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Abstract. We consider a (1+1)-dimensional hydrophobic homopolymer, in interaction
with an oil-water interface. In Z2, the interface is modelled by the x axis, the oil is
above, the water is below, and the polymer configurations are given by a simple random
walk (Si)i≥0. The hydrophobicity of each monomer tends to delocalize the polymer in the
upper half plane, through a reward h > 0 for each monomer in the oil and a penalty −h <
0 for each monomer in the water. On the other hand, the chain receives a random reward
(or penalty) when crossing the interface, depending on a local random charge attached
to the interface. At site i this reward is β (1 + sζi), where (ζi)i≥1 is a sequence of i.i.d.
centered random variables, and s ≥ 0, β ≥ 0. Since the reward is positive on the average,
the interface attracts the polymer and a localization effect may arise. We transform the
measure of each trajectory with the hamiltonian β

∑N
i=1(1+sζi)1{Si=0}+h

∑N
i=1 sign(Si),

and study the critical curve hs
c (β) that separates the (β, h)-plane into a localized and a

delocalized phase for s fixed.
It is not difficult to show that hs

c (β) ≥ h0
c(β) for all s ≥ 0 with the former explicitly

computable. In this article we give a method to improve in a quantitative way this
lower bound. To that aim, we transform the strategy developed by Bolthausen and den
Hollander in [4], by taking into account the fact that the chain can target the sites where
it comes back to the origin. The improved lower bound is interesting even for the case
where only the interaction at the interface is active, i.e., for the pure pinning model. Our
bound improves an earlier bound of Alexander and Sidoravicius in [1].

Keywords: Polymers, localization-delocalization transition, pinning, random walk, wet-
ting.
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1. Introduction

1.1. The model. Let S = (Sn)n≥0 be a simple symmetric random walk starting at 0,
i.e., S0 = 0 , Sn =

∑n
i=1 Xi, where {Xi}i≥1 are i.i.d. random variables such that P (X1 =

±1) = 1/2. Let Λi = sign(Si) if Si 6= 0, Λi = Λi−1 otherwise. Let {ζi}i≥1 be i.i.d. random
variables, non a.s. equal to 0, such that E (ζ1) = 0 and E

(
eλ|ζ1|) < ∞ for every λ > 0.

For h ≥ 0, s ≥ 0 and for every trajectory S of the random walk, we define the hamil-
tonian

Hζ,s
N,β,h(S) = β

N∑

i=1

(1 + sζi)1{Si=0} + h
N∑

i=1

Λi, (1.1)

and the probability measure P ζ,s
N,β,h

dP ζ,s
N,β,h

dP
(S) =

exp
(
Hζ,s

N,β,h(S)
)

Zζ,s
N,β,h

(1.2)
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with the partition function

Zζ,s
N,β,h = E

(
exp

(
Hζ,s

N,β,h(S)
))

. (1.3)

The law P ζ,s
N,β,h is called the polymer measure of size N . Under this measure, two types

of trajectories seem to be favoured: the localized trajectories that come back often to
the origin to receive a positive pinning reward along the x axis, on the other hand, the
delocalized trajectories that spend almost all the time in the upper half plane. The latter
are favoured at the same time by the second term of the hamiltonian and by the fact that
they are much more numerous than the former. Thus, a competition between these two
possible behaviors arises.

1.2. Free energy. To decide, at fixed parameters, if the system is localized or not, we
introduce the free energy, denoted by Ψs(β, h), and defined by

Ψs(β, h) = lim
N→∞

1
N

log Zζ,s
N,β,h.

This limit is non-random and occurs P almost surely in ζ and L1. The proof of this
convergence is similar to the one given in [8] or [4]. For this reason, we do not detail it in
this article.

The free energy can be bounded from below by computing its restriction to the subset
DN defined by DN = {S : Si > 0 ∀ i ∈ {1, . . . , N}}. For each trajectory of DN , the
hamiltonian is equal to hN , because the chain stays in the upper half plane and never
comes back to the interface. Moreover, P (DN ) ∼ c/N1/2 as N →∞. Hence,

Ψs(β, h) ≥ lim inf
N→∞

1
N

log E
(
ehN1{DN}

)
≥ h + lim inf

N→∞
log (P (DN ))

N
≥ h,

and so the free energy is larger than or equal to h. We will say that the polymer is
delocalized if Ψs(β, h) = h (because then the trajectories of DN give us the whole free
energy) and delocalized if Ψs(β, h) > h.

This separation between the localized and delocalized regimes seems a bit crude. Indeed,
many trajectories that come back only a few times to the origin, and spend almost all the
time in the upper half plane, should also be called delocalized. Thus, taking only into
account the trajectories of DN could be insufficient. However, the convexity of the free en-
ergy ensures that throughout the localized phase the chain comes back to the interface in
a positive density of sites. Another result helps us to understand the localization phenom-
enon. This result is due to Sinai [17], and we can adapt it to our pinning model to control
the vertical displacement of the chain in the localized area. To that aim, we transform the
hamiltonian to β

∑N
i=1 (1 + sζN−i)1{Si=0} + h

∑N
i=1 Λi. Thus, the disorder is fixed in the

neighborhood of SN , while the free energy is not modified. Then, for Ψs(β, h) > 0 and
ε > 0, we can show that, P almost surely in ζ, there exists a finite constant Cε

ζ > 0 such
that, for every L ≥ 0 and N ≥ 0,

P ζ,s
N,β,h (|SN | > L) ≤ Cε

ζ exp (− (Ψs(β, h)− ε) L) .

This result cannot hold if we keep the original hamiltonian, because the disorder is not
fixed close to SN . Therefore, P almost surely in ζ, we meet arbitrary long stretches of
negative rewards, which push SN far away from the interface.

Some pathwise results have been proved in the delocalized area. In our case, we can use
the method developed in the last part of [3] to prove that P almost surely in ζ, and for
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every K > 0,
lim

N→∞
Eζ,s

N,β,h (]{i ∈ {1, . . . , N} : Si > K}/N) = 1.

These results allow us to understand more deeply what localization and delocalization
mean.

1.3. Simplification of the model. We transform the hamiltonian to simplify the local-
ization condition. To that aim, we notice that

Ψs(β, h)− h = lim
N→∞

1
N

log

(
E

(
exp

(
β

N∑

i=1

(1 + sζi)1{Si=0} + h
N∑

i=1

(Λi − 1)
)))

and we define Φs(β, h) = Ψs(β, h)−h. The delocalization condition becomes Φs(β, h) = 0
and the localization condition Φs(β, h) > 0. Finally, we set ∆i = 1 if Λi = −1 and ∆i = 0
if Λi = 1. Then the hamiltonian becomes

Hζ,s
N,β,h (S) = β

N∑

i=1

(1 + sζi)1{Si=0} − 2h
N∑

i=1

∆i,

and we keep Zζ,s
N,β,h = E

(
eHζ,s

N,β,h
)
. Thus, we obtain

Φs(β, h) = lim
N→∞

1
N

log Zζ,s
N,β,h.

