by X and is a random variable with values in the set Ω = {x1, x2, . . . }.
When the system is prepared in the state ρ, the result X has the distribution

Pρ [X = xa] = Tr(Paρ). (2)

Notice that the conditions defining the density matrices insure that Pρ is indeed a
probability distribution. In particular the expectation on X in the state ρ is

Eρ[X] :=
dimH∑
a=1

xaPρ [X = xa] = Tr(Xρ), (3)

and the characteristic function is given by

Eρ[exp(itX)] = Tr [exp(itX)ρ] . (4)
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Measurements with continuous outcomes as wel as outcomes in an arbitrary measure
space can be described in a similar way by using the spectral theory of selfadjoint
operators (see Holevo [16]).

Suppose that a preparation procedure produces an unknown state ρ. It is clear that
in general no individual measurement can completely determine the state but only
gives us statistical information about Pρ and thus indirectly about ρ. The problem of
state estimation should be then considered in the context of measurements on a big
number of systems which are identically prepared in the state ρ. Here we consider
the simplest situation when we perform identical and independent meausurements
on each of the n systems separately.

2.2 Quantum homodyne tomography and the Wigner function

The statistical problem analyzed in this paper is that of estimating a function Wρ :
R2 → R from i.i.d. data (Y1,Φ1), . . . (Yn,Φn) with distribution Pηρ on R× [0, π]. In
this subsection we will give an account of the physical origin of this problem.

The quantum system is monochromatic light in a cavity, whose state is described
by (infinite dimensional) density matrices on the Hilbert space of complex valued
square integrable functions on the line L2(R). The function of interest Wρ is called
the Wigner function and depends in a one-to-one fashion on the state ρ of the light.

Two important observables of this quantum system are the electric and magnetic
fields whose corresponding selfadjoint operators on L2(R) are given by

Qψ(x) = xψ(x), and respectively Pψ(x) = −idψ
dx
.

The Wigner function Wρ : R2 → R is much like a joint probability density for these
quantities, for instance its marginals along any direction φ ∈ [0, π] in the plane
which are given by the Radon transform of Wρ

R[Wρ](x, φ) =
∫ ∞

−∞
Wρ(x cosφ− t sinφ, x sinφ+ t cosφ)dt, (5)

are bona-fide probability densities and correspond to the measurement of the quadra-
ture observables Xφ := Q cosφ + P sinφ. However in quantum mechanics non-
commuting observables such as Q and P cannot be measured simultaneously, thus
we cannot speak of their joint probability distribution. This fact is reflected at the
level of the Wigner function which needs not be positive, indeed it might contain
patches of “negative probability”.
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Thus, for a given quantum system prepared in state ρ we can measure only one
of the quadratures Xφ for some phase φ and we obtain a result with probability
density pρ(x |φ) = R[Wρ](x, φ). Let us consider now that we have n quantum
systems prepared in the same state ρ and we measure the quadrature XΦi on the i-
th system with phases Φi chosen independently with uniform distribution on [0, π].
We obtain independent identically distributed results (X1,Φ1), . . . , (Xn,Φn) with
density pρ(x, φ) = pρ(x |φ) with respect to the measure 1

πλ, where λ is the Lebesgue
measure on R × [0, π]. The Radon transform R : Wρ 7→ pρ(x, φ) is well known in
statistics for its role in tomography problems such as Positron Emission Tomography
(PET), Vardi et al. [24], and has a broad spectrum of other applications ranging
from astronomy to geophysics, Deans [9]. In PET one estimates a probability density
f on R2 related to the tissue distribution in a cross-section of the human body,
from i.i.d. observations (X1,Φ1), . . . , (Xn,Φn), with probability density equal to
R[f ]. The observations are obtained by recording events whereby pairs of photons
emitted at the collision of a positron and an electron, hit detectors placed in a
ring around the body after flying in opposite directions along an axis determined
by an angle φ ∈ [0, π]. The difference with our situation is that the role of the
unknown distribution is played by the Wigner function which as we mentioned is
not necessarily positive in the usual sense but carries an intrinsic positivity constraint
in the sense that it corresponds to a density matrix (see Subsection 2.3). Another
difference with respect to the PET is that in QHT the experimenter can decide how
to choose the phases Φi. Indeed in some experiments the phases are equidistant,
that is they take one of the values l

kπ where l runs from 0 to k − 1 for some
k ∈ N, but one has now the additional problem of how to choose k as a function of
n. We believe that by using uniformly distributed phases one does not incur any
loss in the asymptotic rates, but it remains an interesting open question wether a
specially designed choice of phases can improve the results. This may be the case
for some parametric classes of Wigner functions with a asymmetric aspect like those
corresponding to squeezed states (see Subsection 2.3).

2.3 Properties of Wigner functions

The physics literature on Wigner functions and other types of “phase space func-
tions” is vast but a starting point for the interested reader may be the monograph
by Leonhardt [19]. Here we insist on the similarities and the differences with usual
probability densities encountered in PET.
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Consider the space of Hilbert-Schmidt operators on L2(R):

T2 := {A ∈ B(L2(R)) : ‖A‖2 = Tr(A∗A) <∞},

on which there exists an inner product 〈A,B〉2 = Tr(A∗B), and notice that the
density matrices form a closed subset of T2. The Wigner function WA is the image
of A through the linear map W : T2 → L2(R2) defined by the property that the
Fourier transform F2 with respect to both variables has the following expression

W̃A(u, v) := F2[WA](u, v) = Tr
(
A exp(iuQ + ivP)

)
. (6)

In particular this defines the Wigner function Wρ of the state with density matrix ρ.
By passing to the polar coordinates (u, v) = (t cosφ, t sinφ) we have uQ+vP = tXφ

and using equation (4) together with the fact that pρ(·|φ) is the density for measuring
Xφ we have

W̃ρ(u, v) = Tr
(
ρ exp(itXφ)

)
= F1[pρ(·|φ)](t), (7)

where the Fourier transform F1 in the last term is with respect to the first variable,
keeping φ fixed. The reader familiar to PET may recognize that the composition
F2 ◦ F1 mapping pρ into Wρ is just the inverse Radon transform [9] proving our
assertion that QHT is about the tomography of the Wigner function.

It can be shown that the map W : T2 → L2(R2) is isometric up to a constant:

〈A,B〉2 = 2π〈WA,WB〉 := 2π
∫∫

WA(q, p)WB(q, p)dqdp, (8)

and this fact is often used as a tool for calculating the expectation of an observable
X ∈ T2 similarly to the way it is done in classical probability:

Tr(ρX) = 2π
∫∫

WX(q, p)Wρ(q, p)dqdp. (9)

Let us come back to our physical system, the light in a cavity, and consider its
energy which is given by the sum of intensities of the electric and magnetic fields
H := 1

2(Q2 + P2). As predicted by Einstein before the creation of quantum theory,
the possible values that this observable may take are “quantized”, which can be
explained if we think of light as a packet of photons with each photon contributing
a fixed quanta of energy. Indeed by solving the eigenvalue problem we find Hψj =
(j+ 1/2)ψj where {ψj}j≥0 is an orthonormal basis of L2(R) whose vectors have the
physical interpretation of pure states with precisely j photons and are given by

ψj(x) =
1√√
π 2jj!

