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We consider an M/G/1 queue with symmetric service discipline. The class of symmetric
service disciplines contains, in particular, the preemptive last-come-first-served discipline and
the processor-sharing discipline. It has been conjectured in Kella, Zwart and Boxma [1]
that the marginal distribution of the queue length at any time is identical for all symmetric
disciplines if the queue starts empty. In this paper we show that this conjecture is true if service
requirements have an Erlang distribution. We also show by a counterexample, involving the
hyperexponential distribution, that the conjecture is generally not true.

Keywords: SYMMETRIC QUEUE, TIME-DEPENDENT ANALYSIS, INSENSITIVITY, PROCESSOR-

SHARING QUEUE, LAST COME FIRST SERVED QUEUE

1 Introduction

In this paper we consider the M/G/1 queue with the symmetric service discipline which is defined
as follows. Customers arrive according to a Poisson process with rate λ and have independent
and identically distributed service times {Bi}i≥1. Let p

(n)
i be a sequence of positive numbers

such that for each n, p
(n)
1 + p

(n)
2 + · · ·+ p

(n)
n = 1. If there are n customers in the queue then the

customer in position i gets a fraction p
(n)
i of the service rate. If a new customer arrives at the

queue with n customers he moves into position i with probability p
(n+1)
i ; customers in positions

i, i + 1, . . . , n move to positions i + 1, i + 2, . . . , n + 1.
The symmetric queueing discipline has been introduced by Kelly [2]. It contains both two

important disciplines: the preemptive Last Come First Served (LCFS) discipline and Processor
Sharing (PS) discipline. It is proved in Section 3.3 of [2] that for the symmetric M/G/1 queue
the distribution of the queue length in steady state is geometric with probability of success 1− ρ,
where ρ is the traffic intensity. In particular, it is insensitive to the service discipline and depends
only on the mean of the service times .

Recently, [1] has studied time-dependent, rather than steady-state, properties of the queue
length process {Qt, t ≥ 0} of the symmetric M/G/1 queue. In particular, it has been shown
that if Q0 = 0, then at any moment of time the M/G/1 LCFS queue and PS queue coincide
in distribution, i.e. QPS

t =D QLCFS
t , for any fixed t ≥ 0. Also, it has been shown that if

τ(q) is an independent, exponentially distributed random variable, then QLCFS
τ(q) has a geometric

distribution. It has been conjectured in [1] that Qt has the same distribution for any M/G/1
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symmetric queue. In this paper we show that this conjecture is true if the service requirements
have an Erlang distribution (see Theorem 2.2 below). However, in general this conjecture does
not hold and we show this by a simple counterexample (see Section 4 below).

Let β(s) = Ee−sB1 be the Laplace-Stieltjes transform (LST) of the service distribution B1

and define the net input process Y (t) =
∑N(t)

i=1 Bi − t. This is a Lévy process with exponent
ϕ(s) = s − λ(1 − β(s)), that is Ee−sX(t) = etϕ(s). Let s∗ = inf{s : ϕ(s) > 0}. Since ϕ(s) is
continuous and strictly increasing on [s∗,∞), it has an inverse, which we denote by κ(q), q ≥ 0.
In [1, 3] the following result is proved for LCFS and PS queues.

Proposition 1.1. Let τ(q) be an independent exponentially distributed random variable with rate
q > 0. If Q0 = 0, then

P(Qτ(q) = n) =
(

1− q

κ(q)

)n q

κ(q)
.

The paper is organized as follows. In Section 2 we give the result in case the service require-
ments have an Erlang distribution (Theorem 2.1). We prove Theorem 2.1 in Section 3. We give
a counterexample in Section 4.

2 Queue with Erlang distributed service requirements

In this section we study symmetric queues for which customers arrive according to a Poisson
process with intensity parameter λ and their service requirements Bn have Erlang distribution
with parameters N and µ i.e., Bn = Bn,1 + . . . + Bn,N for independent Bn,j exponentially
distributed with parameter µ. We prove the following theorem.

Theorem 2.1. Let Q0 = 0. Then, for any t ≥ 0, the distribution of Qt does not depend on
{p(n)

i , 1 ≤ i ≤ n, n ≥ 1}.
In particular, Proposition 1.1 holds for symmetric Erlang queues.
We consider a Markov process Xt on a state space X ∪ {0}, where

X = {(x1, . . . , xl), l ≥ 1, xi ∈ {1, . . . , N}} . (2.1)

In the definition above (x1, . . . , xl) corresponds to a queue with l customers in which the i-
th customer is in the xi-th service stage. For any vector (x1, . . . , xl), we denote its length as
|(x1, . . . , xl)|. Note that Qt = |Xt| is the queue length at time t.

We note that Xt is a Markov jump process. The time it spends in state 0 before it jumps to a
different state has an exponential distribution with parameter λ. The time it spends in any other
state before it jumps to a different state has an exponential distribution with parameter λ + µ.
We want to prove independence of the distribution of the queue length Qt of a symmetric queue
from a service discipline (i.e. independence with respect to {p(m)

i , 1 ≤ i ≤ m, m ≥ 1}). It is
well known that for work conserving queues P(Qt = 0) does not depend on the service discipline.
Therefore we can omit the time Xt spends at 0 by adding one customer in the queue at each time
it becomes empty. It means that we consider a modified Markov process which jumps from N to
1 with the same probability as Xt jumps from the state (N) to (0). From now on we are going to
work only with the modified process. Therefore we also denote it Xt. The new process is defined
on X . The time it spends in any state before it jumps to a different state has an exponential
distribution with parameter λ.