The function Φs is convex and continuous in both variables, non-decreasing in β and
non-increasing in h.

2. Motivation and Preview

2.1. Physical motivation. Systems of random walk attracted by a potential at an in-
terface are closely studied at this moment (see [8]). One of the major issue in the subject
consists in understanding better the influence of a random potential compared to a con-
stant one (with the same expectation). Indeed, while it seems intuitively clear that a
random potential has a stronger power of attraction than a constant one, it is much less
obvious how to quantify this difference.

In this article, we consider a potential at the interface together with the fact that the
polymer prefers lying in the upper half plane than in the lower half plane. Such a type of
system has been studied numerically in [11] and describes, for instance, a hydrophobic ho-
mopolymer at an interface between oil and water. Close to this interface, some very small
droplets of a third solvent (microemulsions) are placed. These droplets have a strong ca-
pacity of attraction on the monomers composing our chain. Thus, the pinning rewards that
the chain can receive when it comes back to the origin represent the attractive emulsions
that the polymer touches close to the interface.

2.2. Preview. In this article, we investigate new strategies of localization for the polymer,
consisting in targeting the sites where it comes back to the interface. We find an explicit
lower bound on the critical curve that lies strictly above the non-random one.

Our result covers, as a limit case when h tends to infinity, the wetting transition model.
Indeed, in the last ten years the wetting problem, i.e., the case of a polymer interacting
with an (impenetrable) interface, has attracted a lot of interest, because it can be seen as a
Poland-Scheraga model of the DNA strand (see [16], [7]). The localization transition with a
constant disorder occurs for the pinning reward log 2, and several open questions are linked
with the effect of a small random perturbation added to the reward log 2. Moreover, with



4 NICOLAS PETRELIS

the constant pinning reward log 2, the simple random walk conditioned to stay positive
has the same law as the reflected random walk (see [10]). That is why, to study the wetting
model around the pinning reward log 2, it suffices to consider the pure pinning model, i.e.,
a reflected random walk pinned at the origin by small random variables.

This pure pinning model has been closely studied. For example, in [12] a particular
type of positive potential has been considered and a criterium has been given to decide
for every disorder realization whether it localizes the polymer or not. But a very difficult
question consists in estimating, for small s, the critical delocalization average uc(s) of a
pinning potential {−u + sζi}i≥1, where {ζi}i≥1 are i.i.d., centered and of variance 1 (i.e.,
V ar(−u + sζi) = s2). The annealed critical curve, denoted by ua(s), is an upper bound of
uc(s) and verifies

ua(s) = log E (exp(sζi)) = (1 + o(1))s2/2 when s tends to 0.

Moreover, ua(s) is equal to s2/2 when ζi follows an N(0, 1) law.
In the last 20 years, there has been a lot of activity on this question, mostly from the

physics side, and it is now widely believed that uc(s) behaves as s2/2. But it is still an
open question wether uc(s) = s2/2 (see [6]) for s small or uc(s) < s2/2 for all s (see [5] or
[13]).

However, on the mathematics side the only rigorous fact that has been proved is in [1],
where Alexander and Sidoravicius have studied a general class of random walks pinned
either by an interface between two solvents or by an impenetrable wall. If we apply their
results in our case, we obtain that the quenched quantity uc(s) is strictly larger than the
non-disordered one uc(0). In this paper, we develop a new localization strategy, which
allows us to go further, by giving a lower bound of uc(s) which has the same scale as the
annealed upper bound for s small (i.e. −cs2 with c > 0).

3. Critical curve

In this article, we are particularly interested in the critical curve of the system, namely,
the curve that divides the (h,β)-plane into a localized and a delocalized phase. Before
defining this curve precisely, it is helpful to consider the non-disordered case (s = 0), which
is easier to understand and gives a good intuition of what happens in the disordered case
(s 6= 0).

3.1. Non-disordered case (Proposition 1). Above the critical curve the system is
delocalized, and below localized. In appendix B, we compute the equation of this curve
when s = 0. We obtain

h0
c : [0, log 2) → R

β −→ h0
c (β) = −1

4
log

(
1− 4

(
1− e−β

)2
)

. (3.1)

This curve is increasing, convex and tends to ∞ when β tends to log 2 from the left. When
β ≥ log 2 the system is always localized. In fact, when h is chosen large, the free energy is
strictly positive. That is why this critical curve is only defined on [0, log 2) (see Fig 1).

Our first result concerns s 6= 0 and shows that the critical curve has a form that is
qualitatively similar to (3.1).

Proposition 1. For s ≥ 0 and β ≥ 0 the following properties are verified.
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i) There exists hs
c(β) ∈ [0, +∞] such that

Φs(β, h) > 0 if h < hs
c(β),

Φs(β, h) = 0 if h ≥ hs
c(β).

ii) The function β → hs
c(β) is convex and increasing.

iii) For s ≥ 0 there exists β0(s) ∈ (0,∞] such that hs
c(β) < +∞ when β < β0(s) and

hs
c(β) = +∞ when β > β0(s).

iv) The non-disordered critical curve h0
c(β) is a lower bound for hs

c(β).

v) β0(s) ≤ β0(0) = log 2.

Remark 1. The case β = β0(s) remains open. More precisely, two different behaviors of
the curve may occur. Either limβ→β−0 (s) hc (β) = +∞, or there exists hs

0 < ∞ such that
limβ→β−0 (s) hc (β) = hs

0. In the latter case, by continuity of Φs in β, we obtain Φ(β0(s), hs
0) =

0 and hc (β0(s)) = hs
0.

3.2. Annealed case. We obtain an upper bound of hs
c(β), as usual, by computing the

annealed free energy. This is, by Jensen’s inequality, an upper bound on the quenched
free energy. The annealed system gives a critical curve (β → han,s

c (β)), which is an upper
bound on the quenched critical curve. The annealed free energy is given by

Φs
ann.(h, β) = lim

N→∞
1
N

log EE

(
exp

(
β

N∑

i=1

(1 + sζi)1{Si=0} − 2h
N∑

i=1

∆i

))
.

We integrate over P to obtain

Φs
ann.(h, β) = lim

N→∞
1
N

log E

(
exp

((
β + logE(eβsζ1)

) N∑

i=1

1{Si=0} − 2h
N∑

i=1

∆i

))

= Φ0
(
h, β + logE

(
eβsζ1

))
. (3.2)

Finally, we denote by βs
an the unique solution of β+logE(eβsζ1) = log 2, and for β ∈ [0, βs

an)
we obtain han,s

c (β) = h0
c

(
β + logE

(
eβsζ1

))
(see Fig 1).

Remark 2. We notice that han,s
c (β) and h0

c(β) are both equal to β2(1 + o(1)) when β
tends to 0.

