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Abstract. We study the behavior of the two-dimensional Ising model in a finite
box at temperatures that are below, but very close to, the critical temperature. In

a regime where the temperature approaches the critical point and, simultaneously,

the size of the box grows fast enough, we establish a large deviation principle that
proves the appearance of a round Wulff crystal.

1. Introduction

The Ising model in two dimensions is the first model where phase transition and non
mean-field critical behavior has been established by Onsager [43] in 1944. It is also for
that particular model that phase coexistence was rigorously studied and led to the first
microscopic justification of the Wulff crystal. The first proof by Dobrushin, Kotecký and
Shlosman [23] was valid for temperatures that are much lower than the critical point.
Simplifications by Pfister [44], Ioffe and Schonmann [33, 34, 35] improved the result up
to the critical point. These results in two dimensions rely on the study of contours to
analyze large deviations of surface order. The extension of the Wulff construction to the
Ising model in dimensions greater or equal to three required new techniques such as block
coarse graining and the use of tools coming from geometric measure theory. This was
achieved by Cerf, Pisztora [16] and Bodineau [11]. These results were initially valid up
to the slab “percolation” threshold and recently Bodineau [12] proved that this threshold
is indeed the usual critical point, thus extending the results of [16, 46] up to the critical
temperature Tc. A two-dimensional analogue of the coarse graining developed in [46]
is the subject of [19], thereby providing a unified approach to treat the problem for all
dimensions. The appearance of the Wulff crystal has been proved in other ”percolation”
type models as well: [7], [4] in two dimensions and [14], [17] for dimensions greater or
equal to three.

In all the works described above, the temperature has been kept fixed away from the
critical temperature. Our main goal is to study the impact of the presence of a second
order phase transition on the phase coexistence phenomenon. We do this by analyzing
phase coexistence in a regime where the temperature approaches the critical point from
below while simultaneously taking the thermodynamical limit.
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A priori, one can expect that a second order phase transition has a non trivial effect
on phase coexistence. Indeed, when approaching the critical point, the basic quanti-
ties describing the model either diverge or stay finite but have divergent derivatives.
In the second case, they decay as a power law giving rise to critical exponents. This
critical behavior and the existence of these exponents is conjectured for a wide family
of two-dimensional statistical mechanics models. The existence of some of these critical
exponents in a strong sense is an important ingredient in our analysis. This ingredient
is available for the two-dimensional Ising model. For this particular model, the relevant
statistical mechanics quantities can be computed explicitly, giving rise to beautiful iden-
tities such as Onsager’s formula for the magnetization [43] and an explicit formula for the
surface tension that describes the geometry of the Wulff droplet in terms of random walks
[41, 42]. Such results can be obtained, for example, by using the dimer representation of
Kasteleyn [36].

The probabilistic understanding of the critical phenomena is a very active field nowa-
days. In the case of Bernoulli site percolation on the planar triangular lattice, the exis-
tence and the identification of the critical exponents have been rigorously established by
Smirnov and Werner [49] after the groundbreaking work of Schramm [47] and Smirnov
[48]. In [49], the existence of the critical exponents has been explained in a probabilis-
tic manner. Indeed, this work establishes a rigorous link with the conformal invariance
of the scaling limit of critical percolation, described by the Schramm Loewner evolu-
tion process. Regarding the above mentioned results, the reader may wonder why we
don’t investigate the influence of a phase transition on phase coexistence in the a priori
simpler and better understood independent Bernoulli percolation model instead of the
dependent spins of the Ising model. The reason is that despite the spectacular progress
in the understanding of criticality of independent percolation, essential properties of the
critical exponents are still unaccessible by other methods than explicit computation; see
in particular the open question 3 at the end of [49]. And since explicit computations
work only for the two-dimensional Ising model, our results are confined to this particular
model.

2. Statement of the main results

Consider the Ising model at temperature T < Tc, defined on a square box Λ(n)
of side length n ∈ N \ {0} and submitted to +-boundary conditions. For every spin
configuration σ ∈ {−1, 1}Λ(n), we associate a random signed measure σn,T on the unit
square Q = [−1/2, 1/2]2 ⊂ R2, defined by

σn,T =
1

m∗(T )n2

∑
x∈Λ(n)

σ(x)δx/n

where δx/n is the Dirac mass at x/n and m∗(T ) is the spontaneous magnetization at
temperature T . The expectation bn of σn,T is

bn =
1

m∗(T )n3

∑
x∈Λ(n)

σ(x)x .
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The main result of our paper is a convergence theorem for σn,T under a conditioned Ising
measure:

Theorem 1. Let 0 < δ < π. Let B(δ) be the ball of radius
√

δ/π and wn be the random
measure defined by

wn(x) dx =
(
1Q(x) − 2 · 1B(δ)

(bn

2
+ x

))
dx .

This is the measure having density −1 on B(δ)− bn/2 and 1 on the complement. Under
the conditional probability

μΛ(n)(·) = μ+,T
Λ(n)

(
·
∣∣∣ 1
n2

∑
x∈Λ(n)

σ(x) ≤ (1 − δ)m∗(T )
)

the difference between the random measures σn and wn converges weakly in probabil-
ity towards 0 when n ↑ ∞ and T ↑ Tc in such a way that n(Tc − T )20 ↑ ∞ and
log(n)/ log(1/(Tc − T )) stays bounded. That is, for any continuous function f : Q �→ R,

(1) ∀ε > 0 lim
n,T

μΛ(n)

(|σn(f) − wn(f)| ≥ ε
)

= 0 .

The probabilities of the deviations are of order exp (−constant(Tc − T )n).

The last sentence of the theorem means the following. For any continuous function
f : Q �→ R, any ε > 0, there exist positive constants b, c depending on f, ε such that

μΛ(n)

(∣∣∣∣ 1
m∗(T )n2

∑
x∈Λ(n)

σ(x) f
(x

n

)
+ 2

∫
B(δ)

f
(− bn

δ
+ x

)
dx −

∫
Q

f(x) dx

∣∣∣∣ > δ

)
≤ b exp(−c · (Tc − T )n) .

The main assertion of the theorem is that conditioning on having a defect of magnetiza-
tion, the random measure σn,T looks like a measure whose density is an indicator of the
Wulff crystal which turns out to be an ordinary circle near the critical point. In other
words, the defect of magnetization concentrates into a circular region. Note that in our
regime, the shape of the Wulff crystal is no more affected by the geometry of the square
lattice.
Theorem 1 is a consequence of De Giorgi’s isoperimetric inequality [20] and a large devia-
tion principle (LDP) that we prove in this paper. The assumption on log(n)/ log(1/(Tc−
T )) is a side hypothesis. Although we believe that a proof in the case where this quantity
diverges is possible using the ideas of the current paper, we could not find a proof that
includes both cases. Since we do like to study regimes that are as close as possible from
criticality, we decided to treat the case where log(n)/ log(1/(Tc − T )) stays bounded.
The exponent 20 in the statement of the theorem is not optimal. Indeed, if we introduce
the quantity

νW = inf

{
γ > 0 such that the convergence (1) is valid when n ↑ ∞
and T ↑ Tc in such a way that n(T − Tc)γ ↑ ∞

}
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then our result states that νW ≤ 20. We believe that νW = 1, i.e., the critical expo-
nent for the correlation length. For percolation type models we can introduce a similar
exponent that characterizes the maximal regime where a Wulff droplet near critical-
ity appears. We believe that in the case of the two-dimensional Bernoulli percolation
νW = 4/3.
For the two-dimensional Ising model, several difficulties have to be overcome to obtain the
right exponent. In a heuristic manner, what prevents us to go from νW ≤ 20 to νW ≤ 5 is
the lack of the van den Berg-Kesten inequality for the dependent random cluster model.
Then to go from νW ≤ 5 to νW ≤ 2, one has to have a better understanding of the
influence of the boundary conditions when approaching criticality. More precisely, one
has to understand better how weak mixing properties in the sense of [1] behave close to
the critical point. The gap νW ≤ 2 to νW ≤ 1 is related to the speed of convergence of
the empirical magnetization to its thermodynamical limit in a regime where we approach
the critical point.
The computation of an explicit bound for νW would have been impossible without the
kind advice of Charles Pfister. We thank him warmly for drawing our attention to the
paper [13].

2.1. The large deviation principle

Next, we give the notions necessary to state our LDP that describes phase coexistence
near the critical point.

2.1.1 Sets of finite perimeter. A fundamental quantity in our study is the perimeter
of a set. In order to prove our LDP, we need to define this quantity for Borel subsets of
Q = [−1/2, 1/2]2 that may have irregular boundaries. We give next the distributional
definition of the perimeter.

Definition 2. Let A be a Borel subset of Q, its perimeter is defined as

P(A) = sup
{∫

A

divf(x)dL2(x) : f ∈ C∞
c (R2, B(0, 1))

}
,

where L2 is the Lebesgue measure on R2, C∞
c (R2, B(0, 1)) is the set of C∞ vector fields

from R2 to the Euclidean unit ball B(0, 1) having a compact support and div is the usual
divergence operator. The set A is said to have finite perimeter if P(A) is finite.

If the boundary of A is smooth then an application of the Gauss-Green theorem gives
that P(A) = H(∂A), where H is the one dimensional Hausdorff measure. We denote by
M(Q) the vector space of the finite signed Borel measures on Q. We equip M(Q) with
the weak topology, that is the coarsest topology for which the linear functionals

ν ∈ M(Q) �→
∫

f dν , f ∈ Cc(R2, R)

are continuous, where Cc(R2, R) is the set of the continuous functions from R2 to R

having compact support. The rate function of our LDP is the map
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J :M(Q) → [0, +∞]

ν �→ J (ν) =

⎧⎨⎩ τcP(A) if there exists a Borel set A such that
dν

dL2
= −1A + 1Q\A

∞ otherwise.

The positive constant τc will be defined later, it plays the role of the unit length by which
we measure the perimeter.

Theorem 3. If T ↑ Tc and n ↑ ∞ in such a way that n(Tc − T )20 ↑ ∞ and such that
log(n)/ log(1/(p − pc)) stays bounded then the law of the random measure σn,T under
μ+,T

Λ(n) satisfies a large deviation principle in M(Q) with respect to the weak topology.
The speed of the LDP is (Tc − T )n and the good rate function is J , i.e., for any Borel
subset M of M(Q),

− inf{J (ν) : ν ∈ M
◦ } ≤ lim inf

n,T

1
(Tc − T )n

log μ+,T
Λ(n)[σn,T ∈ M ]

≤ lim sup
n,T

1
(Tc − T )n

log μ+,T
Λ(n)[σn,T ∈ M ] ≤ − inf{J (ν) : ν ∈ M}.

2.2. Structure of the paper

In section 3 we define the Ising model and introduce the basic notions that we will
use in the rest of the paper. In this section we also give the Ising specific properties on
which we rely. This way we isolate and minimize the use of the specificities of the Ising
model. The other techniques are more robust and take their roots in the study of the
Wulff crystal in dimensions greater or equal to three. In section 4 we start by establishing
weak mixing properties that permit then the implementation of an adequate block coarse
graining, and we also establish the block estimates required for the subsequent proofs.
Section 5 contains the proof of the upper bound for our LDP. Finally section 6 finishes
the proof of the LDP by establishing the corresponding lower bound.

3. Preliminaries

In this section we define the Ising model and its representation in terms of the random
cluster model. In a second part, we isolate the Ising specific properties that are required
for our study.

3.1. The Ising model

Let Q = [−1/2, 1/2]2 be the centered planar unit box. For a positive integer n, we
define the discrete set of sites Λ(n) = nQ ∩ Z2 that we turn into a graph by considering
the following set of edges : E(Λ(n)) = { {x, y} ⊂ Λ(n) : |x − y| = 1}, where | · | is
the usual Euclidean norm. We also define the boundary ∂Λ(n) of the graph Λ(n) by
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∂Λ(n) = {x ∈ Λ(n) : ∃ y ∈ Λ(n)c : |x − y| = 1}. For every value β = 1/T > 0 of
the inverse temperature, the Ising model in Λ(n) with +1 boundary conditions is the
probability measure on the spin configurations ΩΛ(n) = {−1, +1}Λ(n) defined by

∀σ ∈ {+1,−1}Λ(n) μ+,β
Λ(n)[σ] =

1

Z+,β
n

exp
(−βH+

n (σ)
)
,

where
H+

n (σ) = −1
2

∑
x,y∈Λ(n)\∂Λ(n)

|x−y|1=1

σ(x) σ(y)−
∑

x∈Λ(n)\∂Λ(n)

∑
y∈∂Λ(n)
|x−y|1=1

σ(x)

and Z+,β
n is the adequate normalization constant.

3.2. The FK-representation

There exists a useful and well known coupling between the Ising model at inverse
temperature β and the random cluster model with parameter q = 2 and p = 1−exp(−2β),
see [24, 26]. We will use this coupling in order to derive several probabilistic estimates
from the corresponding FK-percolation model. The coupling is a probability measure P+

n

on the edge-spin configuration space {0, 1}E(Λ(n)) × {−1, +1}Λ(n). To construct P+
n we

first consider Bernoulli percolation of parameter p on the edge space {0, 1}E(Λ(n)), then
we choose the spins of the sites in Λ(n) independently with the uniform distribution on
{−1, +1} and finally we condition the edge-spin configuration on the event that there is
no open edge in Λ(n) between two sites with different spin values. The construction can
be summed up with a formula, we have

∀(σ, ω) ∈ {0, 1}E(Λ(n)) × {−1, +1}Λ(n)

P+
n (σ, ω) =

1
Z

∏
e∈E(Λ(n))

pω(e)(1 − p)1−ω(e)1(σ(x)−σ(y))ω(e)=0,

where Z is the appropriate normalization factor. It can be verified that the marginal of
P+

n on the spin configurations is the Ising model with parameter β given by the formula
p = 1 − exp(−2β) and the marginal on the edge configurations is the random cluster
measure with parameters p, q = 2 and subject to wired boundary conditions, i.e., the
probability measure on ΩΛ(n) = {0, 1}E(Λ(n)) defined by

(2) ∀ω ∈ ΩΛ(n) Φp,w
Λ(n)[ω] =

1
Z

qclw(ω)
∏

e∈E(Λ(n))

pω(e)(1 − p)1−ω(e),

where clw(ω) is the number of connected components with the convention that two
clusters that touch the boundary ∂Λ(n) are identified. This coupling says that one
may obtain an Ising configuration by first drawing a FK-percolation configuration with
the measure Φw,p

Λ(n), then coloring all the sites in the clusters that touch the boundary
∂Λ(n) in +1 and finally coloring the remaining clusters independently in +1 and −1
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with probability 1/2 each. Also, the coupling permits to obtain a Φw,p
Λ(n) percolation

configuration by first drawing a spin configuration with μ+,β
Λ(n), then declaring that all

the edges between two sites with different spins are closed, while the other edges are
independently declared open with probability p and closed with probability 1 − p.
Let Λ ⊂ Z2 and 0 ≤ p ≤ 1. In addition to the wired boundary conditions we will also
work with partially wired boundary conditions. In order to define them, we consider a
partition π of ∂Λ = {x ∈ Λ : ∃y ∈ Z2 \ Λ, |x − y|1 = 1}. Let us say that π consists
of {B1, · · · , Bk}, where the Bi are non-empty disjoint subsets of ∂Λ and such that
∪iBi = ∂Λ. For every configuration ω ∈ ΩΛ, we define clπ(ω) as the number of open
connected clusters in Λ computed by identifying two clusters that are connected to the
same set Bi. The π-wired FK-measure Φp,π

Λ is defined by substituting clw(ω) for clπ(ω)
in (2). We will denote the set of all partially wired FK-measures in Λ by FK(p, Λ). Note
that Φp,w

Λ corresponds to π = {∂Λ}. We define the FK-measure with free boundary
conditions Φp,f

Λ as the partially wired measure corresponding to π = ∅.
Let U ⊆ V ⊆ Z2. For every configuration ω ∈ {0, 1}E(Z2), we denote by ωV the restriction
of ω to ΩV = {0, 1}E(V ). More generally we will denote by ωU

V the restriction of ω to
ΩU

V = {0, 1}E(V )\E(U). If V = Z2 or U = ∅ then we drop them from the notation. We
will denote by FU

V the σ-algebra generated by the finite dimensional cylinders of ΩU
V .

Note that every configuration η ∈ ΩV induces a partially wired boundary condition π(η)
on the set U . The partition π(η) is obtained by identifying the sites of ∂U that are
connected through an open path of ηU . We will denote by Φp,π(η)

U the corresponding FK
measure.

3.3. Planar Duality

The duality of the FK-measures in dimension two is well known. In this paper we
will use the notation of [19] that we summarize next. Let 0 ≤ p ≤ 1 and Λ be a
connected subset of Z2. To construct the dual process of Φp,w

Λ , we introduce the set of
sites Λ̂ ⊂ Z2 + (1/2, 1/2) consisting of the centers of the squares formed by the edges in
E(Λ). To each edge e ∈ E(Λ) we associate the edge ê ∈ E(Λ̂) that crosses e. Next, to
each configuration ω ∈ ΩΛ we associate the dual configuration ω̂ ∈ Ω

bΛ defined by

∀ e ∈ E(Λ) ω̂(ê) = 1 − ω(e).

Similarly, for every event A ⊂ ΩΛ we define the dual event

Â = {η ∈ Ω
bΛ : ∃ω ∈ A, ω̂ = η}.

The duality property asserts that

Φp,w
Λ [A] = Φbp,f

bΛ
[Â],

where p̂ = 2(1 − p)/(2 − p).
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3.4. The critical point

It is known that the critical point of the Ising model on Z2 is given by the fixed point
of a duality relation (see [29]). For the random cluster model with q = 2, the dual point
p̂ is related to p through the relation

(3)
p

1 − p

p̂

1 − p̂
= 2, and the fixed point is pc =

√
2

1 +
√

2
.

The duality relation (3) is translated in the Ising setting into

sinh(2β) sinh(2β̂) = 1, and the critical point is βc =
arcsinh(1)

2
.

