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Abstract

We consider edge-reinforced random walk on the infinite two-dimensional lattice.

The process has the same distribution as a random walk in a certain strongly depen-

dent random environment, which can be described by random weights on the edges.

In this paper, we show some decay properties of these random weights. Using these

estimates, we derive bounds for some hitting probabilities of the edge-reinforced

random walk. 12

1 Introduction and results

1.1 Introduction

Edge-reinforced random walk on Z2 is the following model: Consider the two-dimensional
integer lattice Z2 as a graph with edge set

E = {{x, y} ∈ Z2 × Z2 : |x − y| = 1}. (1.1)

Here, | · | denotes the euclidean norm. In particular, the edges are undirected. Fix a
vertex v0 ∈ Z2 and a positive number a > 0. A non-Markovian random walker starts
in X0 = v0. At every discrete time t ∈ N0, it jumps from its current position Xt to a
neighboring vertex Xt+1 in Z2, |Xt+1 − Xt| = 1. The law Pv0,a of the random walker is
defined in terms of the time-dependent weights

we(t) = a +

t−1
∑

s=0

1e={Xs,Xs+1}, e ∈ E. (1.2)

The weight we(t) of edge e at time t equals the number of traversals of e up to time t
plus the initial weight a. The transition probability Pv0,a({Xt, Xt+1} = e | X0, . . . , Xt) is
proportional to we(t) for all edges e 3 Xt:

Pv0,a({Xt, Xt+1} = e | X0, . . . , Xt) =
we(t)

∑

e′3Xt
we′(t)

1e3Xt. (1.3)

This model was introduced by Diaconis [Dia88]. Pemantle [Pem88] examined the model
on infinite trees; in particular, he showed that the process on tree graphs has the same
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distribution as a random walk in an independent random environment. As Pemantle
[Pem88] remarks, Diaconis asked whether this process on Z2 and more generally on Zd,
d ≥ 2, is recurrent. This question is still open. For more information about the history
of edge-reinforced random walk, see [MR05c].

In [MR05d], we have shown that the edge-reinforced random walk on any locally finite
graph has the same distribution as a random walk in a random environment given by ran-
dom, time-independent, strictly positive weights (xe)e on the edges. For graphs where the
edge-reinforced random walk is recurrent, a slightly different representation follows from
the paper [DF80] by Diaconis and Freedman, which was written before edge-reinforced
random walk was introduced. For finite graphs, Coppersmith and Diaconis [CD86] dis-
covered an explicit, but complicated formula for the joint law of the fraction of time spent
on the edges. In fact, this joint law just equals the law of the weights (xe)e; see [Rol03]. A
proof of the formula describing the joint law of (xe)e is published in [KR00]. The random
environment is strongly dependent, unless the graph is a tree-graph.

On infinite ladders, for sufficiently large initial weights a, the random environment can
be described as an infinite-volume Gibbs measure. It arises as an infinite-volume limit of
finite-volume Gibbs measures; see [MR05b], [Rol05], [MR05a]. The finite-volume Gibbs
measures are just a reinterpretation of the formula of Coppersmith and Diaconis in the
version described by Keane and Rolles. This reinterpretation has been used in the above
references to prove recurrence of the process on ladders and also to analyze the asymptotic
behavior of the edge-reinforced random walk in more detail.

1.2 Infinite-volume results

In this paper, we use the formula of Coppersmith, Diaconis, Keane, and Rolles to examine
decay properties of the weights (xe)e∈E for the edge-reinforced random walk on Z2 with
any initial weights a > 0. From these results, we deduce estimates for hitting probabilities
of the edge-reinforced random walk.

All constants like β(a), c1, c2, . . . keep their meaning throughout the whole article.
For v ∈ Z2, let τv := inf{n ≥ 1 : Xn = v} denote the first time ≥ 1 when the random

walker visits v.

Theorem 1.1 (Hitting probabilities for ERRW) For all a > 0, there are c1(a) > 0
and β(a) > 0, such that for all v ∈ Z2 \ {0}, the following hold:

(a) The probability to reach the vertex v before returning to the vertex 0 is bounded by

P0,a [τv < τ0] ≤ c1(a)|v|−β(a). (1.4)

(b) For all n ≥ 1, the probability that the random walker visits the vertex v at time n
satisfies the same bound

P0,a [Xn = v] ≤ c1(a)|v|−β(a). (1.5)
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If we knew β(a) > 1, the estimate (1.4) would imply recurrence. However, our estimates
yield only

β(a) =
[

1024e(1 + 4a)(1 + (e · max{d1/
√

ae, 2} log 2)−1)
]−1

. (1.6)

In particular, β(a) is a decreasing function of a with

β(a)
a→0−→ 1

1024e
and β(a)

a→∞−→ 0. (1.7)

Thus recurrence is still an open problem.
Set Ω = (0,∞)E. For x ∈ Ω, let Qv0,x denote the law of a Markovian nearest neighbor

random walk on (Z2, E) with starting point v0 in a time-independent environment given
by the edge weights x. Given this random walk is at u and given the past of the random
walk, the probability it jumps to the neighboring vertex v is proportional to the weight
xe of the edge e = {u, v}.

Edge-reinforced random walk on Z2 can be represented as a random walk in a random
environment. More precisely:

Theorem 1.2 (ERRW as RWRE, Theorem 2.2 in [MR05d]) Let a > 0. There is
a probability measure Q0,a on Ω, such that for all events A ⊆ (Z2)N0 , one has

P0,a[A] =

∫

Ω

Q0,x[A] Q0,a(dx). (1.8)

It is not known whether Q0,a is unique up to normalization of the edge weights x. In
this article, we prove some decay properties of the random environment. These results
hold for at least one choice of Q0,a. For x ∈ Ω and v ∈ Z2, set

xv =
∑

e3v

xe. (1.9)

The following two theorems show that in some weak probabilistic sense, the ratios of
weights xv/x0 tend to zero as |v| → ∞. We phrase two formal versions of this statement.
The first version only cares about the expected logarithms of ratios xv/x0. In this version,
we get a fast divergence to −∞ as |v| → ∞ if only a > 0 is small enough.

Theorem 1.3 (Decay of the weights – infinite-volume version) There exist func-
tions c2, c3 : (0,∞) → (0,∞) with −c2(a) → −∞ as a ↓ 0, such that the following holds:
For all a > 0 and all v ∈ Z2 \ {0},

EQ0,a

[

log
xv

x0

]

≤ c3(a) − c2(a) log |v|. (1.10)

However, Theorem 1.3 does not imply weak convergence of xv/x0 to zero. Weak con-
vergence is stated among others in the following theorem, but our bound for the rate of
convergence is not as strong as in the preceding theorem.



Random Environment for 2D ERRW 4

Theorem 1.4 (Decay of the weights – infinite-volume version) For all a > 0, there
are c1(a) > 0 and β(a) > 0, such that for all v ∈ Z2 \ {0}, the following holds:

EQ0,a

[

(

xv

x0

)
1
4

]

≤ c1(a)|v|−β(a). (1.11)

In particular, xv/x0 converges weakly to zero as |v| → ∞.

Theorem 1.5 (Tightness of quotients of neighboring edge weights) For all a >
0 and all α ∈ (0, a/2), one has

sup
e,f∈E
e∩f 6=∅

EQ0,a

[(

xe

xf

)α]

< ∞. (1.12)

1.3 Uniform finite-volume results

All our infinite-volume results are derived from uniform finite-volume analogues for edge-
reinforced random walk on finite boxes. “Uniform” here means “uniform in the size of
the finite box”.

