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Abstract

In a two-category classification problem labeled by ¥ = 1 and Y = —1, we observe a
covariate, or feature, X € X C R We first consider a general loss function and a general
penalty and obtain an upper bound for the penalized-risk of the penalized empirical risk
minimizer. As an example, we consider the one dimensional case d = 1. Let V; denotie the
set on which the label ¥ = 1 is more likely. In the case that Vg is the union of disjoint
intervals and the number of intervals is unknown, we penalize the empirical risk by the
number of thresholds, i.e., endpoints of the intervals, and obtain the rate of convergence of
the risk minimizer. As another example, we consider the L, loss and the total variation
penalty. Later we are concerned with obtaining lower bounds in a general setup. As an
example, we show that the rate of convergence of the penalized empirical risk minimizer in
the threshold estimation problem is optimal within a log factor.

2000 Mathematics Subject Classification: Primary 62G05, secondary 62G20.
Key words: Classification theory, nonparametric models, estimation error, penalization, op-
timal lower bounds, asymptotic distribution, threshold-based classifiers.

1 Introduction

Adaptivity and penalized risk minirmization have recently been developed in a large variety of
classification and regression problems, see for example [vdGO01], [SN04], [BSR05], [TvdG05] and
'SN03]. In this regard, a complex model class of functions or parameters is considered and a
penalty on this class is added to the loss function to avoid overfitting.

In [vdG01], a penalized least squares estimator is studied where the penalty is on the complex-
ity of the class of regression functions. It is shown that a rate of convergence for the penalized
least squares estimator is determined by the entropy of the sets of regression functions with
bounded penalized risks.

Our first result in this paper is related to [vdG01] as we use a similar procedure in classification
problems. Instead of the squared error, we consider a general loss function with the penalty on
the complexity of the class of classifiers. Similar to [vdG01], we find an upper bound on the
probability of large errors.

Let (X1,Y1), -+ ,(Xn,Y,) be independent random variables, each with a distribution P},
where X; € X C R? is called a feature and ¥; € {~1,1} is the label of X,. A classifier & is a
function h : X — [-1, 1}, attaching the label sign(h(X)) to the feature X.

Mohammadi and van de Geer [MvdG05| consider the i.i.d case and give an application of
the cube root asymptotics derived by Kim and Pollard [KP90]. In the case where X is one-
dimensional, the set on which the label 1 is more likely is a union of disjoint intervals, and the
boundaries of the intervals are estimated. These boundaries are called thresholds (a simple case,



Penalized empirical risk minimizer 2

with just one threshold, has been presented in Mohammadi and van de Geer [MvdG03]). They
establish the asymptotic distributions of estimators of the thresholds, using the set of classifiers
with K thresholds as model class with fixed K smaller than or equal to the number of thresholds
of the Bayes classifier. Their result is under the assumption that Fp(z) = P(Y = 1| X ==z) is
differentiable.

Consider the setup of [MvdG05] with the difference that a bound on the number of thresholds
is not known. The class of base classifiers will therefore be very large and it is reasonable to
add a penalty on the number of thresholds to the risk function. It is shown in this paper that
a penalty of this kind yields an estimator that converges to the Bayes rule with rate (logn)/n,
provided 2Fp — 1 has a jump at its sign change points. We also show that this rate is optimal
within a log factor.

In Section 2, we consider a general setup in penalized empirical risk minimization, that covers
the case of threshold estimation. Then, we apply the result to two examples. As an example
in Section 3, we consider again the setup of [MvdG05| and penalize the empirical risk by the
number of thresholds and minimize the penalized risk. Our main result is that the empirical risk
minimizer converges to the minimizer of the prediction error with rate (logn}/n. An example
with total variation penalty is presented in Section 4.

In Section 5, we deal with lower bounds. We consider again, in Subsection 5.1, a general
estimation problem and find two kinds of lower bounds on the error of estimators. As an
example in Subsection 5.2, we consider the threshold estimation problem and show that the rate
we obtained is optimal up to log factors.

Asymptotics are considered as n — oo, viewing the sample (X1,Y7),...,(Xp,Ys) as the
first m of an infinite sequence of independent but not necessarily identically distributed random
variables. The distribution of the infinite sequence (X;,Y1),(X2,Y2),... is denoted by P. The
marginal distribution function of X is denoted by G.