As we will work in the limit p → pc, it is worth noting that the derivative of the function
p �→ p̂ is non-zero at pc. Thus p − pc is of the same order as pc − p̂ when p → pc. Also
β �→ p = 1 − exp(−2β) has a non-zero derivative at βc and thus p − pc is of the same
order as β − βc when β → βc.
For the general q-Potts model, the identification of the critical point and the self-dual
point, i.e., pc =

√
q/(1 +

√
q), is still an open problem for the values 2 < q < 25.

When q > 25.72, this identity has been established and in this situation the Potts model
exhibits a first order phase transition [28,38]. Thus the 2d-Ising model is the only two
dimensional Potts model exhibiting a second order phase transition for which the critical
point has been rigorously identified to be the self-dual point.
We end this section by setting the following convention concerning the use of the word
dual in the rest of the paper: we always consider that the original model is the super-
critical one, i.e., p > pc, which is defined on the edges of Z2. The dual model is always
the dual of the super-critical model. That is, it is a sub-critical model defined on the
edges of Z2 + (1/2, 1/2) and at percolation parameter p̂ = 2(1− p)/(2− p) ≤ pc. A dual
path, circuit or site will always denote a path, circuit or site in Z2 +(1/2, 1/2). The term
open dual will always designate edges ê of Z2 + (1/2, 1/2) that are open with respect to
the dual configuration, i.e., ω̂(ê) = 1. The law of the dual edges ê will always be the
dual measure Φbp which is sub-critical, i.e., p̂ < pc.

3.5. The surface tension and critical exponents

3.5.1 The surface tension. By duality, the surface tension τβ of the two-dimensional
Ising model at inverse temperature β > βc is given by the directional dependence of the
exponential decay of the correlations at dual inverse temperature β̂ < βc:

∀x ∈ Z2 τβ(x) = − lim
n→∞

1
n

log μ
bβ
∞[σ(0)σ(nx)] = − lim

n→∞
1
n

log Φbp
∞[0 ↔ nx],

with p̂ = 1 − exp(−2β̂) and where we have used the FK-representation to derive the
second equality. We will also consider the unique continuous extension of τβ into a norm
on R2.

In this paper, we are interested in the situation where the spatial scale n goes to
infinity and simultaneously β goes to βc. To study phase coexistence in such a context,
we first need to define the joint limit surface tension.
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Proposition 4. If n ↑ ∞ and β̂ ↑ βc in such a way that n(βc − β̂)/ log n → ∞, then
uniformly on x ∈ Z2, we have that

(4) lim
(n,bβ)→(∞,βc)

− 1

(βc − β̂)n
log μ

bβ
∞[σ(0)σ(nx)] = τc|x|2,

where τc is a positive constant and | · |2 is the Euclidean norm on R2.

Note that τc does not depend on x and that the appearance of the Euclidean norm means
that the surface tension is isotropic near the critical point. The presence of the factor
(β − βc) in the denominator of the limit is directly related to the critical exponent for
the correlation length. In the planar Ising model this exponent is equal to 1.
The proof of the last proposition is an extension of the computation [18] of the classical
surface tension at fixed temperature. Using subadditivity, it follows that

∀x ∈ Z2 log μ
bβ
∞[σ(0)σ(x)] ≤ τβ(x).

Thus the upper bound of (4) follows directly from the formula obtained in [18] describing
τβ. On the other hand, the corresponding lower bound is harder to obtain. It follows by
extending the asymptotic computations of μ∞(σ(0)σ(nx)) from a regime where β̂ < βc

is kept fixed and n ↑ ∞ to a situation where β̂ ↑ βc and simultaneously n ↑ ∞. This can
be done by using, as in [18], Kasteleyn’s dimer representation of the 2d Ising model [36].
These computations are long and rely on quite different mathematical tools and thus, we
consider here (4) as a starting point and we will present the derivation of proposition 4 in
a separate paper [42]. In words, the extension [42] relies on a random walk interpretation
of the computation [18]. This interpretation allows the derivation of proposition 4 from
classical moderate deviation results for the random walk. In fact, the isotropy of the
right hand side of (4) follows from the isotropy of the rate function for the moderate
deviation principle of the simple random walk on Z2.
The regime in proposition 4 is nearly optimal, since from results of [10] it appears that
if (n, β̂) ↑ (∞, βc) in a regime where n(βc − β̂) stays constant then

μ
bβ
∞[σ(0)σ(ne1)] ∼ c

1
n1/4

,

where e1 = (1, 0) ∈ Z2 and c is a positive constant. Thus below the regime of proposition
4 we do not expect phase coexistence to happen. In this situation the critical phenomena
take over and hence we expect that νW ≥ 1.

3.5.2 The magnetization. We will need to know how fast the magnetization is going
to zero near the critical point. In our case, from Onsager’s famous formula we know that

(5) μ+,β
∞ [σ(0)] ∼ (β − βc)1/8 when β ↓ βc.

The Ising model is the only Potts model for which this exponent has been computed.
For independent site percolation on the planar triangular lattice, this exponent has been
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derived in [49], along with several other exponents. For the values q = 1, 3, 4, the
existence of the exponent as well as its values are conjectured by physicists but currently
not proved.

In addition to that, we shall need to estimate the speed of convergence of the empirical
magnetization near the critical point. In order to do so, we rely on correlation inequalities
that are specific to the Ising model. Furthermore, we rely on explicit computations to
control the behavior of the relevant quantities near the critical point. The next result is
inspired by [13], it shows how the speed of convergence of the empirical magnetization
is affected when we approach the critical point.

Proposition 5. Let ξ > 0 and a > ξ + 1. There exist two positive constants c = c(ξ, a)
and ρ such that

∀β �= βc, n > c|β − βc|−a 1
n2

∑
x∈Λ(n)

μ+,β
Λ(n)[σ(x)] − m∗(β) ≤ ρ|β − βc|ξ.

Proof. Let n, k, l be three integers larger than one. For h > 0, we note μ+,β,h
n+k+l the Ising

measure on the box Λ(n + k + l) with boundary conditions +, at inverse temperature β
and where every spin in Λ(n + k + l) \Λ(n + k) is submitted to a positive field h/β. Let
x ∈ Λ(n). The measure μ+,β,h

n+k+l has the property that

lim
h↑∞

μ+,β,h
n+k+l[σ(x)] = μ+,β

Λ(n+k)[σ(x)].

It is thus a sort of interpolation between the measures μ+,β
Λ(n+k+l) and μ+,β,h

Λ(n+k). Further-
more, it is easy to check that

∂μ+,β,h
n+k+l[σ(x)]

∂h
=

∑
y∈Λ(n+k+l)\Λ(n+k)

μ+,β,h
n+k+l[σ(x)σ(y)]− μ+,β,h

n+k+l[σ(x)]μ+,β,h
n+k+l[σ(y)].

Therefore, we have

0 ≤ μ+,β
Λ(n+k)[σ(x)] − μ+,β

Λ(n+k+l)[σ(x)] =∑
y∈Λ(n+k+l)\Λ(n+k)

∫ ∞

0

μ+,β,h
n+k+l[σ(x)σ(y)]− μ+,β,h

n+k+l[σ(x)]μ+,β,h
n+k+l[σ(y)] dh,

Next, applying the Ising specific G.H.S inequality [25], we get that

μ+,β,h
n+k+l[σ(x)σ(y)]− μ+,β,h

n+k+l[σ(x)]μ+,β,h
n+k+l[σ(y)] ≤ μ+,β

∞ [σ(x)σ(y)]− μ+,β
∞ [σ(x)]μ+,β

∞ [σ(y)].

Note that the right hand side depends only on the infinite volume measure. On the other
hand, by using Griffith’s inequalities [25], we may estimate

μ+,β,h
n+k+l[σ(x)σ(y)]− μ+,β,h

n+k+l[σ(x)]μ+,β,h
n+k+l[σ(y)] ≤ exp(−λ1h),
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uniformly in n + k + l, x, y and in β, where λ1 is a positive constant.
Combining the two last inequalities with the magnetic field representation of the bound-
ary conditions, we finally obtain

μ+,β
Λ(n+k)[σ(x)]− μ+,β

Λ(n+k+l)[σ(x)] ≤∫ ∞

0

dh
∑

y∈Λ(n+k+l)\Λ(n+k)

{
(μ+,β

∞ [σ(x)σ(y)]− μ+,β
∞ [σ(x)] μ+,β

∞ [σ(y)])∧ exp(−λ1h)
}

.

First, let us consider the case where 0 < β < βc. In this situation, the explicit compu-
tation (see [42]) yields that the correlation is bounded above as follows:

(6) μ+,β
∞ [σ(x)σ(y)]− μ+,β

∞ [σ(x)] μ+,β
∞ [σ(y)] ≤ exp(−λ2(β − βc)|x − y|).

Thus

μ+,β
Λ(n+k)[σ(x)] − μ+,β

Λ(n+k+l)[σ(x)] ≤
∫ ∞

0

dh
∑

y∈Λ(n+k+l)\Λ(n+k)

exp(−(λ1h ∨ λ2(βc − β)|x − y|))

≤
∫ ∞

0

dh exp(−λ1

2
h)

∑
y∈Λ(n+k+l)\Λ(n+k)

exp(−λ2

2
(βc − β)|x − y|)

≤ 2
λ1

∑
y∈Λ(n+k+l)\Λ(n+k)

exp(−λ2

2
(βc − β)|x − y|)

≤ 8
λ1

exp(−λ2

4
(βc − β)k)

l∑
r=0

(n + k + r) exp(−λ2

4
(βc − β)r)

≤c1
8
λ1

n + k

βc − β
exp(−λ2

4
(βc − β)k)

l∑
r=0

exp(−λ2

8
(βc − β)r).

The last inequality has been obtained by bounding n + k + r by (n + k)(r + 1) and by
choosing c1 > 0 in such a way that

∀r ≥ 0 r + 1 ≤ c1

βc − β
exp(

λ2

8
(βc − β)(r + 1)).

Sending l to infinity yields

μ+,β
Λ(n+k)[σ(x)] ≤ 8c1

λ1λ2

n + k

(βc − β)2
(8 + λ2(βc − β)) exp(−λ2

4
(βc − β)k).

Thus, there exists a positive constant c2 such that

μ+,β
Λ(n+k)[σ(x)] ≤ c2

n + k

(βc − β)2
exp(−λ2

4
(βc − β)k).
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Applying this inequality to the box Λ(n) and the sites in Λ(n − k), we deduce that for
all k < n

1
n2

∑
x∈Λ(n)

μ+,β
Λ(n)[σ(x)] ≤ 2

k

n
+ c2

n

(βc − β)2
exp(−λ2

4
(βc − β)k).

We fix ξ > 0 and a > ξ + 1. For all 0 < β < βc we restrict ourself to n > (βc − β)−ξ so
that we can choose k = (βc − β)ξn and obtain
(7)

1
n2

∑
x∈Λ(n)

μ+,β
Λ(n)[σ(x)] ≤

2(βc − β)ξ+
c2

(n(βc − β)a)
2
a

exp
((− λ2

4
(βc − β)1+ξ n

log n
+ 1 +

2
a

)
log n

)
.

The last expression suggests to impose a regime on (βc − β)an. Indeed, there exists a
positive n0 = n0(ξ, a) such that n > n0 implies that n/ log n > n

ξ+1
a , hence by imposing

(βc − β)an >
( 8

λ2
(1 +

2
a
)
)a/(ξ+1)

∨ 1 ∨ βa
c n0

we obtain that

1
n2

∑
x∈Λ(n)

μ+,β
Λ(n)[σ(x)] ≤2(βc − β)ξ + c2 exp

(
−λ2

8
(βc − β)ξ+1n

)

≤(βc − β)ξ

[
2 + c2 exp

(
log

1
βc − β

(
ξ − λ2

8
(βc − β)ξ+1

log 1
βc−β

n
))]

,

Finally, note that there exists a positive ε = ε(ξ, a) such that for all βc − ε ≤ β ≤ βc

(βc − β)ξ+1

log 1
βc−β

> (βc − β)a.

This implies that

1
n2

∑
x∈Λ(n)

μ+,β
Λ(n)[σ(x)] ≤(βc − β)ξ

[
2 + c2 exp

(
log

1
βc − β

(
ξ − λ2

8
(βc − β)ξ+1

log 1
βc−β

n
))]

≤(βc − β)ξ
[
2 + c2(βc − β)−ξ+

λ2
8 (βc−β)an

]
,

Thus, if we impose that

n >
16ξ

λ2
(βc − β)−a,



ON THE 2D ISING WULFF CRYSTAL NEAR CRITICALITY 13

we get that

1
n2

∑
x∈Λ(n)

μ+,β
Λ(n)[σ(x)] ≤ (βc − β)ξ[2 + c2(βc − β)ξ].

Thus, there exists a positive c = c(ξ, a) such that for all βc − ε ≤ β ≤ βc and for all
n > c(βc − β)−a we have that

(8)
1
n2

∑
x∈Λ(n)

μ+,β
Λ(n)[σ(x)] ≤ ρ′(βc − β)ξ,

where ρ′ is a positive constant. When β < βc − ε, (8) also holds, provided ρ′ is replaced
by ρ = ρ′ ∨ ε−ξ.
In order to treat the case where β > βc, one proceeds in the same way. In this situation
(6) is replaced by the following bound that can be obtained from the results of [41]: there
exist positive constants λ3, c3 and δ such that for all x, y ∈ Z2 satisfying |x−y|(β−βc) >
1/δ we have that

μ+,β
∞ [σ(x)σ(y)]− m∗(β)2 ≤ c3 exp(−λ3(β − βc)|x − y|) .

�

4. Block arguments

Besides the Ising specific properties that we stated in the last section, our analysis
is based on rather robust techniques that have been developed by Cerf and Pisztora
[14, 15, 16, 17] to study phase coexistence in dimensions greater or equal to three. The
probabilistic estimates are obtained by translating the relevant Ising events into the
random cluster model via the FK representation. In this paper, an essential tool in
analyzing the random cluster model is an adaptation of block coarse graining techniques
[46] to the situation where p ↓ pc.

4.1. Notation and preparatory lemmas

In this section, we introduce the notation used in coarse graining arguments and state
useful preliminary estimates that we will use repeatedly in the rest of the paper.

4.1.1 The rescaled lattice. First we fix a positive integer K, that will typically depend
on p later on and will diverge when p ↓ pc. For each x ∈ Z2, we define the block indexed
by x as B(x) = Λ(K) + Kx. Let A be a region in R2. We define the rescaled region A:

A = {x ∈ Z2 : B(x) ∩ A �= ∅}.

From now on, underlining means that we are dealing with rescaled objects. For instance,
Λ(n) means the rescaled box Λ(n). Note that |Λ(n)| is now of order n2/K2, which is the
order of the number of boxes necessary to cover Λ(n).
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4.1.2 The lattice L∞. When dealing with block arguments it will be convenient to
equip Z2 with another graph structure. We denote by d∞ the distance associated to the
norm | · |∞ defined by

∀(x1, x2) ∈ R2 |(x1, x2)|∞ = max(|x1|, |x2|).
Thus d∞(x, y) = |x − y|∞. For every set E ⊆ R2 and positive real number r, we define
the r-neighborhood of E as

V∞(E, r) = {x ∈ R2, d∞(x, E) < r}.
We will also use the associated diameter given by

diam∞(E) = sup{|x − y|∞ : x, y ∈ E}.
The new graph structure on Z2 is induced by the set of edges

E2,∞ =
{{x, y} ⊂ Z2, d∞(x, y) = 1

}
.

Then the lattice L∞ is the graph (Z2, E2,∞). This lattice has the useful property that the
exterior boundary of any connected finite set A in Z2 is itself connected when regarded
as a subgraph of L∞; for a proof we refer the reader to [21].

4.1.3 Block events. For the renormalization to be useful it is almost always required
to use block events on a set of blocks that are overlapping. Thus, in addition to the
partitioning blocks B(x) we define the event blocks B′(x), by setting

B′(x) =
⋃

y∈Z
2

|y−x|∞≤1

B(y).

4.1.4 Rough estimates on the block process. Given the events that describe a good
block, we define the block process (X(x), x ∈ Λ(n)) as the dependent site percolation
process on Λ(n) that indicates if a block is good or not. We cite several rough estimates
on the block process from [15].

Lemma 6. Suppose that there exists δ > 0 such that

∀x ∈ Z2 P [X(x) = 0|X(z), |x − z|∞ ≥ 3] ≤ δ,

then for any A ⊂ Z2, we have

P [∀x ∈ A : X(x) = 0] ≤ exp
(

1
9
|A| log δ

)
.

The block process can be viewed as a dependent site percolation process where a site x
is occupied if and only if X(x) = 0. The occupied L∞ cluster of the site x, i.e., the L∞

connected component of the occupied sites containing x, is then denoted by C(x). The
next lemma is a standard counting Peierls argument:
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Lemma 7. Suppose that there exists δ > 0 such that

∀x ∈ Z2 P [X(x) = 0|X(z), |x − z|∞ ≥ 3] ≤ δ.

There exists a constant b such that, for any bounded open subset O of R2, any s, t > 0,
any K, n ∈ N with n ≥ K,

P [|{x ∈ Z2 : B(x) ∩ O �= ∅, |C(x)| ≥ t}| ≥ s] ≤

2
∑
j≥s

exp j

(
1
t

logL2(V(O, 2)) + log b +
1
9

log δ

)
,

where V(O, 2) = {x ∈ R2 : d(x, O) ≤ 2}.
Here is the last rough estimate:

Lemma 8. We consider the box Λ(n) rescaled by a factor K:

Λ(n) = {x : B(x) ∩ Λ(n) �= ∅}.

If there exists δ > 0 such that

∀x ∈ Z2 P [X(x) = 0|X(z), |x − z|∞ ≥ 3] ≤ δ,

then for any n, K, ε satisfying n ≥ 6K, δ < ε, we have

P

⎡⎣ 1
|Λ(n)|

∑
x∈Λ(n)

1X(x)=0 ≥ ε

⎤⎦ ≤ 9 exp
(
−Λ∗(ε, δ)

⌊ n

6K

⌋2
)

,

where

Λ∗(ε, δ) = ε log
ε

δ
+ (1 − ε) log

1 − ε

1 − δ

is the Cramér transform of a Bernoulli variable with parameter δ.