3.3. Disordered model. Up to now, three types of localization strategy have been used
to find lower bounds on the quenched critical curve. The first one consists in computing
the free energy on a particular subset of trajectories, i.e., trajectories that come back
often to the interface ([2]). The second strategy consists in transforming (by using Radon-
Nikodym derivatives) the law of the excursions out of the origin. Bolthausen and den
Hollander have used this second method in [4], to constrain the chain to come back to the
origin in a positive density of sites. Finally, in the same spirit as the work of Alexander
and Sidoravicius ([1]), we use a third strategy which goes further than the former one, by
making the chain choose, at each excursion, a law adapted to the local disorder.

Proposition 1 tells that hs
c(β) = ∞ when s ≥ 0 and β ≥ log 2. Therefore, the critical

curve is not defined after log 2. For this reason, we will only consider the case β ≤ log 2.
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Theorem 2. If V ar(ζ1) ∈ (0,∞), then there exist c1 > 0, c2 > 0 such that, for every
s ≤ c1 and β ∈ [0, log 2− c2s

2β2),

hs
c(β) ≥ −1

4
log

(
1− 4

(
1− e−β−c2s2β2

)2
)

= ms(β).

On Fig. 1 below, we draw the curves which we have mentioned up to now.

-

6

0
β

log 2

h

βs
an

Fig. 1: han,s
c (β)

h0
c(β)

ms(β) possible location of hs
c(β)

s ss

Remark 3. In the proof of Theorem 2, we restrict to P (ζ1 > 0) = 1/2 and E
(
ζ11{ζ1>0}

)
=

1. In this case, c1 = 1 and c2 = 1/(5 × 214). With other conditions on P (ζ1 > 0) and
E

(
ζ11{ζ1>0}

)
, the constants c1 and c2 would have to be chosen differently, but the strategy

to obtain the lower bound still works.

4. Pure pinning and wetting model

The pure pinning model is different from the previous one. The h−term is removed,
and the rewards at the interface take the form −u + sζi with u ≥ 0. The corresponding
hamiltonian is

Hζ,u
N,s (S) =

N∑

i=1

(−u + sζi)1{Si=0}.

The localization and delocalization conditions associated to the free energy remain the
same. We obtain a critical u denoted by uc(s), such that the system is localized when
u < uc(s) and delocalized when u ≥ uc(s).
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For this model, the annealed model gives an upper bound on uc(s), denoted by uan
c (s).

If V ar(ζ1) = 1, then this annealed upper bound satisfies uan
c (s) = (1 + o(1))s2/2 when

s → 0. A corollary of Theorem 2 gives a lower bound on uc(s), which has the same scale
(i.e., cs2 as s → 0).

Corollary 3. If V ar(ζ1) ∈ (0,∞), then there exist c3, c4 > 0 such that, for every s ≤ c3,

uc(s) ≥ c4s
2.

Remark 4. The values of c3 and c4 depend on the law of ζ1. In the proof of Corollary
3, we will consider the conditions of Remark 3 concerning ζ1. In this case, c3 = log 2 and
c4 = 1/(5× 216).

5. Proof of theorem and proposition

5.1. Proof of Proposition 1. The proof of parts i)-v) are given below.

i) For β ≥ 0 and s ≥ 0, let Js
β = {h ≥ 0 : Φs (β, h) = 0}. Let hs

c(β) be the infimum of Js
β.

Recall that Φ is positive, continuous, and non-increasing in h. Hence, Js
β = [hs

c (β) , +∞)
and i) is proved.

iii) The function Φ is convex in β, positive, and Φs(0, h) = 0 for every h ≥ 0. Therefore,
Φ is non-decreasing in β, and hs

c(β) is non-decreasing. If we define β0(s) = sup{β ≥ 0 :
Js

β 6= ∅}, then the annealed computation gives β0(s) > 0. Indeed, Js
ann.β ⊂ Js

β because
Φs(h, β) ≤ Φs

ann.(h, β). Thus, β0(s) ≥ βs
an > 0 and iii) is proved.

iv) We want to show that hs
c(β) ≥ h0

c (β) when s ≥ 0. To that aim, we prove that
Φs(β, h) > 0 when s ≥ 0, β ≥ 0 and h < h0

c (β). For β and h fixed, Φs(β, h) is convex in
s, because it is the limit as N →∞ of Φs

N (β, h) = E
(
1/N log E

((
exp

(
Hζ,s

N,β,h

)))
, which is

convex in s. Moreover, for every N > 0, Φs
N (β, h) can be differentiated w.r.t. s. This gives

∂Φs
N (β, h)
∂s

=
1
N
E


E

(
β

∑N
i=1 ζi1{Si=0} exp

(
Hζ,s

N,β,h

))

E
(
exp

(
Hζ,s

N,β,h

))

 .

But, when s = 0, the hamiltonian does not depend on the disorder ζ. Therefore, by the
Fubini-Tonelli Theorem and the fact that E(ζi) = 0, we can write

∂Φs
N (β, h)
∂s

∣∣∣∣∣
s=0

=
1
N

E
(
β

∑N
i=1 E (ζi)1{Si=0} exp

(
Hζ,0

N,β,h

))

E
(
exp

(
Hζ,0

N,β,h

)) = 0.

Hence, the convergence of ΦN towards Φ and their convexity allows us to write

∂rightΦs (β, h)
∂s

∣∣∣∣∣
s=0

≥ lim
N→∞

∂rightΦ0
N (β, h)

∂s

∣∣∣∣∣
s=0

= 0.

Thus, by convexity in s, we can assert that Φs (β, h) is non-decreasing in s. Hence, s ≥ 0
implies Φs (β, h) ≥ Φ0 (β, h) > 0. That is why hs

c (β) ≥ h0
c (β), and iv) is verified.

v) This is a direct consequence of iv).
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ii) We want to prove that hs
c(β) is convex, and therefore continuous on [0, β0(s)). To

prove convexity, we let 0 < a < b and λ ∈ [0, 1]. Then, since

Hζ,s
N, λa+ (1−λ)b, λhs

c(a)+ (1−λ)hs
c(b)

= Hζ,s
N, λa, λhs

c(a) + Hζ,s
N, (1−λ)b, (1−λ)hs

c(b)
,

the Hölder inequality gives
1
N

log E
(
exp

(
Zζ,s

N, λ(a,hs
c(a))+ (1−λ)(b,hs

c(b))

))
≤ λ

N
log E

(
exp

(
Zζ,s

N, a, hs
c(a)

))

+
1− λ

N
log E

(
exp

(
Zζ,s

N, b, hs
c(b)

))
. (5.1)

Therefore, if N → ∞, the r.h.s. of (5.1) tends to zero, because, by continuity of Φ in h,
Φ(a, hs

c(a)) = Φ(b, hs
c(b)) = 0. Hence,

Φs(λa + (1− λ)b , λhs
c(a) + (1− λ)hs

c(b)) = 0,

and
hs

c(λa + (1− λ)b) ≤ λhs
c(a) + (1− λ)hs

c(b).
This completes the proof of the first part of ii). To get the second part of ii), we show that
hs

c (β) is increasing in β. Indeed, since hs
c (0) = 0 and hs

c (β) ≥ h0
c (β) > 0 for β > 0, the

convexity of hs
c (β) gives us the result.