2 A general penalized risk minimization

Let H be a class of classifiers h : X — [~1,1]. Consider a loss function £ : R — R*. For
n € N and ¢ = 1,...,n, consider independent random variables (X;,Y;) from a distribution F;.
Set X = (X4,...,X,) and define L, and L as

Lo(k) = = S U-Yih(X), Ix(h) = = 3 B-Yh(X))| Xo),
i=1

i=1
L(h) := E(¢(-Yh(X))).
Choose a penalty p, which is a non-negative function of h € H. Let

fln ‘= arg Eg‘ﬂ(Ln(h) +p2(h))

F . [ f

exists. Let } :
T2(h|h) := Lx(h) — Lx (k) + p*(h)
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and
Ho(0) := {h € H: 2(hlho) < 6%}.

Note that 72 and Hy depend on X. Set
Ui(h) := ¢(-Y;h( X)) — E(¢(-Y;:A(X) | X3).
Assume that di, ..., d, are some metrics on H, d® := 1 3" d? and

Ul(h) U‘I(F“')l < Wildi(h,ib), 1= L...4m, h:il‘ € H:

where W1, ..., W, are uniformly sub-Gaussian, so that for an M and ¢, the following is satisfied
max M (E(exp[|Wi*/M?]) — 1) < df. (2.1)
=l,...n

Definition Let T be a (subset of a) metric space endowed with a metric m. The u-covering
number N(u,T;m) is defined as the number of balls with radius u necessary to cover T with
respect to the metric m. The u-entropy is defined as H{u,T;m) := log N{u,T;m).

For h € H, let vy(h) := Lp(h) — Lx(h). A maximal inequality for the empirical process
Un(ho) — vn(h) is obtained in the following lemma.

Lemma 2.1 Suppose all the above assumptions hold and let sup,eqy d(h,ho) < R. Then, for
some ¢ depending on M and oo, and for all § > 0 satisfying

R
Vné > e (f HY?(u, H; d)du v R),
0
we have

nd?
P(zgg [vn(ho) — vn(h} > & X) < ¢1 exp [—22-1-1—%5]

Proof Fix X = (X),...,X,). We have

|'Un(h'0) 'Un(hjl

=|%Z[€(—Yiho(x,~))——E(E(-—Kho(Xz))lxi) £(-Yh(X:)) + E(6(-Y:h(X.)) | X3

=|= Z(U, ho) — Us(R))|.
The result follows from Lemma 8.5 of |vdG00], defining ¢ := oo. o

Denote the observed value of X by x. Assume that the following assumption holds:

Assumption (A) There are 7 > 0 and k > 1, such that
Ly(h) — Lx(ho) > nd*(h, ho), Yh € H, VX = (x1,...,Z,) € X™. (2.2)
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Assumption (A) is called the identifiability condition. This assumption can be seen in recent
developments related to classification and statistics. Massart [Mas00| has used similar conditions
in some applications of concentration inequalities to statistics. A discussion of this condition can
be found in Tsybakov [Tsy04). In Tsybakov and van de Geer [TvdGO05] it is called the margin
condition. See also Bartlett et al. [BJMO03| and Blanchard et al. [BLVO03|.

The following theorem relates the speed of estimation of Bin to the entropy of Hy. We use the
method of van de Geer [vdG01].

Theorem 2.2 Suppose Assumption (A). Let
&
v(d) > f HY2(u, Ho(8); d)du V 6,
0

where U does not depend on X and assume that U(6%/%)/6? is a non-increasing function of 8,
§ > 0. Take € € (0,1). Then for the constant ¢ from Lemma 2.1, for some c3 2 41, for

52
Vasie > e U(()E), (2.3)

and for all § > &, one has

ne2g401=1/k)y2/k

2
p”(ho) +6%) < cpexp|— 2

I1—¢

P(72(hy|ho) >

Proof We use ) R
Ly(hn) +P2(hn) < Ly(ho) + Pz(ho)

or
Lx(hn) — Lx (ho) + p*(hn) < [Lalho) = Lx(ho) — (Ln(hn) — Lx(hn))] + p*(Ra)
or
72 lho) — p*(ho) < valho) = Un(hn).
We obtain

2
P(72 (fin|ho) > pl(—_h"e) +482|X)

< Pjon(ha) — valhn)| = er?(Ralho) & 72(ha|ho) > 6| X)
< P(3s > 1: [un(ho) — Un(hn)| 2 er?(hnlho) & 227262 < 72(h,|ho) < 2246 | X)
o0
< ZP( sup  [un{ho) — vn(h)| > 235252 IX)
=1 \hEM(205)