We finish with Hoeffding’s inequality that will be useful:

Lemma 9. (Theorem 1 of [32]) If (Xi)1≤i≤n are independent random variables with
values in [−1, 1] and with mean m, then

∀t ∈]0, 1 − m[ P
[ n∑

i=1

(Xi − m) ≥ n t
]
≤ exp(−nt2).
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4.2. Weak mixing near criticality

In this part we establish weak mixing properties in the situation where p ↓ pc. These
results are crucial in order to bound the influence of the boundary conditions and also
in order to decouple spatially separated events. As it appears from [19], in order to
implement a useful coarse graining in dimension two, it is necessary to have a control
of the boundary conditions. When p is fixed, this control can be obtained by using the
weak mixing properties proved in [1, 2]. To handle the situation where p ↓ pc, we give an
alternative way to establish weak mixing and generalize the results of [1, 2] to a situation
where the exponential decay of connectivities becomes degenerate.

4.2.1 Control of the number of boundary connected sites. Let p < pc, n ≥ 1. In this
paragraph, we are interested in the control of the number of boundary connected sites

(9) MΛ(n) = | {x ∈ Λ(n) : x ↔ ∂Λ(n)} |.

The coming results depend on the speed of convergence of the mean of Mn near the
critical point. We characterize this speed by introducing the following quantity:

(10) ∀p < pc, δ > 0 msub(δ, p) = inf
{

m ≥ 1 : ∀n > m
1

|Λ(n)|Φ
w,p
Λ(n)[MΛ(n)] ≤ δ

}
.

Lemma 10. Let δ > 0, p ≤ pc. If n ≥ 16msub(δ/2, p)/δ, then

log Φw,p
Λ(n)

[
MΛ(n)

|Λ(n)| ≥ δ

]
≤ −

(
δn

6msub(δ/2, p)

)2

.

Proof. First we partition Λ(n) into translates of the square Λ(m) where

(11) m = msub(δ/2, p).

Next, we take

(12) n > 16m/δ,

and consider the set
Λ′(n) =

⋃
x∈Z2:B(x)⊂Λ(n)

B(x),

where B(x) = mx +Λ(m). Note that |Λ(n) \Λ′(n)| ≤ 4mn. The number of partitioning
blocks satisfies

(13)
n2

2m2
≤ |Λ′(n)| ≤ n2

m2
.
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Since MΛ is subadditive, by (13) and (12), we obtain

MΛ(n)

|Λ(n)| ≤
1
n2

∑
x∈Λ′(n)

|{v ∈ B(x) : v ↔ ∂Λ(n)}| + 4m

n

≤ 1
|Λ′(n)|

∑
x∈Λ′(n)

MB(x)

|B(x)| +
δ

4
.

By the FKG inequality, we get

(14) Φw,p
Λ(n)

[
MΛ(n)

|Λ(n)| ≥ δ

]
≤ Φw,p

Λ(n)

⎡⎣ 1
|Λ′(n)|

∑
x∈Λ′(n)

MB(x)

|B(x)| ≥
3δ

4

∣∣∣∣∣∣E
⎤⎦

where E is the increasing event
{∀x ∈ Λ′(n), all the edges of ∂B(x) are open

}
. The

random variables MB(x)/|B(x)|, x ∈ Λ′(n), take their values in [0, 1] and they are inde-
pendent under Φw,p

Λ(n)[· |E]. By (11), their mean satisfies

(15) ∀ x ∈ Λ′(n) Φw,p
Λ(n)

[
MB(x)

|B(x)|
∣∣∣∣E] = Φw,p

B(x)

[
MB(x)

|B(x)|
]
≤ δ

2
.

Finally, by lemma 9 and by the inequalities (13), (14) and (15) we get

Φw,p
Λ(n)

[
MΛ(n)

|Λ(n)| ≥ δ

]
≤ exp

(
− δ2n2

32m2

)
.

�

4.3. Control of the boundary conditions

In this section, we determine a regime where we can still control the influence of the
boundary conditions when p → pc. The regime will be characterized by the speed by
which the quantity msub defined in (10) diverges near the critical point. We thus need
to give an upper bound for the speed of this divergence.

Lemma 11. Let κ > 0, ξ > 0. For every a > ξ + 1 there exists a positive constant
c = c(a, κ) such that

∀p < pc msub(κ(pc − p)ξ, p) ≤ c(pc − p)−a.

Proof. From the Ising-FK coupling it follows that

1
|Λ(n)|Φ

w,p
Λ(n)[MΛ(n)] =

1
|Λ(n)|

∑
x∈Λ(n)

μ+,β
Λ(n)[σ(x)].
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Let a > 1 and ξ ∈ (0, a − 1). From proposition 5 we know that for every η ∈ (ξ, ξ + 1)
there exist two positive constants ρ and c1 such that

∀p < pc ∀n > c1(pc − p)−a 1
|Λ(n)|Φ

w,p
Λ(n)[MΛ(n)] ≤ ρ(pc − p)η.

Furthermore, since η > ξ, there exists a positive constant ε = ε(ρ, ξ, κ, η) such that

∀ p ∈ (pc − ε, pc) ρ(pc − p)η ≤ κ(pc − p)ξ.

Note also that if p ≤ pc − ε then κ(p − pc)ξ ≥ κεξ and there exists n0(εξ) such that
n > n0 implies

∀ p < pc − ε msub(κ(p − pc)ξ, p) ≤ n0.

Hence the result follows by choosing c = max(c1, ε
an0). �

Proposition 12. Let p < pc and a > 5. There exist two positive constants c = c(a) and
λ such that if n > c(pc − p)−a then

log Φw,p
Λ(n)[0 ↔ ∂Λ(n)] ≤ −λ(pc − p)n .

Proof. Let A = {0 ↔ ∂Λ(n/2)}. In order to control the influence of the boundary
conditions imposed on Λ(n) we first write

(16)
Φw,p

Λ(n)[A] ≤Φw,p
Λ(n)[A ∩ {MΛ(n) ≤ |Λ(n)|δ}]

+ Φw,p
Λ(n)[MΛ(n) > |Λ(n)|δ ],

where MΛ(n) is defined in (9). On the event A′ = A∩{MΛ(n) ≤ |Λ(n)|δ} of the first term
we can bound the influence of the boundary conditions in an adequate way by using a
judicious trick due to David Barbato [9], while the second term will be made negligible
thanks to lemma 10.
Barbato’s trick: This trick has initially been introduced in order to simplify the proof of
the so called interface lemma in the case of dimensions higher or equal to three. Here we
will use this trick in a different context. From the definition of the FK-measures it is clear
that the influence of the boundary conditions comes from the connected components that
connect ∂Λ(n/2) to ∂Λ(n). Thus if one can cut all these connections without altering
too much the probability of the event A then one gets a control over the influence of the
boundary conditions. To do this we first define M ′

Λ(n) as

M ′
Λ(n) =

∣∣∣{x ∈ Λ(n) : x ↔ ∂Λ(n) in Λ(n) \ Λ(2|x|∞)}
∣∣∣ .

This is the same quantity as MΛ(n) with the difference that we count only the sites x
that are connected to the boundary with a direct path that does not use the edges in
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E(Λ(2|x|∞)). Now suppose that A′ = A ∩ {MΛ(n) ≤ |Λ(n)|δ} occurs. Since M ′
Λ(n) ≤

MΛ(n) we also have M ′
Λ(n) ≤ δ|Λ(n)|. Next, for 0 < h < 1/4, we define the set

b(h) = ∂[−n(1 − h)/2, n(1 − h)/2]2.

Note that for 0 < h < 1/4, we always have

b(h) ∩ Λ(n/2) = ∅.

Next, we concentrate on the finite set of values 0 < h1 < · · · < hK that satisfy

b(hk) ∩ Λ(n) �= ∅.

We notice that the number K of such values hk satisfies

n

8
− 1 < K <

n

8
+ 1.

Until here, the construction does not depend on the configuration. Next, we scan the
configuration in Λ(n) from outside inwards and define for each hk the set of bad sites
intersected by b(hk):

V (hk) = M ′
Λ(n) ∩ b(hk).

On A′ we have that
∑K

k=1 |V (hk)| ≤ M ′
Λ(n) ≤ δ|Λ(n)| whence, for n large enough,

min
k

|V (hk)| ≤ δ|Λ(n)|
K

≤ δ|Λ(n)|
n
8 − 1

≤ 16δn .

Thus there exists at least one k ∈ {1, . . . , K} such that

(17) |V (hk)| ≤ 16δn.

We define h∗ as the first (smallest) value hk that satisfies (17). Notice that h∗ is a sort
of stopping time, in the sense that

(18) ∀0 < h < 1/4 {h∗ = h} ∈ FΛ(n)\Λ((1−h)n).

Then we define the set of bad edges as the set of edges that have one extremity in
Λ((1 − h∗)n) and the other in V (h∗):

In =
{

e = {v, u} ∈ E2 : v ∈ Λ((1 − h∗)n), u ∈ V (h∗)
}
.

Even though

(19) In ∩ E(Λ(n) \ Λ((1 − h∗)n)) = ∅,
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we obtain from (18) and from the definition of V (h∗) that

(20) ∀I ⊆ E(Λ(n)) {In = I} ∈ FΛ(n)\Λ((1−h∗)n).

It is also important to notice that

(21) In ∩ E(Λ(n/2)) = ∅.

Now, for each site v ∈ V (h∗) there is at most one edge e in In with extremity v thus we
get from (17) that

(22) |In| ≤ 16δn.

Let Ψ : A′ → Ω be the map defined by:

∀ω ∈ A′ ∀e ∈ Λ(n) Ψ(ω)(e) =

{
0 if e ∈ In(ω)

ω(e) otherwise

Λ(n)

Λ(n/2)

Λ((1 − h∗)n)

� � � �

bad edges

��

v is not a bad site

The configurations in Ψ(A′) have the following three crucial properties:

i) We claim that

(23) max
ω′∈Ψ(A′)

|Ψ−1(ω′)| ≤ 216δn.

To prove (23), we first write for each ω̃ ∈ Ψ(A′)

|Ψ−1(ω̃)| ≤
∑

I⊂E(Λ(n))

∣∣{ω ∈ ΩΛ(n) : In(ω) = I, ωI = ω̃I}∣∣ .
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By (19) and (20), the above sum contains only one term corresponding to I = I(ω̃).
Hence

|Ψ−1(ω̃)| ≤ ∣∣{ω ∈ ΩΛ(n) : In(ω) = I(ω̃), ωI = ω̃I}∣∣ ≤ 2|In(eω)| ,

and the claim follows from (22). Finally, using the finite energy property and (23)
we get

(24)
Φw,p

Λ(n)[A
′] ≤ max

ω′∈Ψ(A′)

∣∣Ψ−1(ω′)
∣∣ (1 ∨ p

1 − p

)16δn

Φw,p
Λ(n)[Ψ(A′)]

≤ exp(c1δn)Φw,p
Λ(n)[Ψ(A′)],

where 0 < c1 < ∞ is a constant.
ii) By (21), the map Ψ does not modify the configuration inside Λ(n/2), thus

Ψ(A′) ⊂ A.

iii) By our cutting procedure we disconnect Λ((1 − h∗)n) from ∂Λ(n) hence

Ψ(A′) ⊂ {
Λ(3n/4) � ∂Λ(n)

}
.

By the property iii) and by duality, if the event Ψ(A′) occurs, there exists an outermost
open dual circuit Γ in Λ(n) that surrounds Λ(3n/4). Let Ξ be the set of such dual
circuits surrounding Λ(3n/4). For every γ̂ ∈ Ξ, we define Int(γ̂) as the set of all the sites
of Λ(n) that are surrounded by γ̂ and Ext(γ̂), the set of the sites of Λ(n) that are not
surrounded by γ̂ . Note that

(25) {Γ = γ̂} = Open(γ̂) ∩ G
bγ ,

where Open(γ̂) = {∀ê ∈ γ̂ : ω̂(ê) = 1} and where G
bγ is a FExt(bγ)-measurable event. By

using properties ii) and iii) and by (25) we can write

(26)

Φw,p
Λ(n)[Ψ(A′)] ≤ Φw,p

Λ(n)[A ∩
⋃

bγ∈Ξ

{Γ = γ̂}]

=
∑
bγ∈Ξ

Φw,p
Λ(n)[A ∩ G

bγ |Open(γ̂)] Φw,p
Λ(n)[Open(γ̂)].

Since A is FIntbγ-measurable, G
bγ is FExtbγ-measurable, we can use the independence of

the σ-algebras FIntbγ and FExtbγ under Φw,p
Λ(n)[ · |Open(γ̂)] and the spatial Markov property

to get

(27)
Φw,p

Λ(n)[A ∩ G
bγ |Open(γ̂)] =Φw,p

Λ(n)[A|Open(γ̂)] Φw,p
Λ(n)[Gbγ |Open(γ̂)]

=Φf,p
Int(bγ)[A] Φw,p

Λ(n)[Gbγ |Open(γ̂)].

Also A is an increasing event, so using (27), we get

(28) ∀γ̂ ∈ Ξ Φw,p
Λ(n)[A ∩ G

bγ |Open(γ̂)] ≤ Φf,p
Λ(n)[A] Φw,p

Λ(n)[Gbγ |Open(γ̂)].
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Using (26) and (28) we obtain

(29)
Φw,p

Λ(n)[Ψ(A′)] ≤Φf,p
Λ(n)[A]

∑
bγ∈Ξ

Φw,p
Λ(n)[Gbγ |Open(γ̂)] Φw,p

Λ(n)[Open(γ̂)]

=Φf,p
Λ(n)[A] Φw,p

Λ(n)[∃γ̂ ∈ Ξ : Γ = γ̂] ≤ Φp
∞[A].

Combining (29) with (24) gives us

(30) Φw,p
Λ(n)[A

′] ≤ exp(c1δn)Φp
∞[A].

Now we turn to the second term of (16), namely Φw,p
Λ(n)[MΛ(n) > |Λ(n)|δ ]. Assuming

that n is bigger than 16msub(δ/2, p)/δ, we can apply lemma 10 to get

(31) Φw,p
Λ(n)[MΛ(n) > |Λ(n)|δ ] ≤ exp

[
−
(

δn

6msub(δ/2, p)

)2
]

.

Substituting (30) and (31) into (16) one has

(32) Φw,p
Λ(n)[A] ≤ exp(c1δn) Φp

∞[A] + exp

[
−
(

δn

6msub(δ/2, p)

)2
]

.

It follows from the comments after proposition 4 that there exists a positive τc such that
for all p < pc and n > 1,

Φp
∞[A] ≤ |∂Λ(n/2)| sup

x∈∂Λ(n/2)

Φp
∞[0 ↔ x] ≤ 2n exp(−τc(pc − p)n/4).

So that (32) becomes

(33) Φw,p
Λ(n)[A] ≤ 2n exp(−τc(pc − p)n/4 + c1δn) + exp

[
−
(

δn

6msub(δ/2, p)

)2
]

.

From (33), it is clear that the only way not to destroy our estimates is to take δ at most
of order (pc−p). So let us choose δ = τc

8c1
(pc−p). Let a > 2. By lemma 11 we know that

there exists a positive constant c2 such that msub(τc(pc − p)/(16c1), p) < c2(pc − p)−a.
Thus there exists a positive c3 such that for all n > c3(pc − p)−1−a, (33) becomes

(34) Φw,p
Λ(n)[A] ≤ exp(−(τc/16)(pc − p)n) + exp(−c4(pc − p)2+2an2),

where c4 > 0. Furthermore, we require that the first term is the main contribution, we
do this by imposing that n > τc(pc−p)−1−2a/(16c4). We conclude the proof by choosing
c = (c3p

a
c ) ∨ (τc/(16c4)) and λ = τc/16. �

Now we are ready to state an analogue of weak mixing in our regime.
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Proposition 13. Let a > 5 and p �= pc. Let Δ ⊂ Γ be two subsets of Z2. There exist
two positive constants c = c(a) and λ such that if d(Δ, ∂Γ) > c|pc −p|−a then, uniformly
over all Φ1, Φ2 ∈ FK(p, Γ), we have

sup
A∈FΔ

|Φ1[A] − Φ2[A]| ≤ 2
∑

x∈∂inΔ

exp
(− λ|pc − p|d(x, ∂Γ)

)
.

Proof. Once we have proposition 12, weak mixing follows from arguments contained in
theorem 3.1 of [1]. We include the proof for the sake of completeness. Let ρ1, ρ2 ∈ Ω∂Γ.
It is sufficient to prove the claim for the FK-measures Φπ(ρ1)

Γ and Φπ(ρ2)
Γ .

It is known, see lemma 3.2 of [1], that there exists a coupling P ρ1,ρ2
Γ on ΩΓ × ΩΓ with

marginals Φπ(ρ1)
Γ and Φπ(ρ2)

Γ such that

P ρ1,ρ2
Γ

[{
(ω1, ω2) :

Each e = {x, y} ∈ E(Γ) such that x � ∂Γ

in ω1 and ω2 satisfies ω1(e) = ω2(e)

}]
= 1.

This means that ω1 and ω2 can be made identical on the edges that are not in the union
of the boundary connected clusters of the configurations ω1 and ω2. Using this coupling,
we write

|Φπ(ρ1)
Γ [A] − Φπ(ρ2)

Γ [A]| ≤
∑

ω1∈A
ω2∈Ac

1P [(ω1,ω2)]>P [(ω2,ω1)]P [(ω1, ω2)]
(

1 − P [(ω2, ω1)]
P [(ω1, ω2)]

)

+
∑

ω1∈A
ω2∈Ac

1P [(ω2,ω1)]>P [(ω1,ω2)]P [(ω2, ω1)]
(

1 − P [(ω1, ω2)]
P [(ω2, ω1)]

)

≤
∑

ω1∈A
ω2∈Ac

max(P [(ω1, ω2)], P [(ω2, ω1)]),

where we omitted the subscripts and superscripts in the notation of the coupling. Observe
that if ω1 ∈ A and ω2 ∈ Ac, then there exists e ∈ E(Δ) such that ω1(e) �= ω2(e). Hence,
using the property of the coupling, we obtain

|Φπ(ρ1)
Γ [A] − Φπ(ρ2)

Γ [A]| =|P [A, Ac] − P [Ac, A]|
≤P [(ω1, ω2) : ∃e ∈ Δ : ω1(e) �= ω2(e)]

≤2 Φw
Γ [∃x ∈ Δ : x ↔ ∂Γ]

≤2
∑

x∈∂inΔ

Φw
Λ(r(x))[0 ↔ ∂Λ(r(x))],

where r(x) = 2d(x, ∂Γ) ≥ 2d(Δ, ∂Γ).
Let a > 5. By proposition 12, there exist two positive constants c = c(a) and λ such
that d(Δ, ∂Γ) ≥ c|p − pc|−a implies

|Φπ(ρ1)
Γ [A] − Φπ(ρ2)

Γ [A]| ≤
∑

x∈∂inΔ

exp(−λ|p − pc|d(x, ∂Γ)).

