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Abstract: We prove a sufficient set of conditions for a sequence of finite
measures on the space of cadlag measure-valued paths to converge to the
canonical measure of super-Brownian motion in the sense of convergence
of finite-dimensional distributions. The conditions are convergence of the
Fourier transform of the r-point functions and perhaps convergence of the
“survival probabilities”. These conditions have recently shown to be satis-
fied for a variety of statistical mechanical models including critical oriented
percolation, the critical contact process, and lattice trees at criticality, all
above their respective critical dimensions.

1. Motivation

In the last few years a number of rescaled models from interacting particle
systems and statistical physics have been shown to converge to the canonical
measure of super-Brownian motion. The models include critical oriented perco-
lation above 4 dimensions [6], critical contact processes above 4 dimensions [5]
and critical lattice trees above 8 dimensions [7], all for sufficiently spread-out
kernels. In each of these cases what is actually proved is convergence of the
Fourier transforms of the moment measures (or r-point functions). Our modest
objective here is to translate this result into the more conventional probabilistic
language of weak convergence of stochastic processes. To those well-versed in
weak convergence arguments we fear this may be one of the proverbial much-
needed gaps in the literature, but to others who have complained to us, it is an
irritant that should be spelled out once and for all.

The limiting measure is a sigma-finite measure (not a probability) on the
space of continuous measure-valued paths which presents some additional mi-
nor worries. The full convergence on path space remains open in all of the above
settings due to the absence of any tightness result on path space. Even the nat-
ural statement of convergence of finite-dimensional distributions requires con-
vergence of the survival probabilities (see Proposition 2.4 below), a result which
was only recently discovered for critical oriented percolation [2, 3] and is cur-
rently being pursued in the other contexts mentioned above. So in the end we
thought someone should advertise this state of affairs and we have acquiesced
in the writing of this note. If you are reading this in a journal at least one editor
and/or referee has agreed with us. Those who would like to see even more details
may find them on the webpage of one of us,
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http://euridice.tue.nl/~mholmes/fullconvergence.pdf

2. Introduction

Consider a discrete time, critical nearest neighbour branching random walk on
Zd starting with a single particle at the origin. That is at time n ∈ Z+ each
individual gives birth to a random number of offspring which immediately take
a step to a randomly chosen nearest neighbour of its parent. Assume each parent
dies immediately after giving birth, that the offspring distribution has mean one
and finite variance γ > 0, and each of the offspring laws and random walk steps
are independently chosen.

Let Bn = {Xα
n : α ∈ In} denote the set of locations of particles in Zd alive at

time n. We have suppressed the details of the labelling system (see, e.g. section
II.3 in [8]) but as multiple occupancies are allowed some labelling scheme is
needed here. Extend the branching random walk to all times t ≥ 0 by making
it a right-continuous step function. In order to describe the scaling limit, we
represent the model as a cadlag measure-valued process by setting

Xn
t =

C1

n

∑
α∈Int

δXα
nt/(C2

√
n) ≡

C1

n

∑
x:C2

√
nx∈Bnt

δx. (1)

The reader has every right to complain about the last expression as one must
sum over sites in Bnt according to their occupancy. This is to make subsequent
formulae appear more natural; one can ignore it for now. With probability 1,
Xn
t is a finite measure for all n ∈ Z+ and t ≥ 0, so that {Xn

t }t≥0 ∈ D(MF (Rd)),
where MF (E) denotes the space of finite measures on E with the topology of
weak convergence, and D(E) denotes the space of cadlag E-valued paths with
the Skorokhod topology.

The extinction time S : D(MF (Rd)) → [0,∞] is defined by

S(X) ≡ inf{s > 0 : Xs = 0M}, (2)

where 0M is the zero measure on Rd. Let

D∗ ≡ {X ∈ D(MF (Rd)) : S(X) > 0, Xt = 0M ∀t ≥ S}, (3)

with the topology inherited from D(MF (Rd)). Next we define a sequence of
measures µn ∈MF (D∗) by

µn(•) ≡ C3nP({Xn
t }t≥0 ∈ •). (4)

For the branching random walk we set C1 = γ−1, C2 = d−1/2 and C3 = 1.
Let Mσ(D∗) denote the σ-finite measures on D∗ which assign finite mass to

{S > ε} for all ε > 0, with the topology of weak convergence defined as follows:

Definition 2.1 (Weak convergence). Let {νn : n ∈ N ∪ ∞} ⊂ Mσ(D∗). We
write νn

w=⇒ ν∞ if for every ε > 0,

νεn(•) ≡ νn(•, S > ε) w=⇒ ν∞(•, S > ε) ≡ νε(•), as n→∞, (5)
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where the convergence is in MF (D(MF (Rd))).

It is a standard result in the superprocess literature (see for example [8] Theo-
rem II.7.3.) that there exists N0 ∈Mσ(D∗), supported by the continuous paths
in D∗, and called the canonical measure of super-Brownian motion (CSBM),
such that µn

w=⇒ N0. In [8] one is working with branching Brownian motion
instead of branching random walk but it is trivial to modify the arguments. We
have chosen our constants Ci so that the branching and diffusion parameters of
our limiting super-Brownian motion are both equal to one.