If h € Ho(2%6), then, d(h, hg) < (2%‘5—2-)1/’“, by Assumption (A). By Lemma 2.1, we know that
for /nr > cpl’((@)m‘), where ¢; depends on M, one has

nT2 n 2k
= < == k| )
p (he’f(l:g’&) lun(ho) —vn(h)| = 7 X) & exp[ C% (22352) ] (2.4)
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Now, take d, as in (2.3) and § > §,. Note that 62°/,/7 > 8,/,/7 and hence

T((2°5/ JMHE)  W((Ba//A)H*)
RN AR T A

Thus,
P (28] 7)H*) < e;4/n2%98% /ey < /n228 282,

for all s € {1,2,...}. Now, using (2.4) one has

P* (ko)
1—ce¢

P(r%(hn|ho) > + 6| X)

oo n62243—464 7 v
SRS
s=1

o n€224(s—1—s/k)54(1—1/k) 2/k
S
s=1

n€254(1-1/k)n2/k]
C% b

for a choice of ¢3. The result follows by integrating out. O

< c2exp [—

Here is a simple consequence of Theorem 2.2.

Corollary 2.3 Under the conditions of Theorem 2.2, for k = 2, we arrive at the inequality
)
£ p*(ho) €3
E(r2(hy|hg)) < it 62 + pome Ve € (0,1),
where c3 is a constant depending on M.

For a proof, see Lemma 2.2 of van de Geer [vdG01].

3 An application: threshold estimation

In this section, we consider the one dimensional case d = 1 and the indicator loss function
£(t) == 1(t > 0). We take X = [0,1] and assume that the classifier h just takes two values —1
and 1. Note that in this case our choice ¢ is sufficient to cover any loss function. We consider
the i.i.d case, so P; = P for all i € N. The theoretical error of a classifier k is defined as

E(A(YA(X) < 0)) = P(h(X) # Y).

We consider the empirical counterpart of the risk which is the number of misclassified examples,
ie.,,

Pa(h(X) £ ¥) == = S U(R(X) £ Y5).

i=1
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Let
Fo(z) == P(Y = 1|X = z) (3.1)

be the conditional probability of the label ¥ = 1 if the feature X has value z.
Let K € N and Ug be the parameter space

Uk :=f{a={a,...,ax) € [0,1]¥ :a; < ... < ax}. (3.2)
Set for ¢ € Uy
K+1
ho(z) := 2 bl{ak—1 <z < ax},
k=1

where ag = 0, ag41 = 1 and bpyy = ~bi, £ =2,..., K. Let H; be the collection of classifiers
Hy = Hl(K) = {ha ‘aec UK} (3.3)

and
H o= URo M (K. (3.4)

Define
G 1= mg;{fé% Po(Y; # ho(Xi)), ao:= a-rg}glé% P(Y # ho(X)).

Because H is too rich, for any sample (X;,Yi),¢ = 1,...,n, we can find G, such that P,(Y; #
ha, (Xi)) = 0, we say overfitting occurs. By penalizing the empirical risk {on K), we in fact
overrule the variance term and prevent overfitting.

One has,
=Yh(X)=EAh(X) < 0L =1)+ 1(A(X) > O)1{Y = —1)

=Y1L(A(X) < 0)+1(Y = -1).
Fix X = (X1,...,X,) and set ¢; := 1(Y; = —1) — P(Y; = —1). Then,

Ui(h) = (Yi — E(Y: | Xi))1(R(X;) < 0) + ¢ = Wid(h(X3)) + @i,

where
W, =Y, - B(Y;| X)), #(t):=1(t<0).
So, : }
[Us(h) — Ui(h)| = [Willg(h(X:)) — ¢(A{(X:))|
and we take

dih, h) = [$(h(X.)) — $(R(X0))| = 1(A(X:) # B(X.)).
On the other hand, condition (2.1) is satisfied with M := 1 and o2 := e — 1. Note that

ho(z) = sign(E(Y | X)) = sign(2Fo(z) - 1) (3.5)

is the Bayes rule.
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Suppose G, the distribution of X, has a bounded density g, write
a=(a....ax), ag={(ao1,...,a0,K)

and assume that the following holds:

Assumption (B) There is an n > 0, such that

[2Fp(z) - 1|>n, VYVze€(0,1), z#ap, i=1,...,K.