5.2. Proof of Theorem 2. In the following we consider h > 0, β ≤ log 2, P(ζ1 > 0) = 1/2,
E

(
ζ11{ζ1>0}

)
= 1 and s ≤ 1.

STEP I: Transformation of the excursion law.

Definition 4. From now on, we denote by ij the site of the jth return to the origin. Thus,
i0 = 0 and ij = inf{i > ij−1 : Si = 0}. Let τj be the length of the jth excursion away of
the origin, i.e., τj = ij − ij−1. Also, let lN be the number of returns to the origin before
time N .

By independence of the excursion signs, we can rewrite the partition function as

HN = E

(
exp

(
βs

lN∑

j=1

ζij

)
exp (βlN )

lN∏

j=1

(
1 + exp (−2hτj)

2

)

× 1 + exp (−2h (N − ilN ))
2

)
. (5.2)

We want to transform the law of the excursions away of the origin to constrain the chain
to come back to zero in a positive density of sites. For that, we introduce P β

α,h, the law of
a homogeneous positive recurrent Markov process. Its excursions law is given by

∀ n ∈ N\{0} P β
α,h (τ1 = 2n) =

(
1 + exp (−4hn)

2

)
α2n P (τ = 2n)

Hβ
α,h

exp (β) , (5.3)

with

Hβ
α,h =

∞∑

i=1

exp (−4hi) + 1
2

eβα2iP (τ = 2i) = eβ

(
1−

√
1− α2 +

√
1− e−4hα2

2

)
. (5.4)
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We notice that the term inside the expectation of (5.2) only depends on lN and on the posi-
tions of the returns to the origin, i.e., i1, . . . , ilN . Therefore, we can rewrite HN as an expec-
tation under P β

α,h, because we know the Radon-Nikodym derivative dP/dP β
α,h({i1, . . . , ilN }).

Hence, HN becomes

HN = Eβ
α,h


exp


 βs

lN∑

j=1

ζij




lN∏

j=1

Hβ
α,h

ατj

(
1 + e−2h(N−ilN )

2

)
P (τ ≥ N − ilN )

P β
α,h (τ ≥ N − ilN )


 .

Next we aim at transforming the excursion law again, so that the chain comes back more
often in sites where the pinning reward is large. Indeed, we want the chain to take into
account its local environment. For that, we define P β,ζ,α1

α,h the law of a non-homogenous
Markov process, that depends on the environment. Its excursion law is defined as follow.
Let

α1 <
1− P β

α,h(τ = 2)

P β
α,h(τ = 2)

such that µ1 = 1− α1

P β
α,h (τ = 2)

)
(
1− P β

α,h (τ = 2)
) > 0,

and let

P β,ζ,α1

α,h (τ = 2) = P β
α,h (τ = 2) (1 + α1)

1{ζ2>0}

P β,ζ,α1

α,h (τ = 2r) = P β
α,h (τ = 2r) µ

1{ζ2>0}
1 for r ≥ 2. (5.5)

Under the law of this process, if the chain comes back to the origin at time i, then the law
of the following excursion is P

β,ζi+.,α1

α,h . Thus, the chain checks whether the reward at time
i + 2 is positive or negative. If ζi+2 ≥ 0, then the probability to come back to zero at time
i + 2 increases. Else it remains the same.

With this new process we can write

HN = Eβ,ζ,α1

α,h


exp

(
βs

lN∑

j=1

ζij

)
lN∏

j=1

(
Hβ

α,h

ατj

)(
1
2

+
e−2h(N−ilN )

2

)

×
lN∏

j=1

(
P β

α,h (τj)

P
β,ζij−1+.,α1

α,h (τj)

)
P (τ ≥ N − ilN )

P
β,ζilN

+.,α1

α,h (τ ≥ N − ilN )




≥ Eβ,ζ,α1

α,h


exp

(
βs

lN∑

j=1

ζij

) (
Hβ

α,h

)lN

×1
2

lN∏

j=1

(
P β

α,h(τj)

P
β,ζij−1+.,α1

α,h (τj)

)
P (τ ≥ N − ilN )


 .
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We apply Jensen’s inequality to obtain

E
(

1
N

log HN

)
≥βs

N
EEβ,ζ,α1

α,h

(
lN∑

j=1

ζij

)
+ log

(
Hβ

α,h

)
EEβ,ζ,α1

α,h

(
lN
N

)
+

1
N

log
(

1
2

)

+
1
N
EEβ,ζ,α1

α,h




lN∑

j=1

log

(
P β

α,h (τj)

P
β,ζij−1+.,α1

α,h (τj)

)
 +

log (P (τ ≥ N))
N

.

(5.6)

At this stage, we can divide the lower bound of (5.6) in two parts. The first part (called
E1(N)) is a positive energetic term, corresponding to the additional reward that the chain
can expect by coming back often in ”high reward” sites, namely,

E1(N) =
βs

N
EEβ,ζ,α1

α,h

(
lN∑

j=1

ζij

)
.

The second part (called E2(N)) is a negative entropic term, because the measure trans-
formations we performed have an entropic cost, namely,

E2(N) = log
(
Hβ

α,h

)
EEβ,ζ,α1

α,h

(
lN
N

)
+

1
N

log
(

1
2

)

+
1
N
EEβ,ζ,α1

α,h

(
lN∑

j=1

log

(
P β

α,h (τj)

P
β,ζij−1+.,α1

α,h (τj)

))
+

1
N

log (P (τ ≥ N)) .

STEP II: Energy term computation.

Notice that
lN∑

j=1

ζij =
N−2∑

i=0

ζi+2 1{Si=0} 1{Si+2=0}

+
N∑

k=3

N−k∑

s=0

ζs+k 1{Ss=0} 1{Si 6=0 ∀ i∈{s+1,...,s+k−1}}1{Ss+k=0}. (5.7)

Let A =
∑N−2

i=0 ζi+2 1{Si=0} 1{Si+2=0} and

B =
∑N

k=3

∑N−k
s=0 ζs+k 1{Ss=0} 1{Si 6=0 ∀ i∈{s+1,...,s+k−1}}1{Ss+k=0}.

We compute separately the contributions of A and B. We begin with

EEβ,ζ,α1

α,h (B) =
N∑

k=3

N−k∑

s=0

EEβ,ζ,α1

α,h

(
ζs+k 1{Ss=0} 1{Si 6=0 ∀ i∈{s+1,...,s+k−1}}1{Ss+k=0}

)
.