�
The just proved weak mixing property permits to establish the following decoupling
lemma:
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Lemma 14. Let p �= pc, a > 5, Λ a box and Φ ∈ FK(p, Λ). There exist two positive
constants λ and c = c(a) such that for every two sets Γ, Δ ⊂ Λ satisfying

d(Γ, Δ) > c

(
|p − pc|−a ∨ log |Γ|

|p − pc| ∨
log |Δ|
|p − pc|

)
,

and for every two events A ∈ FΓ and B ∈ FΔ, we have

|Φ[A ∩ B] − Φ[A] Φ[B]| ≤ exp[−λ(p − pc)d(Γ, Δ)]Φ[A] Φ[B].

Proof. An adaptation of the arguments in lemma 3.2 of [4] establishes the result. �
We conclude this section with a decoupling lemma.

Lemma 15. Let p �= pc, a > 5 and δ > 0. There exist two positive constants c = c(a, δ)
and λ such that uniformly over the events A ∈ FΛ(n) and uniformly over two measures
Φ1, Φ2 in FK(Λ(n(1 + δ)), p) we have

n > c|p − pc|−a ⇒ (1 − e−δλ|p−pc|n/2)2Φ1[A] ≤ Φ2[A] ≤ (1 + e−δλ|p−pc|n/2)2Φ1[A].

Proof. Consider A ∈ FΛ(n) and two partially wired boundary conditions π1 and π2 on
the boundary ∂Λ((1 + δ)n). It is sufficient to prove the statement for the measures
Φ1 = Φπ1,p

Λ((1+δ)n) and Φ2 = Φπ2,p
Λ((1+δ)n). Let m > (1 + 2δ)n and define the following

FΛ((1+δ)n)
Λ(m) -measurable events, for i = 1, 2:

Wi =

⎧⎪⎨⎪⎩ω ∈ ΩΛ(m) :

with wired boundary conditions on Λ(m)

and the configuration ω on Λ(m) \ Λ((1 + δ)n),

the boundary conditions induced on Λ((1 + δ)n) are πi

⎫⎪⎬⎪⎭
Since π1 and π2 are partially wired boundary conditions, it is possible to find a large
enough finite m such that Φw,p

Λ(m)[Wi] > 0, i = 1, 2. We fix such an m and write Φi[A] =
Φw,p

Λ(m)[A|Wi], i = 1, 2. Since d(Λ(m) \ Λ((1 + δ)n), Λ(n)) > δn/2, it is possible to find a
positive c = c(a, δ) such that n > c|p− pc|−a verifies the hypothesis of lemma 14 and we
obtain that

n > c|p − pc|−a ⇒ |Φw,p
Λ(m)[A|Wi] − Φw,p

Λ(m)[A]| ≤ e−δλ|p−pc|n/2Φw,p
Λ(m)[A] i = 1, 2.

Using the last inequality, we finally get

Φ2[A] ≥ (1 − e−δλ|p−pc|n/2)Φw,p
Λ(m)[A] ≥ (1 − e−δλ|p−pc|n/2)2Φ1[A],

and
Φ2[A] ≤ (1 + e−δλ|p−pc|n/2)Φw,p

Λ(m)[A] ≤ (1 − e−δλ|p−pc|n/2)2Φ1[A].

�
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4.4. Block estimates near criticality

In this section we establish the necessary block estimates to implement coarse graining
techniques in a regime where p approaches pc from above. In the following we will use
the boxes

Λ̃(n) = {x ∈ Z2 : d(x, Λ(n)) ≤ n/10} .

We take this bigger boxes in order to give estimates on events that occur in Λ(n) uni-
formly over the boundary conditions on Λ̃(n). In fact, an adaptation of [2] to our regime
would spare us this precaution. But this would also increase the size of the paper.
We will say that a FK-cluster C of a box Λ is a crossing cluster or that C crosses the box
Λ if C connects all the sides of Λ. Note that in dimension two if there exists a crossing
cluster in a box then it is necessarily unique. We will give estimates on the following
block events:

U(Λ) = {∃ an open crossing cluster C∗ in Λ} .

For M > 0, we define

R(Λ, M) = U(Λ) ∩ { every open path γ ⊂ Λ with diam(γ) ≥ M is in C∗}
∩ {C∗ crosses every sub-box of Λ with diameter ≥ M} .

For δ > 0, we define

V (Λ, δ) = U(Λ) ∩ {|C∗| ≥ (1 − δ)θ|Λ|} ,

F (Λ, δ) =

⎧⎨⎩
∃ an open circuit γ enclosing a volume ≥ (1 − δ)|Λ|
and such that sup

x∈γ
d(x, ∂Λ) ≤ δ|∂Λ|

⎫⎬⎭ ,

W (Λ, δ) = {|{x ∈ Λ : x ↔ ∂Λ}| ≤ (1 + δ)θ|Λ|} ,

T (Λ, δ) =

{∣∣∣ ∑
x∈Λ:x�∂Λ

σ(x)
∣∣∣ ≤ δθ|Λ|

}
.

Notice that the last event involves the FK-Ising coupling. Let us begin with the first two
events:

Lemma 16. Let a > 5. There exist two positive constants λ, c = c(a) such that if p > pc

and n > c(p − pc)−a then

∀Φ ∈ FK(Λ̃(n), p) log Φ[U(Λ(n))c] ≤ −λ(p − pc)n.

Moreover, if M is such that

(35)
log n

κ(p − pc)
< M ≤ n,

with κ > 0 small enough, then

∀Φ ∈ FK(Λ̃(n), p) log Φ[R(Λ(n), M)c] ≤ −λ(p − pc)M.
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Proof. Let Φ ∈ FK(Λ̃(n), p). Since U(Λ(n)) is increasing, we have that Φ[U(Λ(n))c] ≤
Φf,p

eΛ(n)[U(Λ(n))c]. By duality we get that

Φ[U(Λ(n))c] ≤2 Φf,p
eΛ(n)[∃ an open dual path in Λ̂(n) of diameter ≥ n],

Let a > 5. By lemma 15 and proposition 4 there exist two positive constants c = c(a)
and λ1 such that for all p > pc and for all n > c(p − pc)−a we have

Φf,p
eΛ(n)[∃ an open dual path in Λ̂(n) of diameter ≥ n]

≤ Φf,p
eΛ(n)[∃ an open dual path in Λ̂(n) of diameter ≥ n]

≤ Φp
∞[∃ an open dual path in Λ̂(n) of diameter ≥ n]

≤ 2n4 exp(−λ1(p − pc)n)

≤ 2 exp((pc − p)n(λ1 − 4
log n

n(p − pc)
)),

Note that there exists n0 independent of everything such that

∀n > max(n0, c(p − pc)−a)
log n

n(p − pc)
≤ n−1/2

p − pc
≤ 1

c
(p − pc)3/2.

Thus, the result follows by choosing λ = λ1/2 and c big enough. To estimate the event
R, notice that

Φ[R(Λ(n), M)c] ≤ Φ[U(Λ(n))c] + Φf,p
eΛ(n)[∃ an open dual path of diameter ≥ M ].

Then, as before, we use lemma 15 and proposition 4 to get

Φ[R(Λ(n), M)c] ≤ exp(−λ(p − pc)n) + n4 exp(−λ(p − pc)M)

≤ (1 + n4) exp(−λ(p − pc)M).

Finally, condition (35) ensures that the prefactor does not destroy our estimates and this
concludes the proof. �
Now we turn to the estimation of the crossing cluster’s size:

Lemma 17. Let p > pc and δ > 0. Let a > 5 and α ∈]0, (1 + 1
8a )−1[. There exists

a positive constant c = c(a, α) such that, if n ↑ ∞ and p ↓ pc in such a way that
nα(p − pc)a > c then

sup
Φ∈FK(eΛ(n),p)

Φ[V (Λ(n), δ)c] ≤ exp(−λδ(p − pc)nα) + exp(−δ2θ2(p)
4

n2−2α),

where λ is a positive constant. In particular

lim
n,p

inf
Φ∈FK(eΛ(n),p)

Φ[V (Λ(n), δ)] = 1.
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Proof. Let Φ ∈ FK(Λ̃(n), p). We renormalize Λ(n) into Λ(n) by partitioning it into
blocks B(x) of size N ≤ n to get the renormalized box

Λ(n) = {x ∈ Z2 : (−N/2, N/2]2 + Nx ⊂ (−n/2, n/2]2}.

Next, we define the following events:
- For {x, y} ∈ E(Λ(n)), we denote by m(x, y) the middle point of the face between B(x)

and B(y). We also introduce the box Dx,y = m(x, y)+Λ(�N/4�) of width �N/4� and
centered at m(x, y). Then, we define

Kx,y = {∃ crossing in Dx,y}, Kx =
⋂

z∈Λ(n) : |x−z|=1

Kx,z.

- For x ∈ Λ(n) and M > 0, we define

(36)
R(x) = {∃! crossing cluster C∗

x in B(x)}∩{
every open path γ ⊂ B(x) with diam(γ) ≥ M is included in C∗

x

}
.

On Λ(n), we define the 0 − 1 renormalized process (X(x), x ∈ Λ(n)) as the indicator of
the occurrence of the above mentioned events:

∀x ∈ Λ(n) X(x) =

{
1 on R(x) ∩ K(x)

0 otherwise

By lemma 16, we get the following estimate on the probability that a specific box is bad.
There exist κ, λ > 0 such that if

(37) n > N > 4M >
log N

κ(p − pc)

then

(38) ∀x ∈ Λ(n) Φ[X(x) = 0] ≤ exp (−λ(p − pc)M) .

As M will grow, we can restrict ourselves to the case where there is no bad block at all
and where the event R(Λ(n), N) is satisfied, namely for all Φ ∈ FK(Λ̃(n), p), we write

(39)
Φ[V (Λ(n), δ)c] ≤Φ[∃ a bad block ] + Φ[R(Λ(n), N)c]

+ Φ[ � ∃ a bad block ∩ R(Λ(n), N) ∩ V (Λ(n), δ)c].

By (38), we get

(40) Φ[∃ a bad block ] ≤ n2

N2
exp(−λ1(p − pc)M).
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For the second term of (39),we apply lemma 16 to get

(41) Φ[R(Λ(n), N)c] ≤ exp(−λ2(p − pc)N),

For the third term of (39), we observe that if there is no bad block then there is one
single cluster in the renormalized process that consists of all the blocks of Λ(n). By the
definition of the events associated to (X(x), x ∈ Λ(n)), this induces one crossing cluster
C̃∗ of ∪x∈Λ(n)B(x) that contains all the crossing clusters C∗

x, x ∈ Λ(n). On the other
hand, since R(Λ(n), N) is satisfied, we have that C̃∗ ⊂ C∗, where C∗ is the crossing
cluster of Λ(n), which is guaranteed to exists thanks to the event U(Λ(n)). Now, we
define for every x ∈ Λ(n) the random variables

Y (x) = N−2|{v ∈ B(x) : diam(Cv) ≥ M}|
and observe that

(42) |C∗| < (1 − δ)θn2 ⇒
∑

x∈Λ(n)

|C∗
x| < (1 − δ)θn2 .

Yet if B(x) is a good box then every cluster of B(x) that is of diameter larger than M
is included in C∗

x, thus using (39), (40),(41), (42) and by the FKG inequality we get

(43) Φ[V (Λ(n), δ)c] ≤ 2
n2

N2
exp(−λ3(p− pc)M)+Φ

[(N

n

)2 ∑
x∈Λ(n)

Y (x) ≤ (1− δ)θ|E
]
,

where E is the event that all the edges that touch the boundary of the boxes B(x) are
closed and λ3 = min(λ1, λ2). Now we choose N and M such that the mean of the random
variables Y (x) is big enough: by using lemma 15 we have for x ∈ Λ(n)

Φf,p
Λ(N)[Y (x)] ≥ N−2Φf,p

Λ(N)[|{x ∈ Λ(N − 4M) : x ↔ ∂Λ(2M) + x}|]
≥ N−2

∑
x∈Λ(N−4M)

Φf,p
Λ(N)[x ↔ ∂Λ(2M) + x]

≥ N−2
∑

x∈Λ(N−4M)

Φf,p
x+Λ(4M)[x ↔ ∂Λ(2M) + x]

≥ (1 − e−(p−pc)M/2)2
(N − 4M)2

N2
Φw,p

Λ(4M)[0 ↔ ∂Λ(2M)]

≥ (1 − e−(p−pc)M/2)2
(N − 4M)2

N2
Φp

∞[0 ↔ ∂Λ(2M)]

≥ (1 − 2e−(p−pc)M/2)(1 − 8M

N
)θ .

By Onsager’s formula, we have

θ = (p − pc)1/8 + o((p − pc)1/8) , p ↓ pc .
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Thus if we choose

(44) M =
δ

32
N and M(p − pc) ≥ c,

where c > 0 is a large enough constant we get

(45) ∀x ∈ Λ(n) Φf,p
Λ(N)[Y (x)] ≥ θ(1 − δ

2
) .

The random variables Y (x), x ∈ Λ(n), take their values in [0, 1] and they are independent
under Φ[· |E], thus we can use lemma 9 with (45) to bound (43) by

(46) Φ[V (Λ(n), δ)c] ≤ 2
n2

N2
exp(−λ(p − pc)M) + exp

(
−δ2θ2(p)

4
n2

N2

)
.

Let a > 3 and 0 < α < 1. If nα > (p − pc)−a and letting N = nα, one gets

Φ[V (Λ(n), δ)c] ≤ 2 exp(− λ

32
δ(p − pc)nα + 2(1 − α) log n) + exp

(
−δ2θ2(p)

4
n2−2α

)
.

Also, under the above regime we have that (p − pc)nα/ log n → ∞. Thus, by choosing
n, N, M such that (37) and (44) are satisfied and using Onsager’s formula we obtain the
desired result. �
Next, we consider the deviations from above for the size of the crossing cluster.

Lemma 18. Let p > pc and δ > 0. If n > 8msup(δ, p)/δ where

msup(δ, p) = inf
{

m ≥ 1 : ∀n ≥ m
1

|Λ(n)|Φ
w,p
Λ(n)[MΛ(n)] ≤ (1 + δ/2)θ

}
,

then

(47) log Φw,p
Λ(n)[W (Λ(n), δ)c] ≤ −

(
δθn

4msup(δ, p)

)2

.

In particular, for every a > 5/4, there exists a positive constant c = c(a, δ) such that
whenever n ↑ ∞ and p ↓ pc in such a way that n > c(p − pc)−a then

lim
(n,p)

1
(p − pc)2a+1/4n2

log Φw,p
Λ(n)[W (Λ(n), δ)c] < 0 .

Proof. To get (47), one proceeds as in lemma 10. For the second statement, one proceeds
as in lemma 11 to prove that for every a > 9/8, there exists a positive constant c = c(a, δ)
such that msup(δ, p) ≤ C(p − pc)−a. The desired result follows then from (47). �
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Lemma 19. Let a > 5 and δ > 0. There exist two positive constants λ, c = c(a, δ)
such that for all p > pc and n > 4 such that n > c(p − pc)−a, we have

log Φ[F (Λ(n), δ)c] ≤ −λδn(p − pc),

uniformly in Φ ∈ FK(Λ̃(n), p).

Proof. It suffices to note that

Φ[F (Λ(n), δ)c] ≤Φ[∂Λ(n(1 − 2δ)) ↔ ∂Λ(n) by an open dual path]

Thus, by proposition 4 and lemma 15, there exist two positive constants λ and c = c(a)
such that

n > c(p − pc)−a ⇒ Φ[F (Λ(n), δ)c] ≤ 16n2 exp(−λδn(p − pc)).

By making c a bit larger and replacing λ by λ/2, we get the desired result. �
Finally, we consider the event T where the edge and the spin configuration of the FK-
Ising coupling P+

n , defined in section 3.2, is involved.

Lemma 20. Let δ > 0 and a > 5. If p ↓ pc and n ↑ ∞ in such a way that n > (p−pc)−a,
then

lim
n,p

P+
n [T (Λ(n), δ)] = 1.

Proof. Let C be the collection of the open clusters which do not touch the boundary
∂Λ(n). Let p, n, M =

(
log n

)
/κ(p−pc) where κ is like in lemma 16. Let ω ∈ R(Λ(n), M).

Using Chebyshev’s inequality,

P+
n [T (Λ(n), δ)c|ω] ≤P+

n

[
1

|Λ(n)|

∣∣∣∣∣∑
C∈C

σ(C)|C|
∣∣∣∣∣ ≥ δθ

∣∣∣∣∣ω
]

≤ 1
δ2θ2|Λ(n)|2

∑
C∈C

|C|2 ≤ M4

δ2θ2n2
.

Imposing log n/((p− pc)
√

θn) → 0, using lemma 16 and the previous inequalities we get
the desired result. �

5. The upper bound

Let x be a point of R2. The closed ball of center x and Euclidean radius r > 0 is
denoted by B(x, r). For w in the unit sphere S1, we define the half balls

B−(x, r, w) = B(x, r) ∩ {y ∈ R2 : (y − x) · w ≤ 0},
B+(x, r, w) = B(x, r) ∩ {y ∈ R2 : (y − x) · w ≥ 0}.

To prove the local upper bound we need to estimate a FK percolation event which occurs
when the locally averaged magnetization exhibits a jump. We will do this by showing
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that this event implies the existence of an interface. The relevant event is that there
exists a collection G of open clusters in B(nx, nr) such that

∑
C∈G

|C ∩ B−(nx, nr, w)| ≥ (1 − θδ)L2(B−(nx, nr, w)) ,

∑
C∈G

|C ∩ B+(nx, nr, w)| ≤ δθL2(B+(nx, nr, w)) .