Let l ≥ 1, and ~t = {t1, . . . , tl} ∈ [0,∞)l. We use π~t : D∗ →MF (Rd)l to denote
the projection map satisfying π~t(X) = (Xt1 , . . . Xtl). The finite-dimensional
distributions of ν ∈Mσ(D∗) are the measures νεπ−1

~t
∈MF (MF (Rd)l) given by

νεπ−1
~t

(H) ≡ νε ({X : π~t(X) ∈ H}), H ∈ B(MF (Rd)l). (6)

Definition 2.2 (Convergence of f.d.d). Let {νn : n ∈ N ∪∞} ⊂ Mσ(D∗). We
write νn

f.d.d=⇒ ν∞ if for every ε > 0, m ∈ N, and ~t ∈ [0,∞)m,

νεnπ
−1
~t

(•) w=⇒ νε∞π
−1
~t

(•), as n→∞, (7)

where the convergence is in MF (MF (Rd)m).

It is clear that weak convergence (Definition 2.1) implies convergence of finite-
dimensional distributions (Definition 2.2) but that an additional tightness con-
dition on νn is needed for the converse.

We now work in a more abstract setting (including the above) in which {µn}
is a sequence of finite measures on D∗. For k ∈ Rd, let φk(x) = eik·x and
write Eµn [Y ] for

∫
Y dµn, and Xt(φ) for

∫
φXt(dx) respectively. Consider the

following convergence condition on the moment measures of µn:

Eµn

[
r−1∏
i=1

Xti(φki
)

]
→ EN0

[
r−1∏
i=1

Xti(φki
)

]
, for r ≥ 2,~t ∈ [0,∞)r−1,~k ∈ Rd(r−1).

(8)
Of course (8) does hold for the above µn but our interest in this condition

arises from a number of models, such as oriented percolation, in which Bt is the
(finite) set of occupied sites in Zd (at most one particle per site) at time n. For
r ≥ 2 and ~t ∈ [0,∞)r−1 the r-point functions for this model are B~t(~x) = P(xi ∈
Bti , i = 1, . . . , r − 1), while the r̂-point functions are the Fourier transforms of
these quantities,

B̂~t(~k) =
∑
~x

ei
~k·~xB~t(~x), ~k ∈ Rd(r−1).

Now define Xn
t ∈ MF (Rd) by the extreme right-hand side of (1) and assume

that µn given by (4) defines a finite measure on D∗. An easy calculation then
shows that

Cr−1
1 C3

nr−2
B̂n~t

(
~k

C2
√
n

)
= Eµn

[
r−1∏
i=1

Xti(φki
)

]
. (9)
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Therefore, the asymptotic formulae for the r̂-point functions for sufficiently
spread out critical rescaled oriented percolation (d > 4), critical rescaled lattice
trees (d > 8), and critical rescaled contact processes (d > 4) derived in [6], [7]
and work in progress in [5], respectively, immediately implies (8) in each of these
cases. Moreover in each of these models it is known that µn is a finite measure
supported by D∗ as is required above.

In what follows we use DF to denote the set of discontinuities of a function
F . A function Q : MF (Rd)m → R is called a multinomial if Q( ~X) is a real
multinomial in {X1(1), . . . , Xm(1)}. A function F : MF (Rd)m → C is said to be
bounded by a multinomial (|F | ≤ Q) if there exists a multinomial Q such that
|F ( ~X)| ≤ Q( ~X) for every ~X ∈MF (Rd)m. The main results of this paper are the
following two propositions. By the above, the first result is applicable in any of
the three settings described above.

Proposition 2.3. Let {µn}n≥1 be a sequence of finite measures on D∗ such
that (8) holds. Then for every s > 0, λ > 0, m ≥ 1, ~t ∈ [0,∞)m and every
Borel measurable F : MF (Rd)m → C bounded by a multinomial and such that
N0π

−1
~t

(DF ) = 0,

1.
Eµn

[
Xs(1)F ( ~X~t)

]
→ EN0

[
Xs(1)F ( ~X~t)

]
, (10)

and
2.

Eµn

[
F ( ~X~t)I{Xs(1)>λ}

]
→ EN0

[
F ( ~X~t)I{Xs(1)>λ}

]
. (11)

For critical oriented percolation above the critical spatial dimension of 4 (and
for sufficiently spread out kernels) [2, 3] show that

µn(S > ε) → N0(S > ε) for every ε > 0. (12)

The corresponding results for critical lattice trees and critical contact processes
are conjectured to be true above the critical dimension, and are currently work
in progress [4, 5]. The next result allows us to strengthen the conclusion of
Proposition 2.4 under (12). The latter is clearly necessary for the convergence
of f.d.d established below (consider the test function 1).

Proposition 2.4. Let {µn}n≥0 be a sequence of finite measures on D∗ such
that (8) and (12) hold. Then µn

f.d.d=⇒ N0.