By the Markov property,

EEβ,ζ,α1

α,h (B) =
N∑

k=3

N−k∑

s=0

E
(
1{ζs+2>0}E

β,ζ,α1

α,h

(
1{Ss=0}

)
P β

α,h (k) µ1 ζs+k

)

+E
(
1{ζs+2≤0}E

β,ζ,α1

α,h

(
1{Ss=0}

)
P β

α,h (k) ζs+k

)
.
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But Eβ,ζ,α1

α,h

(
1{Ss=0}

)
only depends on {ζ1, ζ2, . . . , ζs}, and the {ζi}i≥1 are independent

and centered. For this reason, and since k ≥ 3 we have EEβ,ζ,α1

α,h (B) = 0.
The contribution of part A in (5.7) is given by

EEβ,ζ,α1

α,h (A) =
N−2∑

i=0

E
(
Eβ,ζ,α1

α,h

(
1{Si=0}

)
P β

α,h (2) (1 + α1) ζi+21{ζi+2>0}
)

+
N−2∑

i=0

E
(
Eβ,ζ,α1

α,h

(
1{Si=0}

)
P β

α,h (2) ζi+21{ζi+2≤0}
)

= α1P
β
α,h (2)E

(
ζ1 1{ζ1}>0

)
EEβ,ζ,α1

α,h (]{i ∈ {0, . . . , N − 2} : Si = 0}) .

Therefore, the contribution of this energy term is

E1(N) =βsα1P
β
α,h (2)

EEβ,ζ,α1

α,h (]{i ∈ {0, . . . , N − 2} : Si = 0})
N

(5.8)

≥βsα1P
β
α,h (2)

EEβ,ζ,α1

α,h (lN )

N
.

STEP III: Computation of the entropic term.

Notice that the terms 1/N log(P (τ ≥ N)) and 1/N log(1/2) tend to 0 as N → ∞,
independently of all the other parameters. Hence, if we denote by RN the quantity
1/N log (P (τ ≥ N)) + 1/N log (1/2), then we can write

E2(N) =
SN

N
+ log

(
Hβ

α,h

)
EEβ,ζ,α1

α,h

(
lN
N

)
+ RN ,

with

SN = EEβ,ζ,α1

α,h

(
lN∑

j=1

log

(
P β

α,h (τj)

P
β,ζij−1+.,α1

α,h (τj)

))
. (5.9)

The definitions (5.3) and (5.5) of P
β,ζij−1+.,α1

α,h and P β
α,h immediately give

SN =− EEβ,ζ,α1

α,h

(
lN∑

j=1

1{ζij−1+2>0}
(
1{τj=2} log (1 + α1) + 1{τj>2} log (µ1)

))

=−
N−2∑

i=0

E
(
Eβ,ζ,α1

α,h

(
1{Si=0} 1{Si+2=0}

)
1{ζi+2>0} log (1 + α1)

)

−
N∑

k=3

N−k∑

s=0

E
(
Eβ,ζ,α1

α,h

(
1{Ss=0} 1{Si 6=0 ∀ i∈{s+1,...,s+k−1}} 1{Ss+k=0}

)

× 1{ζs+2>0} log (µ1)
)
.

By the Markov property, we can write

1{ζi+2>0} Eβ,ζ,α1

α,h

(
1{Si=0}1{Si+2=0}

)
= 1{ζi+2>0} Eβ,ζ,α1

α,h

(
1{Si=0}

)
(1 + α1)P β

α,h (2) ,
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and we notice that Eβ,ζ,α1

α,h

(
1{Si=0}

)
is independent of ζi+2 and P (ζi+2 > 0) = 1/2. Hence,

SN =−
P β

α,h (2)

2
(1 + α1) log (1 + α1)EEβ,ζ,α1

α,h (lN−2)

−
N∑

k=3

µ1 log (µ1)
2

P β
α,h (k) EEβ,ζ,α1

α,h (lN−k) .

Finally, the entropic contribution is

E2(N) = log
(
Hβ

α,h

)
EEβ,ζ,α1

α,h

(
lN
N

)
−

P β
α,h (2)

2
(1 + α1) log (1 + α1)EEβ,ζ,α1

α,h

(
lN−2

N

)

−
N∑

k=3

µ1 log (µ1)
2

P β
α,h (k) EEβ,ζ,α1

α,h

(
lN−k

N

)
+ RN , (5.10)

and (5.8) and (5.10) give us a lower bound of formula (5.6) of the form

E
( 1

N
log (HN )

)
≥ E1(N) + E2(N). (5.11)

STEP IV: Estimation of Hβ
α,h and choice of α and α1.

Next we want to evaluate Hβ
α,h with the expression of (5.4), namely,

Hβ
α,h = eβ

(
1−

√
1− α2 +

√
1− e−4hα2

2

)
.

To compare log
(
Hβ

α,h

)
with the other terms of (5.11), we denote α2 = 1− cα2

1, with c > 0
and

√
cα1 ≤ 1. In this way, we obtain

Hβ
α,h = eβ


1−

√
1− e−4h

2
+

√
1− e−4h −

√
1− e−4h

(
1− cα2

1

)−√cα1

2




= eβ

(
1−

√
1− e−4h

2

)

1 +

√
1− e−4h

(
1−

√
1 + ce−4hα2

1

1−e−4h

)
−√cα1

2−
√

1− e−4h


 .

Since
√

1 + x ≤ 1 + x/2 for x ∈ (−1, +∞), and since 2−
√

1− e−4h ≥ 1, we obtain

log
(
Hβ

α,h

)
≥ log

(
eβ

(
1−

√
1− e−4h

2

))
+ log

(
1−√cα1 − cα2

1e
−4h

2
√

1− e−4h

)
.

As
√

cα1 ≤ 1, we can bound from above the term

√
cα1 +

cα2
1e
−4h

2
√

1− e−4h
=
√

cα1

(
1 +

√
cα1e

−4h

2
√

1− e−4h

)
≤ √

cα1

(
1 +

1
2
√

1− e−4h

)
. (5.12)

To continue this computation, we need to choose precise values for α1 and c. That is why,
recalling that (α2 = 1− cα2

1), we denote

α1 = βs/
(
5× 28

) √
c = βs/

(
3× 24

(
1 +

1
2
√

1− e−4h

))
. (5.13)
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Notice that log(1 − x) ≥ −3x/2 if x ∈ [0, 1/3], and since βs ≤ log(2) the r.h.s. of (5.12)
satisfies

√
cα1

(
1 +

1
2
√

1− e−4h

)
≤ β2s2

15× 212
≤ 1

3
.

Hence log
(
Hβ

α,h

)
becomes

log
(
Hβ

α,h

)
≥ log

(
eβ

(
1−

√
1− e−4h

2

))
− 3

2
√

cα1

(
1 +

1
2
√

1− e−4h

)

≥ log

(
eβ

(
1−

√
1− e−4h

2

))
− β2s2

5× 213
.

Then, since log(1 + α1) ≤ α1, we can rewrite (5.6) as

E
(

1
N

log (HN )
)
≥

[
βsα1P

β
α,h (2)− 1

2
P β

α,h (2) (1 + α1) α1

+ log

(
eβ

(
1−

√
1− e−4h

2

))
− β2s2

5× 213

]
E

(
Eβ,ζ,α1

α,h

(
lN
N

))

−
N∑

k=3

P β
α,h (k)

µ1 log (µ1)
2

E
(

Eβ,ζ,α1

α,h

(
lN−k

N

))
+ RN . (5.14)

STEP V: Intermediate computation.