We will denote this event by Sep(n, x, r, w, δ). Next, we state the so-called interface
lemma:

Lemma 21. Let x ∈ Q and 0 < r ≤ 1 such that B(x, r) ⊂ Q. Let δ > 0 and w ∈ S1. If
p ↓ pc and n ↑ ∞ in such a way that n(p−pc)20 → ∞ and such that log(n)/ log(1/(p−pc))
stays bounded, then

lim sup
(n,p)

1
(p − pc)n

log Φw,p
Λ(n) [Sep(n, x, r, w, δ)] ≤ −2rτc(1 − c′δ1/2),

where c′ is a positive constant.

In [14, 15, 16, 17] a cutting procedure has been used to create an interface from the event
Sep without altering too much the probability. In our context such an approach does
not work. This stems from the fact that the monotone perturbation lemma (lemma 6.3
of [16]) is not appropriate when p ↓ pc. We thus have to proceed differently. We start
by showing that the event Sep is well approximated by a similar event involving filled
clusters instead of clusters with a lot of small holes, then instead of cutting some edges
in order to create the interface we will detect a piecewise interface. Let us fix a small
positive η that will be determined later and ρ such that

0 < η < ρ < r, 0 < 2η <
√

r2 − ρ2 ,

and we restrict our attention to the rectangle

R = {y ∈ B(nx, nr) : −ηn ≤ (y − nx) · w ≤ ηn, −ρn ≤ (y − nx) · w⊥ ≤ ρn},

where w⊥ is the vector perpendicular to w such that (w⊥, w) is a direct basis.
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We define the right to be the direction at which w⊥ points and the top the direction
at which w points and accordingly we define the left and the bottom. We consider the
graph D ⊂ Λ(n) whose edges are the boundaries of the squares centered in Z2+(1/2, 1/2)
that intersect R. In this way, the set ∂D is a simple closed circuit. We denote by a+ the
upper left site of the square that contains the upper left point of ∂D. Going clockwise
we define successively and in a similar way b+, b− and a−, see the figure above. We
define the top boundary ∂+D as the path of ∂D that joins clockwise a+ to b+. Similarly,
the bottom boundary ∂−D is the path of ∂D that joins counterclockwise a− to b−. We
define also D+ = B+(nx, nr, w)∩D and D− = B−(nx, nr, w)∩D. Since the interface is
an open dual path that goes from the left to the right, we need also to consider the dual
graph D̂ of D which is depicted in the previous figure. This permits us to define the
right boundary ∂RD̂ as the piece of the boundary ∂D̂ that joins clockwise the center of
the square containing b+ to the center of the square containing b−. Similarly we define
the left boundary ∂LD̂. The definitions of ∂+D, ∂−D, ∂LD̂ and ∂RD̂ guarantee that, if
a configuration ω ∈ ΩD does not contain any open cluster that connects ∂+D to ∂−D
then, in the dual configuration ω̂ ∈ Ω

bD, there exists an open cluster that connects ∂LD̂

to ∂RD̂.
In order to prove the upper bound, it is sufficient to consider the consequence of Sep(δ)
on the configuration restricted to D which is a convenient set for duality arguments. To
depict our restriction to D, we denote by C the clusters in D that connect ∂+D to ∂−D
and suppose that there exists a collection G of open clusters in B(nx, nr, w) that realizes
Sep(δ). In this situation, we can make the decomposition C = C− ∪ C+, where C− is the
collection of the open clusters in C that are contained in a cluster of the collection G and
C+ is the collection of the open clusters in C that are not contained in any cluster of the
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collection G. By the definition of the event Sep, the cardinality of the intersection of
D+ with the clusters in C− is less than θδL2(B+(nx, nr, w)) and the cardinality of the
intersection of D− with the clusters in C+ is also less than θδL2(B−(nx, nr, w)). Thus
the event Sep implies the following event involving only the clusters in D:

(48)

SepD(δ) =
{

there exists a decomposition C = C− ∪ C+ such that∑
C∈C−

|C ∩ D+(nx, nr, w)| ≤ πδθ(nr)2,

∑
C∈C+

|C ∩ D−(nx, nr, w)| ≤ πδθ(nr)2
}

.

5.1. Elimination of the small holes

In our situation it is necessary to fill the small holes of the clusters that enter in the
definition of Sep in order to give an adequate upper bound. Namely, we will replace the
event Sep with an event Sep′ that uses only filled clusters and we will show that the
probability of Sep is well approximated by the probability of the auxiliary event Sep′.
In order to construct our filling procedure we need some definitions. Let C ∈ C. We
introduce the notion of holes of C. For this we consider the dual ̂E(D) \ E(C) of the
complement of C. Each maximally connected set F̂ of ̂E(D) \ E(C) that is isolated from
the other clusters of C by C will be designated as a hole of C. For each hole we also
define the following notion of boundary

ΔF̂ = {ê ∈ F̂ : d(ê, E(C)) =
1
2
}.

Note that by the definition of a hole, the edges of ΔF̂ are all open dual edges.
Next, we fix M < n and say that a hole F̂ is small (respectively big) if diam(F̂ ) < M

(respectively if diam(F̂ ) ≥ M). For each C ∈ C we define its filling fill C as

fill C = C ∪
⋃

bF

F,

where the union runs over all the small holes of C and where F is the set of edges in D

whose dual is F̂ . Note that if C1 �= C2 then fill C1 �= fill C2.
For ∗ = −, +, let

Cfill
∗ = {fill C : C ∈ C∗}.

We define then a modified SepD event that involves only the filled clusters:

Sep′
D(n, x, r, w, δ) =

{
there exists a decomposition C = C− ∪ C+ such that∑

S∈Cfilled
−

|S ∩ D+| ≤ δπ(nr)2 ,
∑

S∈Cfilled
+

|S ∩ D−| ≤ δπ(nr)2
}

.

Note that the event Sep′
D involves only the filled clusters of D and even if Sep has been

defined originally in B(nx, nr), we will only use with its consequence (48). Now we show
that the event SepD is well approximated by the event Sep′

D:
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Lemma 22. Let δ > 0, a > 5 and α ∈]0, (1 + 1
8a )−1[. There exists a positive constant

c = c(a, α, δ) > 0 such that if

ηrn > M > c(p − pc)−a/α,

then uniformly in n, M, x, r, w we have that

log Φw,p
Λ(n)[SepD(n, x, r, w, δ) \ Sep′

D(n, x, r, w, 4δ)] ≤ −λ
n2

M2
δ(p − pc)1/8 log(

1
p − pc

),

where λ is a positive constant.

Proof. First we renormalize D into D by partitioning it with blocks B(x) of size M/2.
We say that a block B(x) is good if and only if the event

V (B(x), δ) ∩ W (B(x), δ) ∩ F (B(x), δ) ∩ R(B′(x), M/4)

occurs. Recalling the definitions of V, W, F, R the above event is{ ∃ crossing cluster C∗ in B(x)

and |C∗| ≥ (1 − δ)θ|B(x)|

}
∩
{ ∣∣{x ∈ B(x) : x ↔ ∂B(x)}| ≤ (1 + δ)θ|B(x)

∣∣ }
∩
⎧⎨⎩

∃ an open circuit γ in B(x) enclosing a volume ≥ (1 − δ)|B(x)|
and such that sup

x∈γ
d(x, ∂B(x)) ≤ δ|∂B(x)|

⎫⎬⎭
∩
{
∃ crossing cluster C̃∗ in B′(x)

}
∩
{

Every open path γ′ ⊂ B′(x) with

diam γ′ ≥ M/4 is included in C̃∗

}
∩
{
C̃∗ crosses every sub-box of B′(x) of diam ≥ M/4

}
.

We define the block process (X(x), x ∈ D) by X(x) = 1B(x) is good for x ∈ D. We have∑
C∈C−

|C ∩ D+| ≤
∑

x∈D+

∑
C∈C−

|C ∩ B(x)|

=
∑

x∈D+
B(x) is good

∑
C∈C−

|C ∩ B(x)| +
∑

x∈D+
B(x) is bad

∑
C∈C−

|C ∩ B(x)|.

When B(x) is good and fill C ∩ B(x) �= ∅ then C ∩ B(x) �= ∅. We also have that

(49) |C ∩ B(x)| ≥ |C∗| ≥ (1 − δ)θ|B(x)| .
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The first inequality holds because when B(x) is good, then every cluster C ∈ C− that
intersects B(x) will contain a path of diameter at least M/2 in the box B′(x), this path
is included in C̃∗, thus the cluster C contains C̃∗ which also contains C∗. Next

(50) |C ∩ B(x)| ≤ |{x ∈ B(x) : x ↔ ∂B(x)}| ≤ (1 + δ)θ|B(x)| .
This inequality is true because for reasons of diameter no cluster C ∈ C− fits into a box
B(x). Thus all the connected components of C ∩ B(x) have to be connected to ∂B(x).
Next, as before, when B(x) is good then C̃∗∩B(x) ⊂ C∩B(x). And since diamγ > M/4,
we have that γ ⊂ C̃∗ ∩B(x) ⊂ C ∩B(x). But the diameter of γ is less than M and thus
the interior of γ is included in fill C, hence

(51) (1 − δ)θ|B(x)| ≤ θ|fill C ∩ B(x)| ≤ θ|B(x)|.
By (49), (50), (51) we get

−2δθ|B(x)| ≤ |fill C ∩ B(x)|θ − |C ∩ B(x)| ≤ 2δθ|B(x)|.
Since two different clusters of C can not intersect a same good block, we obtain∑

C∈C−

∣∣∣|C ∩ D+| − θ|fill C ∩ D+|
∣∣∣ ≤ ∑

x good

2δθ|B(x)| +
∑

x bad

|B(x)|

≤2δθπ(nr)2 +
|{x ∈ D : X(x) = 0}|

|D| 2π(nr)2.

Doing the same reasoning for D− with C+, we get∑
C∈C+

∣∣∣|C ∩ D−| − θ|fill C ∩ D−|
∣∣∣ ≤ 2δθπ(nr)2 +

|{x ∈ D : X(x) = 0}|
|D| 2π(nr)2.

From this, we conclude that

SepD(δ) ∩
{ |{x ∈ D : X(x) = 0}|

|D| ≤ δθ

2

}
is included in Sep′

D(4δ). Thus

Φw,p
Λ(n)[SepD(n, x, r, w, δ) \ Sep′

D(n, x, r, w, 4δ)] ≤

Φw,p
Λ(n)

[ |{x ∈ D : X(x) = 0}|
|D| ≥ δθ

2

]
.

Finally, we show that it is possible to tune our regime so that with probability very close
to one, the fraction of bad boxes in D remains negligible. Fix a > 5 and α ∈]0, (1+ a

8 )−1[.
There exists a positive c = c(α, a, δ) such that by lemmas 16, 17, 18, 19

sup
Φ∈FK(p,D)

Φ[X(x) = 0|X(y), |x − y|∞ ≥ 3] = ρ(M, p) ↓ 0,

when M ↑ ∞ and p ↓ pc in such a way that Mα > c(p − pc)−a. Thus, by lemma 8 we
get that

log Φw,p
Λ(n) [SepD(n, x, r, w, δ) \ Sep′

D(n, x, r, w, 4δ)] ≤ −δθ log
δθ

ρ(M, p)

⌊ nr

3M

⌋2

.

By using Onsager’s formula we get that θ ∼ (p− pc)1/8 when p ↓ pc. The conclusion fol-
lows from the speed of the convergence ρ(M, p) ↓ 0 provided by lemmas 16, 17, 18, 19. �
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5.2. The piecewise interface

In this section we will detect a piecewise interface from the occurrence of the event
Sep′

D. We suppose that the event Sep′
D occurs and let C−, C+ be a decomposition of C

realizing it. We define
Cfilled = Cfilled

− ∪ Cfilled
+ ,

where Cfilled
∗ has been defined in (48). Note that there is a natural order in Cfilled and

thus it is possible to enumerate the elements of Cfilled from the left to the right from S1

to S|Cfilled|. Next, for each h ∈ R, we define the line

π(h) = {y ∈ R2 : (y − nx) · w = h} .

Let
E+ =

⋃
S∈Cfilled

−

E(S ∩ D+)

be the set of the edges in D+ that belong to a filled cluster of Cfilled
− . We define similarly

E− as the set of the edges in D− that belong to a filled cluster of Cfilled
+ . Then∫ 2ηn/3

ηn/3

|{e ∈ E+ : e ∩ π(h) �= ∅}|dh ≤ |E+|,

where η has been defined in the paragraph after lemma 21. Since C−, C+ realize the event
Sep′

D(n, x, r, w, δ), then we have that |E+| ≤ δπ(nr)2 and by the previous inequality,
there exists h ∈ [ηn/3, 2ηn/3] such that

(52) |{e ∈ E+ : e ∩ π(h) �= ∅}| ≤ 3δ

η
nπr2.

Let h∗ be the infimum in [ηn/3, 2ηn/3] of the real numbers h satisfying this inequality.
If we increase the value of h by a small ε > 0 then the inequality (52) still holds and
π(h∗ + ε)∩Z2 ∩D = ∅. We choose one such h∗ + ε and we call it h+. Moreover any edge
of E+ which intersects π(h+) has an endpoint in each of the two half spaces delimited by
π(h+). In a symmetric way we get from E− a value h− in [−2ηn/3,−ηn/3]. The edges
in
{

e ∈ E− : e∩π(h−) �= ∅}∪{ e ∈ E+ : e∩π(h+) �= ∅} will be designated as bad edges.
We end with an horizontal segment π(h+) in D+ that crosses at most 3πδnr2/η edges
belonging to a cluster C ∈ C− and an horizontal segment π(h−) in D− that crosses at
most 3πδnr2/η edges belonging to a cluster C ∈ C+. Note that if these 6πδnr2/η bad
edges were closed then by duality, there would exist an open dual path connecting ∂LD̂
to ∂RD̂. For ∗ = −, +, we introduce the following sets of edges:

Π∗ =
{

e ∈ E(D) : e ∩ π(h∗) �= ∅} , Π̂∗ =
{

ê ∈ E(D̂) : e ∈ Π∗)
}

.

The set Π∗ is the set of all the edges that intersect π(h∗) and Π̂∗ is its dual set. Note
that Π̂∗ is always a simple dual path connecting ∂LD̂ to ∂RD̂.
In order to capture the relevant dual connections, we introduce for each dual path γ ⊂ D̂
its w-diameter:

diamw(γ) = max
x,y∈γ

(y − x) · w⊥.
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Lemma 23. If the event Sep′
D(n, x, r, w, δ) occurs, then there exists a family of open

dual paths (ξ̂1, ξ̂2, · · · , ξ̂K) such that

diamw(ξ̂1) + · · ·+ diamw(ξ̂K) ≥ 2nρ − 6δ

η
nπr2,

where ρ has been defined just after lemma 21. Moreover the number K − 1 is bounded
above by the number of open dual clusters of diameter ≥ M that intersect π(h+)∪π(h−).

Proof. First choose ω ∈ Sep′(n, x, r, w, δ). If there is no top-bottom crossing cluster in
D then by duality, there exists an open dual path connecting ∂LD̂ to ∂RD̂ and we are
done. If there are crossing clusters, then we construct an algorithm that detects in every
dual configuration ω̂ of ω ∈ Sep′(n, x, r, w, δ), a way to move from ∂LD̂ to ∂RD̂ by using
either open dual paths or paths of bad edges, i.e., edges of (Π̂+∩E+)∪ (Π̂−∩E−). Note
that the paths of bad edges are not necessarely open dual paths and we will denote them
by tunnels. Using tunnels will mean following a path of bad edges along Π̂+ ∪ Π̂− from
the left to the right until we reach an edge that is not bad. Note already that the total
length of the tunnels is bounded by

|(Π̂+ ∩ Ê+) ∪ (Π̂− ∩ Ê−)| ≤ 6δπr2n/η.

Let us first sketch the idea behind the algorithm: we want to move from the left to the
right along open dual paths. The only obstacles preventing us from doing that is the
existence of top-bottom crossing clusters. To overcome the problem, when we meet such
a filled crossing cluster S, we check if S is in Cfill

− or in Cfill
+ . Accordingly, we move to

Π̂+ or Π̂− and traverse the obstacle using a tunnel. After such a tunnel, we meet holes
F̂ of S that we traverse using open dual paths included in ΔF̂ . We continue like this
until we reach the right side of S. After this, we find an open dual path that reaches the
next top-bottom crossing cluster and so on. At the end, the total number of closed dual
edges that we have used is negligeabe. But this is not enough as the number of segments
of open dual paths may be very large and this may prevent us from decoupling properly
the probability of these segments. It is at this point that the filling of the small holes
is important. Indeed, with our filling, we are guaranteed that at each time we produce
a new open dual path, we will meet a large open dual cluster that intersects Π̂+ ∩ Π̂−.
The number of such clusters can be controlled in order to decouple the relevant dual
connections.
Next, we give the precise description of our algorithm:
Initialization
First we check the leftest edge e1+ of Π+ and the leftest edge e1− of Π−.
1) If e1+ is in Cfill

− , then we use the tunnel included in Π̂+ that starts in ê1+ and ends
at an edge of Π̂+ that is not bad.

2) if e1+ is in Cfill
+ , then two subcases arise according to e1−:

2a) If e1− ∈ S1, where S1 is the first, from the left, top-bottom filled crossing cluster. We
use the tunnel included in Π̂− that starts at ê1− and that ends at an edge which is
not bad.
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2b) If e1− �∈ S1, then e1− is isolated from ∂RD̂ by S1. So, there exists an open dual path
from ∂LD̂ to a site in Π̂−. Let ξ̂1 be such a path whose endpoint on Π̂− is rightmost.
By doing so, the right successor edge of ξ̂1 on Π̂− must be a bad edge and thus the
entrance of a tunnel. We use this tunnel until we reach an edge that is not bad.