In particular the results of [6, 2, 3] together with Proposition 2.4 imply that
above the critical dimension and at the critical occupation probability, the scal-
ing limit (in the sense of finite-dimensional distributions) of sufficiently spread-
out oriented percolation is CSBM. Tightness, and hence a full statement of
weak convergence, remains an open problem. We show in Section 4 that both
Propositions are consequences of standard exponential moment bounds for N0

and the following theorem in which F denotes a class of C-valued bounded con-
tinuous functions that contains the constant function 1 and that is convergence
determining for MF (Rd). By convention, an empty product is defined to be 1.
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Theorem 2.5. Let µn, µ ∈ MF

(
D(MF (Rd))

)
. Suppose that for every l ∈ Z+

and every ~t ∈ [0,∞)l, ~m ∈ Zl+ we have

1. there exists a δ = δ(~t) > 0 such that for all θi < δ, Eµπ−1
~t

[e
Pl

i=1 θiXi(1)] <
∞, and

2. for every φij ∈ F ,

Eµnπ
−1
~t

 l∏
i=1

mi∏
j=1

Xi(φij)

→ Eµπ−1
~t

 l∏
i=1

mi∏
j=1

Xi(φij)

 <∞. (13)

Then for every m ∈ N and every ~t ∈ [0,∞)m, µnπ−1
~t

w=⇒ µπ−1
~t

.

That convergence of the r̂-point functions (r ≥ 2) is not sufficient for the
conclusion of Lemma 3.2 can be illustrated by considering the measures µn, µ ∈
MF

(
D(MF (Rd))

)
defined by µn = nδn−2δ0 and µ = δ0M

. This means that µn
puts all of its mass (n) on the measure-valued process that is the measure δ0/n2

for all time, while µ puts all its mass on the process that is the zero measure for
all time. Clearly no subsequence of {µn}n∈N can converge in MF

(
D(MF (Rd))

)
.

In fact it is easy to show that except for the l = 0 case of the second condition,
for these choices of µn and µ, both conditions of Theorem 2.5 hold.

The remainder of this paper is organised as follows. In Section 3 we prove
Theorem 2.5. In Section 4 we prove Propositions 2.3 and 2.4.

3. Proof of Theorem 2.5

In this section we prove Theorem 2.5 as a consequence of Lemmas (3.2–3.7).
Lemma 3.2 is standard and states that if a sequence of finite measures is tight
then it has a convergent subsequence. Lemma 3.3 establishes tightness of the
{µnπ−1

~t
: n ∈ N} for each fixed ~t. Thus every subsequence of the µnπ−1

~t
has a

further subsequence that converges. Lemma 3.4 states that any limit point of the
{µnπ−1

~t
: n ∈ N}must have the same moments (13) as µπ−1

~t
. Lemma 3.5 extends

equality of the moments on the right-hand side of (13) to all φij ≥ 0 bounded
and continuous. Lemmas 3.6 and 3.7 together imply that under condition 1.
of Theorem 2.5, equality of the moments in Lemma 3.5 implies equality of the
underlying finite measures on MF (Rd)m. Taken together they show that since
all subsequential limit points have the same moments (13), the limit points
all coincide, and thus the whole sequence converges to that limit point. Thus,
Theorem 2.5 follows immediately from the Lemmas proved in this section.

Recall the notion of tightness for finite measures.

Definition 3.1. A set of finite measures F ⊂MF (E) on the Borel σ-algebra of
a metric space E is tight if supµ∈F µ(E) <∞ and for every η > 0 there exists
K ⊂ E compact such that supµ∈F µ(Kc) < η.

Lemma 3.2. If F ⊂ MF (E) is tight, then every sequence in F has a further
subsequence which converges in MF (E) (weak convergence).
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Proof. Let {µn} ⊂ F . If there exists a subsequence µnl
such that µnl

(E) → 0
then we have µnl

→ 0M by definition (for every bounded continuous f ....)
and we are done. So without loss of generality there exists η0 > 0 such that
infn µn(E) = η0. Therefore

Pn(•) ≡
µn(•)
µn(E)

(14)

are probability measures. Let η > 0. Since the µn are tight there exists K ⊂ E
compact such that supn µn(Kc) < ηη0. Therefore

sup
n
Pn(Kc) = sup

n

µn(Kc)
µn(E)

<
ηη0
η0

= η, (15)

so {Pn} is tight as a set of probability measures. Therefore there exists a sub-
sequence Pnk

→ P∞.
Since {µnk

} is tight, {µnk
(E)} is a bounded, real-valued sequence, and there-

fore has a convergent subsequence µn∗k(E) → C ≥ η0. So µn∗k/(µn∗k(E)) → P∞
and µn∗k(E) → C > 0 and therefore µn∗k → CP∞ ∈MF (E) as required.

Lemma 3.3. Let µn, µ ∈MF

(
D(MF (Rd))

)
. Suppose that Eµn

[1] → Eµ[1] <∞
and that for every t ∈ [0,∞), and every φ ∈ F ,

Eµnπ
−1
t

[X(φ)] → Eµπ−1
t

[X(φ)] <∞. (16)

Then for each m ∈ Z+ and every ~t ∈ [0,∞)m, the set of measures {µnπ−1
~t

: n ∈
N} is tight on MF (Rd)m.