We consider a (2N +1)× (2N +1) box V (N) = Z2/(2N +1)Z2 with periodic boundary
conditions. For v ∈ Z2, let v(N) = v + (2N + 1)Z2 denote the class of v in V (N). If there
is no risk of confusion, we identify V (N) with the subset Ṽ (N) = [−N, N ]2 ∩Z2 of Z2. Let

E(N) = {{u(N), v(N)} : {u, v} ∈ E}. (1.13)

For u ∈ V (N), set
|u| = min{|v| : v ∈ u}. (1.14)

This is just the euclidean distance of u to the origin, viewed as an element of Ṽ (N).
Just as in the infinite-volume case, for v0 ∈ V (N) and a > 0, let P

(N)
v0,a denote the

law of edge-reinforced random walk on (V (N), E(N)) with starting point v0 and constant

initial weights a. Set Ω(N) = (0,∞)E(N)
. For x ∈ Ω(N), let Q

(N)
v0,x denote the law of a

random walk on (V (N), E(N)) with starting point v0 in a time-independent environment
given by weights x. Note that multiplying all components of x by the same (random or
deterministic) scaling factor α does not change the law of the corresponding random walk.
The following finite-volume analogue of Theorem 1.2 is well-known:

Theorem 1.6 (ERRW as RWRE on finite boxes, Theorem 3.1 in [Rol03])

Let a > 0. There is a probability measure Q
(N)
0,a on Ω(N), such that for all events A ⊆

(V (N))N0, one has

P
(N)
0,a [A] =

∫

Ω(N)

Q
(N)
0,x [A] Q

(N)
0,a (dx). (1.15)

Up to an arbitrary normalization of the random edge weights x ∈ Ω(N), the law Q
(N)
0,a of

the random environment is unique.
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In [Dia88] and [KR00], the distribution Q
(N)
0,a is described explicitly; see also Lemma

2.1, below. The weaker statement that the edge-reinforced random walk on (V (N), E(N))
is a mixture of Markov chains follows already from [DF80].

The following two theorems are finite-volume analogues of Theorems 1.3 and 1.4. The
bounds are uniform in the size of a finite box.

Theorem 1.7 (Decay of the weights – finite-volume version) There are functions
c2, c3 : (0,∞) → (0,∞) with c2(a) → ∞ as a ↓ 0, such that the following holds: For all
a > 0, all N ∈ N, and all v ∈ V (N) \ {0},

E
Q

(N)
0,a

[

log
xv

x0

]

≤ c3(a) − c2(a) log |v|. (1.16)

Theorem 1.8 (Decay of the weights – finite-volume version) For all a > 0, there
are c1(a) > 0 and β(a) > 0, such that for all N ∈ N and all v ∈ V (N) \ {0}, the following
holds:

E
Q

(N)
0,a

[

(

xv

x0

)
1
4

]

≤ c1(a)|v|−β(a). (1.17)

Let e, f ∈ E(N) be two neighboring edges, i.e. two edges containing a common vertex
v. The random variables log(xe/xf) with respect to Q

(N)
0,a are tight with exponential tails,

uniformly in N and uniformly in the choice of the edges e and f . This is stated formally
in the following lemma.

Lemma 1.9 For all a > 0 and all α ∈ (0, a/2), one has

sup
N∈N
N>1

max
e,f∈E(N)

e∩f 6=∅

E
Q

(N)
0,a

[(

xe

xf

)α]

< ∞. (1.18)

Furthermore,

c4(a) := sup
N∈N
N>1

max
v,w∈V (N)

|v−w|=1

E
Q

(N)
0,a

[

log
xv

xw

]

< ∞. (1.19)

2 Bounds in finite-volume

2.1 Random environment in finite volume

In this section, we take a fixed box size N ∈ N and a fixed a > 0, and we examine some
random deformation of the random environment.

First, we state a description of the random environment in finite volume. Let e0 ∈ E(N)

be any reference edge adjacent to the origin. So far, the arbitrary normalization of the
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random edge weights x ∈ E(N) has not been specified. However, in this section, it is
convenient to choose the normalization

xe0 = 1 Q
(N)
0,a -a.s. (2.1)

We introduce a reference measure ρ on Ω(N) to be the following product measure:

ρ(dx) = δ1(dxe0)
∏

e∈E(N)\{e0}

dxe

xe

. (2.2)

Here δ1 denotes the Dirac measure on (0,∞) with unit mass at 1.
Let T (N) denote the set of all spanning trees of (V (N), E(N)), viewed as subsets of the

set of edges E(N).

Lemma 2.1 (Random environment for a finite box) For v0 ∈ V (N), the law Q
(N)
v0,a

of the random environment is absolutely continuous with respect to the reference measure
ρ with density

dQ
(N)
v0,a

dρ
(x) =

1

z
(N)
v0,a

∏

e∈E(N)

xa
e

x2a
v0

∏

v∈V (N)\{v0}

x
2a+1/2
v

√

∑

T∈T (N)

∏

e∈T

xe (2.3)

with some normalizing constant z
(N)
v0,a > 0.

The claim of the lemma is essentially the formula of Coppersmith and Diaconis [CD86] for
the distribution of the random environment, transformed such that one has the normal-
ization xe0 = 1. The transformation to this normalization and thus the proof of Lemma
2.1 is given in the appendix.

Now, we consider an interpolation between the random environments Q
(N)
0,a and Q

(N)
`,a

associated with two different starting points 0 and ` in V (N). We introduce an “external
force” ηΣ` with the switching parameter η ∈ [0, 1]. Turning the external force off (η = 0)

corresponds to Q
(N)
0,a , while turning the external force completely on (η = 1) corresponds

to Q
(N)
`,a . More formally, we proceed as follows:

Definition 2.2 (Interpolated measures for the environment) For ` ∈ V (N) and
0 ≤ η ≤ 1, we define the following probability measure on Ω(N):

Pη = P
(N)
η,0,`,a :=

1

Z
(N)
η,0,`,a

(Q
(N)
0,a )1−η(Q

(N)
`,a )η (2.4)

with some normalizing constant Z
(N)
η,0,`,a. This means:

dPη

dρ
=

1

Z
(N)
η,0,`,a

(

dQ
(N)
0,a

dρ

)1−η (

dQ
(N)
`,a

dρ

)η

, (2.5)

Z
(N)
η,0,`,a =

∫

Ω(N)

(

dQ
(N)
0,a

dρ

)1−η (

dQ
(N)
`,a

dρ

)η

dρ. (2.6)
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By Hölder’s inequality, Z
(N)
η,0,`,a is finite. Note that this definition is independent of the

choice of the reference measure ρ, as long as both Q
(N)
0,a and Q

(N)
`,a are absolutely continuous

with respect to ρ.
We define the random variable

Σ` = Σ
(N)
0,` :=

1

2
log

x`

x0

. (2.7)

Then, the following identity holds:

dQ
(N)
`,a

dQ
(N)
0,a

=

√

x`

x0
= exp Σ`. (2.8)

In the formula in (2.8), there appears no normalizing constant, because there is a reflection
symmetry of the box V (N) which interchanges 0 and `. Recall that the box V (N) has
periodic boundary conditions.

Furthermore, using (2.8), note that P
(N)
η,0,`,a is absolutely continuous with respect to

Q
(N)
0,a with the density

dPη

dQ
(N)
0,a

=
1

Z
(N)
η,0,`,a

(

x`

x0

)η/2

=
exp(ηΣ`)

Z
(N)
η,0,`,a

, and Z
(N)
η,0,`,a = E

Q
(N)
0,a

[exp(ηΣ`)]. (2.9)

Together with (2.3) this implies

dPη

dρ
(x) =

1

z
(N)
0,a Z

(N)
η,0,`,a

(

∏

e∈E(N)

xa
e

)

√

∑

T∈T (N)

∏

e∈T

xe

x
2a+η/2
0 x

2a+(1−η)/2
`

∏

v∈V (N)\{0,`}

x
2a+1/2
v

. (2.10)

2.2 Deformation

Recall the notation Ṽ (l) = [−l, l]2 ∩Z2. For l ∈ N0, we say that a vertex ` ∈ Z2 is on level
l and we write l = level(`), if ` ∈ Ṽ (2l) \ Ṽ (2(l−1)), where we use the convention Ṽ (−2) = ∅.
Identifying V (N) with the subset Ṽ (N) ⊂ Z2, the level of ` is also defined for vertices
` ∈ V (N). Note that the level sets are defined to have width 2 instead of width 1, see
Figure 1.