Intermediate steps
Next, we suppose that we have reached an edge êj ∈ Π̂+ ∪ Π̂− that is not a bad edge
and describe how to proceed with the algorithm in order to reach an other edge êj+1 ∈
Π̂+ ∪ Π̂− that is not bad. Whether êj is in Π̂+ or Π̂− is completly symmetric. We thus
suppose that êj ∈ Π̂+ and the other case can be deduced by symmetry. If êj is described
as above, then it is either included in a hole of a cluster in Cfill or it is at the right of
the rightmost top-bottom crossing path of a cluster in Cfill .
1) If êj is in a hole F̂ of a filled cluster S ∈ Cfill , then we choose a path from ΔF̂ that

takes us to the rightmost edge of Π̂+ and then we are again at the entrance of a
tunnel that we cross. We denote by êj+1 the successor on Π̂+ of the exit of the just
traversed tunnel. By definition êj+1 is not a bad edge.

2) êj is just at the right of the rightmost top-bottom crossing path of a filled cluster
S ∈ Cfill . Let S′ be the next filled crossing cluster of Cfill . If S′ ∈ Cfill

+ , then we go
along an open dual path that joins êj to the rightmost dual intersection ê′j+1 of Π̂−
with the top-bottom crossing open dual path that is just on the left of the leftmost
top-bottom crossing path of S′. The edge ê′j+1 is the entrance of a tunnel that we
take until we reach an edge in Π̂− that is not a bad edge. We call this edge êj+1.

The final step is reached when an edge of ∂RD̂ has been seen. This must happen
in a finite number of steps since we explore partially without repetition the edges of
Π̂− ∪ Π̂+ from the left to the right. The number of the edges in the tunnels is bounded
by 6δπr2n/η, thus the created open dual paths ξ̂1, . . . , ξ̂K satisfy

diamw(ξ̂1) + · · ·+ diamw(ξ̂K) ≥ 2nρ − 6δ

η
nπr2,

In addition to that, the just described algorithm has the property that the creation of
a new open dual path corresponds to an additional open dual cluster of diameter larger
than M that intersects Π̂+ ∪ Π̂−. Thus we can bound K − 1 as stated in the lemma. �

5.3. Separating the pieces of the interface

In order to get the right probabilistic upper bound from the existence of the piece-
wise interface, we have to factorize the probability of the dual connections obtained in
lemma 23 without altering too much our estimates. If we were working in independent
Bernoulli percolation then we would simply apply the van den Berg-Kesten inequality.
Unfortunately this inequality does not hold in dependent FK-percolation models. To
decouple our events, we start by constructing a new family of paths from (ξ̂1, · · · , ξ̂K).
The new paths will be well separated from each other by a distance of at least 0 < � < δn.
In order to simplify the notation, we consider without loss of generality that our domain
D̂ is centered at the origin. For −ρn < h < ρn we define the line v(h) parallel to w and
at a relative distance hnρ from the origin:

v(h) = {x ∈ R2 : x · w⊥ = h}.
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In addition to that we will need vertical strips that separate the events, so we define for
every site x ∈ R2 the strip of width � on the right of x:

H�(x) = {y ∈ R2 : 0 < (y − x) · w⊥ < �}.

Now we give the construction of our new well separated dual open paths. First we start
with the value h = −n and we increase h until the first time we find at least one dual
open path γ̂ that satisfies:

i) γ̂ is part of one of the paths of the piecewise interface (ξ̂1, · · · , ξ̂K).
ii) γ̂ starts at a site on v(h) and does not intersect the left half plane defined by v(h).
iii) diamw(γ̂) ≥ �.

Let us call h1 the first value of h where we stopped. Since � < δn, it is clear that h1 < n
as soon as Sep′

D occurs. Let us pick, among the above mentioned paths, a path γ̂ of
maximal w-diameter. On γ̂ we choose two sites x̂1, ŷ1 ∈ γ̂ that satisfy

(ŷ1 − x̂1) · w⊥ = diamw(γ̂)

and we define γ̂1 as a dual open path that joins x̂1 to ŷ1. Right after this path we put
the strip H�(ŷ1).
Now suppose that γ̂1, · · · , γ̂j and H�(ŷ1), · · · , H�(ŷj) have been constructed. Then we
start with the value h = hj + � = yj · w⊥ + �, we increase h until we find a path γ̂ that
satisfies the above three criteria i)-iii) and we define γ̂j+1 in the same way than the way
we defined γ̂1.
We continue this process until we reach the boundary ∂RD̂.
After this construction, we end with a sequence of strips separating a family of dual open
paths (γ̂1, · · · , γ̂K′) (see the figure below).

�

v(hj−1)

�

γ̂j

�

H�(yj) Λ̂j+1yj

� � �

The constructed paths verify:
- For every 1 ≤ j ≤ K ′ we have that diamw(γ̂j) ≥ �.
- The number K ′ of the new paths is bounded above by the number of paths K in the

original piecewise interface. Indeed, two different paths γ̂i, γ̂j cannot be part of the
same path ξ̂ of the original interface because when defining the paths γ̂j we always
choose one with maximal w-diameter.
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- The total w-diameter of the new family of paths satisfies

(53)
K′∑
k=1

diamw(γ̂k) ≥ 2nρ − 6δ

η
nπr2 − 2K�.

Indeed, we lost from the original total w-diameter only for two reasons. The first
reason is the fact that we have chosen paths of w-diameter larger than �, this gives
a maximal loss of �K. The second reason is the fact that we have put strips. These
strips are of width �, this gives in the worst case another loss of �K.

For each j, we denote by Λ̂j the region of D̂ between H�(yj) and H�(yj+1) and for each
k > 0, we define Ξ(k) as the set of families (Λ̂1, · · · , Λ̂k) that partition the set D̂ as
above. Also we define Υ(k) as the set of the families (s1, · · · , sk) ⊂ Rk such that

(54) ∀j ∈ {1, · · · , k} sj ≥ �,
k∑

j=1

sj ≥ 2nρ − 6δ

η
nπr2 − 2k� .

From lemma 23 and from the last construction, we get the following result.

Lemma 24. Suppose that the event Sep′
D(n, x, r, w, δ) occurs and let K be the number

of open dual clusters of diameter larger than M that cross π(h+) ∪ π(h−).
Then there exist k ≤ K, (Λ̂1, · · · , Λ̂k) ∈ Ξ(k) and (s1, · · · , sk) ∈ Υ(k) such that the

event

A(Λ̂1, · · · , Λ̂k; s1, · · · , sk) =
k⋂

j=1

{ ∃ an open dual path γ̂j ⊂ Λ̂j with diamwγ̂j = sj

}
occurs.

5.3.1 Control of the big dual clusters.
Let h ∈ (−2rηn/3,−rηn/3) ∪ (rηn/3, 2rηn/3). In what follows, we estimate the

number of big open dual clusters that intersect the set Π̂(h) = {ê ∈ E(D̂) : e∩π(h) �= ∅}.
Here big cluster means a cluster whose diameter exceeds a certain threshold M > 0. This
estimate is crucial in order to decouple the different pieces of our spatially separated
piecewise interface.

Lemma 25. Let p > pc and fix h ∈ (−2rηn/3,−rηn/3) ∪ (rηn/3, 2rηn/3). Let K(h)
be the number of big open dual clusters of D̂ intersecting Π̂(h). If ξ > 0 and a > 2ξ + 1
then there exist two positive constants c = c(a, ξ) and λ = λ(a, ξ) such that

c(p − pc)−a < M < rηn/3 ⇒ log Φ[K(h) ≥ (p − pc)ξn] ≤ −λ(p − pc)4ξ+2nM,

uniformly over Φ ∈ FK(p, D).

Proof. For a given h ∈ (−2rηn/3,−rηn/3) ∪ (rηn/3, 2rηn/3), let

Π̂+(M) =
{

y ∈ D̂ : 0 ≤ (y − nx) · w − h ≤ M, |(y − nx) · w⊥| ≤ n + M
}

,

Π̂−(M) =
{

y ∈ D̂ : −M ≤ (y − nx) · w − h ≤ 0, |(y − nx) · w⊥| ≤ n + M
}

.
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Let Ĉ be an open dual cluster of diameter ≥ M which intersects Π̂(h). Since |Ĉ| ≥ M ,
either Π̂−(M)∩Ĉ contains at least M/2 sites connected inside Π̂−(M) to ∂Π̂−(M)∩v(h)
or Π̂+(M) ∩ Ĉ contains at least M/2 sites connected inside Π̂+(M) to ∂Π̂+(M) ∩ v(h).
Thus for ξ > 0, we have that

Φ[K ≥ (p − pc)ξn] ≤ Φ[M̂bΠ−(M) ≥ (p − pc)ξ Mn

4
] + Φ[M̂bΠ+(M) ≥ (p − pc)ξ Mn

4
],

where M̂
bΛ = |{x̂ ∈ Λ̂ : x̂ ↔ ∂Λ̂}|. We proceed as in lemma 10. We choose a > 2ξ +1 and

partition Π̂−(M) and Π̂+(M) into blocks B(x) of size m = c(p − pc)ξ−a/4. We assume
that

(55) min(
1
6
,
ηr

3
)n > M > 10c(p − pc)−a,

where c is a positive constant that will be determined later. Next, we define for ∗ = +,−,

Π̂′
∗(M) =

⋃
x∈Z2:B(x)∩bΠ∗(M)�=∅

B(x).

Also, the The number of partitioning blocks |Π̂′
∗(M)| satisfies

nM

m2
≤ |Π̂′

∗(M)| ≤ 2(M + m)(n + M + m)
m2

≤ 7
nM

m2
.

By subadditivity, one gets

M̂bΠ∗(M)

Mn
≤ 7
|Π̂′∗(M)|

∑
x∈bΠ′∗(M)

M̂B(x)

|B(x)| .

Thus, by using the FKG inequality we have that

Φ[M̂bΠ∗(M) ≥ (p − pc)ξ

4
Mn] ≤Φ

⎡⎣ 1
|Π̂′∗(M)|

∑
x∈bΠ′∗(M)

M̂B(x)

|B(x)| ≥
(p − pc)ξ

28

∣∣∣∣∣∣E
⎤⎦ ,

where E is the event that all the dual edges of the boundaries of the blocks B(x) are
open. Furthermore, from lemma 11, we have that for every a′ ∈ (ξ + 1, a − ξ), there
exists a positive constant c′ = c′(a′) such that for every x ∈ Π̂′

−(M) ∪ Π̂′
+(M) we have

m > c′(p − pc)−b′ ⇒ Φ
[M̂B(x)

|B(x)|
∣∣∣E] ≤ Φbp,w

B(x)

[M̂B(x)

|B(x)|
]
≤ (p − pc)ξ

56
.

Observe that the random variables (M̂B(x)/|B(x)|, x ∈ Π̂′
−(M)∪ Π̂′

+(M)) take their val-
ues in [0, 1], are independent and identically distributed under Φ[·|E]. Also, by choosing
c = c′/10 in (55), we obtain that their mean is bounded above by (p−pc)ξ/56. Therefore,
we can apply lemma 9 to get

log Φ[M̂bΠ∗(M) ≥ (p − pc)ξ Mn

4
] ≤ −λ(p − pc)2ξ nM

m2
,

where ∗ = −, + and λ > 0 is a positive constant. �
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5.3.2 Proof of the interface lemma. Now we have all the ingredients to give an upper
bound on the probability of Sep that captures the existence of an interface.

Proof of lemma 21. First we approximate Sep with Sep′ and we have

(56) Φ[Sep(δ)] ≤ Φ[SepD(δ) \ Sep′
D(4δ)] + Φ[Sep′

D(4δ)].

Let a > 5, α ∈ (0, (1 + 1
8a )−1). Lemma 22 ensures the existence of a positive constant

c1 such that for every M satisfying

(57) c1(p − pc)−a/α < M < ηrn/3,

we can bound the first term of (56) by

(58) log Φ[SepD(δ) \ Sep′
D(4δ)] ≤ −c1

n2

M2
δ(p − pc)1/8 log(

1
p − pc

).

Next, we turn to the estimation of the second term of (56). We fix ξ > 2 and decompose
the event under consideration as follows
(59)
Φ[Sep′

D(4δ)] ≤ Φ[∃h K(h) ≥ (p − pc)ξn] + Φ[{∀h K(h) < (p − pc)ξn} ∩ Sep′
D(4δ)],

where K(h) is the number of big open dual clusters that intersect Π̂(h) (Π̂(h) is defined
before lemma 25) and h takes its values in (−2rηn/3,−rηn/3)∪ (rηn/3, 2rηn/3). Next,
we impose further to the exponent a to be larger than 2ξ + 1 so that by (57) and by
lemma 25, there exists a positive λ = λ(a, ξ) such that for p close enough to pc, we have

(60) Φ[∃h K(h) ≥ (p − pc)ξn] ≤ n exp(−λ(p − pc)4ξ+2nM).

Now we turn to the second term of (59). By lemma 24 we can bound from above
Φ[{∀h K(h) < (p − pc)ξn} ∩ Sep′

D(4δ)] by

(61)
�(p−pc)ξn�∑

k=1

∑
(bΛ1,··· ,bΛk)∈Ξ(k)

(s1,··· ,sk)∈Υ(k)

Φ[A(Λ̂1, · · · , Λ̂k; s1, · · · , sk)],

where Ξ(k) and Υ(k) have been defined just before lemma 24. By Stirling’s formula,
for all 1 ≤ k ≤ �(p − pc)ξn�, the cardinality of the sets Ξ(k) and Υ(k) are uniformly
bounded from above by

(62)
|Ξ(k)| ≤

(
2n
k

)
≤ exp(4(p − pc)ξn logn),

|Υ(k)| ≤
(

2n + k
k

)
≤ exp(4(p − pc)ξn log n).
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Next, we fix k ∈ [1, �(p−pc)ξn�], (Λ̂1, · · · , Λ̂k) ∈ Ξ(k) and (s1, · · · , sk) ∈ Υ(k) and we use
lemma 14 to decouple the occurrence of the k separated dual open connections appearing
in the event A(·). To do so, we must require that the distance � separating the regions
Λ̂j ’s is large enough. More precisely, there exists a positive constant c2 such that if

(63) δn ≥ � = c2(p − pc)−a,

then we can apply lemma 14 k times and use (54) to obtain
(64)

Φ[A(Λ̂1, · · · , Λ̂k; s1, · · · , sk)] ≤2k
k∏

j=1

Φ[∃ an open dual path γ̂j ⊂ Λ̂j of diamwγ̂j = sj ]

≤(2n)k exp
[
− τp(w)n(2ρ − 6δπ

η
r2 − 2k�

n
)
]
.

Combining (64) and (62) we can bound (61) from above by
(65)

exp
(
− τp(w)n(2ρ− 6δπ

η
r2) + 8(p − pc)ξn logn

) �n(p−pc)ξ�∑
k=1

exp
(
k
(
log(2n) + 2τp(w)�

))
.

In order to satisfy condition (63), we are limited to regimes where n ≥ c2δ
−1(p− pc)−a.

By making c2 a bit bigger and by using proposition 4, we can find n0 > 1 such that for
every n > n0, we have
(66)

Φ[{∀h K(h) < (p − pc)ξn} ∩ Sep′
D(4δ)]

≤ exp
(
10(p − pc)ξn log n + τcc2(p − pc)−a+ξ+1n

)
exp

(
− τc(p − pc)n(2ρ − 14δπ

η
r2)
)

By choosing a > ξ+1 and log n/ log(1/(p−pc)) bounded from above, the first exponential
becomes negligible. It remains to specify a regime satisfying (57) and (63) such that the
bounds (58) and (60) are smaller than (66). That is, we have to choose ξ > 2, a >
2ξ + 1, α ∈ (0, (1 + 1

8a )−1) and n ↑ ∞, p ↓ pc, M such that

(67)
ηrn/3 ≥M ≥ max

(
c1(p − pc)−a/α,

(
2ρτc(p − pc) +

log n

n

)/(
λ(p − pc)4ξ+2

))
,

n ≥max
(

c2

δ
(p − pc)−a,

2ρ

δc1
τcM

2 (p − pc)7/8

− log(p − pc)

)
.

For the choice ξ > 2, a = 2ξ + 2, α = (1 + 1
8a

)−1, M = (p − pc)4ξ+1, n = (p − pc)−8ξ−9/8,
it is easy to check that there exists n0 > 1 such that for all n > n0, the conditions
(67) are satisfied. Since ξ has to be larger than 2, we obtain that for every γ > 20, if
n ↑ ∞, p ↓ pc in such a way that n(p − pc)γ → ∞ then it is possible to find ξ, a, α, M
such that asymptotically the conditions (67) are satisfied. Finally, we obtain

lim sup
(n,p)→(∞,pc)

1
(p − pc)n

log Φ [Sep(δ)] ≤ −2ρτc +
14δ

η
r2τc.

By choosing η = r
√

2δ/14 and ρ = r
√

1 − ρ, we get the desired result. �
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5.4. The local upper bound

In order to prove the upper bound we will need the following approximation result.

Lemma 26. Let A be a subset of Q having finite perimeter. For any positive ε, δ, there
exists a finite collection of disjoint balls B(xi, ri), i ∈ I ∪ Ibd, such that:

- ∀i ∈ I xi ∈ ∂∗A ∩ Q
◦

and B(xi, ri) ⊂ Q
◦

.
- ∀i ∈ Ibd xi ∈ ∂∗A ∩ ∂Q and B−(xi, ri, νQ(xi)) ⊂ Q.
- ∀i ∈ I ∪ Ibd L2((A ∩ B(xi, ri))ΔB−(xi, ri, νA(xi))) ≤ δr2.
- Finally ∣∣∣∣P(A) −

∑
i∈I∪Ibd

2ri

∣∣∣∣ ≤ ε.

Proof. The proof can be found in lemma 82 of [15]. �

Lemma 27. Let ν ∈ M(Q) be such that J (ν) < +∞. If β ↓ βc and n ↑ ∞ in such a
way that n(β − βc)20 → ∞, and such that log(n)/ log(1/(β − βc)) stays bounded then for
every ε > 0 there exists a weak neighborhood U of ν in M(Q) such that

lim sup
(n,β)

1
n(β − βc)

log μ+,β
eΛ(n)

(σn ∈ U) ≤ −(1 − ε)J (ν) .

Proof. By definition of J , since J (ν) < +∞, there exists a Borel subset A of Q such
that ν is the measure with density −1A + 1Q\A with respect to the Lebesgue measure,
and

J (ν) = τcP(A) = τcP(Q \ A) .