Then for V := {h, # hy,} one has

1 k(3
Lx(ha) = Lx(hao) = = > _|E(Y; | X;)|1(X; € V)
i=1

- 1S R0 -1k e V)

=1

1 n
> ﬂnZ;I(X:‘ evV)
=

= 1d* (ha, hao )- (3.6)
Now, condition (2.2) is satisfied with k = 2 and if h € Ho(8), then d(hg, ha,) < 77 1/26.

Since we do not want the dimension of the parameter to be large, we consider a penalty on
the dimension. Let h = h, € H, K = K, and

Ko

P {he) := )\2—7;- (3.7)

We need the entropy of a class of functions with respect to the L, metric.

Lemma 3.1 Consider the L, metric on R™,
. m
d(a,b) =D las = bil, a=(a1,...,am), b=(b,...,bm).
]l

Then a ball B (R) (with respect to the above metric) in R™ can be covered by N < (L%J +1)™
balls with radius u.

We now show that the penalty yields an estimator with an error bounded by a factor of
(logn)/n.

Theorem 3.2 Suppose Assumption (B). Take A > cqv/logn, where ¢4 is a large constant de-
pending on 1. Then for every e € (0,1)

E(7%(hnlho)) <
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Proof It is enough to check the conditions of Theorem 2.2 for k = 2. First fix X. For K, =
Ky = K, one has

@ (ha,hw) = €5 [ha(Xi) — Bo(X3)| [,

i=1

for some constant cs. If h € Ho(6), then 252 < 62 or K, < | 25| =: K(§). There are at most
n¥ linear subspaces of dimension X in R®. By Lemma 3.1,

H(u,Ho(d);d) < K(6)log % + K(8)logn

né?_  5né
< 2 log 2.
= A2 log u
So, s
2
f HY?(u, Ho(8); d)du < Ao\/ia Viegnv é =: ¥(s),
0
where
1[5
Ag:=1 +f log —du.
0 uw
If
Vndy = caf(ey/M), €1 2 Aoca/(ey/7),
then,
U(0n/vn) =én/v/m
and

Vndie > 2P (6n/v/M)-
O

Corollary 3.3 By Theorem 3.2, for each fized € € (0,1), we obtain the rate (logn)/n for the
convergence of the error. The best choice for ¢ in Theorem 8.2 will improve the constants but
not the rate.

4 Total variation penalty

Let us first refer to some results on total variation penalties. Least squares penalized regression
estimates with total variation penalties are considered in [MvdG97]. These estimators are least
squares splines with locally data adaptive placed knot points. The rates of convergence and
pointwise limiting distributions are obtained in [MvdG97|. In [Por97] the same problem is
discussed with Ly loss instead of the least squares. See also [DKO1].

In this section we apply Theorem 2.2 with total variation penalties to obtain a bound on the
error of the penalized risk minimizer.

Let X = [0,1] and consider the class H of functions h : X — {—1,1] with the derivatives of
all orders. Again we consider the i.i.d. case. Set £(¢) := |1 +t| and the penalty

P2 (R) = 2TV (R™D), m>1, 0 < A <1,
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where TV is the total variation function. Note that
Us(h) = 1 - Yib(X;)| — B(I1 - Yih(X:)| | X:)
= (~Y; + E(Y; | Xi)h(X;) = Wig(h(X3)),

where
W= -Y; + E(Y; | X}), ¢(t) :=t.
So,
Ui(h) — Us(k)| = [Wil|h(X;) — (X))
and we take

di(h, B) = |p(h(X:)) ~ ¢(R(X:))] = () ~ R(X:).

Condition (2.1) is now satisfied with M :=1 and o2 :=¢? — L.

Theorem 4.1 Suppose Assumption (B). One has for all e € (0,1)

E(r2(hnlho)) < ATV D)1 - o) + Crm cs 4.1)

ne’n A neln’

where Cy, is a constant.

Proof Set
Hm,c = {h € H:p%(h) < C).