Hj(x)e−x
2/2, (10)
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where Hj(x) are the Hermite polynomials, see e.g. Erdelyi et al. [11].

Notably, the vacuum state corresponding to zero photons has non-zero energy 1/2,
a purely quantum phenomenon called vacuum fluctuations reflected in the fact that
the distributions of Q and P are Gaussian with variance 1/2. We would like to
stress here that the Gaussian distribution emerges directly from physical principles
and it is the same Gaussian character of the vacuum which will lead to our model
for the detection noise in Subsection 2.4.

An interesting consequence of relation (9) is found by taking X to be the vacuum
state Pψ0 whose Wigner function is W (q, p) = exp(−q2 − p2)/π. Then, as the left
side of the equation is positive this implies that the negative patches of Wρ around
the origin must be balanced by positive ones in such a way that the integral remains
positive. In fact this property holds for any point in the plane and the localized
oscillations of the Wigner function are a signature of non-classical states such as
states with a fixed number of photons or the so called “Schrödinger cat states” like
the one estimated in Figure 3.

On the other hand there exist probability densities which are not Wigner functions,
for example the latter cannot be too “peaked”, cf. Leonhardt [19]:

|Wρ(q, p)| ≤
1
π
, for all (q, p) ∈ R2. (11)

A general density matrix ρ can be seen as an infinite dimensional matrix with
coefficients ρjk = 〈ψj , ρψk〉 for j, k ≥ 0 such that

∑
k≥0 ρkk = 1 (trace one), and

[ρjk] ≥ 0 (positive definite matrix). In particular the diagonal elements pk = ρkk

represent the probability of measuring k photons for a system in state ρ. The density
pρ(x, φ) is given in terms of the matrix elements of ρ by

pρ(x, φ) =
1
π

∞∑
j,k=0

ρjkpjk(x, φ) :=
1
π

∞∑
j,k=0

ρjkψj(x)ψk(x)e−i(j−k)φ, (12)

and a similar formula holds for the Wigner function Wρ(q, p) =
∑∞

j,k=0 ρjkWjk(q, p),
with Wjk such that R[Wjk] = pjk. For any density matrices ρ, τ (8) can be written

‖Wρ−Wτ‖2
2 :=

∫∫
|Wρ(q, p)−Wτ (q, p)|2dpdq =

1
2π
‖ρ− τ‖2

2 :=
1
2π

∞∑
jk=0

|ρjk− τjk|2.

(13)

Some examples of quantum states which can be created at this moment in the lab are
given in Table 1 of Artiles et al. [1]. Typically, the corresponding Wigner functions
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have a Gaussian tail but need not be positive. As a consequence of (11) not all
two dimensional Gaussian distributions are Wigner functions but only those for
which the determinant of the covariance matrix is bigger or equal than 1

4 . Equality
is obtained for a remarkable set of states called squeezed vacuum states having
Wigner functions W (q, p) = 1

π exp(−e2ξq2 − e−2ξp2). determined by the squeezing
factor ξ. More generally, the celebrated Heisenberg’s uncertainty relations says that
for any state ρ the non-commuting observables P and Q cannot have probability
distributions such that the product of their variances is smaller than 1

4 .

2.4 Experimental set-up and noisy observations

The optical set-up sketched in Figure 1 consists of an additional laser of high inten-
sity |z|2 � 1 called local oscillator, a beam splitter through which the cavity pulse
prepared in state ρ is mixed with the laser, and two photodetectors each measuring
one of the two beams and producing currents I1,2 proportional to the number of
photons. An electronic device produces the result of the measurement by taking the
difference of the two currents, integrating it over the time interval of the pulse, and
rescaling it by a factor proportional to |z| (see below). A detailed analysis taking

I1

I2

z = |z|eiφ

I1−I2√
2η|z| ∼ pη

ρ(x|φ)
vacuum2

vacuum1

beam splitter

signal

detector

oscilator

local

detector

Figure 1: Quantum Homodyne Tomography measurement set-up

into account various losses (mode mismatching, detection inefficiency) in the detec-
tion process can be found in [19]. It turns out that all these losses can be modeled
by a Gaussian noise in the measurement results, and here we detail only the case of
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detection inefficiency. In the high photon number regime |z|2 � 1 the (integrated)
current depends linearly on to the intensity of the beam with a proportion η < 1 of
the photons being detected. The process can be described classically by considering
that each individual photon has the probability η of being detected and 1 − η of
being absorbed without detection. Thus in a beam of j photons the probability of
detecting k ≤ j is bjk(η) =

(
j
k

)
ηk(1 − η)j−k, and for an incoming state ρ we obtain

the probability distribution of the results pk(η) =
∑∞

j=k ρjjb
j
k(η). This “photon lot-

tery” can be equivalently described by replacing the realistic detector with an ideal
one in front of which we place an imaginary beam splitter (see Figure 1) which has
transmissivity t =

√
η and reflectivity r =

√
1− η.

In order to understand why this is the case and how the measurement noise appears,
we will present two equivalent pictures of the action of the beam splitter stemming
from the wave-particle duality typical in quantum mechanics. As shown in Figure 1
a beam splitter receives two incoming beams and has two outgoing beams as output.
In the case of the imaginary beam splitter sitting in front of the detector, one of the
incoming beams is the vacuum and let is assume that the beam to be measured has
j photons. Then the joint state of the two beams is ψ0 ⊗ ψj ∈ L2(R) ⊗ L2(R) and
the transformation to the outgoing vector is ψ0 ⊗ ψj 7→

∑j
k=0[b

j
k(η)]

1/2 ψj−k ⊗ ψk,

which simply means that with probability bjk(η) we get k photons going to the ideal
detector and j − k will not be detected, as described above.