Proof. The m = 0 case is trivial since Eµn [1] → Eµ[1] <∞.
We next prove the m = 1 case. Let ε > 0, t ≥ 0. Define the mean measures

νn, ν ∈ MF (Rd) by νn = Eµnπ
−1
t

[X], and ν = Eµπ−1
t

[X]. Then (16) implies
νn → ν in MF (Rd) and supn νn(Rd) ≡ L <∞. Choose M such that L/M < ε/2.
Then by Markov’s inequality,

sup
n
µnπ

−1
t (X(Rd) > M) ≤ L

M
<
ε

2
. (17)

Fix η > 0. There exists K−1 ⊂ Rd compact such that ν(Kc
−1) < η/2. Fur-

thermore there exists K0 ⊂ Rd compact such that ν(Kc
0) ≤ ν(Kc

−1) (e.g. the set
K0 = {x : d(x,K−1) ≤ 1}). Since νn → ν in MF (Rd) and Kc

0 is closed,

lim sup
n

νn(Kc
0) ≤ ν(Kc

0) <
η

2
. (18)

It follows easily that there is a compact subset K of Rd such that

sup
n
νn(Kc) < η. (19)

Another application of Markov’s inequality implies that

sup
n
µnπ

−1
t

(
X(Kc) > η

1
4

)
≤ η−1/4 sup

n
Eµnπ

−1
t

[X(Kc)] < η3/4. (20)
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Choose η
1
4 = 2−j . Then there exists Kj ⊂ Rd compact such that

sup
n
µnπ

−1
t

(
X(Kc

j ) >
1
2j

)
≤ 1

23j
. (21)

Choose N so that 81−N < ε/2 and let

K ≡
⋂
j≥N

{
X : X(Kc

j ) ≤
1
2j

}⋂
{X : X(Rd) ≤M}. (22)

Now K is (sequentially) compact in MF (Rd) (see for example in the proof of
Theorem II.4.1 of [8]), and

Kc =
⋃
j≥N

{
X : X(Kc

j ) >
1
2j

}⋃{
X : X(Rd) > M

}
. (23)

Thus, (21) and (17) imply

sup
n
µnπ

−1
t (Kc) ≤

∞∑
j=N

1
23j

+
ε

2
≤ 1

8N−1
+
ε

2
< ε, (24)

which verifies that the µnπ−1
t are spatially tight, for m = 1.

For m > 1 and ~t ∈ [0,∞)m, we have from (24) that for each i ∈ {1, . . . ,m}
there exists Ki ⊂ MF (Rd) compact such that supn µnπ

−1
ti (Kc

i ) < ε/m. Let
K = K1 ×K2 × · · · ×Km. Then K ⊂ (MF (Rd))m is compact and

sup
n
µnπ

−1
~t

(
{ ~X : ~X ∈ Kc}

)
≤ sup

n

m∑
i=1

µnπ
−1
ti (Kc

i ) < ε, (25)

which gives the result.

Lemma 3.4. Fix l ≥ 0 and ~t ∈ [0,∞)l. Suppose that the second hypothesis
of Theorem 2.5 holds for µn, µ ∈ MF (D(MF (Rd))), for this ~t and for every
~m ∈ Zl+. If µnk

π−1
~t

w=⇒ ν in MF

(
(MF (Rd))l

)
, then for each ~m ∈ Zl+ and

φij ∈ F ,

Eν

 l∏
i=1

mi∏
j=1

Xi(φij)

 = Eµπ−1
~t

 l∏
i=1

mi∏
j=1

Xi(φij)

 . (26)

Proof. The l = 0 case is trivial, so we may assume that l > 0. Let µnk
π−1
~t

w=⇒ ν.
Then in particular we have µnk

π−1
~t

(1) → ν(1). Assume ν(1) > 0. Then there
exists k0 such that for every k ≥ k0, ν(1)/2 ≤ µnk

π−1
~t

(1) ≤ 2ν(1) and we define
for k ≥ k0 the probability measures,

Pnk
(•) ≡

µnk
π−1
~t

(•)
µnk

π−1
~t

(1)
, P (•) ≡ ν(•)

ν(1)
. (27)
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Then we have that Pnk

w=⇒ P as probability measures. By Skorokhod’s theorem
we may construct ~Xnk with laws Pnk

, and ~X with law P such that ~Xnk → ~X a.s.
Our hypotheses and a moments thought imply that if φij ∈ F , then F~φ( ~X

nk) =∏l
i=1

∏mi

j=1X
nk
i (φij) are L2 bounded and thus uniformly integrable. Therefore

the left-hand side of (26) is limk→∞Eµnk
π−1

~t
(1)[F~φ( ~X

nk)] and so is the right-
hand side by hypothesis.

Consider now the case that ν(1) = 0. By Cauchy-Schwarz,Eµnk
π−1

~t

 l∏
i=1

mi∏
j=1

Xi(φij)

2

≤ Eµnk
π−1

~t

[
12
]
Eµnk

π−1
~t


 l∏
i=1

mi∏
j=1

Xi(1)

2
 .

(28)
Now 1 is a bounded continuous function and µnk

π−1
~t

→ 0M so the first expecta-

tion on the right converges to 0. Since supk Eµnk
π−1

~t

[(∏l
i=1

∏mi

j=1Xi(1)
)2
]
<

∞ we obtain

Eµnk
π−1

~t

 l∏
i=1

mi∏
j=1

Xi(φij)

→ 0. (29)

Since also

Eµnk
π−1

~t

 l∏
i=1

mi∏
j=1

Xi(φij)

→ Eµπ−1
~t

 l∏
i=1

mi∏
j=1

Xi(φij)

 , (30)

we have that Eµπ−1
~t

[∏l
i=1

∏mi

j=1Xi(φij)
]

= 0 = Eν

[∏l
i=1

∏mi

j=1Xi(φij)
]

which
verifies the result.