It is proved in [BS67] that
Hoo(t, Him,c) < Am(C/u}'™, Yu > 0,
where H, is the entropy corresponding to the supremum norm. We can show that
H(u, Hyn 5/am 8) < BR(8/Omu))/™, 0 < u <3,

where
Hmcs = Hmcn {h:||h=hollx < 5},

and where || - ||x is the Ly norm, corresponding with the vector x (see Lemma 3.4 in [vdGOl1}).
Note that hp is the same as in (3.5) and

Lx(h) ~ Ix(ho) = = 3 (B(1 = %h(X.) | X.) = B(1 ~ Yiho(X:) | X))
im]

= 23" B X)) - ho(X)

i=1

= 23" B I X IR0 ~ o)

i=1

27

S|

> Ih(X:) — ho(Xa))|
tml
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n

> 77% D IR(X) — ho(X)

i=1
= T]dz(ha hO)
Therefore, we apply Corollary 2.3 with ®(4) := B0 /)\l,f (2m) and take
Vindy = %-
Ne€Am

We obtain (4.1) with Cp, := (c2Bp)?. O

Corollary 4.2 If TV(h((]m-l)) remains bounded in n, then we may choose

Am = n—m/(2m+1)

to get the rate n=2m/(2m+1) for the comvergence of the error. Again the best choice for € will
improve the constants but not the rate.

5 Optimal lower bounds

So far, we have studied upper bounds on the errors of estimators. In this section, we obtain
some lower bounds on the errors in estimation problems. Lower bounds are in general not as
interesting as upper bounds. However, if we have both upper and lower bounds and if they are
of the same order, then we get optimality (for the exact definitions see below).

Lower bounds can be defined in different ways. Our special definitions are referred to [MMO03],
see Corollary 5.11 below (see also [Moh04], Chapter 6). In fact we first generalize the results in
[MMO3] and then consider the special case of threshold estimation.

5.1 General theory

In this subsection, we consider a general setup and obtain some lower bound type results. In
the next subsection, we apply our theory to classification problems.

Consider a statistical model P, i.e. a class of probability measures over a measurable space
(€2,.4). Consider another measurable space (H,B(H)) and a loss function

L:PxH—+R, (Ph)— Lp(h). (6.1)
Assume that for each P € P, there exists a minimizer hp € H, i.e.
Lp(hp) < Lp(h), forallheH. (5.2)

Let H(P,Q) := Ep|log %] dencte the relative entropy for P, € P, whenever it is well
defined. The following lemma is Lemma 2.1 in [MMO3].

Lemma 5.1 Let P and Q be probability measures with H(F, Q) < co. For every random vari-
able X with 0 < X <1, one has
1

Eg[X] > e 2H(PQ)-1 (Ep [X] - 5) . (5.3)
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Set Ap(h) := Lp(h) — Lp(hp). This function is called the excess risk. For v > 0, set
AL(h) := min{y, A p(R)}. Our aim is to find lower bounds on the probability of AL(hs) being
large for every estimator hp : Q" — H. Fix n € N,

Lemma 5.2 Let P, € P and «y > 0 such that
Ap(h)+ Ag(h) > v, VheH. (5.4)

Then for any 8§ € (0,1/2) and for any estimator h, : 2" — H, at least one of the following two

statements holds:
Epn(A}(hn)) > 6 (5.5)

or
Ean(A3(hn)) 2 (5 — )y exp(~2nH (P, Q) ~ 1). (56)

Proof Note that A}, and A"’ take values in [0,]. It is easily seen that A% (A) + A7 o(h) 2 7, for
all i € ‘H. Hence, i
Epn(A}(hn) + A3 (h)) 2 7, 6.7)

thus for any & € (0,1/2), we have Epn(A} (hp)) > &7 or Epa(A 5(1?1,1)) > (1 —6)y. By Lemma
5.1, we know that

;}Een(az,(fzn))_ (B (83 (hn) = 1) exp(-20H(P,Q) - 1). (5.8)

So, if Epn(A (hz)) > (1 — &), then

Eqn(8(hn)) > (1~ )7 - J) exp(~2nH(P,Q) - 1) (5.9)
= (1/2 - §)yexp(-2nH(P, Q) — 1). (6.10)
O

Lemma 5.2 is the first step Lo prove lower rate of couvergence. We use the following immediate
consequence of this lemma.