Lemma 2.3 (Deformation of the random environment) Fix

(i) a > 0,

(ii) na = max {d1/√ae, 2},

(iii) N ∈ N with N > 6na, and



Random Environment for 2D ERRW 8

Figure 1: Vertices at level l are located on the solid lines

PSfrag replacements

level l − 1
level l

level l + 1
Ṽ (2l−2)

(iv) let ` ∈ V (N) be a vertex on a level l > 3na.

Then, for all γ ∈ R, there is a measurable, measurably invertible map Ξγ = Ξ
(N)
γ,0,`,a :

Ω(N) → Ω(N) with the following properties:

(a) One has
x0 ◦ Ξγ = x0 and x` ◦ Ξγ = eγx`. (2.11)

(b) The reference measure ρ is invariant with respect to Ξγ.

(c) For all η ∈ [0, 1], the image measure

Πγ,η = Π
(N)
γ,η,0,`,a := Ξ

(N)
γ,0,`,aP

(N)
η,0,`,a (2.12)

of Pη with respect to Ξγ is absolutely continuous with respect to Pη.

If furthermore

|γ| ≤ na log
l − 1

na
(2.13)

holds, one has the entropy bound

EΠγ,η

[

log
dΠγ,η

dPη

]

≤ c5(a, η)γ2

na log((l − 1)/na)
(2.14)

with the constant

c5(a, η) := 32

(

2a +
1

2

)(

ec6(a, η)na +
1

log 2

)

> 16 and (2.15)

c6(a, η) :=

{

min{√a, 1} if η = 1,
1 otherwise.

(2.16)

In the special case η = 1, one has lima→0 c5(a, 1) < ∞.
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Proving this lemma is the main goal of this and the next section.
In the following, we assume that a, na, N , `, and l are chosen as in (i)–(iv) of Lemma

2.3.
In the following two definitions, we introduce a modified, truncated version of the

Green’s function in 2 dimensions. At first, we take the logarithm, appropriately scaled
and truncated:

Definition 2.4 (Auxiliary function 1: truncated and scaled logarithm) We define
a function ϕ = ϕl,a : N0 → [0, 1] by

ϕ(n) =















0 for 0 ≤ n < na,
log(n/na)

log((l − 1)/na)
for na ≤ n ≤ l − 1,

1 for n ≥ l.

(2.17)

Let C(n) := {(−n,−n), (−n, n), (n,−n), (n, n)} denote the set of corner points of the
box Ṽ (n).

Definition 2.5 (Auxiliary function 2: modified Green’s function) For every e =

{u, v} ∈ E(N), we define a map De = D
(N)
e,0,`,a : Ω(N) → [0, 1] as follows: Let x ∈ Ω(N) and

l = level(`).

• If for some n ∈ N0 we have level(u) = level(v) = n or {u, v} ∩ C (2n) 6= ∅, then we
set

De(x) = ϕ(n). (2.18)

• Otherwise, we set

De(x) =







ϕ(level(u)) if xu < xv,
ϕ(level(v)) if xv < xu,
1
2
{ϕ(level(u)) + ϕ(level(v))} if xu = xv.

(2.19)

Thus e 7→ De(x) is an approximation to the Green’s function in 2 dimensions, slightly
dependent on x for technical reasons. It has the property that for all vertices e not being
corner points, at most one neighboring vertex f has a value Df (x) different from De(x).
This property is very convenient below, and it is our reason to define the level sets having
width 2 instead of width 1.

We write the set E(N) of edges as a disjoint union E(N) = F ∪F ′, F ∩F ′ = ∅, where F
denotes the set of all edges e = {u, v} ∈ E(N) where u and v are on the same level, and
F ′ denotes the set of all edges e = {u, v} ∈ E(N) with u and v on different levels. For
e, e′ ∈ E(N), we write e ≺ e′ if and only if e ∈ F and e′ ∈ F ′. Let

F (N)
e := σ(xe′ : e′ ≺ e) (2.20)

denote the σ-field on Ω(N) generated by the canonical projections on the coordinates
e′ ∈ E(N) with e′ ≺ e.
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Lemma 2.6 For any e ∈ E(N), the map De is F (N)
e -measurable.

Proof. Let e = {u, v}. If level(u) = level(v) or {u, v} ∩ C (2n) 6= ∅ for some n ∈ N0, then
De is constant and there is nothing to show. By definition, our levels have thickness 2.
Therefore, if {u, v}∩C(2n+1) 6= ∅ for some n ∈ N0, then level(u) = level(v) (see Figure 2),
and this case has already been taken care of.

Figure 2: All vertices drawn are on level n.

PSfrag replacements
vertex in C(2n+1)

vertex in C(2n+2)

Assume that u and v are on different levels and {u, v}∩C (n) = ∅ for all n ∈ N0. Then,
De is constant on the sets {xu < xv}, {xv < xu}, and {xu = xv}. Observe that

xu < xv if and only if
∑

e′3u
e′ 6=e

xe′ <
∑

e′3v
e′ 6=e

xe′. (2.21)

Since u and v are on different levels, but not corner points of any box Ṽ (n), all edges
e′ 6= e incident to u have endpoints on the same level, namely on level(u), see Figure 3.

Figure 3: The edge e has endpoints u and v on different levels. The edges e′ 6= e with
e′ 3 u or e′ 3 v are drawn with dashed lines.

PSfrag replacements

e

u

v

level(u)

level(v)

Similarly, all edges e′ 6= e incident to v have endpoints on level(v). In other words, e′ ≺
e holds for these edges e′. Thus all xe′ appearing in the two sums on the right hand side
of (2.21) are F (N)

e -measurable; recall the definition (2.20) of F (N)
e . Consequently, because

of (2.21), we have {xu < xv} ∈ F (N)
e . The same argument shows that {xv < xu} ∈ F (N)

e

and {xu = xv} ∈ F (N)
e .
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Definition 2.7 (Deformation) For any γ ∈ R, we define the deformation map Ξγ =

Ξ
(N)
γ,0,`,a : Ω(N) → Ω(N) by

Ξγ(x) = (exp (γDe(x)) · xe)e∈E(N) . (2.22)

Proof of parts (a) and (b) of Lemma 2.3. Let γ ∈ R. The measurability of Ξγ

follows from its definition (2.22) and Lemma 2.6.

(a) Let x ∈ Ω(N), and let e ∈ E(N) with 0 ∈ e. Then, e ∩ C(0) 6= ∅, and consequently,
De(x) = ϕ(0) = 0. Hence, xe ◦Ξγ = xe, and it follows that x0 =

∑

e′30 xe′ = x0 ◦Ξγ.

Let e ∈ E(N) with ` ∈ e. Then, De(x) takes a value in the set {ϕ(l), ϕ(l ± 1),
(ϕ(l) + ϕ(l ± 1))/2} = {1}. Hence, x` ◦ Ξγ = eγx`. This completes the proof of
(2.11).

(b) We list the edges in E(N) in such a way that every e = {u, v} ∈ E(N) with level(u) =
level(v) gets a smaller index than every e′ = {u′, v′} ∈ E(N) with level(u′) 6= level(v′).
Thus, we get a list e0, e1, . . . , eK with the property that e has a smaller index than
e′ whenever e ≺ e′. We rewrite the definitions (2.22) of Ξγ and (2.2) of the reference
measure ρ in logarithmic form:

log (xe ◦ Ξγ) = log xe + γDe(x), (2.23)

ρ(dx) =δ1(dxe0)
∏

e∈E(N)\{e0}

d log xe. (2.24)

Since De is F (N)
e -measurable, we see that the logarithmized component log xej

is
just translated by a value which depends only on the components xei

with i <
j. Since 0 ∈ e0, we have De0 = 0, and the component xe0 remains unchanged.
Such translations leave the reference measure ρ invariant. Here we use that every
measurable map f : Rd → Rd of the form

f(x1, . . . , xd) = (xi + gi(xj; j < i))i=1,...,d (2.25)

leaves the Lebesgue measure invariant.