The second description is in terms of the transformation of the electric and magnetic
field operators of the beams denoted by (Ql,Pl) and (Qr,Pr) with the first couple
acting on the left side of the tensor product L2(R)⊗L2(R) and the second pair on the
right side. The fields of the outgoing beams are: Q′

l = tQl − rQr, Q′
r = rQl + tQr

and similarly for P’s. Then by computing the combined effects of the beam-splitters,
we have the fields arriving at the two detectors Q1 = t√

2
[Q + Qlo] − rQ1vac, and

Q2 = t√
2
[Q−Qlo] − rQ2vac, and similarly for P1,P2. We remind the reader that

the number of photons in a beam is described by N := 1
2(Q2 + P2 − 1). Using the

fact that in the limit |z|2 � 1 the laser can be treated classically by replacing Qlo

by |z|√
2
cosφ and Plo by |z|√

2
sinφ we get

N1 −N2 =
√

2t|z|
[
(tQφ + rQvac

φ ) +O(|z|−1)
]
,

with O(|z|−1) a term whose variance is bounded by C/|z|, and Qvac
φ a quadrature

operator of a vacuum mode accounting for the two fictitious beam splitters. Thus in
the limit |z| → ∞ the rescaled integrated current difference I1 − I2/

√
2η|z| has the

same distribution as tQφ + rQvac
φ , i.e. that of the sum of two independent random
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variables Y :=
√
ηX +

√
(1− η)/2 ξ, where X ∼ Pρ(·|φ) is the result of measuring

Xφ, ξ has N(0, 1) law, and 1√
2
ξ has the distribution of the quadrature in the vacuum

(see 2.3). The efficiency-corrected probability density is then the convolution

pηρ(y, φ) = (π(1− η))−1/2

∫ ∞

−∞
pρ(x, φ)exp

[
− η

1− η
(x− η−1/2y)2

]
dx. (14)

Finally, the constants |z| and η are measured in advance as part of the calibration
of the experiment and are considered to be known.

3 Statistical procedure and results

For convenience we summarize now the statistical problem tackled in this paper.

Consider (X1,Φ1), . . . , (Xn,Φn) independent identically distributed random vari-
ables with values in R × [0, π] and distribution Pρ having density pρ(x, φ) with
respect to 1

πλ, λ being the Lebesgue measure on R× [0, π], given by

pρ(x, φ) = R[Wρ](x, φ),

where R is the Radon transform defined in equation (5) and Wρ : R2 → R is a
so called Wigner function which we want to estimate. The space of all possible
Wigner functions is parametrized by infinite dimensional matrices ρ = [ρjk]∞j,k=0

such that Trρ = 1 (trace one) and ρ ≥ 0 (positive definite), in the way indicated
by equation (6). Moreover the correspondence between ρ and Wρ is one to one
and isometric with respect to the L2 norms as in equation (13). The properties of
Wigner functions have been discussed in subsection 2.3, in particular the fact that
Wρ may take negative values.

What we observe are not the variables (X`,Φ`) but the noisy ones (Y1,Φ1), . . . , (Yn,Φn),
where

Y` :=
√
ηX` +

√
(1− η)/2 ξ`, (15)

with ξ` a sequence of independent identically distributed standard Gaussians which
are independent of all (Xj ,Φj). The parameter 0 < η < 1 is known and we denote
by pηρ the density of (Y`,Φ`) given by the convolution (14). The aim is to recover
the Wigner function Wρ from the noisy observations.

Class of Wigner functions. In order to apply the minimax estimation technology
we will assume that the unknown Wigner function is infinitely differentiable and
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belongs to the following class described via its Fourier transform:

A(β, r, L) =
{
Wρ Wigner function :

∫ ∣∣∣W̃ρ(w)
∣∣∣2 e2β‖w‖r

dw ≤ (2π)2L
}
,

where 0 < r ≤ 2, and β, L > 0. From now on we denote by 〈·, ·〉 and ‖ · ‖ the
usual Euclidian scalar product and norm, while C(·) will denote positive constants
depending on parameters given in the parentheses. From the physical point of view
the choice of a class of very smooth Wigner functions seems to be quite reasonable
considering that up to date no quantum state of light has been constructed which
does not satisfy such conditions. The reason for the difficulty in engineering states
with less smooth Wigner functions is that the interactions needed to produce such
states should be very non-linear in the electric and magnetic fields while it is known
that photons are rather weakly interacting particles. For example, until recently
the creation of squeezed states requiring a quadratic interaction was a not-trivial
achievement (see Breitenbach et al. [5]). We mention here without proof the re-
sult of a computation showing that if a density matrix ρ satisfies the condition
Tr(ρ exp[aNr/2]) <∞ for some a, r > 0 then Wρ ∈ A(β, r, L) for some β, L > 0. In
the light of the previous argument we consider that this condition is actually rather
weak.

Estimation method. For the problem of estimating a probability density f : R2 → R
directly from data (X`,Φ`) with density R[f ] we refer to the literature on X-ray
tomography and PET, studied by Vardi et al. [24], Korostelev and Tsybakov [18],
Johnstone and Silverman [17], Cavalier [7] and to many other references therein. In
the context of tomography of bounded objects with noisy observations Goldensh-
luger and Spokoiny [12] solved the problem of estimating the borders of the object
(the support). For the problem of Wigner function estimation when no noise is
present, we mention the parallel work by Guţă and Artiles [14].

Let Nη denote the density of the rescaled noise
√

(1− η)/2ξ and Ñη its Fourier
transform. Denote by pηρ(y, φ) the probability density of (Y`,Φ`) in (14). Then

pηρ(y, φ) =
∫ ∞

−∞

1
√
η
pρ

(
y − x
√
η
, φ

)
Nη(x)dx :=

(
1
√
η
pρ

(
·
√
η
, φ

)
∗Nη

)
(y),

where p∗q(y) =
∫
p(y−x)q(x)dx denotes the convolution of p and q. Via a change of

variable we can write pηρ(y, φ) as in (14). In the Fourier domain this relation becomes
F1[p

η
ρ(·, φ)](t) = F1[pρ(·, φ)](t

√
η)Ñη(t), where F1 denotes the Fourier transform

with respect to the first variable.

In this paper, we modify the usual tomography kernel in order to take into account

14



the additive noise on the observations and construct a kernel Kη
h which asymptot-

ically performs both deconvolution and inverse Radon transform on our data. Let
us define the estimator:

Ŵ η
h,n(q, p) =

1
n

n∑
`=1

Kη
h

(
q cos Φ` + p sinΦ` −

Y`√
η

)
, (16)

where 0 < η < 1 is a fixed parameter, and the kernel is defined by

Kη
h(u) =

1
4π

∫ 1/h

−1/h

exp(−iut)|t|
Ñη(t/

√
η)

dt, K̃η
h (t) =

1
2

|t|
Ñη(t/

√
η)
I(|t| ≤ 1/h), (17)

and h > 0 tends to 0 when n → ∞ in a proper way to be chosen later. For
simplicity, let us denote z = (q, p) and [z, φ] = q cosφ + p sinφ, then the estimator
can be written:

Ŵ η
h,n(z) =

1
n

n∑
`=1

Kη
h

(
[z,Φ`]−

Y`√
η

)
.

This is a one-step procedure for treating two successive inverse problems. The
main difference with the no-noise problem treated by Guţă and Artiles [14] is that
the deconvolution is more difficult than inverse Radon transform, and thus the
techniques for proving the optimality of the method (lower bound) are essentially
different. In the literature on inverse problems, this problem would be qualified as
severely ill-posed, meaning that the noise is dramatically (exponentially) smooth
and makes the estimation problem much harder. Technically, the no-noise kernel-
type estimator has dominating variance, while in the case of noisy observations the
bias dominates the variance, as we will see later on.