Lemma 5.3 Let P,Q € P and v > 0 with infren(Ap(h) + Ag, (h)) = v and H(P,@) < ©
Let n € N, then for eny estimator h : Q" — H, we have

#é?%}é}E (A"’(h)) > —exp( 2nH(P,Q) — 1)7. (5.11)

Proof By Lemma 5.2,

Epn(A}(R) > 2, or Egn(a}(R)) 2 7 exp(-2nH(P,Q) - 1). (5.12)
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Thus, using exp(2rH(P, Q) +1) > 1,

exp(2nH(P,Q) + 1)
pE{FQ} v

Eun (AY(R)) > 1/4. (5.13)

Hence, (5.11) holds. O

A Jower bound can be derived from (5.11) by considering v dependent on n. The following
theorem is the first lower bound result. It is proved by (5.11).

Theorem 5.4 Let (ﬁn : Q" — R)nen be a sequence of estimators. Take sequences (8p)nen and
(Yn}neN of positive numbers and a non-empty open setU C P. For all large n € N, assume that
there are Py, Qn € U, such that

H(Po@u) <0, and f(AR(R) + AZ,(R) > 7n (5.14)
One has for all non-empty open sels U T P

n “In i3
lim inf sup —EP (AF ()

1
> —. 5.15
n" pey YnXp(—2ndy) T 4e ( )

The second lower bound result in this paper is presented in the theorem below. Consider
positive sequences (¥, )nen and (8, )nen. Define the total variation distance

(P,Q) = |IP — Qll.a := sup(P(A4) — Q(A)).
AcA

Theorem 5.5 Let (ﬁn : " — R)uen be @ sequence of estimators. Let P be endowed with a
Baire space metrizable topology. Assume that the map P 3 P — Ap(h) is continuous for all
h € H with respect to the total variation distance.

Suppose that for all P € P, for all neighbourhoods N' of P, and for all m € N, there are
n>m and Qn, € N, such that

H(P,Q,) <4, and iEf(A"F’," (h) + AJ (h)) = Ta. {5.16)

Then for all non-empty open sets U C P, one has

: Ex(A(Ry) _ 1
LyriBu V) 1 '
S L S - exp(—2nd,) = do (5.17)
Proof Set 1
Pn={P€P:Epn (A}:"(fln)) < =T exp(—2ndp)} (5.18)
and
Fr= (] Pn (5.19)
n=m

We claim that the map A
P —0,1], P Epn{AF(hy)) (5.20)
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is continuous. To prove this claim, let P € P, and consider a sequence (Q}; in P converging
to P with respect to the total variation distance. Then for all w € ", we have

AL (W) =% AR (hn(w)) (5.21)

k

by the continuity of P — Ap{w). Using Lebesgue’s dominated convergence theorem and 0 <
AT (hg) € Yn, this implies that for each n

Epn[AL (ha)] =% Epn[AF (hn)). (5.22)
Furthermore,
Bz AL, (ha)] — Epn AL (ha)]] < 1mlQx — Plla =0, (5.23)

Combining (5.22) and (5.23), we get
By [0, (ha)] =2 Eps[A (), (5.24)

which shows that Epn|AJ (h,,)] depends continuously on P. Note that we used in the last step
that the chosen topology on P is metrizable (or, at least, that sequential continuity on P implies
continuity).

The continuity of the map described in (5.20) implies that the sets P, C P are closed; thus
their intersections JFy, are closed too.

Next, we show that the sets 5, C P, m € N, are nowhere dense. To check this, take
P € Fp, and a neighbourhood A of P in P. By the hypothesis of the lemma, there exist n > m
and @, € N such that (5.16) holds. Then Lemma 5.3 implies (5.11), i.e. P ¢ P, 2 F OF
Qn & Py, 2 Fpn, and thus N € F,,,. This shows that indeed F,, is nowhere dense.

Let &4 C P be a non-empty open set. Since P is endowed with a Baire space topology, we
conclude that I is not contained in | J,,cn Fm; 50 we can take P € U \ |J,,en Fm- For this P,
we know that P ¢ P, for infinitely many n € N. Thus we get

- 1
- 2 [ATH > 2
hrl;n—rszp Tn exp(_2n6n)EP [AP (hn)) 2 e i
and therefore, .
li ——  _Eq(A?(h,)) > —. 2
ilél}} lﬂsolép Tn exp(—2n6n) # ( # ( n)) T de (5 6)
O

We use the following version of Chebyshev’s theorem.