One verifies that the inverse of Ξγ is given by

xe ◦ [Ξγ ]
−1 = exp

{

−γDe

(

[Ξγ]
−1(x)

)}

xe, (2.26)

x ∈ Ω(N), e ∈ E(N). This is a recursive system for determining the inverse, since
De([Ξγ]

−1(x)) depends only on the components xf with f earlier in the list e0, . . . , eK

than e. It follows that [Ξγ]
−1 is measurable.
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2.3 Entropy bounds

The goal of this section is to prove Lemma 2.3(c). Throughout this section, we assume
that a, na, N , `, and l are fixed and chosen as in (i)–(iv) of Lemma 2.3. For γ ∈ R and
η ∈ [0, 1], we denote by

Π−
γ,η = Π

(N)−
γ,η,0,`,a := [Ξ

(N)
γ,0,`,a]

−1P
(N)
η,0,`,a (2.27)

the image measure of Pη under the inverse of Ξγ. In the following, we suppress the
dependence of De on the environment x. Thus, we write De instead of De(x). We
abbreviate for v ∈ V (N), γ ∈ R, T ∈ T (N), and x ∈ Ω(N):

xv,γ :=
∑

e3v

(

eγDexe

)

and YT,γ = YT,γ(x) :=
∏

e∈T

(

eγDexe

)

. (2.28)

Lemma 2.8 (a) For any γ ∈ R and η ∈ [0, 1], we have

Πγ,η � Pη � Π−
γ,η, (2.29)

where ”�” means that the left-hand side is absolutely continuous with respect to the
right-hand side.

(b) For any γ ∈ R and η ∈ [0, 1], the Radon-Nikodym derivatives are bounded functions
on Ω(N) and fulfill

log
dΠγ,η

dPη
◦ Ξγ = log

dPη

dΠ−
γ,η

= −
∑

e∈E(N)

(γDea) + γ

(

2a +
1 − η

2

)

+

(

2a +
1

2

)

∑

v∈V (N)\{0,`}

log
xv,γ

xv
− 1

2
log

∑

T∈T (N) YT,γ
∑

T∈T (N) YT,0
. (2.30)

(c) The following two entropies are finite and coincide:

EΠγ,η

[

log
dΠγ,η

dPη

]

= EPη

[

log
dPη

dΠ−
γ,η

]

. (2.31)

Proof. Let γ ∈ R and η ∈ [0, 1]. By (2.10), Pη is absolutely continuous with respect to
ρ with a strictly positive Radon-Nikodym-derivative dPη/dρ. The reference measure ρ is
invariant under Ξγ by Lemma 2.3 (b). Consequently, we find

dΠγ,η

dρ
=

d(ΞγPη)

d(Ξγρ)
=

dPη

dρ
◦ [Ξγ]

−1 and
dΠ−

γ,η

dρ
=

d(Ξ−1
γ Pη)

d(Ξ−1
γ ρ)

=
dPη

dρ
◦ Ξγ. (2.32)

Taking quotients, this implies claim (a).
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The first equality in (2.30) follows from (2.32). To prove the second equality in part (b),
recall the explicit form of dPη/dρ in formula (2.10). By (2.11), we know that x0 ◦Ξγ = x0

and x` ◦ Ξγ = eγx`. Consequently, for any γ ∈ R, we obtain using (2.32),

dΠ−
γ,η

dρ
(x) =

dPη

dρ
(Ξγ(x))

=
1

z
(N)
0,a Z

(N)
η,0,`,a

∏

e∈E(N)

(

eγDeaxa
e

)

√

∑

T∈T (N)

∏

e∈T

(eγDexe)

x
2a+η/2
0 (eγx`)2a+(1−η)/2

∏

v∈V (N)\{0,`}

[

∑

e3v

(eγDexe)

]2a+1/2
. (2.33)

Combining (2.10) and (2.33), yields the second equality in the claim (2.30).
Since De takes only values in [0, 1], we have e−|γ|xe ≤ eγDexe ≤ e|γ|xe for all e ∈ E(N).

Hence,

e−|γ|xv ≤ xv,γ ≤ e|γ|xv and

e−|E(N)|·|γ|YT,0 ≤ YT,γ ≤ e|E
(N)|·|γ|YT,0 (2.34)

hold. Thus, it follows from (2.30) that x 7→ log(dPη/dΠ−
γ,η(x)) is a bounded mea-

surable function on Ω(N). Furthermore, using the first equality in (2.30), we see that
x 7→ dΠγ,η/dPη is also a bounded measurable function on Ω(N). Consequently, the en-
tropies in (2.31) are both finite. Using Πγ,η = ΞγPη, we obtain

EΠγ,η

[

log
dΠγ,η

dPη

]

= EΞγPη

[

log

(

dPη

dΠ−
γ,η

◦ Ξ−1
γ

)]

= EPη

[

log
dPη

dΠ−
γ,η

]

. (2.35)

Recall the definitions (2.28). Fix x ∈ Ω(N) and take v ∈ V (N) and γ ∈ R. We define a

probability measure µv,γ = µ
(N)
v,x,γ on the set E

(N)
v := {e ∈ E(N) : e 3 v} by

µv,γ :=
∑

e∈E
(N)
v

eγDexe

xv,γ

δe. (2.36)

For our fixed x ∈ Ω(N), we view D• : E
(N)
v → R, e 7→ De, as a random variable on the

probability space (E
(N)
v ,P(E

(N)
v ), µv,γ), again suppressing the dependence on the parame-

ter x in the notation; here P(A) denotes the power set of the set A.

Lemma 2.9 For all η ∈ [0, 1], the function R 3 γ 7→ log(dPη/dΠ−
γ,η) is twice continuously

differentiable. The second derivative satisfies the bound

∂2

∂2γ

[

log
dPη

dΠ−
γ,η

]

≤
(

2a +
1

2

)

∑

v∈V (N)\{0,`}

Varµv,γ (D•). (2.37)
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Proof. Fix x ∈ Ω(N). We define a probability measure νγ = ν
(N)
x,γ on the set T (N) by

νγ :=
∑

T∈T (N)

YT,γ
∑

T ′∈T (N) YT ′,γ
δT . (2.38)

Note that

∂

∂γ
xv,γ =

∑

e3v

(

Dee
γDexe

)

, (2.39)

∂

∂γ
YT,γ =

∑

e∈T

DeYT,γ = ∆T YT,γ, (2.40)

where we set

∆T = ∆T (x) :=
∑

e∈T

De. (2.41)

For our fixed x ∈ Ω(N), we view ∆• : T (N) → R, T 7→ ∆T , as a random variable on
the probability space (T (N),P(T (N)), νγ); again we drop the dependence on x in the
notation. We calculate the first and second derivative of γ 7→ log(dPη/dΠ−

γ,η) using the
representation (2.30):

∂

∂γ

[

log
dPη

dΠ−
γ,η

]

= −
∑

e∈E(N)

(Dea) + 2a +
1 − η

2

+

(

2a +
1

2

)

∑

v∈V (N)\{0,`}

1

xv,γ

∑

e3v

(

Dee
γDexe

)

− 1

2

∑

T∈T (N) ∆T YT,γ
∑

T∈T (N) YT,γ

= −
∑

e∈E(N)

(Dea) + 2a +
1 − η

2

+

(

2a +
1

2

)

∑

v∈V (N)\{0,`}

Eµv,γ [D•] −
1

2
Eνγ [∆•]. (2.42)

We also calculate the second derivative:

∂2

∂2γ

[

log
dPη

dΠ−
γ,η

]

=

(

2a +
1

2

)

∑

v∈V (N)\{0,`}

Varµv,γ (D•) −
1

2
Varνγ (∆•). (2.43)

Since Varνγ (∆•) ≥ 0, the claim of the lemma follows.