If P(A) = 0, there is nothing to prove. Suppose that P(A) > 0. Let δ0, ε
′ ∈]0, 1[ that we

will tune later. Let B(xi, ri), i ∈ I ∪ Ibd, be a finite collection of disjoint balls associated
with A, ε′ and δ0/3, as given in lemma 26. For i in I ∪ Ibd, let fi, gi be two continuous
functions having compact support and taking values in [0, 1] such that

∀x ∈ R2 \ B
◦
−(xi, ri, νA(xi)) fi(x) = 0 ,

∀x ∈ B+(xi, ri, νA(xi)) gi(x) = 1 ,(1
2
− δ0

4

)
πr2

i ≤
∫

fi dL2 ,

∫
gi dL2 ≤

(1
2

+
δ0

4

)
πr2

i ,

where νA(xi) is the exterior normal vector of A at xi and where B
◦
− and B+ denote the

interior and the closure of the half balls. Also, we require that there exists si > 0 such
that, if we set

Di
− =

{
y ∈ B−(xi, ri, νA(xi)) : d(y, R2 \ B−(xi, ri, νA(xi))) ≤ si

}
,

Di
+ =

{
y �∈ B+(xi, ri, νA(xi)) : d(y, B+(xi, ri, νA(xi))) ≤ si

}
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then we have

L2
(
Di

−) ≤ δ0

8
πr2

i , ∀x ∈ B−(xi, ri, νA(xi))) \ Di
− fi(x) = 1 ,

L2
(
Di

+) ≤ δ0

8
πr2

i , ∀x ∈ Rd \ B+(xi, ri, νA(xi)) \ Di
+ gi(x) = 0 .

These conditions imply that

ν(fi) = −
∫

A

fi dL2 +
∫

Q\A

fi dL2 ≤ −
∫

fi dL2 + 2L2
(
B−(xi, ri, νA(xi)) \ A

)
≤ (−1 + δ0)

1
2
πr2

i ,

ν(gi) = −
∫

A

gi dL2 +
∫

Q\A

gi dL2 ≥
∫

gi dL2 −2L2
(
A∩B+(xi, ri, νA(xi))

)−2L2(Di
+)

≥ (1 − δ0)
1
2
πr2

i .

Let U be the weak neighbourhood of ν in M(Q) defined by

U =
{

� ∈ M(Q) : ∀i ∈ I ρ(fi) < ν(fi) +
δ0

2
πr2

i , ρ(gi) > ν(gi) − δ0

2
πr2

i

}
.

Next, we choose γ > 20 and consider n ↑ ∞, p ↓ pc in such a way that n(p − pc)γ → ∞.
We rescale the lattice by a factor M =

√
n and choose L =

√
M . Let δ > 0, for x ∈ Z2,

the block variable X(x) is defined as the indicator function of the event

R(B′(x), L) ∩ V (B(x), δ) ∩ W (B(x), δ) ∩ T (B(x), δ).

Let us fix i ∈ I. Let ∗ be a symbol representing either − or +. We define

B∗(n, i) = B∗(nxi, nri, νA(xi)),

B∗(n, i) =
{

x ∈ Z2 : B(x) ⊂ B
◦
∗(n, i)

}
.

By the above choice of n, p and M , for n large enough we have

L2

(
B∗(n, i) \

⋃
x∈B∗(n,i)

B(x)
)

≤ θδL2(B∗(n, i)).

We define S∗ as the collection of the clusters which are included in one of the boxes
B(x), x ∈ B∗(n, i), but which do not intersect their boundaries:

S∗ =
⋃

x∈B∗(n,i)

{
C cluster in B(x) such that C ∩ ∂B(x) = ∅}.
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Let x ∈ B∗(n, i) be such that X(x) = 1. Then∑
C∈S∗

|C ∩ B(x)| ≥ |B(x)| − |{x ∈ B(x) : x ↔ ∂B(x)}| ≥ (1 − θ − δθ)|B(x)|.

Summing these inequalities, we get:

(68)
∑

C∈S∗

|C ∩ B∗(n, i)| ≥ (1 − θ − 2δθ)L2(B∗(n, i)).

We define also C as the collection of the B(n, i) clusters which do not belong to S+∪S−.
For a cluster C, we denote by σ(C) its color. For x ∈ B−(n, i) ∪ B+(n, i), we have

θn2σn(B(x)) =
∑
C∈C

σ(C)|C ∩ B(x)| +
∑

x∈B(x)
x�↔∂B

σ(x).

Whenever X(x) = 1, the event T occurs and the modulus of the last sum is less than
δθ|B(x)|. Suppose that, for ∗ = − and ∗ = +

M2
∑

x∈B∗(n,i)

1X(x)=0 ≤ δθL2(B∗(n, i)) .

Summing the previous inequalities, we get

θn2σn(
◦
B+ (n, i)) ≤

∑
C∈C

σ(C)|C ∩ B+(n, i)| + 5δθL2(B+(n, i)) ,

θn2σn(B−(n, i)) ≥
∑
C∈C

σ(C)|C ∩ B−(n, i)| − 5δθL2(B−(n, i)) .

Let us denote by C− (respectively C+) the collection of the negatively (respectively pos-
itively) colored clusters of C. Notice that the collections S+ ∪ S−, C−, C+ are disjoint.
Suppose in addition that σn ∈ U . The very definition of the neighborhood U , the two
previous inequalities and (68) yield that∑

C∈C−∪S−

|C ∩ B+(n, i)| ≤ θ(8δ + δ0)L2(B+(n, i)),

∑
C∈C−∪S−

|C ∩ B−(n, i)| ≥ (1 − θ(8δ + δ0))L2(B−(n, i)).

Thus the collection C− ∪ S− realizes the event Sep(n, xi, ri, wi, 8δ + δ0). In fact, some
care is needed on the boundary of Q and one needs to define a variant of the event Sep
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for the balls that intersect the boundary. As the same reasoning holds in this situation,
we omit the details. Choosing δ < δ0/8, we conclude that

μ+,β
Λ(n)[σn ∈ U ] ≤

∑
∗=−,+

∑
i∈I∪Ibd

P+
n

(
M2

∑
x∈B∗(n,i)

1X(x)=0 > θδL2(B∗(n, i))
)

+ Φw,p
Λ(n)

[ ⋂
i∈I∪Ibd

Sep(n, xi, ri, νA(xi), 2δ0)
]
.

Since we chose γ > 20, p ↓ pc, n ↑ ∞ in such a way that n(p − pc)γ → ∞, M =√
n, L =

√
M , we can apply lemmas 16, 17, 18, 19 to conclude that the block process

(X(x)) satisfies the hypothesis of lemma 8 and that for all i ∈ I ∪ Ibd and for ∗ = +,−
the mean of the normalized sum below converges faster to zero than θ. Thus

lim sup
(n,p)

1
n(p − pc)

log P+
n

[
M2

L2(B∗(n, i))

∑
x∈B∗(n,i)

1X(x)=0 > δθ

]
= −∞.

Next, the sets B(xi, ri), i ∈ I ∪ Ibd, are compact and disjoint. Also I ∪ Ibd is finite and
fixed, thus applying lemma 21 with lemma 14 we get

lim sup
(n,β)

1
(β − βc)n

log μ+,β
Λ(n)[σn ∈ U ] ≤ −

∑
i∈I∪Ibd

2riτc(1 − c′
√

2δ0)

≤ −τc

(P(A) − ε′
)
(1 − c′

√
2δ0) ,

where c′ is the constant appearing in lemma 21. Let ε > 0. By choosing ε′ such that
ε = ε′(1 + 1/P(A)) and δ0 such that c′

√
2δ0 < ε′, we finally get the desired upper

bound. �

5.5. Exponential tightness

In order to prove the exponential tightness, we proceed as in [15]. The same approach
works in our context with the exception that one has to be careful with the scales of
renormalization and some extra care is needed because θ converges to 0 when p ↓ pc. As
in [15], we will first define a roughening σ̃n of the random measure σn. This auxiliary
measure will be regular enough to produce suitable surface energy estimates and the proof
will be completed by proving that the two random measures σn and σ̃n are exponentially
contiguous.

5.5.1 The rough measure σ̃n and surface energy estimates. In order to construct σ̃n

we will work with the box Λ(n) rescaled by a factor K that will depend on p in a way to
be made precise in the course of our analysis. The renormalized box will be denoted by

Λ(n) =
{

x ∈ Z2 : B(x) ∩ Λ(n) �= ∅} .

On Λ(n) we define the 0-1 valued random field X(x), x ∈ Λ(n), by

∀x ∈ Λ(n) X(x) = 1R(B′(x),K) ,
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where R(B′(x), K) has been defined just before lemma 16. When X(x) = 1 we will say
that the block B(x) is good and if X(x) = 0 the block will be said to be bad. We also
need a very similar filling procedure as before but in the renormalized lattice. Namely,
for every connected subset A of Λ(n) we define

fill A = A ∪
⋃

R ,

where the union runs over the residual L∞-connected components R of A such that
diam∞R < log n and R ∩ ∂Λ(n) = ∅. For each cluster C, we define its coarse graining
C = {x ∈ Λ(n) : B(x)∩C �= ∅}. We say that a cluster C is large if diam C ≥ K log n, in
which case we have diam C ≥ log n. For a large cluster C we define

Ĉ =
⋃

fill A,

where the union runs over all the connected components A of good blocks such that
C ∩A �= ∅. Lemma 18.1 of [15] ensures that if C1, C2 are two distinct large clusters then
Ĉ1 ∩ Ĉ2 = ∅. We define σ̃n as the random measure on Q whose density with respect to
the Lebesgue measure is 1Pn

− 1Mn
+ 1(Q\Pn)\Mn

, where

Pn =
⋃

C large cluster
σ(C)=+

⋃
x∈bC

1
n

B(x) ∪ (Q \ Λ(1 − 6K

n
)
)
,

Mn =
⋃

C large cluster
σ(C)=−

⋃
x∈bC

1
n

B(x) \ (Q \ Λ(1 − 6K

n
)
)
.

This measure σ̃n is regular enough to establish the required exponential tightness. To
do this, we consider the set F̂ of all the L∞-connected components of bad blocks in Λ(n)
that intersect Λ(n − 6K log n) and one of the sets

∂ out
∞ Ĉ =

{
x �∈ Ĉ : ∃y ∈ Ĉ, |x − y|∞ = 1

}
,

where C is a large cluster.

Lemma 28. Let a > 5. There exist two positive constants λ and c = c(a) such that if
K > c(p − pc)−a and n is such that n > K log n then, for u > 0,

Φw
Λ(n)[|F̂ | ≥ u] ≤ exp(−λ(p − pc)Ku),

and

P+
n [P(Pn) + P(Mn) ≥ u] ≤ exp

(
−λ

u − 16
8

(p − pc)n
)

.

Proof. Let C be a large cluster. By definition, the L∞ outer boundary of Ĉ consists of
bad blocks whenever Ĉ �= ∅. In the case Ĉ = ∅, we define ∂out

∞ Ĉ as Ĉ which again consists
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only of bad blocks. Let F be an L∞-connected component of bad blocks intersecting
∂out
∞ Ĉ and the rescaled box Λ(n − 6K log n). As proved in lemma 18.2 of [15], we have

|F | ≥ log n. Thus

Φw
Λ(n)[|F̂ | ≥ u] ≤ Φw

Λ(n)

[∣∣{x ∈ Λ(n − 6K log n) : |C(x)| ≥ log n}∣∣ ≥ u
]
,

where C(x) denotes the L∞-connected component of occupied sites containing x (a site
y is said to be occupied if X(y) = 0 ). Let a > 5, lemma 16 ensures the existence of two
positive constants λ and c = c(a) such that if K > c(p − pc)−a, then

sup
x∈Λ(n)

log Φ[X(x) = 0|X(z), |x − z|∞ ≥ 3] ≤ −λ(p − pc)K.

Combining this with lemma 7, we get that

Φw
Λ(n)[|F̂ | ≥ u] ≤ 2

∑
j≥u

exp
(

j
(
c − 1

9
λ(p − pc)K

))
,

which yields the first claim.
For the second claim, note that the boundaries of Pn and Mn are located either on

∂Q ∪ ∂Λ(1 − 6K log n/n) or on the faces of the blocks of F̂ . Thus P(Pn) + P(Mn) ≤
16 + 8K

n |F̂ |, so that

P+
n [P(Pn) + P(Mn) ≥ u] ≤Φw

Λ(n)

[
|F̂ | ≥ (u − 16)

n

8K

]
≤ exp

(
− (p − pc)λK(u − 16)

n

8K

)
which yields the desired result. �

5.5.2 Exponential contiguity.
Here we show that the rough measure σ̃n is a good approximation of the original

random measure σn. Let f : R2 → R be a continuous function having compact support.
In order to estimate |σn(f) − σ̃n(f)|, we use another block coarse graining with scale
L = K log n. We fix ε > 0 and define for y ∈ Z2 the block variable Y (y) as the indicator
function of the event

R(B′(y),
√

L) ∩ V (B(y), ε) ∩ W (B(y), ε).

Let
A = { y ∈ Z2 : B(y) ∩ Λ(n − 6L) �= ∅}.

Note that |A|L2 ≤ n2. We further introduce

∀x ∈ Λ(n) Bn(x) =
1
n

B(x),
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A0 =
⋃

y∈A:Y (y)=0

Bn(y) , A1 =
⋃

y∈A:Y (y)=1

Bn(y),

and make the following decomposition

(69)
|σn(f) − σ̃n(f)| ≤|

∫
A0

f(x)(dσn(x) − dσ̃n(x))| + |
∫

(Q\A0)\A1

f(x)(dσn(x) − dσ̃n(x))|

+|
∫

A1

f(x)(dσn(x) − dσ̃n(x)).

We bound the first term of (69) as follows:

∣∣∣ ∫
A0

f(x)(dσn(x) − dσ̃n(x))
∣∣∣ ≤ 2||f ||∞ 1

θ|A|
∑
y∈A

1Y (y)=0.

In a similar way we bound the second term:

|
∫

(Q\A0)\A1

f(x)(dσn(x) − dσ̃n(x))| ≤ L2(Λ(n) \ Λ(n − 6L))
n2

(
1
θ

+ 1)||f ||∞ ≤ 24L

θn
||f ||∞ .

For the third term of (69), we further decompose it into
(70)∣∣∣ ∫

A1

f(x)(dσn(x) − dσ̃n(x))
∣∣∣ ≤ 1

θn2

∣∣∣ ∑
y∈A:Y (y)=1

∑
C⊂B(y)

C∩∂inB(y)=∅

σ(C)
∑
x∈C

f(x/n)
∣∣∣

+
1

θn2

∣∣∣ ∑
y∈A:Y (y)=1

∑
x∈B(y)\C(y)

x↔∂inB(y)

σ(x)f(x/n)
∣∣∣

+
∣∣∣ 1
θn2

∑
y∈A

Y (y)=1

σ(C(y))
∑

x∈C(y)

f(x/n) −
∫

A1

f(x)dσ̃n(x)
∣∣∣,

where C(y) denotes the unique crossing cluster of B(y) whenever Y (y) = 1. Using the
definition of the good blocks, we further bound the second term of the right hand side
in (70):

1
θn2

∣∣∣ ∑
y∈A:Y (y)=1

∑
x∈B(y)\C(y)

x↔∂inB(y)

σ(x)f(x/n)
∣∣∣ ≤ 2ε||f ||∞.

Since f is continuous and has compact support, we have for K log n/n small enough that
for all y ∈ Z2 supx,z∈Bn(y) |f(x) − f(z)| ≤ ε||f ||∞. Using this observation and the
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properties of the good blocks we can bound the third term of (70) by

(71)

∣∣∣ 1
θn2

∑
y∈A

Y (y)=1

σ(C(y))
∑

x∈C(y)

f(x/n) −
∫

A1

f(x)dσ̃n(x)
∣∣∣

≤
∣∣∣[∑

y∈A

Y (y)=1

(
1

θn2
σ(C(y))|C(y)| − σ̃n(Bn(y))

)
max

x∈Bn(y)
f(x)

∣∣∣
+

1
θn2

∣∣∣ ∑
y∈A

Y (y)=1

σ(C(y))
∑

x∈C(y)

(
f(

x

n
) − max

z∈Bn(y)
f(z)

)∣∣∣
+
∣∣∣ ∑

y∈A

Y (y)=1

∫
Bn(y)

f(x) − max
z∈Bn(y)

f(z) dσ̃n(x)
∣∣∣

≤||f ||∞
∑
y∈A

Y (y)=1

∣∣∣ 1
θn2

σ(C(y))|C(y)| − σ̃n(Bn(y))
∣∣∣+ ε(ε + 2)||f ||∞.

Next, we study the sum in the above inequality. Let y ∈ A such that Y (y) = 1. Several
cases arise:
- Bn(y) ⊂ Mn and σ(C(y)) = −1. We have then∣∣∣ 1

θn2
σ(C(y))|C(y)| − σ̃n(Bn(y))

∣∣∣ =
1
n2

∣∣∣− |C(y)|
θ

+ |B(y)|
∣∣∣ ≤ ε

|B(y)|
n2

.

- Bn(y) ⊂ Pn and σ(C(y)) = 1: This case is symmetric to the previous one and∣∣∣ 1
θn2

σ(C(y))|C(y)| − σ̃n(Bn(y))
∣∣∣ ≤ ε

|B(y)|
n2

.

- Bn(y) ∩ Mn �= ∅ and Bn(y) �⊂ Mn, then Bn(y) meets the boundary of Mn.
- Bn(y) ∩ Pn �= ∅ and Bn(y) �⊂ Pn, then Bn(y) meets the boundary of Pn.

In the two last cases, we bound crudely as follows:∣∣∣ 1
θn2

σ(C(y))|C(y)| − σ̃n(Bn(y))
∣∣∣ ≤ (2 + ε)

|B(y)|
n2

.

This will suffice because in this case

Bn(y) ⊂
{

x ∈ R2 : d∞(x, (∂Pn ∪ ∂Mn) ∩ Λ(1 − 3L/n)) ≤ L

n

}
.

Moreover

L2

({
x ∈ R2 : d∞(x, (∂Pn ∪ ∂Mn) ∩ Λ(1 − 3L/n)) ≤ L

n

})
≤ (|∂innPn| + |∂innMn|)

(2L + 2
n

)2 ≤ (P(Mn) + P(Pn))
9L2

n
.