In Subsection 3.1 we analyze the Mean Squared Error (MSE) at some fixed point.
Our results concern minimax efficiency and adaptive optimality for this problem.
We compute an upper bound for the convergence rate of the proposed estimator
by minimizing the sum of upper bounds (uniform over the whole class) of the bias
and of the variance. The optimality in rate of our estimator follows from the lower
bounds which are proved in Section 6. The meaning of the lower bounds results
is that asymptotically, no other estimation technique could outperform our method
uniformly over all Wigner functions in the given class. Moreover, we prove the lower
bounds including the asymptotic constant (sharp minimax).

We use a technique based on two hypotheses that appeared in Efromovich [10] for
periodic Sobolev classes and in Butucea and Tsybakov [6] for classes of supersmooth
functions, to which we refer for the details of some of the computations. We con-
centrate on the main construction involved in the lower bound, that is the choice
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of two hypotheses belonging to the fixed class of Wigner functions such that their
values in a fixed point are sufficiently different while their corresponding models
have likelihoods close to each other.

Despite the generality of a minimax sharp estimator, for practical purpose, it is not
obvious how to choose the smoothness parameters r and β. Therefore, an adaptive
method (i.e. free of prior knowledge of parameters β, r and L provided that they are
in some set) is designed for classes with r ≤ 1 in Subsection 3.2. They behave as well
as the previous estimators, provided that we know maximal values of parameters.
In particular, this estimator is optimal adaptive (i.e. adaptive and attaining the
minimax rate) and efficient. We note that in general such procedures do not always
exist. We are fortunate in our case and this is mainly due to the dominating bias.

3.1 Pointwise estimation

In this section we give minimax and adaptive results for the pointwise risk (MSE)
for the estimator Ŵ η

h,n in (16). Next proposition contains upper bounds for the two
components of the risk, the bias and variance, as functions of the parameter h and
the number n of samples. The bounds are uniform over all Wigner functions in the
class A(β, r, L).

Proposition 1 Let (Y`,Φ`), ` = 1, . . . , n be i.i.d. data coming from the model (15)
and let Ŵ η

h,n be an estimator (with h → 0 as n → ∞) of the underlying Wigner
function Wρ belonging to the class A(β, r, L), with 0 < r ≤ 2. Then

sup
z∈R2

sup
Wρ∈A(β,r,L)

∣∣∣E[Ŵ η
h,n(z)]−Wρ(z)

∣∣∣2 =
Lhr−2

4πβr
exp

(
−2β
hr

)
(1 + o(1)),

sup
z∈R2

sup
Wρ∈A(β,r,L)

E
[∣∣∣Ŵ η

h,n(z)− E[Ŵ η
h,n(z)]

∣∣∣2] ≤ 1
8γ2n

exp
(

2γ
h2

)
(1 + o(1)),

where γ = (1− η)/(4η), and o(1) → 0 as h→ 0 and n→∞.

The pointwise convergence rate of Ŵ η
h,n with h = hopt is then shown to be minimax

by proving an additional lower bound.

Theorem 1 Let β > 0, L > 0, 0 < r ≤ 2 and (Y`,Φ`), ` = 1, . . . , n be i.i.d. data
coming from the model (15), and let Ŵ η

h,n be as defined in (16) with the kernel Kη
h
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of (17) and bandwidth hn is given by

hn =

(
log n
2γ

− β

γ

(
log n
2γ

)r/2)−1/2

, if 0 < r < 2; hn =
(

log n
2β + 2γ

)−1/2

, if r = 2.

(18)
Then Ŵ η

h,n satisfies the following upper bounds in pointwise distance

lim sup
n→∞

sup
z∈R2

sup
Wρ∈A(β,r,L)

E
[∣∣∣Ŵ η

h,n(z)−Wρ(z)
∣∣∣2]ϕ−2

n ≤ C,

where C = 1 for 0 < r < 2 and is some positive constant for r = 2 and the pointwise
rate is

C = 1, ϕ2
n =

L

4πβr

(
log n
2γ

)1−r/2
exp

(
−2β

(
log n
2γ

)r/2)
, if 0 < r < 2;

C > 0, ϕ2
n = n

− β
β+γ , if r = 2.

Moreover, the previous rate is minimax efficient for 0 < r < 2 and nerly minimax
for r = 2, i.e. the following lower bounds hold

lim inf
n→∞

infcWn

sup
Wρ∈A(β,r,L)

E
[∣∣∣Ŵn(z)−Wρ(z)

∣∣∣2]ϕ−2
n ≥ 1, ∀z ∈ R,

lim inf
n→∞

infcWn

sup
Wρ∈A(β,2,L)

E
[∣∣∣Ŵn(z)−Wρ(z)

∣∣∣2] (n log n)
β

β+γ ≥ c > 0, ∀z ∈ R,

where infcWn
is taken over all possible estimators Ŵn of the Wigner function Wρ.

Proof. The proof of the lower bounds is given in Section 6.

Sketch of proof of the upper bounds. By Proposition 1 we write

sup
z∈R2

sup
Wρ∈A(β,r,L)

E
[∣∣∣Ŵ η

h,n(z)−Wρ(z)
∣∣∣2] ≤ CBh

r−2 exp
(
−2β
hr

)
+
CV
n

exp
(

2γ
h2

)
,

where CB and CV denote the constant terms, depending on β, r, L and η. We select
the best bandwidth as hopt = arg infh>0{CBhr−2 exp (−2β/hr)+CV /n exp

(
2γ/h2

)
}.

By taking derivatives, hopt is a positive real number satisfying

2β
hr

+
2γ
h2

= log n+ C(1 + o(1)), as n→∞,

where C > 0 depends on β, r, L and η. This allows us to check easily that

hr−2
opt exp

(
− 2β
hropt

)
= hr−2

opt

C(1 + o(1))
n

exp

(
2γ
h2
opt

)
,

i.e. the bias is asymptotically larger than the variance, for all 0 < r < 2, respectively
they are of the same order if r = 2. If we use the approximation hn in (18) of hopt,
we obtain the asymptotic rates in our Theorem.
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3.2 Optimal adaptive estimation

In the previous theorem the kernel estimator Ŵ η
h,n has a bandwidth h = hopt which

is the solution of the equations (18) depending on the parameters β and r of the
class. In the next theorem we will show that there exists an adaptive estimator,
i.e. not depending on the parameters, performing as well as the former estimators,
provided that they lie in the set B = {(β, r, L) : β > 0, 0 < r < 1, L > 0} .

Theorem 2 Let (Y`,Φ`), ` = 1, . . . , n be i.i.d. data coming from the model (15).
Then Ŵ η

h,n with h = had,

had =

(
2η log n
1− η

−

√
2η log n
1− η

)−1/2

is an optimal adaptive estimator over the set of parameters B. That is, the estimator
attains the same upper bounds, for all (β, r, L) ∈ B

lim sup
n→∞

sup
Wρ∈A(β,r,L)

E
[∣∣∣Ŵ η

had,n
(z)−Wρ(z)

∣∣∣2]ϕ−2
n ≤ 1, ∀z ∈ R2,

where the rate ϕ−2
n is given in Theorem 1 for the case 0 < r < 1.