Lemma 3.5. Suppose l ≥ 0, µ, µ′ ∈MF

(
(MF (Rd))l

)
. If

Eµ

 l∏
i=1

mi∏
j=1

Xi(φij)

 = Eµ′

 l∏
i=1

mi∏
j=1

Xi(φij)

 (31)

holds (and both quantities are finite) for every φij ∈ F , then (31) holds for all
bounded, continuous φij ≥ 0.

Proof. If l = 0 or
∑
mi = 0 then the conclusion is trivial so we may assume

that l > 0 and
∑
mi > 0. Since 1 ∈ F , we have Eµ[

∏l
i=1

∏mi

j=1Xi(1)] <∞. Let

φij ∈ F and ϕ((xij)) =
∏l
i=1

∏mi

j=1 φij(xij). Applying Fubini to (31), using the
fact that the φij ∈ F are bounded we have

∫
· · ·
∫
ϕEµ

 l∏
i=1

mi∏
j=1

Xi(dxij)

 =
∫
· · ·
∫
ϕEµ′

 l∏
i=1

mi∏
j=1

Xi(dxij)

 . (32)
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Since F is a determining class for MF (Rd) one can verify that for any r ≥ 1,
the set of functions Fr ≡ {

∏r
i=1 φi(xi) : φi ∈ F} is a determining class for

MF (Rdr) (using the fact that this class of functions determines the conditional
distribution of the nth coordinate given the first n − 1 and proceeding by in-
duction). Therefore the products of φij in (32) uniquely determine the measure
ν on Rd

P
mi defined by ν(d~x) = Eµ[

∏l
i=1

∏mi

j=1Xi(dxij)]. Thus (32) holds for
all φij bounded, continuous and applying Fubini again we get the result.

In the following lemma, Bb(Rd,R+) denotes the bounded, non-negative real-
valued functions on Rd, andD0

bp
denotes the bounded pointwise closure ofD0 ⊂

Bb(Rd,R+), i.e. the smallest set containing D0 that is closed under bounded
pointwise convergence.

Lemma 3.6. Suppose µ, µ′ ∈MF

(
(MF (Rd))m

)
and assume D0 ⊂ Bb(Rd,R+)

satisfies D0
bp

= Bb(Rd,R+). If for all hj ∈ D0

Eµ

[
e−
Pm

j=1Xi(hj)
]

= Eµ′
[
e−
Pm

j=1Xi(hj)
]
, (33)

then µ = µ′.

Proof. If m = 0 the conclusion is trivial as both measures are on the single point
space with same total mass, so we may assume that m > 0. We follow the proof
of Lemma II.5.9 of [8].
(a) Equation (33) holds for every ~φ ∈ (Cb(Rd,R+))m. We verify the
stronger result that the class L of ~φ for which (33) holds contains (Bb(Rd,R+))m.

Let ~φn ∈ L be such that ~φn
bp→ ~φ. Now by dominated convergence (using the

fact that µ is a finite measure and dominating by e0 = 1),

Eµ

[
e−
Pm

j=1Xi(φj)
]

= Eµ

[
lim
n→∞

e−
Pm

j=1Xi(φj,n)
]

= lim
n→∞

Eµ

[
e−
Pm

j=1Xi(φj,n)
]

= lim
n→∞

Eµ′
[
e−
Pm

j=1Xi(φj,n)
]

= Eµ′
[
e−
Pm

j=1Xi(φj)
]
.

(34)

Thus L is closed under bounded pointwise convergence. Since D0 ⊂ L by hy-
pothesis this shows that (Bb(Rd,R+))m ⊂ L as required.

Before proceeding to the next step we define e~φ : (MF (Rd))m → R+ by
e~φ(~ν) = exp{−

∑m
j=1 νj(φj)}, and let

H ≡
{

Φ ∈ Bb((MF (Rd))m,R) : Eµ[Φ( ~X)] = Eµ′ [Φ( ~X)]
}

(35)

and
H0 =

{
e~φ : ~φ ∈ (Cb(Rd,R+))m

}
. (36)
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(b) H contains all bounded σ(H0) measurable functions. We show that

H is a linear class containing 1, closed under
bp→, and that H0 ⊂ H is closed

under products. Once we achieve this, we have by Lemma II.5.2 of [8] that H
contains all bounded σ(H0)-measurable functions.

1) that H is a linear class is immediate by linearity of the integral.
2) 1 ∈ H by taking ~φ = ~0 and using part (a).

3) Let Φn ∈ H,Φn
bp→ Φ. Then Φ ∈ H by dominated convergence since µ, µ′

are finite measures.
4) Let f1, f2 ∈ H0. Then fi = eφi

and

f1f2 = e−
Pm

j=1Xj(φj,1)e−
Pm

j=1Xj(φj,2) = e−
Pm

j=1Xj(φj,1+φj,2) = eφ1+φ2 ∈ H0.
(37)

5) H0 ⊂ H was verified in part (a).