Lemma 5.6 Consider o random variable X < 1 with probability measure P. Then, for any
er < EP(X)’
1- Ep(X)

P(X < C7) <

(5.27)
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Proof We have

Ep(X) = Ep(X1(X > c7)) + Ep(X1(X < ¢7)) (5.28)

SPX>e)+cP(X <ep) (5.29)

=1-P(X <c¢7)(1—¢p). (5.30)

Hence, (5.27) holds. o

We have the following corollary from Theorems 5.4 and 5.5 and Lemma 5.6.

Corollary 5.7 Under the conditions of Theorem 5.5, for any ¢; < 41—e one has

~

sup limsup p" (A" (hn) > c77n exp(—2n4,))
#Eu =00

: Eyn (AL (hn))
S SUp,ecy limsup,,_, . eexpl=2nda) — CT

5.31
> B (532
T 1l-e '
Similarly, under the conditions of Theorem 5.4, for any ¢7 < 31; one has
. 1 _¢
lim inf sup u™ (A" (hn) > c77m exp(~2nd,)) > de (5.33)
n #Eu 1 - 67

5.2 Optimality in threshold estimation

In this subsection, we prove that the rate in the threshold estimation problem obtained in Section
3, is optimal up to logrithmic factors. Our example is even more general so that the threshold
estimation is a very specail case.

Let us introduce the precise class P of probability measures that we consider. We assume
that the features X take values in the unit interval X = |0, 1].

Let P denote the set of all probability distributions

P = fp[Ap,1) ® (counting measure)| (5.34)
on Q@ = [0,1] x {£1} (with the Borel o algebra A). Here, A denotes the Lebesgue measure

on [0,1].
We endow P with the total variation metric d

d(P,Q) =[P - Q|4 (5.35)

Let P C P denote the set of all P € P, such that for some a(P) € (0,1), 8 = 8p > 0,6 =
ep > 0 and some constants cg, ¢g, c10 € (0, 00), ¢ < ¢y, one has

fE(@) > co (5.36)
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and
es| X~ a(P)P < |fE(z) - f5(@)| < o | X — a(P)P, (537)

for all z € I, := (a(P) — ¢,a({P) +¢).
We take H as in (3.4),
Lp(h) := P(Y # h{(X)) (5.38)

and
Vh.={z:h(z) =1}.

The following lemma provides sufficient conditions for the lower bounds.

Lemma 5.8 Let P € P and U C P be an open neighbourhood of P. Then there are c13 =
enn(PU) > 0 and ¢y2 = e1o(P,U) > 0, such that for all large n (say for n > ng(P,U)), there is
Qn € U, such that the following holds

RH(P,Qn)Scu and  mf(AF(R) + A%, (1) 2, (5.39)

ey
where ¥, 1= clan 1+,

Proof Choose a balll N € U, with respect to the metric d, centered at P with the radius r.
Consider ¢, := n~2+1, Define the densities
75,(@) = fp(@)z ¢ I,) + fE (@)1(z € L,). (5.40)
Note that for z € [0,1],
15.(2) = f, @) = f(z) - fp(2)l.
On the other hand
[ 183, - shite= [ 17 - slas

s] co| X — a(P)|Pdz

i

€n
. f wldz

o
= 200¢8*1 /(0 + 1) = 2co /(6 + 1))n %51, (5.41)
Similarly,

155, - fplds < 2eo/ (6 + 1=,

It shows that d{F, @) < r, if we take n large enough. Also, for large n, fgn > cjg over I, and
hence, @, € . From now on, we suppose that n is large enough. One has

fgﬂ 2 1 a\2
j(-}f-—l) f;dmsaf[m(chX—a(P) \2dz
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€n
< % ly|*dz

T Joe,
263 2041
T (26 +1) "
Similarly,
/(an - 2f 203 626+1.
P ClO (20+1) ™
Hence,
dQy 4
’J’IH(P, Qn) < nE((_ - )2) clﬂ(2§+ 1) n£29+1

R

=:C11.
T eo(20+1) M

On the other hand
J158 - sisgae> [ wlx - ap)spds

2L
€n

> 38010[ |X - a(P)lgda: = Cgclof !y Bd.’IJ
I,

n —€n

268010 — _'Ii
2041, 5.42
B0, (5.42)

> 203610€9+1/(9 +1)=
Take an arbitrary k € H. One has
Ah+Anh=[ +—_d:c+/ r 5 ldx
P( ) Q@ ( ) VhAVhE |fp fp| VR AVEGn |an an
min{|f§ — fp|,1£5, — fa. |}z

2 j
(VRAVEP)U(VEAVRQR)

> min{|fE — fal, 12 — f5 |}dz
> [ minllfE = LIS, - fa,)

> f& = fpldz.
/\;hPAVhQn | o Pl

(13, - fo e - f5) <0,
so that I,, C VPP AVhen. Hence, using (5.42),

Note that over I, ,

Ap(R) + Ao, (k) > cion” 175,

__2cc

where ¢ 1= S22,

a

To prove the lower bounds, we need to show the continuity of the function Ap. It is shown
in the next lemma.