An important consequence is that in conjunction with the lower bounds in Theorem
1, the estimator Ŵ η

had,n
is optimal adaptive and efficient over the set B for the

pointwise risk. This means it attains the minimax rate and the constant C = 1 for
an estimator free of β, r and L provided that these parameters are in the class B.

4 Practical implementation

We study three Wigner functions, each one belonging to some class A(β, 2, L) with
arbitrary β < 1/4. The one and two photon states are described by diagonal density
matrices with ρjj = δj,1 and respectively ρjj = δj,2, and can be readily produced in
the lab. The third state is a so called Scrödinger cat state which is represented by
the sum of two vectors corresponding to laser states, and which may be available
experimentally in the near future.

For the one photon state, we simulated n = 5000 noisy data (Y`,Φ`) by first gener-
ating (X`,Φ`) having density pρ(x, φ) and then adding the noise by using standard
Gaussians ξ` and detection efficiency η = 0.9. We have then calculated the estimator
Ŵ η
h,n with bandwidth hn = (log n/(2β + 2γ))−1/2 given by (18).
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We then reconsidered the kernel function and localized it by using a modified kernel
having Fourier transform

K̃ ′η
h (t) =

|t|
2Ñη(t/

√
η)

(
I(|t| ≤ 1

h
) + exp

(
h2 − 1

u(2/h− u)

)
I(

1
h
≤ |t| ≤ 2

h
)
)
.

(19)
The function K̃ ′η is an infinitely differentiable function (much smoother than K̃η)
thus K ′η decays exponentially fast asymptotically.

In Figure 2 we plot a transversal cut corresponding to the line p = 0, passing through
the most difficult point to estimate: (0, 0). The true Wigner function is plotted with
continuous line and the dashed line represents an estimator for one sample of size
n = 5000. The graphics on the left-hand side concern the one photon state with the
original kernel estimator while the graphics in the middle show the estimator with
the modified kernel (19) at the same bandwidth. An important improvement can
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Figure 2: Left: 1 photon state, η = 0.9, n = 5000. Middle: same data, modified
kernel. Right: 2 photons state, η = 0.95, n = 10000.

be noticed in the case of the kernel K ′η. The left column concerns the two photons
state with modified kernel. The pointwise loss was then computed for 10 samples
(each of size n = 5000) at points (0, 0), (0,±0.5), (0,±1), (0,±1.5) and (0,±2) and
the corresponding boxplots are shown in the lower panels of Figure 2. We notice
that the highest losses are indeed observed at (0, 0) and that the losses are quite
stable from one sample to another.
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Figure 3: Estimated Wigner function for the Schröedinger cat state, η = 0.95,
n = 500000.

In the case of the Wigner function of the Schröedinger cat state we considered
samples larger than 10000 data which we binned in a 100×100 histogram. Figure 3
shows a plot of our estimator Ŵ η

h,n with bandwidth hn given by (18) for a sample of
size n = 500000 and η = 0.95. A similar estimator has been computed for efficiency
η = 0.85 and Figure 4 shows different cuts through these estimators ( dashed lines)
compared with the true Wigner function (continuous line). The relatively worse
performance in the case η = 0.85 is confirmed by Table 1 which gives the mean
square errors over 100 samples of size n at different peaked or flat points (q, p) of
the Wigner function and for the two different noise levels η = 0.95 and η = 0.85.

(q, p) : n 10000 100000 500000 10000 100000 5000000

(0, 0) 0.0050751 0.0017302 0.0011971 0.012248 0.0032997 0.0022913

(0, 3) 0.0005396 0.00010015 4.1671e-005 0.0042865 0.0016142 0.00067981

(0, 2.5) 0.00056985 0.00014183 4.5039e-005 0.0036141 0.0018124 0.00067773

(0.5, 0) 0.0041482 0.0011366 0.00070115 0.0090953 0.002584 0.0016449

(3, 0) 0.00029731 7.0935e-005 1.6685e-005 0.002249 0.00094671 0.00031139

Table 1: Schrödinger cat state: MSE for 100 samples of size n at points (q, p) for
η = 0.95 (left side) and η = 0.85 (right side).
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For tomographic reconstruction with real data we refer to Breitenbach et al. [5].
However in this reference the authors resume to inverting the Radon transform and
no Gaussian deconvolution is performed. Thus one actually estimates a convoluted
Wigner function W η

ρ = R−1[pηρ] with usual parametric rate within log n factors (see
Cavalier [7]). We have tested such an estimator for the case of the Schrödinger
cat state with n = 500000 and η = 0.85 and cuts through the obtained result is
the dotted line shown in the panels in the lower part of Figure 4. This cut can
be compared with the dashed line representing our estimator which performs both
inverse Radon transform and deconvolution.
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Figure 4: Transversal cuts through the Wigner function for the Schröedinger cat
state. Above: Estimated Wigner function (dashed line), η = 0.95, n = 500000. Be-
low: Estimated Wigner function (dashed line) and estimator without deconvolution
(dotted line), η = 0.85, at n = 500000.
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5 Proofs of upper bounds

Proof of Proposition 1. Since our data are i.i.d., we write

E[Ŵ η
h,n(z)] =

1
π

∫ π

0

∫
Kη
h([z, φ]− y/

√
η)pηρ(y, φ)dydφ

=
1
π

∫ π

0
Kη
h ∗ (

√
η pηρ(·

√
η, φ))([z, φ])dφ.

Now, write the convolution in the integral as an inverse Fourier transform. Indeed,
it has Fourier transform (see (17)):

F
[
Kη
h ∗
(√
η pηρ(·

√
η, φ)

)]
(t) = K̃η

h(t)F1[pηρ(·, φ)](t/
√
η)

=
1
2
|t|F1[pρ(·, φ)](t)I(|t| ≤ 1/h).