In the following steps, we need some inequalities on P β
α,h and Hβ

α,h. As βs ≤ log 2, the
equations in (5.13) show that α1

√
c ∈ [0, 1/4]. Therefore, α2 = 1− cα2

1 ≥ 1− 1/24 ≥ 3/4,
and we can bound from above and below the quantity Hβ

α,h (introduced in (5.4))

eβ ≥ Hβ
α,h ≥ eβ

(
1−

√
cα1

2
− 1

2

)
≥ 3eβ

8
.

At this stage, we need to bound from above and below the quantity P β
α,h (2), which has been

defined in (5.3). With the previous inequalities, we have eβ/Hβ
α,h ≥ 1 and

√
1− α2 ≤ 1/4.

Thus,

P β
α,h (2) = 1−

∞∑

i=2

P β
α,h (2i) ≤ 1−

∞∑

i=2

1
2
α2iP (τ = 2i)

= 1− 1
2

(
1−

√
1− α2 − α2

2

)
≤ 7

8
, (5.15)

and
1
8

=
1
4
× eβ

2eβ
≤ P β

α,h (2) . (5.16)

Finally, with (5.15) and (5.16), we notice that

1
8
≤ 1− P β

α,h (2) and
1
7
≤

P β
α,h (2)

1− P β
α,h (2)

≤ 7. (5.17)

Hence, the condition α1 < P β
α,h (τ = 2) /

(
1− P β

α,h (τ = 2)
)

is obviously satisfied.
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STEP VI: Conclusion

In (5.14), we still have to calculate the term

N∑

k=3

P β
α,h (k)E

(
Eβ,ζ,α1

α,h

(
lN−k

N

))
.

If N ≥ N0, then

N∑

k=3

P β
α,h (k)E

(
Eβ,ζ,α1

α,h

(
lN−k

N

))
≥P β

α,h({3, . . . , N0})EEβ,ζ,α1

α,h

(
lN−N0

N

)

≥
(
1− P β

α,h (2)
)
EEβ,ζ,α1

α,h

(
lN
N

)
− N0

N

− P β
α,h ({N0 + 1, . . . ,∞})EEβ,ζ,α1

α,h

(
lN
N

)
,

and equation (5.14) becomes

E
(

1
N

log (HN )
)
≥

[
βsα1P

β
α,h (2)− 1

2
P β

α,h (2) (1 + α1) α1 − β2s2

5× 213

+ log

(
eβ

(
1−

√
1− e−4h

2

))
−

(
1− P β

α,h (2)
) µ1 log (µ1)

2

+ P β
α,h ({N0 + 1, . . . ,∞}) µ1 log (µ1)

2

]
E

(
Eβ,ζ,α1

α,h

(
lN
N

))

+
N0

N

µ1 log (µ1)
2

+ RN . (5.18)

With (5.13) and (5.16), we can now bound from below

βsα1P
β
α,h (2) ≥ βs

23

βs

5× 28
=

β2s2

5× 211
.

Moreover, µ1 = 1−(α1P
β
α,h (2) /

(
1−P β

α,h (2)
)

and− log(1−x) ≥ x for x ∈ [0, 1). Therefore,
we obtain

−
1− P β

α,h (2)

2
µ1 log (µ1) ≥

α1P
β
α,h (2)

2
−

α2
1P

β
α,h (2)2

2
(
1− P β

α,h (2)
) .

In (5.16) and (5.17) we had P β
α,h (2) ≤ 7/8 and P β

α,h (2) /
(
2
(
1−P β

α,h (2)
)) ≤ 7/2. Therefore,

−
1− P β

α,h (2)

2
µ1 log µ1 ≥

α1P
β
α,h (2)

2
− 72α2

1

24
≥

α1P
β
α,h (2)

2
− 4α2

1.
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In that way, the inequality in (5.18) can be written as

E
(

1
N

log (HN )
)
≥

[
β2s2

5× 212
− 1

2
P β

α,h (2) (1 + α1) α1 +
α1P

β
α,h (2)

2
− 4α2

1

+ log

(
eβ

(
1−

√
1− e−4h

2

))

+ P β
α,h ({N0 + 1, . . . ,∞}) µ1 log (µ1)

2

]
E

(
Eβ,ζ,α1

α,h

(
lN
N

))

+
N0

N
µ1 log µ1 + RN . (5.19)

By (5.17) and (5.16), we know that P β
α,h(2) ≤ 7/8 and P β

α,h (2) /
(
1− P β

α,h (2)
) ≤ 7. Thus,

we have the inequalities

−1
2
P β

α,h (2) (1 + α1) α1 +
α1P

β
α,h (2)

2
− 4α2

1 ≥ −5α2
1 ≥ − β2s2

5× 216
, (5.20)

and
α1P

β
α,h (2)

1− P β
α,h (2)

≤ 7α1 =
7βs

5× 28
<

1
3
.

Since µ1 ≤ 1 and log (1− x) ≥ −3x/2 for x ∈ [0, 1/3], the second inequality of (5.20)
allows us to bound from below

µ1 log µ1 ≥ −3
2

P β
α,h (2)

1− P β
α,h (2)

α1 ≥ − 21βs

5× 29
≥ −1.

Then, (5.19) becomes

E
(

1
N

log (HN )
)
≥

[
β2s2

5× 213
+ log

(
eβ

(
1−

√
1− e−4h

2

))

− P β
α,h ({N0 + 1, . . . ,∞})

]
E

(
Eβ,ζ,α1

α,h

(
lN
N

))
− N0

N
+ RN . (5.21)

As proved in Appendix A.1, P β
α,h ({N0 + 1, . . . ,∞}) tends to zero as N0 → ∞, indepen-

dently of h ≥ 0. Therefore, for N0 large enough and for all h > 0,

P β
α,h ({N0 + 1, . . . ,∞}) ≤ β2s2

5× 214
.

If we denote q (s) = β2s2

5×214 , then, for N ≥ N0 and h > 0, (5.21) gives

E
(

1
N

log (HN )
)
≥

[
q (s) + log

(
eβ

(
1−

√
1− e−4h

2

))]
E

(
Eβ,ζ,α1

α,h

(
lN
N

))
+ RN0

N

(5.22)
with RN0

N = RN−N0/N . As proved in appendix A.2, E
(
Eβ,ζ,α1

α,h (lN/N)
) ≥ E(

Eβ
α,h (lN/N)

)
for every N ≥ 1. If we denote by h0 (β) the only solution of

log
(
eβ

(
1−

√
1− e−4ho(β)/2

))
= −q (s) ,
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then, for every h < h0 (β) and N ≥ N0, we have

E
(

1
N

log (HN )
)
≥

[
q (s) + log

(
eβ

(
1−

√
1− e−4h

2

)) ]
E

(
Eβ

α,h

(
lN
N

))
+ RN0

N .

Consequently,

Φs (β, h) ≥
[
q (s) + log

(
eβ

(
1−

√
1− e−4h

2

)) ]
× lim inf

N→∞
E

(
Eβ

α,h

(
lN
N

))
.