Lemma 2.10 The function

f : R 3 γ 7→ f(γ) = EPη

[

log
dPη

dΠ−
γ,η

]

(2.44)
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is twice continuously differentiable. The derivatives can be obtained by differentiating
inside of the expectation, i.e.

∂j

∂jγ

[

EPη

[

log
dPη

dΠ−
γ,η

]]

= EPη

[

∂j

∂jγ

[

log
dPη

dΠ−
γ,η

]]

(2.45)

for j = 1, 2. Furthermore, for any γ ∈ R, one has

f(γ) =

∫ γ

0

EPη

[

∂2

∂2γ̃

[

log
dPη

dΠ−
γ̃,η

]]

(γ − γ̃) dγ̃. (2.46)

Proof. Note that 0 ≤ De ≤ 1 for all e and 0 ≤ ∆T ≤ |E(N)| for all T ∈ T (N). These
bounds are valid for all x ∈ Ω(N). Consequently, it follows from (2.42) and (2.43) that
there exists a constant c7(a, N) ∈ (0,∞) such that for j = 1, 2 and all x ∈ Ω(N), we have

sup
γ∈R

∣

∣

∣

∣

∂j

∂jγ

[

log
dPη

dΠ−
γ,η

]∣

∣

∣

∣

≤ c7(a, N). (2.47)

By Lemma 2.9, γ 7→ log(dPη/dΠ−
γ,η) is twice continuously differentiable. Thus, by the

dominated convergence theorem, the same is true for f , and (2.45) is valid for j = 1, 2.
We know f ≥ 0 because entropies are always non-negative. Furthermore, since Π−

0,η = Pη,
we have f(0) = 0. Consequently, f ′(0) = 0. A Taylor expansion of f around 0 yields

f(γ) =

∫ γ

0

f ′′(γ̃)(γ − γ̃) dγ̃ =

∫ γ

0

EPη

[

∂2

∂2γ̃

[

log
dPη

dΠ−
γ̃,η

]]

(γ − γ̃) dγ̃; (2.48)

note that the last integral is finite by (2.47).

Proof of part (c) of Lemma 2.3. Recall the assumptions (i)–(iv) from Lemma 2.3.
By Lemma 2.8(a), Πγ,η is absolutely continuous with respect to Pη. To prove the entropy
bound (2.14), first combine Lemma 2.8(c) with (2.46), and then, insert the bound (2.37).
This yields:

EΠγ,η

[

log
dΠγ,η

dPη

]

≤
(

2a +
1

2

)

∑

v∈V (N)\{0,`}

∫ γ

0

EPη

[

Var
µ

(N)
v,γ̃

(D•)
]

(γ − γ̃)dγ̃. (2.49)

Let v ∈ V (N) \ {0, `}, and abbreviate

lv := level(v). (2.50)

Recall that the measure µv,γ = µ
(N)
v,x,γ depends on the environment x ∈ Ω(N). In the

following, we stress this dependence by writing µ
(N)
v,x,γ instead of µv,γ. To estimate the

variance of D• with respect to the measure µ
(N)
v,x,γ, we distinguish three cases.

Case 1: Assume that v ∈ V (N)\{0, `} is a corner point of a box [−m, m]2, i.e. v ∈ C(m),
for some m ≥ 1.
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Then, there are two possibilities (see Figure 1): If m is odd, all edges incident to v
have both endpoints on level lv. Otherwise, m is even and m = 2lv. In both cases, by
Definition 2.5, it follows that De′ = ϕ(lv) for any e′ incident to v. Hence, we have the
estimate:

Var
µ

(N)
v,x,γ

(D•) ≤E
µ

(N)
v,x,γ

[

(D• − ϕ(lv))
2] = 0. (2.51)

Case 2: Assume that v ∈ V (N) \{0, `} is a neighbor of a corner point u with level(u) 6=
lv (see Figure 4).

Figure 4: The vertices marked with a square are the neighbors of corner points considered
in case 2.

PSfrag replacements

corner point

level l

level l − 1

Then, three edges incident to v have both endpoints on level lv and one edge has one
endpoint on the level of the corner point u, namely on level lv − 1. Hence, for any e′

incident to v, we have De′ ∈ {ϕ(lv), ϕ(lv − 1)}, and consequently

Var
µ

(N)
v,x,γ

(D•) ≤E
µ

(N)
v,x,γ

[

(D• − ϕ(lv))
2]

≤ (ϕ(lv − 1) − ϕ(lv))
2 . (2.52)

Let I denote the set of all vertices v ∈ V (N) \ {0, `} considered in case 2. Then,

∑

v∈I

Var
µ

(N)
v,x,γ

(D•) ≤8
∞
∑

n=1

(ϕ(n + 1) − ϕ(n))2 . (2.53)

The factor 8 arises since there are 8 edges connecting corner points at level n to vertices
at level n + 1: Each of the 4 relevant corner points at level n is connected to 2 vertices at
level n + 1.

Case 3: Assume that v ∈ V (N) \ {0, `} is not a corner point of any box and v is not a
neighbor of a corner point at a different level (see Figure 5).

Then, there is precisely one vertex u adjacent to v with lu := level(u) 6= lv. We set
e(v) := {u, v}. One has De′ = ϕ(lv) for all e′ 3 v with e′ 6= e(v), and thus, it follows:

Var
µ

(N)
v,x,γ

(D•) ≤E
µ

(N)
v,x,γ

[

(D• − ϕ(lv))
2]

≤
(

De(v) − ϕ(lv)
)2

µ(N)
v,x,γ(e(v)). (2.54)
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Figure 5: Corner points are marked with a cross, neighbors of corner points at a different
level (as treated in case 2) are marked with a square. The black dots are the vertices at
level l covered in case 3.

PSfrag replacements

level l

level l − 1

level l + 1

Furthermore, since we have excluded v to be as in case 2, the definition (2.19) applies to
De(v). In particular, if xv < xu, then De(v) = ϕ(lv), and hence

Var
µ

(N)
v,x,γ

(D•) = 0 if xv < xu. (2.55)

For e′ incident to v, we know that the difference De(v) −De′ takes one of the three values
0, ϕ(lu) − ϕ(lv), and (ϕ(lu) − ϕ(lv))/2. Consequently,

µ(N)
v,x,γ(e(v)) =

eγDe(v)xe(v)

xv,γ

=
xe(v)

∑

e′3v eγ(De′−De(v))xe′

≤ exp {|γ| · |ϕ(lu) − ϕ(lv)|}
xe(v)

xv
. (2.56)

Assume that xu ≤ xv. Then, combining (2.54) and (2.56) and using
√

xuxv ≤ xv yields

Var
µ

(N)
v,x,γ

(D•) ≤ (ϕ(lu) − ϕ(lv))
2 exp {|γ| · |ϕ(lu) − ϕ(lv)|}

xe(v)√
xuxv

. (2.57)

Because of (2.55), this estimate is also true in the case xv < xu.
A side remark: At this point, it becomes clear why in Definition 2.5, De was introduced

in such a tricky, x-dependent way: If we had used a more naive definition of De instead,
formula (2.57) would have failed to hold.

For e = {u, v} ∈ E, we define

Le :=
xe√
xuxv

. (2.58)

Recall that Pη = P
(N)
η,0,`,a. The following lemma holds for all a > 0, N , and ` satisfying

(i)–(iv) in Lemma 2.3.
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Lemma 2.11 For all e ∈ E(N) with 0, ` 6∈ e and all η ∈ [0, 1], we have

EPη [Le] ≤ c6(a, η) (2.59)

with c6(a, η) as in (2.16).

Proof. Let e = {u, v}. Since xe ≤ xu and xe ≤ xv, we have Le ≤ 1 and the claim follows
in the case 0 ≤ η < 1.

Assume η = 1. By Definition 2.2, P1 = Q
(N)
`,a ; the normalizing constant equals Z

(N)
η,0,`,a =

1 because Q
(N)
`,a is a probability measure. Hence, we can apply Proposition 4.6 of [DR05]

to obtain

E
Q

(N)
`,a

[

L2
e

]

=
a(a + 1)

(4a + 1)2
≤ a. (2.60)

Consequently, E
Q

(N)
`,a

[Le] ≤
(

E
Q

(N)
`,a

[L2
e]
)1/2

≤ c6(a, 1).