Replace this into the expected value of our estimator and use (7)

E[Ŵ η
h,n(z)] =

1
4π2

∫ π

0

∫ 1/h

−1/h
e−it[z,φ]|t|W̃ρ(t cosφ, t sinφ) dt dφ

=
1

4π2

∫ ∫
e−i(qu+pv)W̃ρ(u, v)I(

√
u2 + v2 ≤ 1/h) du dv

=
1

4π2

∫
e−i〈z,w〉W̃ρ(w)I(‖w‖ ≤ 1/h)dw, (20)

where we denote w = (u, v). We recall that we also have

Wρ(z) =
1

4π2

∫
e−i〈z,w〉W̃ρ(w) dw,

and then we write for the pointwise bias of our estimator:∣∣∣E[Ŵ η
h,n](z)−Wρ(z)

∣∣∣2 =
1

(4π2)2

∣∣∣∣∫ e−i〈z,w〉
{
F
[
E[Ŵ η

h,n]
]
(w)− W̃ρ(w)

}
dw

∣∣∣∣2
≤ 1

(4π2)2

∫ ∣∣∣W̃ρ(w)
∣∣∣2 e2β‖w‖r

dw

∫
‖w‖>1/h

e−2β‖w‖r
dw

≤ Lhr−2

4πβr
e−2β/hr

(1 + o(1)), as h→ 0,

by the assumption on our class. As for the variance of our estimator:

V
[
Ŵ η
h,n(z)

]
= E

[∣∣∣Ŵ η
h,n(z)− E

[
Ŵ η
h,n(z)

]∣∣∣2] ≤ 1
n

E

[∣∣∣∣Kη
h

(
[z,Φ]− Y

√
η

)∣∣∣∣2
]

≤ 1
n

∫ π

0

∫ (
Kη
h([z, φ]− y/

√
η)
)2
pηρ(y, φ)dydφ. (21)
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At this point, let us denote

G(t) := F
[
Kη
h([z, φ]− ·/√η)

]
(t) =

√
ηeit[z,φ]

√
ηK̃η

h(−t
√
η).

Replace in (21) by taking into account that for a probability density pηρ(·, φ) we have
|F1[p

η
ρ(·, φ)]| ≤ 1,

E

[∣∣∣∣Kη
h

(
[z,Φ]− Y

√
η

)∣∣∣∣2
]

=
∫ π

0

1
2π

∣∣∣∣∫ G ∗G(t)F1[pηρ(·, φ)](t)dt
∣∣∣∣ dφ

≤ 1
2

(∫
|G(t)|dt

)2

≤ 1
2

(
η

2

∫
|t|≤1/(h

√
η)

|t|
Ñη(t)

dt

)2

.

Finally we obtain,

E

[∣∣∣∣Kη
h

(
[z,Φ]− Y

√
η

)∣∣∣∣2
]
≤ 1

2

(
2η
∫ 1/(h

√
η)

0

t

2
exp

(
t2

1− η

4

)
dt

)2

. (22)

Let us note here that, more generally, for any positive a, s and for any A ∈ R, we
can use integration by parts to get the asymptotic evaluation∫ x

0
tA exp(ats)dt =

1
as
xA+1−s exp(axs)(1 + o(1)), as x→∞. (23)

We use formula (23) for the integral in (22) as 1/h→∞ and with (21) we get

V
[
Ŵ η
h,n(z)

]
≤ 2η2

(1− η)2n
exp

(
1− η

2η
1
h2

)
(1 + o(1)), n→∞.

Proof of Theorem 2. Over B we have

E
[∣∣∣Ŵ η

had,n
(z)−Wρ(z)

∣∣∣2] ≤ L

4πβr
(had)r−2 exp

(
− 2β

(had)r

)
+

2η2

(1− η2)n
exp

(
1− η

2η(had)2

)
,

and it is easy to check that, for (β, r, L) ∈ B

exp
(
− 2β

(had)r

)
≤ exp

(
− 2β
hropt

)
(1 + o(1)),

1
n

exp
(

1− η

2η(had)2

)
= exp

(
−
√
η − 1
2η

log n
)

= o(1) exp

(
− 2β
hropt

)
.

Thus, Ŵ η
had,n

attains precisely the rate ϕ2
n (C = 1).
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6 Proof of lower bounds

In this section we will construct a pair of Wigner functions W1 and W2 depending
on a parameter h̃ such that h̃ → 0 as n → ∞. The choice of h̃ (see equation (31))
is such that it insures the existence of the lower bound in Theorem 1, and it should
not be confused with the window h appearing in the expression of the estimator
which is optimal with respect to the upper bounds. We choose W1 and W2 of the
form

W1(z) = W0(z) + Vh̃(z) and W2(z) = W0(z)− Vh̃(z),

where W0 is a fixed Wigner function corresponding to the density matrix ρ0. The
function Vh̃ is not a Wigner function of a density matrix but belongs to the linear
span of the space of Wigner functions and thus has a corresponding matrix τ h̃ in
the linear span of density matrices. The choice of W0, Vh̃ is such that

ρ1 = ρ0 + τ h̃ and ρ2 = ρ0 − τ h̃,

are density matrices (positive and trace equal to one) with Radon transforms p1 and
p2. Suppose that the following conditions are fulfilled:

W1 and W2 belong to the class A(β, r, L), (24)

|W2(z)−W1(z)| ≥ 2ϕn(1 + o(1)), as n→∞, (25)

nχ2 := n

∫ π

0

∫
(pη2(y, φ)− pη1(y, φ))2

pη1(y, φ)
dydφ = o(1), as n→∞.(26)

Then we reduce the minimax risk to these two functions, W1 and W2 and bound
the max from below by the mean of the two risks, to get for some 0 < τ < 1

infcWn

sup
Wρ∈A(β,r,L)

E
[∣∣∣Ŵn(z)−Wρ(z)

∣∣∣2] ≥(
infcWn

1
2

(
Eρ1

[∣∣∣Ŵn(z)−W1(z)
∣∣∣]+ (1− τ)Eρ1

[
I

[
dPηρ2
dPηρ1

≥ 1− τ

] ∣∣∣Ŵn(z)−W2(z)
∣∣∣]))2

≥ (1− τ)2

4
· (2ϕn)2P2

ρ1

[
dPηρ2
dPηρ1

≥ 1− τ

]
(1 + o(1)).

We used the triangular inequality to get rid of the estimator and (25). Following
Lemma 4 in Butucea and Tsybakov [6], we know that the last probability in the
display above is bounded from below by 1 − τ2 provided that nχ2 ≤ τ4. It is
therefore sufficient to check (26), in order to find τn → 0, as n → ∞ and give a
lower bound of the minimax risk of order ϕ2

n(1 + o(1)), for any estimator Ŵn.
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We construct first the functions W1,2 and then prove (24)-(26) in Subsection 6.3.
Note that for the case r = 2 we prove a weaker form of (26): nχ2 = O(1) as n→∞.
The same reasoning as above shows that φ2

n is then the optimal rate up to some
constant (depending on some fixed τ).

6.1 Construction of the density matrix ρ0

In this subsection we will construct a family of density matrices ρα,ξ from which we
will later select ρ0 = ρα0,ξ0 used in the lower bound. We derive their asymptotic
behavior in Lemmas 1 and 2, and we show that W ξ

α belongs to the class A(β, r, L)
for α > 0 small enough and ξ close to 1.