Notice also that lim infN→∞ E
(
Eβ

α,h (lN/N)
)

> 0 (because α ∈ (0, 1)). Hence, for every β

in [0, log (2)− qs), h0(β) is a lower bound for hc (β), namely,

hc (β) ≥ h0 (β) = −1
4

log
(

1− 4
(
1− e−β−q(s)

)2
)

.

This completes the proof of Theorem 2.

Remark 5. The precise value of c2 = 1/
(
5× 214

)
could certainly be improved, by using

more complicated laws of return to the origin. For instance, some laws that depend more
deeply on the environment (by taking into account ζi+2, ζi+4, etc.). However, the compu-
tations would be more complicated, and our aim here is not to optimize the value of c1, c2

but rather to expose a simple strategy that improves the non-disordered lower bound of a
term cs2β2 with c > 0.

5.3. Proof of Corollary 3. As shown just before in (5.22), there exists N0 ∈ N \ {0}
such that, for h > 0 and N ≥ N0,

E

(
1
N

log E

(
exp

(
β

N∑

i=1

1{Si=0} (sζi + 1)− 2h

N∑

i=1

∆i

)))

≥
[

β2s2

5× 214
+ log

(
eβ

(
1−

√
1− e−4h

2

)) ]
E

(
Eβ,ζ,α1

α,h

(
lN
N

))
+ RN0

N .

Moreover, in appendix A.2, we prove the following inequalities:

E
(

Eβ,ζ,α1

α,h

(
lN
N

))
≥ E

(
Eβ

α,h

(
lN
N

))
≥ E

(
E0

α,∞

(
lN
N

))
> 0. (5.23)

Thus, for β, s and N fixed, we let h →∞ and obtain

E

(
1
N

log E

(
exp

(
β

N∑

i=1

1{Si=0} (sζi + 1)

)
1{Si≥0,∀ i∈{1,...,N}}

))

≥
[

β2s2

5× 214
+ log

(
eβ 1

2

)]
E

(
E0

α,∞

(
lN
N

))
+ RN0

N .
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Since P ({Si ≥ 0, ∀ i ∈ {1, . . . , N}}) = (1 + o(1))D/N1/2 when N →∞ (with D > 0), the
lower bound becomes

E

(
1
N

log E

(
exp

(
β

N∑

i=1

1{Si=0} (sζi + 1)

)∣∣∣∣{Si ≥ 0, ∀ i ∈ {1, . . . , N}}
))

≥
[

β2s2

5× 214
+ log

(
eβ 1

2

)]
E

(
E0

α,∞

(
lN
N

))
+ KN0

N

with KN0
N = RN0

N −1/N log (P ({Si ≥ 0, ∀ i ∈ {1, . . . , N}})), so that it tends to 0 as N →∞
independently of all the other parameters. By [10], we can apply the fact that, for an odd
number of steps, the random walk conditioned to stay positive, and pinned by log 2 along
the x axis, becomes the reflected random walk. Indeed,

Prefl.RW

PRWcond.to be≥0
(S) =

exp
(
(log 2)

∑2N+1
i=1 1{Si=0} 1{Si≥0 ∀ i∈{0,2N+1}}

)

V2N+1
.

The term 1
N log VN tends to 0 as N →∞. Hence, we denote β = log 2− u, and we obtain

E

(
1

2N + 1
log E

(
exp

(
log(2)

2N+1∑

i=1

1{Si=0} +
2N+1∑

i=1

1{Si=0}(−u + βsζi)

)∣∣∣∣

{Si ≥ 0, ∀ i ≤ 2N + 1}
))

≥
[

β2s2

5× 214
− u

]
E

(
E0

α,∞

(
l2N+1

2N + 1

))
+ KN0

2N+1

and

E

(
1

2N + 1
log E

(
exp

(
2N+1∑

i=1

1{Si=0}(−u + βsζi)

)))
≥

[
β2s2

5× 214
− u

]
E

(
E0

α,∞

(
l2N+1

2N + 1

))
+ KN0

2N+1 +
1

2N + 1
log V2N+1.

Let N →∞, and recall that β = log(2)− u. Then

lim
N→∞

E

(
1
N

log E

(
exp

(
N∑

i=1

1{Si=0}(−u + βsζi)

)))
≥

[
β2s2

5× 214
− u

]
lim

N→∞
E0

α,∞

(
lN
N

)
,

and, for u ≤ log(2)/2 (i.e., β ≥ (log 2)/2), we have

lim
N→∞

E

(
1
N

log E

(
exp

(
N∑

i=1

1{Si=0}(−u + βsζi)

)))
≥

[
log(2)2s2

5× 216
− u

]
lim

N→∞
E0

α,∞

(
lN
N

)
.
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By convexity, the free energy Φ, defined by

Φ(u, v) = lim
N→∞

E

(
1
N

log E

(
exp

(
N∑

i=1

1{Si=0}(−u + vζi)

)))
,

is not decreasing in v. Therefore,

Φ(u, log(2)s) ≥
[

log(2)2s2

5× 216
− u

]
lim

N→∞
E0

α,∞

(
lN
N

)
,

and, for s ∈ [0, log 2],

uc(s) ≥ s2

5× 216
.

6. Appendix

6.1. A.1. We have to prove that P β
α,h({N0, . . . ,+∞}) tends to 0 as N0 →∞ independently

of h ≥ 0. To that aim, we bound the quantity in (5.3) as follows:

P β
α,h (τ1 = 2n) =

(
1 + exp (−4hn)

2

)
α2n P (τ = 2n)

Hβ
α,h

exp (β)

≤ α2nP (τ = 2n)∑+∞
j=1

1
2α2jP (τ = 2j)

.

The r.h.s. of this inequality does not depend on h, and is the general term of a convergent
series. Hence, we have uniform convergence in h.

6.2. A.2. We want to prove the inequalities of (5.23), i.e.,

E
(

Eβ,ζ,α1

α,h

(
lN
N

))
≥ E

(
Eβ

α,h

(
lN
N

))
≥ E

(
E0

α,∞

(
lN
N

))
. (6.1)

For that, we recall a coupling theorem (see [14] or [15]):

Theorem 5. µ1 and µ2 are two probability measures on 2N \ {0}. If, for every bounded
and non-decreasing function f defined on 2N \ {0}, µ1(f) ≤ µ2(f), then we define on the
same probability space (Ω, P ) two random variables (T1, T2) of law (µ1, µ2) such that, P
almost surely, T1 ≤ T2.

Remark 6. We notice that, to satisfy the hypothesis of the theorem, it is enough to
show that there exists an integer i0 such that, µ1(2i) ≥ µ2(2i) for every i ≥ i0 and
µ1(2i) ≤ µ2(2i) for every i ≥ i0 + 1. We can prove this easily by writing

µ2(f)− µ1(f) =
i0∑

i=1

(µ2(2i)− µ1(2i))f(2i) +
∞∑

i=i0+1

(µ2(2i)− µ1(2i))f(2i).