(c) There exists a countable convergence determining set for (MF (Rd))m.
We use the construction of Proposition 3.4.4 of [1] to obtain a countable set
V ⊂ (Cb(Rd,R+))m such that ~νn → ~ν in (MF (Rd))m if and only if ~νn(~φ) → ~ν(~φ)
for every ~φ ∈ V . Let {~q1, ~q2, . . . } be an enumeration of Qd, a dense subset of
Rd. For each (i, j) ∈ N2 define

fi,j(~x) ≡ 2 (1− j|~x− ~qi|) ∨ 0, (38)

and for A ⊂ N2 define

gmA (~x) ≡

( ∑
i, j ≤ m
(i, j) ∈ A

fi,j

)
∧ 1. (39)

It is an exercise left for the reader to verify that

V0 ≡
{
gmA : m ∈ N, A ⊂ {1, . . . ,m}2

}
⊂ Cb(Rd), (40)

is a countable convergence determining set for MF (Rd). It follows that V =
{(φ1, . . . , φm) : φi ∈ V0 ∪ {0}} is a countable convergence determining set for
(MF (Rd))m.

In order to proceed with the next step of the proof we define

G ≡ σ(e~φ : ~φ ∈ V ). (41)

(d) B((MF (Rd))m) ⊂ G ⊂ σ(H0). The second inclusion is trivial since V ⊂
(Cb(Rd,R))m. We claim that G contains all the open sets in (MF (Rd))m and
hence contains B((MF (Rd))m). Define the metric

%′(~µ, ~ν) ≡
m∑
j=1

∞∑
n=1

|
∫
φndµi −

∫
φndνi|

2n
, (42)
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where {φ1, φ2, . . . } is some fixed enumeration of V0∪{0}. It is a standard result
that %′ induces the topology of weak convergence.

Let U be an open set in the topology of weak convergence. Then U is also open
in ((MF (Rd))m, %′). Now MF (Rd) is separable so every open set is a countable
union of balls B%′(~ν, r) and therefore to show that U ∈ G, it is enough to show
that B%′(~ν, r) ∈ G. But

B%′(~ν, r) =

~µ :
m∑
j=1

∞∑
n=1

|
∫
φndµj −

∫
φndνj |

2n
< r

 ∈ G (43)

since an infinite series of measurable functions is measurable. Thus G contains
all the open sets of (MF (Rd))m and therefore contains B((MF (Rd))m).
(e) Conclusion. We have now verified that B((MF (Rd))m) ⊂ G ⊂ σ(H0).
Therefore every bounded continuous function is measurable with respect to
σ(H0). Furthermore we have that H contains all σ(H0)-measurable functions
(and in particular all the bounded continuous functions). Since µ = µ′ if and
only if

∫
fdµ =

∫
fdµ′ for all bounded continuous f : (MF (Rd))m → R, we have

proved the result.

Lemma 3.7. Let µ ∈MF

(
(MF (Rd))m

)
. Suppose there exists a δ > 0 such that

for all θi < δ,
Eµ

[
e
Pm

i=1 θiXi(1)
]
<∞. (44)

Then for every bounded continuous 0 ≤ ψi, the quantity Eµ
[
e−
Pm

i=1Xi(ψi)
]

is
uniquely determined by the collection of mixed moments {Eµ [

∏m
i=1Xi(hi)ni ] :

0 ≤ hi ≤ 1 is continuous, i = 1, . . . ,m.}

Proof. Without loss of generality we may assume that m > 0. Fix one particular
choice of ~h = (h1, . . . , hm) as above. For Rezi < δ, i = 1, . . . ,m, let

f(z1, . . . , zm) = Eµ[e~z·
~X(~h)].

Use (44), the Taylor expansion for the exponential function and Fubini’s theorem
to see that for ‖~z‖∞ < δ,

f(z1, . . . , zm) =
∞∑
l=0

1
l!
Eµ

 ∑
~n ∈ Zm

+ :P
ni = l

l!∏m
i=1 ni!

m∏
i=1

(ziXi(hi))ni

 .
Hence the mixed moments of the form

Eµ

[
m∏
i=1

Xi(hi)ni

]
, ni ∈ Z+ (45)

uniquely determine f(z) for ‖~z‖∞ < δ.
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Now let ~z be such that each Rezi < δ and note that 0 ≤ Xi(hi) ≤ Xi(1) for
0 ≤ hi ≤ 1. Then

lim
∆zi→0

∣∣∣∣∣
∫
e(~z+∆zi)· ~X(~h) − e~z·

~X(~h)

∆zi
dµ−

∫
Xi(hi)e~z·

~X(~h)dµ

∣∣∣∣∣
= lim

∆zi→0

∣∣∣∣∫ e~z·
~X(~h)

[
e∆zi·Xi(hi) − 1

∆zi
−Xi(hi)

]
dµ

∣∣∣∣
= lim

∆zi→0

∣∣∣∣∣
∫
e~z·

~X(~h)

[
∆zi

∞∑
l=2

(∆zi)l−2Xi(hi)l

l!

]
dµ

∣∣∣∣∣
≤ lim

∆zi→0
|∆zi|

∫
e
Pm

j=1 RezjXj(hj)Xi(hi)2e|∆zi|Xi(hi)dµ

= lim
∆zi→0

|∆zi|
∫
eRezi+ε+|∆zi|)Xi(hi)+

Pm
j 6=i RezjXj(hj)Xi(hi)2e−εXi(hi)dµ.