Lemma 5.9 For any h € H, the function P 3 P — Ap(h) = Lp(h) — Lp(hp) is continuous
with respect to the totel variation distance || - || 4.
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Proof We prove that both, P — Lp(h) and P — Lp(hp) are continuous. Using that Lp(h) =
P(A) for the event A = {R{X) # Y}, continuity of P — Lp(h) follows immediately from the
definition of || - || 4.

For any finite measures p1,. .., 4 over X, define u; V.. .V by its Radon-Nikodym derivative

dip V...V du du
dv = max E,...,E y (543)

where v denotes any dominating measure for u, ..., ux. Note that this definition is independent
of the choice of a dominating measure » and of the choice of representatives of the Radon-
Nikodym derivatives. Furthermore, the maximum operation V is continuous with respect to the
total variation distance.

Denote the probability distributions corresponding to f§ by P*. We get by (5.38)

1- Lo(hp) = P(hp(X) = Y) = PH(hp(X) = 1) + P~ (hp(X) = —1)
_ c% v+ f % dv = (P* v P)(X). (5.44)
{hp=1} {hp=-1}

Since the maximum operation V and the map P — P¥ are continuous with respect to the total
variation distance, this implies that P — Lp{hp) is continuous. This proves our claim.
0

Corollary 5.10 By Lemmata 5.5 and 5.8, we have the following. For all non-empty open sets
U C P and all estimators hy,, one has for any c7 < i

sup lim sup p*(Lp(hs) — Lp(hp) > C.,n—x—l-;t;a)
pHEU n—o0

= sup lim sup g™ (min{Lp(fin) — Lp(hp),cm'T]:—;ﬁ} > cm"flf%)

REUH n—00
1+8
= sup lim sup u"(AZ™ i (hn) = emn 111269)
pEL n—oo
1
>de 5.45
2 (5.45)
Similarly, by Lemma 5.9, for any c; < % one has
1
. ==
lim inf sup u™(Lp(hn) — Lp(hp) > cyn~1728) > 26 T (5.46)
" ueld 1-—cy

Corollary 5.11 The case 8 = 0 corresponds to the threshold problem described in Section 3.
Consider the setup introduced in Section 3 with Assumption (B). Let P(Y = 1) = 1/2. Consider
the case that 2P(Y = 1|X = z} — 1 has a sign change a(P) € (0,1) and suppose that for an
€ > 0, the densities f* := P(:|Y = %1) are bounded from below by some c1p € (0,00) over
I. = (a({P) — ¢,a(P) + €). Let g, the density of G, be bounded from below by c13 over I.. Define
cg i= c13n and

eg := sup |f*(z) — f(z)I.

€l
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Then (5.36) and (5.37) hold and hence P € P and by Corollary 5.10, for all non-empty open
sets U C P and all estimators h,,, one has for any ¢y < 4le

1 _
sup limsup 4™ (Lp(hn) — Lp(hp) > cr(1/n)) > .
pEU n—oo 1—-¢7
Similarly, for any ¢; < % one has
1
liminf sup g™(Lp(he) = Lp(hp) > cr(1/n)) > 2T (5.47)
B peld 1—-cr

Corollary 5.12 Upper bounds in the threshold estimation problem with knoun K for the case
6 = 0 is discussed in [MvdGO5] (See Theorem 5 in that article). They consider, without loss of
generality, K = 1 and the assumption

2P(Y =1|X =a) - 1lg(x) = clz — o',

for some ¢ > 0, 0 > 0 and all z in a nighbourhood of a*, where a* is the threshold of the Boayes
rule. It is shown that

P(Yhn(X) < 0) — P(Yhes(X) < 0) = Op(n”TH9),

where hy, is the empirical risk minimizer and hq is Bayes rule. Similar to Corollary 5.11, it can

be shown that the rate n~ 1% is optimal for 8 > 0, for the case that the number of thresholds K
is known.
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