As f is non-decreasing, f(2i) ≥ f(2i0) for every i ≥ i0 + 1, and f(2i) ≤ f(2i0) for every
i ≤ i0. Moreover, since µ2(2i)− µ1(2i) is positive when i ≥ i0 + 1 and negative otherwise,
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we have the inequality

µ2(f)− µ1(f) ≥ f(2i0)
i0∑

i=1

µ2(2i)−µ1(2i) + f(2i0)
∞∑

i=i0+1

µ2(2i)− µ1(2i)

≥ −f(2i0) (µ1 − µ2)({2, . . . , 2i0})
+ f(2i0) (µ2 − µ1)({2(i0 + 1), . . . ,∞}).

Since (µ2 − µ1) ({2(i0 + 1), . . . ,∞}) = −(µ2 − µ1) ({2, . . . , 2i0}), we obtain

µ2(f)− µ1(f) ≥ −f(2i0)(µ1 − µ2) ({2, . . . , 2i0}) + f(2i0)(µ1 − µ2) ({2, . . . , 2i0}) ≥ 0.

This is why we can use Theorem 5 in this situation.

We want to apply this remark to the following probability measures on 2N \ {0}:
P 0

α,∞, P β
α,h and P β,+,α1

α,h , which is the law defined in (5.5) when ζ2 ≥ 0. For that, we

compare P β
α,h and P β,+,α1

α,h , which is easy because

P β,+,α1

α,h (τ = 2) = P β
α,h (τ = 2) (1 + α1)

P β,+,α1

α,h (τ = 2r) = P β
α,h (τ = 2r) µ1 for r > 2.

Since α1 > 0 and µ1 < 1, we have the inequalities P β,+,α1

α,h (τ = 2) > P β
α,h (τ = 2) and

P β,+,α1

α,h (τ = 2r) < P β
α,h (τ = 2r) for r ≥ 2. Thus, Remark 6 tells us that we can use

Theorem 5 and define on a probability space (Ω, P ) a sequence of i.i.d. random variables(
T 1

i , T 2
i

)
i≥1

such that

• P β,+,α1

α,h is the law of T 1
i for every i ≥ 1,

• P β
α,h the law of T 2

i for every i ≥ 1,
• P almost surely T 1

i ≤ T 2
i for every i ≥ 1.

At this stage, for every fixed disorder ζ, we define by recurrence another process (T 3
i )i≥1

with

T 3
i = T 2

i if ζT 3
1 +···+T 3

i−1+2 ≥ 0

= T 1
i if ζT 3

1 +···+T 3
i−1+2 < 0.

With these notations,
(
T 2

i

)
i≥1

is the sequence of the excursion lengths of a random walk

under the law P β
α,h, and

(
T 3

i

)
i≥1

the one of a random walk under the law P β,ζ,α1

α,h . By

construction, T 3
i ≤ T 2

i for every i ≥ 1. Thus, for j = 2 or 3, we note ljN = max{s ≥ 1 :
T j

1 + · · · + T j
s ≤ N}, and we have immediately that l3N ≥ l2N P almost surely. Therefore,

for every ζ, we have

Eβ,ζ,α1

α,h

(
lN
N

)
= EP

(
l3N
N

)
≥ EP

(
l2N
N

)
= Eβ

α,h

(
lN
N

)
,

and, by integration with respect to ζ, we obtain the l.h.s. of inequality (6.1).
To finish with these inequalities, we must show that the same argument allow us to

compare E
(
Eβ

α,h

(
lN
N

))
and E

(
E0

α,∞
(

lN
N

))
. Indeed, we want to prove that Remark 6
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also occurs. Recall that

P β
α,h (τ1 = 2n) =

(
1 + exp (−4hn)

2

)
α2n P (τ = 2n)

Hβ
α,h

exp (β)

P 0
α,∞ (τ1 = 2n) =

α2nP (τ = 2n)
2H0

α,∞
.

If we note

Ln =
P β

α,h (τ1 = 2n)

P 0
α,∞ (τ1 = 2n)

= (1 + exp (−4hn))
H0

α,∞
Hβ

α,h

exp(β),

then we immediately notice that Ln decreases with n, but we also have
∞∑

i=1

P β
α,h (τ1 = 2i) =

∞∑

i=1

P 0
α,∞ (τ1 = 2i) = 1.

Hence, there exists necessarily an i0 in N \ {0} such that P β
α,h (τ1 = 2i) ≥ P 0

α,∞ (τ1 = 2i)

for i ≤ i0 and P β
α,h (τ1 = 2i) ≤ P 0

α,∞ (τ1 = 2i) for i > i0. This completes the proof.

6.3. B. First we recall a classical property, which tells us that we do not transform the free
energy if we force the last monomer of the chain to touch the x axis. This is proved for a
different case in [4], but the same technique can be applied to our hamiltonian. Therefore,
we can write

Φ0(h, β) = lim
N→∞

E

(
1

2N
log E

(
exp

(
β

2N∑

i=1

1{Si=0} − 2h
2N∑

i=1

∆i

)
1{S2N=0}

))
.

We note Z2N,β,h = E
(
exp

(
β

∑2N
i=1 1{Si=0} − 2h

∑2N
i=1 ∆i

)
1{S2N=0}

)
, and we remark that

Z2N,β,h can be rewritten as

Z2N,β,h =
N∑

j=1

E
(
eβje−2h

∑2N
i=1 ∆i1{l2N=j}1{S2N=0}

)

=
N∑

j=1

∑

l∈N∗j

|l|=N

j∏

i=1

(
eβj Vh,lj

)

with Vh,l = P (τ = 2l)
(
e−4hl + 1

)
/2. We aim at computing the generating function of

Z2N,β,h, called θh(z). This gives

θh(z) =
∞∑

N=1

Z2N,β,hz2N =
∞∑

N=1

z2N
N∑

j=1

eβj
∑

l∈N∗j

|l|=N

j∏

i=1

Vh,lj

=
∞∑

j=1

∞∑

N=j

∑

l∈N∗j

|l|=N

j∏

i=1

(
eβz2lj Vh,lj

)

=
∞∑

j=1

( ∞∑

l=1

eβz2l Vh,l

)j

=
∞∑

j=1

( ∞∑

l=1

P (τ = 2l)
2

(
1 + e−4hl

)
eβz2l

)j

.
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Finally, since
∞∑

l=1

P (τ = 2l)z2l = 1−
√

1− z2,

we obtain

θh(z) =
∞∑

j=1

(
eβ

2

(
2−

√
1− z2 −

√
1− z2e−4h

))j

.

This series converges when eβ
(
2 − √1− z2 −

√
1− z2e−4h

)
< 2, and if we denote by R

its convergence radius, then we have Φ(β, h) = − log(R). That is why Φ(β, h) > 0 if and
only if R < 1. So, we can exclude that (h, β) is on the critical curve if and only if, for
z = 1, eβ

(
2−√1− z2 −

√
1− z2e−4h

)
= 2, i.e.,

√
1− e−4h = 2

(
1 − e−β

)
. This gives us

the critical curve equation

h0
c (β) =

1
4

log
(

1− 4
(
1− e−β

)2
)

.
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