(46)

Now Xi(φi)2e−εXi(hi) ≤ Cε so this integral converges (uniformly in |∆zi| suf-
ficiently small) for all ~z such that Rezi + ε + |∆zi| < δ and Rezj < δ for all
j 6= i. This shows that for fixed z1, . . . , zi−1, zi+1, . . . , zm satisfying Rezj < δ
for j 6= i, f(~z) is analytic in Rezi < δ. Now use induction on i ≤ m + 1
to see that moments of the form (45) uniquely determine f(z1, . . . , zm) for
Rez1, . . . ,Rezi−1 < δ, |zi| ∨ · · · ∨ |zm| < δ. Here one used the aforementioned
analyticity in Rezi < δ in the induction step.

Finally if ψi ≥ 0 is bounded and continuous, we apply the above to hi =
ψi/‖ψi‖∞ ∈ [0, 1] and zi = −‖ψi‖∞ (set hi = 0 if ψi ≡ 0) to complete the
proof.

4. Applications of Theorem 2.5

In this section we prove Propositions 2.3 and 2.4, which relate the asymptotic
formulae for the r̂-point functions for various spread-out models above their
critical dimensions to the convergence to CSBM. Recall that φk(x) = eik·x. In
this section we fix our convergence determining class of functions for MF (Rd)
to be

F = {φk : k ∈ Rd}. (47)

The following Lemma will be used to verify the exponential moment hypoth-
esis of Theorem 2.5. The branching and diffusion parameters for N0 are taken
to be 1.

Lemma 4.1. For every b ≥ 0 the following hold.

1. For every λ > 0, N0(Xb(1) = λ) = 0.
2. For every ~t ∈ [0,∞)m there exists a δ(~t, b) > 0 such that for θi < δ

EN0

[
Xb(1)e

Pm
i=1 θiXti

(1)
]
<∞. (48)
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3. For every ~t ∈ [0,∞)m and every ε > 0 there exists a δ(~t, ε) > 0 such that
for θi < δ

EN0

[
e
Pm

i=1 θiXti
(1)I{S>ε}

]
<∞. (49)

Proof. By Theorem II.7.2(iii) of [8] we have for b > 0,

N0 (Xb(1) ∈ A) =
(

2
b

)2 ∫
A

e−
2
bxdx. (50)

Since also N0 (X0(1) > 0) = 0, the first assertion is trivial.
The other parts are also well-known but we include a proof for completeness.

As above we may assume b > 0 in part 2. Use the inequality

Xb(1) ≤ 1(S > b)CηeηXb(1) for each η > 0

to see that part 2 will follow from part 3.
For the last claim of the Lemma we abuse our notation and let EX0 also

denote expectation for our standard super-Brownian motion starting at X0. Let
Gt denote the canonical filtration generated by the coordinates Xs of our super-
Brownian motion for s ≤ t. If H : MF (Rd) → [0,∞) is continuous, then for
t ≥ s > 0,

EN0(H(Xt)|Gs) = EXs
(H(Xt−s)), N0 − a.e. (51)

This is easily derived, for example, from the convergence of branching random
walk to N0 mentioned in Section 2, the Markov property for branching random
walk, and the analogous convergence result for super-Brownian motion (e.g.
Theorem II.5.2 of [8]).

We may assume without loss of generality that 0 < ε < ti < ti+1 for each i.
Observe from (51) that

EN0

[
e
Pm

i=1 θiXti
(1)I{S>ε}

]
=EN0

[
EXtm−1

[
eθmXtm−tm−1 (1)

]
e
Pm−1

i=1 θiXti
(1)I{S>ε}

]
≤EN0

[
e2θmXtm−1 (1)e

Pm−1
i=1 θiXti

(1)I{S>ε}

]
,

(52)

where the inequality holds for θm sufficiently small depending on tm − tm−1 by
Lemma III.3.6. of [8]. The last line of (52) has no tm dependence and proceeding
by induction it is enough to show that for sufficiently small θ > 0,

EN0

[
eθXt1 (1)I{S>ε}

]
<∞. (53)

However for θ > 0 small enough (depending on ε) the left-hand side is

EN0

[
EN0

[
eθXt1 (1)|Gε

]
I{S>ε}

]
≤EN0

[
e2θXε(1)I{S>ε}

]
=EN0

[
e2θXε(1)I{Xε(1)>0}

]
=
(

2
ε

)2 ∫ ∞

0

e2θxe−
2x
ε dx,

(54)

where the last equality holds by (50). The last line of (54) is finite for sufficiently
small θ > 0 (depending on ε) and the result follows.
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4.1. Proof of Proposition 2.3.

Define µn,s,N0,s ∈MF

(
D(MF (Rd))

)
by

µn,s(A) =
∫
A

Xs(1)dµn, N0,s(A) =
∫
A

Xs(1)dN0. (55)

That these measures are finite follows from the fact that for s > 0,

µn,s
(
D(MF (Rd))

)
= Eµn

[Xs(1)] → EN0 [Xs(1)] <∞. (56)

For all l ≥ 0, ~m ∈ Zl+,

Eµn,sπ
−1
~t

 l∏
i=1

mi∏
j=1

Xi(φij)

 = Eµn

Xs(1)
l∏
i=1

mi∏
j=1

Xti(φij)


→ EN0

Xs(1)
l∏
i=1

mi∏
j=1

Xti(φij)


= EN0,sπ

−1
~t

 l∏
i=1

mi∏
j=1

Xi(φij)

 ,
(57)

where even in the l = 0 case, the presence of the factor Xs(1) ensures that the
convergence in (57) follows from (8).