Let us consider the Mehler formula, (see Erdelyi et al. [11], 10.13.22)

∞∑
k=0

zk
1√
πk!2k

Hk(x)2e−x
2

=
1√

π(1− z2)
exp

(
−x2 1− z

1 + z

)
, (27)

where Hk are the Hermite polynomials. Integrating both terms with f ξα(z) = α((1−
z)/(1− ξ))αI(ξ ≤ z ≤ 1), for some 0 < α, ξ < 1, we get

pξα(x, φ) :=
∞∑
k=0

ψk(x)2
∫ 1

0
f ξα(z)zk dz =

∫ 1

0

f ξα(z)√
π(1− z2)

exp
(
−x2 1− z

1 + z

)
dz, (28)

where ψk are the orthonormal vectors defined in (10). The Fourier transform of pξα
is

W̃ ξ
α(w) = F1[pξα](‖w‖, φ) =

∫ 1

0

f ξα(z)
1− z

exp
(
−‖w‖2 1 + z

4(1− z)

)
dz. (29)

Notice that the normalization condition
∫
pξα = 1 is equivalent to W̃ ξ

α(0) = 1 which
is satisfied for the chosen functions f ξα, thus pξα is a probability density. From the
first equality in (28) we deduce that pξα is the probability density corresponding to
a diagonal density matrix ρα,ξ with elements ρα,ξk,k =

∫ 1
0 z

kf ξα(z) dz. We look now at
the behavior of pξα(x, φ) with respect to x.

Lemma 1 For all 0 < α, ξ < 1 and |x| > 1 there exist constants c, C depending on
α and ξ, such that c|x|−(1+2α) ≤ pξα(x, φ) ≤ C|x|−(1+2α).

Proof. We have

pξα(x, φ) =
α

(1− ξ)α
√
π

∫ 1

ξ

(1− z)α−1/2

(1 + z)1/2
exp

(
−x2 1− z

1 + z

)
dz,
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which by the change of variables u = x
√

1−z
1+z becomes

pξα(x, φ) =
α2α+1|x|

(1− ξ)α
√
π

∫ x
√

(1−ξ)/(1+ξ)

0

u2α

(u2 + x2)α+1
exp(−u2) du.

By denoting g(u) = u2α exp(−u2), the last integral is bounded for |x| ≥ 1 as follows

α

(1− ξ)α
√
π|x|2α+1

∫ √(1−ξ)/(1+ξ)

0
g(u) du ≤ pξα(x, φ) ≤ α2α+1

(1− ξ)α
√
π|x|2α+1

∫ ∞

0
g(u) du.

A similar analysis can be done for the matrix elements of ρα. In the particular case
α = 1 and ξ = 0 we have ρ1,0

k,k = 1
(k+1)(k+2) .

Lemma 2 For all 0 < α, ξ < 1 we have

ρα,ξk,k =
α

(1− ξ)α
Γ(α+ 1)k−(1+α)(1 + o(1)), as n→∞.

Proof. We can first see that by definition of ρα,ξk,k and the property∫ 1

0
zk(1− z)αdz =

Γ(1 + α)Γ(1 + k)
Γ(2 + α+ k)

,

∣∣∣∣ρα,ξk,k − α

(1− ξ)α
Γ(1 + α)Γ(1 + k)

Γ(2 + α+ k)

∣∣∣∣ = α

(1− ξ)α

∫ ξ

0
zk(1− z)αdz ≤ αξk+1

(1− ξ)α
.

Now, using asymptotic expansion of the function Γ we have for large k, Γ(1 + k) =
k! =

√
2πkk+1/2e−k(1+o(1)) and Γ(2+α+k) =

√
2π(2+α+k)α+k+3/2e−2+α+k(1+

o(1)), thus as k →∞, we see Γ(1 + k)/Γ(2 + α+ k) = k−(1+α)(1 + o(1)) and, given
that k1+αξk+1 = o(1), we obtain the desired result.

Lemma 3 For any (β, r, L) such that 0 < r ≤ 2, there exist 0 < α, ξ ≤ 1 such that
W ξ
α belongs to the class A(β, r, L).

Proof. Using (29) we get∫
e2β‖w‖

r
∣∣∣W̃ ξ

α(w)
∣∣∣2 dw =

∫ ∞

0
t e2βt

r

(∫ 1

0

f ξα(z)
1− z

exp
(
−t2 1 + z

4(1− z)

)
dz

)2

dt

=
α2

(1− ξ)2α

∫ ∞

0
t e2βt

r

(∫ 1

ξ
(1− z)α−1 exp

(
− t2

2(1− z)
+
t2

4

)
dz

)2

dt

≤ α2

(1− ξ)2α

∫ ∞

0
t e2βt

r+ t2

2

(∫ 1

ξ
(1− z)α−1 exp

(
− t2

2(1− ξ)

)
dz

)2

dt

≤
∫ ∞

0
t exp

(
2βtr − t2(1 + ξ)

2(1− ξ)

)
dt ≤ C(β, r, ξ),
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where C(β, r, ξ) > 0 can be made smaller than (2π)2L for any 0 < r ≤ 2 and for
0 < ξ < 1 close enough to 1.

6.2 Construction of Vh̃ and asymptotic properties of ρh̃

Let Vh̃ be the function defined on R2 whose Fourier transform is

F2[Vh̃](w) = Ṽh̃(w) := Jh̃(t) = 2
√
πβrL h̃1−r/2eβ/h̃

r
e−2β|t|rJ

(
|t|r − 1

h̃r

)
, (30)

where t = ‖w‖, and J is 3-times continuously differentiable function with bounded
derivatives and such that I[2δ,D−2δ](u) ≤ J(u) ≤ I[δ,D−δ](u), for some δ > 0 and
D > 4δ. The choice of the function Vh̃ is motivated for the case 0 < r < 2 by the
results on lower bounds for deconvolution obtained in Butucea and Tsybakov [6].
The parameter h̃→ 0 as n→∞ is solution of the equation

2β
h̃r

+
2γ
h̃2

= log n+ (log log n)2. (31)

When r = 2, we choose

h̃ =
(

log(n log n)
2(β + γ)

)−1/2

. (32)

We think of Vh̃ as a function belonging to the linear span of the Wigner functions.
Indeed, as shown in equation (13) the convex map sending a density matrix ρ to its
corresponding Wigner function Wρ can be extended by linearity to an isometry (up
to a constant) with respect to the ‖ · ‖2 on the two spaces. We can thus construct a
matrix τ h̃ belonging to the linear span of the space of density matrices and whose
corresponding Wigner is Vh̃. Because the function Vh̃ is invariant under rotations
in the plane, the corresponding matrix has all off-diagonal elements equal to 0 and
for the diagonal ones we can use the following formula from Leonhardt [19]

τ h̃kk = 4π2

∫ ∞

0
Lk(t2/2)e−t

2/4tJh̃(t) dt, (33)

where Lk are the Laguerre polynomials defined in the proof of the following Lemma.