52 R. CERF1, R. J. MESSIKH2

-
(
Bn(y) ⊂ Mn and σn(Bn(y)) > 0

)
or

(
Bn(y) ⊂ Pn and σn(Bn(y)) < 0

)
. These

conditions imply that the whole block Bn(y) has been added to Mn or Pn by the
filling operation. Yet the regions which are added by the filling operation have a
diameter at most K(log n − 1), so this case cannot occur.

- Bn(y) ∩ Mn = ∅ and Bn(y) ∩ Pn = ∅. In this case, B(y) ⊂ F̂ .
Summing the previous inequalities, we get

|σn(f) − σ̃n(f)| ≤ 1
θn2

∣∣∣ ∑
C∈S

σ(C)
∑
x∈C

f(x/n)
∣∣∣

+||f ||∞
( 2

θ|A|
∑
y∈A

1Y (y)=0 +
L2

θn2
|F̂ | + 9(2 + ε)

L2

n
(P(Mn) + P(Pn))

)
+||f ||∞

(24L

θn
+ ε(ε + 6)

)
.

where
S =

⋃
y∈A:Y (y)=1

{
C ∈ B(y) : C ∩ ∂inB(y) = ∅} .

Note that by the definition of a good block, any cluster C of a good block B(y) that
has a diameter larger than

√
L =

√
K log n is connected to the crossing cluster of B′(y)

and thus, such a cluster C is connected to ∂inB(y). Therefore, any cluster of S has a
diameter that is smaller than

√
K log n. Next, we analyze the deviations of the first term

in the last inequality.
Since |S| ≤ n2, we have

P+
n

[ 1
θn2

∣∣∣ ∑
C∈S

σ(C)
∑
x∈C

f(
x

n
)
∣∣∣ > ε||f ||∞

]
≤

∑
ω∈ΩΛ(n)

P+
n

[ 1
|S|

∣∣∣ ∑
C∈S

YC

∣∣∣ >
εθ

K log n

∣∣∣ω]Φw,p
Λ(n)[ω],

where YC = σ(C)
∑

x∈C f(x/n)/ (||f ||∞K log n).
Under P+

n [ · |ω], the sequence (YC , C ∈ S(ω)) is independent and takes its values in [−1, 1]
(recall that the diameters of the clusters of S are bounded by

√
K log n). Therefore we

can apply theorem 9 to get

P+
n

[ 1
θn2

∣∣∣ ∑
C∈S

σ(C)
∑
x∈C

f(
x

n
)
∣∣∣ > ε||f ||∞

]
≤ 2

∑
ω∈ΩΛ(n)

exp

[
−
(

εθ

K log n

)2

|S|
]

Φw,p
Λ(n)[ω]

≤ 2Φw,p
Λ(n)

[ 1
|A|

∑
y∈A

1Y (y)=0 ≥ ε
]

+ 2 exp
(
−(1 − ε)(1 − (1 + ε)θ)ε2θ2n2

(K log n)3

)
,

where we used the fact that

|S| ≥ |{y ∈ A : Y (y) = 1}|L2(1 − (1 + ε)θ)
supC∈S(diam2(C))

.
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Therefore, by imposing

(72) n ≥ 24K

εθ
log n,

we have

(73)

μ+,β
n

[
|σn(f) − σ̃n(f)| > ||f ||∞(28 + 10ε)

]
≤

≤Φw,p
Λ(n)

[
|F̂ | > εθ

n2

L2

]
+ P+

n

[
P(Mn) + P(Pn) > ε

n

L2

]
+ 2 exp

(
−(1 − ε)(1 − (1 + ε)θ)ε2θ2n2

(K log n)3

)
+ 3Φw,p

Λ(n)

[ 1
|A|

∑
y∈A

1X(y)=0 ≥ εθ

2

]
.

By lemma 28, for any a > 5, there exists a positive constant c such that if we impose
that

(74) K > c(p − pc)−a and n > K log n,

then

(75) Φw,p
Λ(n)

[
|F̂ | > εθ

n2

L2

]
≤ exp

(
−λ(p − pc)

εθ

K

n2

log2 n

)
.

If we further impose that

(76)
εn

(K log n)2
> 32

then lemma 28 gives

(77) P+
n

[
(P(Mn) + P(Pn)) > ε

n

L2

]
≤ exp

(
−λε

16
p − pc

K2

n2

log2 n

)
.

Furthermore, under the condition (74), lemmas 16, 17, 18 imply that the block process
(Y (y), y ∈ A) satisfies the hypothesis of lemma 8 and that the mean of the normalized
sum below converges to zero faster than θ. Thus

(78) lim sup
n↑∞,p↓pc

1
(p − pc)

log Φw,p
Λ(n)

[ 1
|A|

∑
y∈A

1Y (y)=0 ≥ εθ

2

]
= −∞.

Finally, we verify that if we choose a > 5 and c large enough and impose

(79) K > c(p − pc)−a and n > K3 log3 n,

then for p close enough to pc the conditions (72), (74) and (76) are satisfied. Moreover,
if n ↑ ∞ and p ↓ pc in a regime where (79) is satisfied, then (75), (77) and (78) imply
that all the terms of (73) decay exponentially fast with a speed larger than (p − pc)n.
Thus, when n ↑ ∞ and p ↓ pc in such a way that n(p − pc)20 ↑ ∞, we have for every
positive ε

lim sup
(n,p)

1
n(p − pc)

log P+
n

(|σn(f) − σ̃n(f)| > ε
)

= −∞ .

Together with lemma 28, this concludes the proof of the exponential tightness.
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6. The Lower bound

We are only left with the lower bound in order to finish our large deviation principle.

6.1. Preparatory lemmas

To prove the lower bound we will consider an event whose probability is of the correct
order. For this we will use the following lemma to approximate sets of finite perimeter
with polyhedral sets.

Lemma 29. Let A be a subset of Q = [−1, 1]2 having finite perimeter. For any ε > 0,
there exists a finite union of polyhedral sets D such that

D ⊂
◦
Q, L2(AΔD) ≤ ε , P(D) ≤ P(A) + ε.

Proof. For the proof, we refer the reader to [15].

In addition to that, in order to create pieces of the interface that are well localized we
will need a lower bound for the existence of an interface inside a certain region. Let x
be a site in Z2 + (1/2, 1/2) and let

H(0, nx,
√

n) =
{

y ∈ R2 : d∞(y, [(1/2, 1/2), nx]) ≤ √
n
}

be the region formed by the points of R2 that are at a ∞-distance less than
√

n from
the segment [(1/2, 1/2), nx]. We will need a lower bound on the following event:

Wall(0, nx,
√

n) = {(1/2, 1/2) ↔ nx by an open dual path in H(0, nx, 2
√

n)}.

Lemma 30. Let x ∈ Q + (1/2, 1/2) be a dual site and let a > 5. If p ↓ pc and n ↑ ∞ in
such a way that n > (p − pc)−a then

lim inf
(n,p)

1
(p − pc)n

log Φw,p
Λ(n)[Wall(0, nx,

√
n)] ≥ −τc|x|2.

Proof. We consider the case x = (1, 0) + (1/2, 1/2), the proof for a general x is similar.
Let M > 0 be an integer. We denote by n = Mq + r the Euclidean division of n by M .
Using translation invariance and the FKG inequality, we get that

log Φp
∞[Wall(0, nx,

√
n)] ≥ q log Φp

∞[Wall(0, Mx,
√

M)] + log Φp
∞[Wall(0, rx,

√
r)].

Now, note that the event Wall(0, Mx,
√

M) is realized as soon as 0 ↔ Mx by an open
dual path and there exists no open dual path from H(0, nx,

√
n/2) to H(0, nx,

√
n)c.

Thus, by proposition 4

Φp
∞[Wall(0, Mx,

√
M)] ≥ Φp

∞[0 ↔ Mx by an open dual path ] − 4n3/2e−λ(p−pc)
√

n,
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where λ is a positive constant. This gives us the following lower bound:
(80)

1
(p − pc)n

log Φp
∞[Wall(0, nx,

√
n)] ≥
q

(p − pc)n
log Φp

∞[0 ↔ Mx by an open dual path ]

+
q

(p − pc)n
log

[
1 − 4n3/2 exp(−λ(p − pc)

√
n)

Φp∞[0 ↔ Mx by an open dual path ]

]
+

1
(p − pc)n

log Φp
∞[Wall(0, rx,

√
r)].

Now we consider a double sequence M ↑ ∞, p ↓ pc such that M(p − pc)/ logM ↑ ∞ and
we suppose also that (p − pc)

√
n/M ↑ ∞. Then, by proposition 4 we have that

• q

(p − pc)n
∼ 1

(p − pc)M

• lim
M,p

1
(p − pc)M

log Φp
∞[0 ↔ Mx by an open dual path ] = −τc

• lim
n,M,p

log
[
1 − 4n3/2 exp(−λ(p − pc)

√
n)

Φp∞[0 ↔ Mx by an open dual path ]

]
= 0.

Since r < M we have by the finite energy property that there exist two constants c, λ > 0
such that Φp

∞[Wall(0, rx,
√

r)] ≥ c exp(−λM) thus, in the regime specified above we have
that

lim
n,M,p

1
(p − pc)n

log Φp
∞[Wall(0, rx,

√
r)] = 0.

Thus, from (80) we get that for every sequence (n, p) → (∞, pc) such that there exists
M satisfying (p − pc)

√
n/M ↑ ∞ and M(p − pc)/ logM ↑ ∞ then

lim inf
(n,p)

− 1
(p − pc)n

log Φp
∞[Wall(0, nx,

√
n)] ≥ τc.

The result for the finite volume measure Φw,p
Λ(n) follows from lemma 14. �

6.2. Proof of the lower bound

Now we have all the ingredients to complete the last part of the large deviation
principle, namely the proof of the lower bound.

Proposition 31. Let a > 5 and ν ∈ M(Q). If n ↑ ∞ and β ↓ βc in such a way
that n(β − βc)a ↑ ∞ then for any weak neighborhood U of ν

lim inf
(n,p)

1
n(β − βc)

log μ+
Λ(n)[σn ∈ U ] ≥ −J (ν).
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Proof. Let ν ∈ M(Q). The statement is not trivial only if J (ν) < +∞. In this case,
by the definition of the rate function J , there exists a Borel set A of Q such that ν
is the measure with density −1A + 1Q\A with respect to the Lebesgue measure and
J (ν) = τcP(A). Let U be a weak neighborhood of ν and let ε > 0. By lemma 29, there
exists a polyhedral set D such that D ⊂

◦
Q, the measure ν̃ with density −1D + 1Q\D

with respect to the Lebesgue measure belongs to U and P(D) < P(A)+ε. By definition,
the boundary ∂D is a union of s segments included in Q

◦
, which we denote by [ai, ai+1],

1 ≤ i ≤ s. Thus ∑
1≤i≤s

|ai − ai+1|2 ≤ P(A) + ε .

Now we will give a lower bound for the probability that σn stays in a neighborhood of
ν̃. Let f be a continuous function on Q. For reasons that will be clear a bit later, we
choose

(81) δ =
θ

6(1 + θ)(P(Q) + P(D))
.

In order to evaluate the probability that |σn(f)− ν̃(f)| ≤ ε, we assume that we are in a
regime where n ↑ ∞ and p ↓ pc in such a way that nδ ↑ ∞ and rescale the lattice by a
factor L = �δn�. Next, we define the sets

A = {y ∈ Z2 : Bn(y) ∩ Q �= ∅},

and
E = {y ∈ A : Bn(y) ∩ Dc = ∅} , F = {y ∈ A : Bn(y) ∩ D = ∅}.

By choosing p close enough to pc, we can assume that

(82) L2

⎛⎝Q \
( ⋃

y∈E∪F

Bn(y)
)⎞⎠ ≤ 6(P(Q) + P(D))δ.

Moreover |E| + |F | ≤ 1/δ2. The set E (respectively F ) can be regarded as a coarse
graining of the region inside D (respectively outside D). To evaluate σn(f) − ν̃(f) we
will restrict ourselves to an event E that gives nice properties to the blocks and such that
E has the right probability of decay. For this let us define the block process (Y (x), x ∈ Z2)
as the indicator functions of the events

R(B′(x), L1/8) ∩ V (B(x), ε) ∩ W (B(x), ε) , x ∈ Z2 .

We choose E to be the intersection of the events

{Y (x) = 1} , x ∈ E ∪ F , Wall(Ai, Ai+1, n,
√

n) , 1 ≤ i ≤ s,
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where Ai is a site on the dual of Λ(n) that is closest to nai. Let us evaluate the probability
of E :
(83)

P+
n (E) ≥

P+
n

[ ⋂
x∈E∪F

{Y (x) = 1}|
⋂

1≤i≤s

Wall(Ai, Ai+1, n,
√

n)
]

Φw,p
Λ(n)

[ ⋂
1≤i≤s

Wall(Ai, Ai+1, n,
√

n)
]
.

First observe that
⋂

1≤i≤s Wall(Ai, Ai+1, n,
√

n) occurs outside the set
⋃

x∈E∪F B̃′(x),
where

B̃′(x) =
{

y ∈ Z2 : d(x, B̃(x)) ≤ L/10
}

.

Let a > 5. The estimates of lemmas 16, 17, 18 ensure that, uniformly over the boundary
conditions on B′(x), the probability P+

n

[
Y (x) = 1

]
goes to one when n ↑ ∞ and p ↓ pc

in such a way that

(84) n(p − pc)aδ(p) ↑ ∞.

Thus by [40] the first factor of (83) goes to 1. On the other hand, by the FKG inequality
and by lemma 30, if n > (p − pc)−a then

lim inf
n,p

1
n(p − pc)

log Φw,p
Λ(n)

⎡⎣ ⋂
1≤i≤s

Wall(Ai, Ai+1, n,
√

n)

⎤⎦ ≥ −
∑

1≤i≤s

|Ai+1 − Ai|2τc.

Combining the previous inequalities we get

(85) lim inf
n,p

1
n(p − pc)

log P+
n [E ] ≥ −τcP(A) − τcε.

Now we are left with the evaluation of |σn(f) − ν̃(f)| when E occurs. Suppose that E
occurs and let Ei, i ∈ I (respectively F j , j ∈ J) be the connected components of E
(respectively F ). For i ∈ I (respectively j ∈ J), all the crossing clusters of the good
blocks B(x), x ∈ Ei (respectively x ∈ F j) are connected and belong to one big cluster
that we denote by Ci

− (respectively Cj
+). The events Wall(Ak, Ak+1, n,

√
n), 1 ≤ k ≤ s

isolate completely the set E from F , thus for every i ∈ I and j ∈ J , the two clusters Ci
−

and Cj
+ are disjoint and moreover Ci− cannot be connected to ∂Λ(n). Now suppose for

a while that all the clusters Ci
−, i ∈ I, are colored negatively and that all the clusters

Cj
+, j ∈ J , are colored positively. We will see later that this restriction does not decrease

the probability too much.
Next, we define

S =
⋃

y∈E∪F

{
C ⊂ B(y) : C ∩ ∂inB(y) = ∅} ,
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and keeping in mind the suppositions made in the last paragraph, we do the following
decomposition

|σn(f) − ν̃(f)| ≤ 1
θn2

∣∣∣ ∑
C∈S

σ(C)
∑
x∈C

f(x/n)
∣∣∣+ 1

θn2

∣∣∣ ∑
y∈E∪F

∑
x∈B(y)\C(y)

x↔∂inB(y)

σ(x)f(x/n)
∣∣∣

+
∣∣∣ ∑

y∈E∪F

(σ(C(y))
θn2

∑
x∈C(y)

f(x/n) −
∫

Bn(y)

f(x) dν̃(x)
)∣∣∣

+ |
∫

Q\∪y∈E∪F Bn(y)

f(x)(dσn(x) − dν̃(x))|.

The second and the third term can be bounded as in the proof of the exponential conti-
guity by using the properties of the good blocks and the imposed coloring of the clusters
(Ci

−, i ∈ I) and (Cj
+, j ∈ J). To deal with the fourth term of the last inequality, we use

(81) and (82) to get

|σn(f) − ν̃(f)| ≤ 1
θn2

∣∣∣ ∑
C∈S

σ(C)
∑
x∈C

f(
x

n
)
∣∣∣+ 2ε||f ||∞ + ε(ε + 4)||f ||∞.

Thus, the estimate burns down to the analysis of the deviations of the first term in
the last inequality. Let E ′ be the event E intersected with the color constraint made
above. By the same sort of computations than in the proof of the exponential contiguity,
we obtain

P+
n

[
1

θn2

∣∣∣ ∑
C∈S

σ(C)
∑
x∈C

f(
x

n
)
∣∣∣ > ε||f ||∞

∣∣∣∣∣ E ′
]
≤ P+

n

[
1
|S|

∣∣∣ ∑
C∈S

YC

∣∣∣ >
εθ

(δn)1/4

∣∣∣∣∣ E ′
]

,

where YC = σ(C)
∑

x∈C f(x/n)/(||f ||∞(δn)1/4). Fix ω ∈ E ′. Observe that under the
measure P+

n [·|ω], the random variables (YC , C ∈ S) are independent and take their values
in [−1, 1]. So, we can apply theorem 9 to control this deviation and we get

μ+,β
n

(|σn(f) − ν̃(f)| ≥ ||f ||∞(7ε + ε2)
) ≥ 1

2|E|+|F |

(
1 − exp

(
− cε2θ3/2n3/2

))
P+

n [E ],

where c is a positive constant.
We can do the same reasoning with any finite number of continuous functions f1, . . . , fk

to get

μ+
n [∀l ∈ {1, . . . , k} |σn(fl) − ν̃(fl)| ≥ ε] ≥ 1

2|E|+|F |

(
1 − exp

(
− cε2θ3/2n3/2

))
P+

n [E ].

Finally, since |E| + |F | ≤ 1/δ2(p) and by (85) we get that if n ↑ ∞ and p ↓ pc in such a
way that (84) is satisfied, then for every weak neighborhood U of ν,

∀ε > 0 lim inf
n,β

1
n(β − βc)

log μ+,β
n [σn ∈ U ] ≥ −J (ν) − ετc.

Sending ε to 0 yields the desired lower bound. �
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