Integrating both sides of (2.57) with respect to Pη and applying Lemma 2.11 gives

EPη

[

Var
µ

(N)
v,x,γ

(D•)
]

≤ c6(a, η) (ϕ(lu) − ϕ(lv))
2 exp {|γ| · |ϕ(lu) − ϕ(lv)|} . (2.61)

We sum the preceding inequality over the different vertices v:

∑

v∈V (N)\{0,`}

v 6∈
⋃∞

m=1 C(m),v 6∈I

EPη

[

Var
µ

(N)
v,x,γ

(D•)
]

≤8c6(a, η)

∞
∑

n=1

(4n + 1) (ϕ(n + 1) − ϕ(n))2 exp {|γ| · |ϕ(n + 1) − ϕ(n)|} . (2.62)

The factor 8(4n+1) arises, since there are not more than 4(4n+1) edges connecting level
n to level n + 1. Each of these edges is counted at most twice, once for each of its two
endpoints.

By the definition of ϕ, we have

ϕ(n + 1) − ϕ(n) = 0 if 0 ≤ n ≤ na − 1 or n ≥ l − 1. (2.63)

Furthermore, for na ≤ n ≤ l − 2, we have

|ϕ(n + 1) − ϕ(n)| ≤ sup
n≤x≤n+1

∣

∣

∣

∣

∂

∂x

log(x/na)

log((l − 1)/na)

∣

∣

∣

∣

=
1

n log((l − 1)/na)
. (2.64)

Assume that γ satisfies (2.13):

|γ| ≤ na log
l − 1

na
. (2.65)
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Then, for na ≤ n ≤ l − 2,

exp {|γ| · |ϕ(n + 1) − ϕ(n)|} ≤ e. (2.66)

In the following step, we use 1 + c6(a, η)e ≤ 4, which follows from c6(a, η) ≤ 1. Inserting
the bound (2.66) in (2.62) and using (2.51), (2.53), (2.63), and (2.64) yields:

∑

v∈V (N)\{0,`}

EPη

[

Var
µ

(N)
v,x,γ

(D•)
]

≤8
l−2
∑

n=na

(1 + c6(a, η)(4n + 1)e) (ϕ(n + 1) − ϕ(n))2

≤ 8

(log((l − 1)/na))2

l−2
∑

n=na

(

4c6(a, η)e

n
+

1 + c6(a, η)e

n2

)

≤ 32

(log((l − 1)/na))2

l−2
∑

n=na

(

c6(a, η)e

n
+

1

n2

)

. (2.67)

Observe that

l−2
∑

n=na

1

n
≤ 2 log

l − 1

na

and
l−2
∑

n=na

1

n2
≤ 2

na

. (2.68)

Hence, using that log((l − 1)/na) ≥ log 2 by (iv) in Lemma 2.3, we obtain

∑

v∈V (N)\{0,`}

EPη

[

Var
µ

(N)
v,x,γ

(D•)
]

≤ 64

na log((l − 1)/na)

(

c6(a, η)ena +
1

log 2

)

. (2.69)

Combining this bound with (2.49) yields

EΠγ,η

[

log
dΠγ,η

dPη

]

≤ c5(a, η)γ2

na log((l − 1)/na)
(2.70)

with

c5(a, η) := 32

(

2a +
1

2

)(

ec6(a, η)na +
1

log 2

)

≥ 16

log 2
> 16. (2.71)

In the special case η = 1, because of (ii) in Lemma 2.3 and (2.16), c6(a, 1)na → 1 as
a → 0. Hence, lima→0 c5(a, 1) < ∞. This completes the proof of part (c) of Lemma 2.3.

2.4 Auxiliary finite-volume estimates

The following tail estimates are proved in [MR05d]. We need them below. Recall that

the random environment Q
(N)
0,a for the finite box V (N) is unique up to a multiplication of

the edge weights by a constant.
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Theorem 2.12 (Theorems 2.3 and 2.4 in [MR05d]) For all a > 0, there are con-
stants c8(a) > 0 and c9(a) > 0, depending only on a, such that the following estimates
hold for all N ∈ N:

(a) For all e, f ∈ E(N) with e ∩ f 6= ∅, and all M > 0, one has

Q
(N)
0,a

[

xe

xf
≥ M

]

≤ c8(a)M−a/2. (2.72)

(b) For all v ∈ V (N), all e ∈ E(N) incident to v, and all M > 0, one has

Q
(N)
0,a

[

xe

xv

≤ M

]

≤ c9(a)Ma/2. (2.73)

Proof of Lemma 1.9. Let a > 0, N ≥ 2, and let e, f ∈ E(N) satisfy e ∩ f 6= ∅. Using
(2.72), we obtain for any α > 0:

E
Q

(N)
0,a

[(

xe

xf

)α]

≤1 +

∫ ∞

1

Q
(N)
0,a

[(

xe

xf

)α

≥ M

]

dM

≤1 + c8(a)

∫ ∞

1

M−a/(2α) dM. (2.74)

The last integral is finite whenever α ∈ (0, a/2). Since the upper bound in (2.74) is
uniform in e, f , and N , the claim (1.18) follows.

To prove (1.19), let v, w ∈ V (N) with |v − w| = 1. Denote by e := {v, w} the edge
connecting v and w. Then, using (2.73) and log(xv/xe) ≥ 0,

E
Q

(N)
0,a

[

log
xv

xw

]

≤E
Q

(N)
0,a

[

log
xv

xe

]

=

∫ ∞

0

Q
(N)
0,a

[

log
xv

xe
≥ M

]

dM

≤1 + c9(a)

∫ ∞

1

e−Ma/2 dM < ∞; (2.75)

clearly, the upper bound is uniform in v, w, and N . This completes the proof of (1.19).

2.5 Proof of Theorems 1.7 and 1.8

Recall the definition (2.7) of Σ`. We abbreviate

Q0 := Q
(N)
0,a . (2.76)
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Theorem 2.13 (Key estimate) Let a > 0, na, N ∈ N, and ` ∈ V (N) fulfill the assump-
tions (i)–(iv) from Lemma 2.3, and let 0 ≤ η ≤ 1. Then

log EQ0 [exp(ηΣ`)] − ηEPη [Σ`] ≤
−η2na log((l − 1)/na)

16c5(a, η)
(2.77)

with c5(a, η) given by (2.15).

Proof. We set

γ = −ηna log((l − 1)/na)

4c5(a, η)
. (2.78)

The condition (2.13) is satisfied for this choice, since we have c5(a, η) > 16 for all η ∈ [0, 1]
and a > 0. Using the entropy bound (2.14) and positivity of entropies, we get

−ηγ

4
=

c5(a, η)γ2

na log((l − 1)/na)
≥ EΠγ,η

[

log
dΠγ,η

dPη

]

=EΠγ,η

[

log
dQ0

dPη

]

+ EΠγ,η

[

log
dΠγ,η

dQ0

]

≥EΠγ,η

[

log
dQ0

dPη

]

= EPη

[

log

(

dQ0

dPη
◦ Ξγ

)]

; (2.79)

here we used the definition (2.12) of the measure Πγ,η in the last step. Note that all
expectations occurring in (2.79) are finite. As a consequence of the two equations (2.11),
we find

Σ` ◦ Ξγ = Σ` +
γ

2
. (2.80)

Thus, using (2.9), we find

log

(

dQ0

dPη

◦ Ξγ

)

= log Z
(N)
η,0,`,a − ηΣ` ◦ Ξγ = log EQ0[exp(ηΣ`)] − ηΣ` −

ηγ

2
. (2.81)

Consequently, it follows from (2.79):

−ηγ

4
≥ log EQ0 [exp(ηΣ`)] − ηEPη [Σ`] −

ηγ

2
. (2.82)

Combining this with our choice (2.78) for γ, we obtain the claim (2.77).