By Lemma 4.1 we have that

EN0,sπ
−1
~t

[
e
Pm

i=1 θiXi(1)
]
<∞, (58)

for θi > 0 sufficiently small depending on ~t and s. In view of (56), (57) and (58)
we may apply Theorem 2.5 to the measures µn,s,N0,s to get

µn,sπ
−1
~t

w=⇒ N0,sπ
−1
~t
. (59)

Thus (10) holds for every bounded continuous F . The extension to bounded,
Borel measurable F satisfying N0,sπ

−1
~t

(DF ) = 0 is standard. For F as in the
theorem we may assume that F ≥ 0. The extension to F dominated by a
multinomial Q is obtained by an easy uniform integrability argument since
limEµn,s [Q( ~X~t)] = EN0,s [Q( ~X~t)] .

To prove the second claim we define

G ≡

{
0 , if Xs(1) = 0
I{Xs(1)>λ}
Xs(1) , otherwise.

(60)

Then G is continuous except when Xs(1) = λ, and is bounded above by 1
λ .

Thus, Lemma 4.1 and (10) show that for F bounded by a multinomial,

Eµnh
−1
~t

[Xs(1)GF ] → Eµnh
−1
~t

[Xs(1)GF ] ,
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that is,
Eµnh

−1
~t

[
I{Xs(1)>λ}F

]
→ Eµnh

−1
~t

[
I{Xs(1)>λ}F

]
. (61)

4.2. Proof of Proposition 2.4.

We apply Theorem 2.5 to the finite measures µεn and Nε0 defined by

µεn(•) = µn(•, S > ε), Nε0(•) = N0(•, S > ε). (62)

Fix l ∈ Z+ and ~t ∈ [0,∞)l. By Lemma 4.1, for δ(~t, ε) > 0 sufficiently small and
for θi < δ,

ENε
0

[
e
Pl

i=1 θiXti
(Rd)

]
<∞, (63)

so that the first condition of Theorem 2.5 is satisfied. The second condition is
trivially true if any ti = 0 so we assume that ti > 0 for each i.

Let η > 0 and write F ( ~X~t(~φ)) ≡
∏l
i=1

∏mi

j=1Xti(φij). By hypothesis we have

Eµn

[
F 2( ~X~t(~1))

]
→ EN0

[
F 2( ~X~t(~1))

]
< C and so there exists C0(~t, ~m) such

that

sup
n
Eµn

[
F 2( ~X~t(~1))

] 1
2 ≤ C0. (64)

Choose λ0 = λ0(η, C0) sufficiently small so that

N0 (Xε(1) ∈ (0, λ0]) <
(

η

6C0

)2

. (65)

By part 2 of Proposition 2.3 with F ≡ 1 we have

µn (Xε(1) > λ0) → N0 (Xε(1) > λ0) . (66)

Combining this with (12) we have µn (Xε(1) ∈ (0, λ0]) → N0 (Xε(1) ∈ (0, λ0]).
It follows from (65) that there exists n0 such that for all n ≥ n0,

µn (Xε(1) ∈ (0, λ0]) <
(

η

3C0

)2

. (67)

Using I{S>ε} = I{Xε(1)>λ0} + I{Xε(1)∈(0,λ0]} we have∣∣∣Eµn

[
F ( ~X~t(~φ))I{S>ε}

]
− EN0

[
F ( ~X~t(~φ))I{S>ε}

]∣∣∣
≤
∣∣∣Eµn

[
F ( ~X~t(~φ))I{Xε(1)>λ0}

]
− EN0

[
F ( ~X~t(~φ))I{Xε(1)>λ0}

]∣∣∣
+
∣∣∣Eµn

[
F ( ~X~t(~φ))I{Xε(1)∈(0,λ0]}

]∣∣∣+ ∣∣∣EN0

[
F ( ~X~t(~φ))I{Xε(1)∈(0,λ0]}

]∣∣∣ .
(68)
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We bound the right-hand side of (68) as follows. By part 2 of Proposition 2.3,
the first absolute value is less than η/3 for n sufficiently large. On the second
term we use Cauchy-Schwarz to get

Eµn

[
|F ( ~X~t)|I{Xε(1)∈(0,λ0]}

]
≤ Eµn

[
F 2( ~X~t(~1))

] 1
2
Eµn

[
I{Xε(1)∈(0,λ0]}

] 1
2 ≤ C0η

3C0
.

(69)

The third term is handled similarly. Thus for n sufficiently large,∣∣∣Eµε
n

[
F ( ~X~t(~φ))

]
− ENε

0

[
F ( ~X~t(~φ))I{S>ε}

]∣∣∣ < η, (70)

which proves the second condition of Theorem 2.5 for {µεn}n≥0 and Nε0. The
result follows by Theorem 2.5.
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