Lemma 4 The matrix τ h̃ has the following asymptotic behavior

τ h̃kk = O(k−5/4) oh̃(1). (34)
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Proof. We use the differential equation of the Laguerre polynomials, Gradshteyn
and Ryzhik [13] 8.979: Lk(x) = 1

k ((x− 1)L′k(x)− xL′′k(x)) . Thus

d

dt
Lk(t2/2) = tL′k(t

2/2) and
d2

dt2
Lk(t2/2) = L′k(t

2/2) + t2L′′k(t
2/2),

which implies

t2

2
L′′k(t

2/2) =
1
2
d2

dt2
Lk(t2/2)− 1

2
t−1 d

dt
Lk(t2/2),

and

Lk(t2/2) =
1
2k

(
(t2 − 1)t−1 d

dt
Lk(t2/2)− d2

dt2
Lk(t2/2)

)
.

Using integration by parts we obtain

τ h̃kk =
1
k

∫ ∞

0
Lk(t2/2)e−t

2/4
[
P1(t)Jh̃(t) + P2(t)J ′h̃(t) + P3(t)J ′′h̃(t)

]
dt,

with Pi(t) polynomials with degree at most three, whose coefficients do not depend
on h̃ or k. As the support of the function under the integral is contained in the
interval [1/h̃,∞) we can use the following bound for the behavior of Laguerre poly-
nomials (see Szegö [23] Theorem 8.9.12): supx∈[1,∞) e

−x/2|Lk(x)| = O(k−1/4).The
matrix τ h̃ has thus the following asymptotic behavior

τ h̃kk ≤ Ck−5/4

∫ ∞

1/h̃
|P1(t)Jh̃(t) + P2(t)J ′h̃(t) + P3(t)J ′′h̃(t)| = O(k−5/4) oh̃(1).

6.3 Proofs of equations (24)-(26) involved in the lower bound

Lemma 3 implies that for ξ sufficiently close to 1, the Wigner function W ξ
α belongs

to the class A(β, r, a2L). On the other hand, combining the results of Lemma 2
and Lemma 4 we get that for any α < 1/4 the diagonal matrices ρ1 = ρα,ξ + τ h̃

and ρ2 = ρα,ξ − τ h̃ are positive and have trace one for h̃ sufficiently small. Thus,
there exist α0, ξ0 such that the corresponding ρ1 and ρ2 are density matrices and
W0 = W ξ0

α0 ∈ A(β, r, a2L).

In the following proofs, the constants δ and D appear from the construction of Vh̃.
The whole proof holds for arbitrary small δ > 0 and arbitrary large D > 4δ, hence
the desired results.

Proof of (24). By the triangle inequality∥∥∥F2[W1,2]eβ‖·‖
r
∥∥∥

2
≤
∥∥∥F2[W0]eβ‖·‖

r
∥∥∥

2
+
∥∥∥F2[Vh̃]e

β‖·‖r
∥∥∥

2
.
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The first term in the sum above is less than 2π
√
La. For the second one we have∫ ∣∣F2[Vh̃](w)

∣∣2 e2β‖w‖r
dw =

∫ π

0

∫
|t|
∣∣F2[Vh̃](t cosφ, t sinφ)

∣∣2 e2β|t|rdtdφ
= π

∫
|t|
∣∣Jh̃(t)∣∣2 e2β|t|rdt ≤ 4π2βrLh̃2−re2β/h̃

r

∫
δ≤|t|r−1/h̃r≤D−δ

|t|e−2β|t|rdt

≤ 4π2Le−2βδ.

Thus, if we take a = 1−e−βδ/2, we get W1,2 in the class A(β, r, L(1−e−βδ/2 +e−βδ))
included in A(β, r, L).

Proof of (25). Notice that |W2(z)−W1(z)|2 is equal to∣∣∣∣ 1
4π2

∫
R2

e−i〈z,w〉(W̃2(w)− W̃1(w))dw
∣∣∣∣2

=
∣∣∣∣ 1
4π2

∫ 2π

0

∫ ∞

0
e−it[z,φ]|t|(W̃2(t cosφ, t sinφ)− W̃1(t cosφ, t sinφ))dtdφ

∣∣∣∣2
=

∣∣∣∣ 1
2π2

∫ 2π

0

∫ ∞

0
e−it[z,φ]|t|Jh̃(t)dtdφ

∣∣∣∣2 .
Take z = 0 without loss of generality:

|W2(z)−W1(z)|2 =
∣∣∣∣ 1
2π

∫ π

0

∫
|t|Jh̃(t)dt

∣∣∣∣2
≥ 4πβrLh̃2−re2β/h̃

r

∣∣∣∣∣ 1
2π

∫
2δ≤|t|r−1/h̃r≤D−2δ

|t|e−2β|t|rdt

∣∣∣∣∣
2

≥ 4
L

4πβr
h̃r−2e−2β/h̃r

[e−4βδ(1 + o(1))− e−2β(D−2δ)(1 + o(1))]2,

which is larger than 4ϕ2
n[e

−4βδ − e−2β(D−2δ)]2(1 + o(1)) for n large enough. Note
that for 0 < r < 2, h̃ solution of equation (31) provides exact lower bounds, while
for r = 2, h̃ given by (32) provides optimal rates of order (n log n)−β/(β+γ) which
are whithin a logarithmic factor optimal.

Proof of (26). We want to bound from above nχ2 ≤ πn
∫

(pη2(y)−p
η
1(y))

2/pη1(y)dy.
We have proven that p1(x) ≥ Cx−2 for all |x| ≥ 1. It is easy to prove, that after
convolution with the gaussian density of the noise the asymptotic decay can not
be faster, thus pη1(y) ≥

c1
y2
, ∀ |y| ≥ M, for some fixed M > 0. Then we split the

integration domain into |y| ≤M and |y| > M and get

nχ2 ≤ Cn

(
C(M)‖pη2 − pη1‖

2 +
∫
|y|>M

y2(pη2(y)− pη1(y))
2dy

)
. (35)
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Let us see first that

‖pη2 − pη1‖
2 = C

∫
|Jh̃(t)|

2e−(1−η)t2/(2η)dt

≤ Ch̃1−r exp
(

2β
h̃r

)∫ ∞

(1+δh̃r)1/r/h̃
e−4βtr−(1−η)t2/(2η)dt

≤ Ch̃2−r exp
(
−2β
h̃r

− 1− η

2ηh̃2

)
. (36)

Then∫
|y|>M

y2(pη2(y)− pη1(y))
2dy ≤

∫ (
∂

∂t
(Jh̃(t)e

−(1−η)t2/(4η))
)2

dt

≤ Ch̃1−r exp
(

2β
h̃r

)∫ ∞

(1+δh̃r)1/r/h̃
t2e−4βtr−(1−η)t2/(2η)dt

≤ Ch̃−r exp
(
−2β
h̃r

− 1− η

2ηh̃2

)
. (37)

For the case 0 < r < 2 choose h̃ as solution of the equation (31) to get the expressions
in (36) and (37) tend to 0 and together with (35) conclude. For the case r = 2, h̃
given by (32) we get that the expression in (36) tends to 0 and (37) stays bounded
as n→∞, thus we obtain the desired result.
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