Roughly speaking, Theorems 1.7 and 1.8 are just the special cases η = 1 and η = 1/2
of Theorem 2.13:

Proof of Theorem 1.7. Let a > 0, and let na be as in (ii) of Lemma 2.3. We set
c2(a) = na/(8c5(a, 1)) > 0 with c5(a, 1) as in (2.15) with η = 1 and

c3(a) = max

{

na log(4na)

8c5(a, 1)
, 12nac4(a) + c2(a) log(12na)

}

, (2.83)
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where the constant c4(a) is taken from formula (1.19). Note that c2(a) → ∞ as a → 0
because na → ∞ as a → 0 and lima→0 c5(a, 1) < ∞. Now let N ∈ N and v ∈ V (N) \ {0},
and set l := level(v). We distinguish two cases; first finitely many exceptional cases, and
then the general case.
Case 1: N ≤ 6na or l ≤ 3na. In this case, there is a path 0 = v0, v1, . . . , vk = v in V (N)

joining the vertices 0 and v of length k ≤ 12na; recall that levels have width two. Taking
the expectation E

Q
(N)
0,a

of

log
xv

x0

=
k
∑

i=1

log
xvi

xvi−1

(2.84)

and using the formula (1.19) from Lemma 1.9 and the fact that |v| ≤ 12na, we obtain the
bound (1.16):

E
Q

(N)
0,a

[

log
xv

x0

]

≤ 12nac4(a) ≤ c3(a) − c2(a) log(12na) ≤ c3(a) − c2(a) log |v|. (2.85)

Case 2: N > 6na and l > 3na. In this case, Theorem 2.13 is applicable with ` = v.
Using (2.8) and P1 = Q

(N)
v,a , we rewrite (2.77) for the special value η = 1 in the form

1

2
E

Q
(N)
v,a

[

log
x0

xv

]

= −EP1

[

log
dP1

dQ0

]

= log EQ0

[

dP1

dQ0

]

− EP1

[

log
dP1

dQ0

]

≤ −na log((l − 1)/na)

16c5(a, 1)

≤ −na log(|v|/(4na))

16c5(a, 1)
≤ 1

2
(c3(a) − c2(a) log |v|) ; (2.86)

note that l − 1 ≥ l/
√

2 ≥ |v|/4 for all l > 3na. Recall that the box V (N) has periodic
boundary conditions. Using reflection symmetry, we interchange 0 and v to obtain the
claim (1.16):

E
Q

(N)
0,a

[

log
xv

x0

]

= E
Q

(N)
v,a

[

log
x0

xv

]

≤ c3(a) − c2(a) log |v|. (2.87)

Proof of Theorem 1.8. Let a > 0, na as above, and set

β(a) =
na

64c5(a, 1/2)
and c1(a) = 2 · (6

√
2na)

β(a). (2.88)

Let N ∈ N and v ∈ V (N) \ {0}, l = level(v). We distinguish the same two cases as in the
previous proof:
Case 1: N ≤ 6na or l ≤ 3na. We observe that E

Q
(N)
0,a

[(xv/x0)
1/4] is bounded: Using (2.8)

and z1/4 ≤ 1 + z1/2 for all z ≥ 0, we get

EQ0

[

(

xv

x0

)
1
4

]

≤ 1 + EQ0

[√

xv

x0

]

= 1 + EQ0

[

dP1

dQ0

]

= 2 ≤ c1(a)|v|−β(a); (2.89)
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in the last step, we used |v| ≤ 2
√

2l ≤ 6
√

2na.
Case 2: N > 6na and l > 3na. This time, we apply Theorem 2.13 with η = 1/2 and
` = v. Note that by (2.4), we have

dP1/2

dQ0
=

1

Z
(N)
1/2,0,v,a

(

xv

x0

)
1
4

(2.90)

and thus

P1/2(dx) =
1

Z
(N)
1/2,0,v,a

(

xv

x0

)
1
4

Q0(dx) =
1

Z
(N)
1/2,0,v,a

(

x0

xv

)
1
4

Q(N)
v,a (dx). (2.91)

Using reflection symmetry again, we interchange 0 and v in the following computation:

EP1/2
[Σv] =

1

Z
(N)
1/2,0,v,a

EQ0

[

(

xv

x0

)
1
4

log

√

xv

x0

]

=
1

Z
(N)
1/2,0,v,a

E
Q

(N)
v,a

[

(

x0

xv

) 1
4

log

√

x0

xv

]

= −EP1/2
[Σv] (2.92)

and thus

EP1/2
[Σv] = 0. (2.93)

Inserting this in the estimate (2.77) of Theorem 2.13 with η = 1/2, we obtain the claim
(1.17) of Theorem 1.8:

log EQ0

[

(

xv

x0

)
1
4

]

= log EQ0 [exp(Σv/2)] ≤ −na log((l − 1)/na)

64c5(a, 1/2)
(2.94)

≤ −na log(|v|/(4na))

64c5(a, 1/2)
≤ log[c1(a)|v|−β(a)].

3 Bounds in infinite-volume

3.1 Infinite-volume limits

In this section, we deduce the infinite-volume results Theorems 1.3, 1.4, and Theorem 1.5
from their finite volume analogues, namely Theorems 1.7, 1.8, and Lemma 1.9.

Proof of Theorems 1.3, 1.4, and Theorem 1.5. Let a > 0, and let v ∈ Z2. In the
proof of Theorem 2.2 in [MR05d] it is shown that there is a subsequence (n(k))k∈N such

that for any finite subset F ⊂ E, the Q
(n(k))
0,a -distribution of (xe)e∈F converges weakly to
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the Q0,a-distribution of (xe)e∈F . Recall from (2.1) that the weights are normalized such

that xe0 = 1 holds Q
(n(k))
0,a -a.s. for a fixed reference edge e0 ∈ E.

To prove Theorem 1.4, let v ∈ Z2 \{0}. Since (xv/x0)
1/4 takes only positive values and

is a continuous function of the finitely many weights xe with e 3 v or e 3 0, we conclude

EQ0,a

[

(

xv

x0

)
1
4

]

≤ lim inf
k→∞

E
Q

(n(k))
0,a

[

(

xv

x0

)
1
4

]

≤ c1(a)|v|−β(a); (3.1)

we used Theorem 1.8 in the last step. This proves Theorem 1.4. Using Lemma 1.9, the
same argument yields Theorem 1.5.

To prove Theorem 1.3, we observe that log(xv/x0) is also a continuous function of the
finitely many weights xe with e 3 v or e 3 0.

Let 0 = v0, v1, . . ., vL = v be a path from 0 to v, and let ei := {vi−1, vi}, 1 ≤ i ≤ L.
Then, for all N large enough that vi ∈ V (N) for all 1 ≤ i ≤ L and all M > 0, one finds:

Q
(N)
0,a

[∣

∣

∣

∣

log
xv

x0

∣

∣

∣

∣

≥ M

]

≤Q
(N)
0,a

[

L
∑

i=1

∣

∣

∣

∣

log
xvi

xvi−1

∣

∣

∣

∣

≥ M

]

≤
L
∑

i=1

Q
(N)
0,a

[∣

∣

∣

∣

log
xvi

xvi−1

∣

∣

∣

∣

≥ M

L

]

≤
L
∑

i=1

{

Q
(N)
0,a

[

log
xvi

xei

≥ M

L

]

+ Q
(N)
0,a

[

log
xvi−1

xei

≥ M

L

]}

≤2Lc9(a)e−Ma/(2L); (3.2)

in the last but one step, we used xei
≤ min{xvi

, xvi−1
}, and in the last step we used (2.73)

from Theorem 2.12. Thus, log(xv/x0) has exponential tails, uniformly in the size N of
the box. Consequently, we can take the limit along the subsequence (n(k))k∈N in (1.16)
to obtain (1.10).

3.2 Hitting probabilities for ERRW

Finally, we apply our bounds for the random environment to deduce estimates for the
hitting probabilities for the edge-reinforced random walk.

Proof of Theorem 1.1.

(a) We claim first that for all x ∈ Ω and all v ∈ Z2\{0}, the probability Q0,x[τv < τ0] for
the random walk starting in 0 in the fixed environment x to visit v before returning
to 0 and the probability Qv,x[τ0 < τv] for the random walk with exchanged roles of
0 and v in the same environment are connected by the following equation:

Q0,x[τv < τ0] =
xv

x0
Qv,x[τ0 < τv]. (3.3)
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To prove this claim, take two vertices u 6= w. Denote by Πu,w the set of all admissible
finite paths

π = (u = v0, v1, . . . , vn = w), (3.4)

n ∈ N, joining u and w which do not visit u or w twice. For any such path π, we
introduce the event

Aπ := {Xi = vi for i = 0, 1, . . . , n} ⊆ (Z2)N0 (3.5)

that π is an initial piece of the random path. Note that the events Aπ, π ∈ Πu,w,
are pairwise disjoint. Furthermore, let

π↔ := (vn, . . . , v1, v0) (3.6)

denote the reversed path. Note that the reversion defines a bijection ·↔ : Π0,v →
Πv,0. Moreover, for any path π as in (3.4),

xuQu,x[Aπ] = xu

n−1
∏

i=0

x{vi,vi+1}

xvi

= xw

n
∏

i=1

x{vi,vi−1}

xvi

= xwQw,x[Aπ↔ ]. (3.7)

Now, we take u = 0 and w = v. Summing (3.7) over all π ∈ Π0,v, we obtain the
claim (3.3) as follows:

x0Q0,x[τv < τ0] = x0

∑

π∈Π0,v

Q0,x[Aπ] = xv

∑

π∈Π0,v

Qv,x[Aπ↔]

= xv

∑

π∈Πv,0

Qv,x[Aπ] = xvQv,x[τ0 < τv]. (3.8)

From this, we conclude

Q0,x[τv < τ0] ≤
xv

x0

. (3.9)

Taking the 1/4-th power and expectations yields

P0,a[τv < τ0] =EQ0,a[Q0,x[τv < τ0]] ≤ EQ0,a[Q0,x[τv < τ0]
1/4]

≤EQ0,a

[

(

xv

x0

)1/4
]

≤ c1(a)|v|−β(a); (3.10)

we used the representation of the edge-reinforced random walk as a random walk in
random environment from Theorem 1.2 in the first step and the bound (1.11) from
Theorem 1.4 in the last step. This shows part (a) of Theorem 1.1.

(b) To prove part (b), let Σn
u,w denote the set of all admissible paths

π = (u = v0, v1, . . . , vn = w) (3.11)
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from u to w of length n. Again, reversion yields a bijection between Σn
u,w and Σn

w,u,
and the events Aπ, π ∈ Σn

u,w, are pairwise disjoint. In analogy to (3.8), we obtain

x0Q0,x[Xn = v] = x0

∑

π∈Σn
0,v

Q0,x[Aπ] = xv

∑

π∈Σn
v,0

Qv,x[Aπ] = xvQv,x[Xn = 0]. (3.12)

Using this, an analogous argument to (3.10) yields the claim (1.5).

A Appendix: Proof of Lemma 2.1

In this appendix, we consider a generalization of Lemma 2.1 to arbitrary finite graphs.
It essentially states the formula of Coppersmith and Diaconis [CD86] for the law of the
random environment, transformed to a special normalization.

Consider edge-reinforced random walk on any finite graph (V, E) with starting point
v0 ∈ V and initial weights a = (ae)e∈E ∈ (0,∞)E. Recall the definition (1.9) of xv; we use
the similar notation av =

∑

e3v ae. For x = (xe)e∈E ∈ (0,∞)E, we set

φv0,a(x) = c10(v0, a)

∏

e∈E xae−1
e

x
av0/2
v0

∏

v∈V \{v0}
x

(av+1)/2
v

√

∑

T∈T

∏

e∈T

xe, (A.1)

where the sum is indexed by the set T of all spanning trees of (V, E), viewed as sets of
edges, and the constant c10(v0, a) is defined by

c10(v0, a) =
Γ(av0/2)

∏

v∈V \{v0}
Γ((av + 1)/2)

∏

e∈E Γ(ae)

21−|V |+
∑

e∈E ae

π(|V |−1)/2
. (A.2)

Lemma A.1 The above edge-reinforced random walk on (V, E) has the same distribution
as a random walk in a random environment given by random positive weights x̃ = (x̃e)e∈E

on the edges. Normalizing x̃ such that x̃e0 = 1 for a fixed reference edge e0, the law of
x̃ has the density φv0,a with respect to the Lebesgue measure δ1(dx̃e0)

∏

e∈E\{e0}
dx̃e on the

hyperplane H = {(x̃e)e∈E ∈ (0,∞)E | x̃e0 = 1}.

Proof. By Theorem 3.1 of [Rol03], the edge-reinforced random walk on (V, E) has the
same distribution as a random walk in a random environment given by random positive
weights x = (xe)e∈E on the edges. The law of the random environment Q∆

v0 ,a, normalized
such that

∑

e∈E xe = 1, has a density with respect to the normalized surface measure
on the simplex ∆ = {(xe)e∈E ∈ (0,∞)E | ∑e∈E xe = 1}. The density is provided by
Theorem 1 in [KR00]. Combining this theorem with the matrix-tree-theorem ([Mau76],
p. 145, theorem 3’, see also Theorem 3 in [KR00]), it is given by

dQ∆
v0,a

dσ
(x) =

φv0,a(x)

(|E| − 1)!
. (A.3)
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Consider the change of normalization

F : ∆ → H, F ((xe)e∈E) =

(

xe

xe0

)

e∈E

. (A.4)

We factor F as follows: ∆
π−→ π[∆]

f−→ (0,∞)E\{e0} ι−→ H,

(xe)e∈E
π7−→ (xe)e∈E\{e0}

f7−→
(

x̃e =
xe

1 −∑e′∈E\{e0}
xe′

=
xe

xe0

)

e∈E\{e0}

ι7−→ (x̃e)e∈E

(A.5)
where the first map is the canonical projection and the last map ι just includes an extra
component x̃e0 = 1. Let us calculate the Jacobi determinant of the map f . Using the
abbreviation xe0 = 1 −∑e′∈E\{e0}

xe′, we have the Jacobi matrix

Df(x) =

(

∂x̃e

∂xe′

)

e,e′∈E\{e0}

=
1

xe0

(

δee′ +
xe

xe0

)

e,e′∈E\{e0}

, (A.6)

which is 1/xe0 times the identity matrix I plus a rank 1 matrix. Since det(I+A) = 1+trA
holds for rank 1 matrices A, we get the Jacobi determinant

det Df(x) =
1

x
|E|−1
e0



1 +
∑

e∈E\{e0}

xe

xe0



 =
1

x
|E|
e0

. (A.7)

Abbreviating

α :=
∑

e∈E

ae − |E| −
∑

v∈V

av

2
− |V | − 1

2
= −|E| − |V | − 1

2
= −|E| − |T |

2
(A.8)

for any spanning tree T ⊆ E in (V, E), we rewrite (A.1) as

φv0,a(x) = c10(v0, a)xα
e0

∏

e∈E x̃ae−1
e

x̃
av0/2
v0

∏

v∈V \{v0}
x̃

(av+1)/2
v

√

∑

T∈T

x
|T |
e0

∏

e∈T

x̃e = x−|E|
e0

φv0,a(x̃) (A.9)

and thus
φv0,a(x)

det Df(π(x))
= φv0,a(x̃). (A.10)

We combine this with (A.3). Using that the projected normalized surface measure πσ
has the density (|E| − 1)! with respect to the Lebesgue measure on π[∆], we get that
the transformed distribution Qv0,a = FQ∆

v0,a has the density φv0,a(x̃) with respect to the
Lebesgue measure δ1(dx̃e0)

∏

e6=e0
dx̃e on the hyperplane H. This proves the claim.
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