Let {ξi} be a sequence of independent Exp(λ + µ) random variables. It corresponds to the
times between subsequent jumps of Xt. Let N(t) = max{i :

∑i
j=1 ξj ≤ t} be the number of
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jumps on (0, t]. Then

P(Qt = i) =
∞∑

n=0

P(Qt = i | N(t) = n)P(N(t) = n) =
∞∑

n=0

P(|Yn+1| = i)P(N(t) = n),

where Yn is an embedded Markov chain corresponding to Xt.
It is sufficient to prove that, for any n ≥ 1 and i ≥ 1, P(|Yn| = i) does not depend on the

service discipline. We prove a more general result. We introduce subsets of X . For k ≥ 1, let

Uk =

{
(x1, . . . , xl) ∈ X :

l∑

i=1

xi = k

}
. (2.2)

Remark 1.
|Uk| = |Uk−1|+ . . . + |U(k−N)+ |,

in particular, |Uk| = 2k−1 for k ≤ N .

We prove the following theorem.

Theorem 2.2. Let Yn be the Markov chain defined above. For k ≥ 1 and n ≥ 1, let

P (k, n) = P(Yn ∈ Uk). (2.3)

Then
1. P (k, n) do not depend on {p(m)

i , 1 ≤ i ≤ m, m ≥ 1}, and, moreover, for any (x1, . . . , xl) ∈ Uk,

P(Yn = (x1, . . . , xl)) =
(

λ

λ + µ

)l−1 (
µ

λ + µ

)k−l

P (k, n). (2.4)

2. P (k, n) satisfies the following recursion:

P (k, n) = P (k − 1, n− 1) +
λ

λ + µ

(
µ

λ + µ

)N

P (k + N, n− 1). (2.5)

Remark 2. The recursion (2.5) simply means that the Markov chain jumps to Uk from Uk−1

or from a subset of Uk+N which consists of vectors such that at least one of the components is
N .

3 Proof of Theorem 2.2

It is clear that P (k, n) = 0 for k > n. We prove the result by induction.
The result holds for n = 1. Indeed, P (k, 1) = δk(1).
We assume that P (k, n) does not depend on {p(m)

i , 1 ≤ i ≤ m, m ≥ 1} for any k, and, for
any (x1, . . . , xl) ∈ Uk, (2.4) holds. We show that the result holds for Yn+1.

We fix any state (x1, . . . , xl) ∈ Uk.

P (Yn+1 = (x1, . . . , xl)) =
∑

(y1,...,ym)∈Uk−1

P ((y1, . . . , ym) 7→ (x1, . . . , xl))P (Yn = (y1, . . . , ym))

+
∑

(y1,...,ym)∈Uk+N

P ((y1, . . . , ym) 7→ (x1, . . . , xl))P (Yn = (y1, . . . , ym)) ,

3



where a 7→ b stands for a transition from a to b in one step. We write the last two summands as

P (Yn+1 = (x1, . . . , xl)) = Σ1 + Σ2. (3.1)

We evaluate Σ1 and Σ2 separately.

Σ1 =
∑

(y1,...,yl−1)∈Uk−1

P ((y1, . . . , yl−1) 7→ (x1, . . . , xl))P (Yn = (y1, . . . , yl−1))

+
∑

(y1,...,yl)∈Uk−1

P ((y1, . . . , yl) 7→ (x1, . . . , xl))P (Yn = (y1, . . . , yl))

=
(

λ

λ + µ

)l−2 (
µ

λ + µ

)k−l+1

P (k − 1, n)
∑

(y1,...,yl−1)∈Uk−1

P ((y1, . . . , yl−1) 7→ (x1, . . . , xl))

+
(

λ

λ + µ

)l−1 (
µ

λ + µ

)k−l

P (k − 1, n)
∑

(y1,...,yl)∈Uk−1

P ((y1, . . . , yl) 7→ (x1, . . . , xl)) .

Since ∑

(y1,...,yl−1)∈Uk−1

P ((y1, . . . , yl−1) 7→ (x1, . . . , xl)) =
λ

λ + µ

∑

i : xi=1

p
(l)
i (3.2)

and ∑

(y1,...,yl)∈Uk−1

P ((y1, . . . , yl) 7→ (x1, . . . , xl)) =
µ

λ + µ

∑

i : xi 6=1

p
(l)
i , (3.3)

we obtain

Σ1 =
(

λ

λ + µ

)l−1 (
µ

λ + µ

)k−l

P (k − 1, n). (3.4)

Similarly, we compute

Σ2 =
∑

(y1,...,yl+1)∈Uk+N

P ((y1, . . . , yl+1) 7→ (x1, . . . , xl))P (Yn = (y1, . . . , yl+1))

=
(

λ

λ + µ

)(l+1)−1 (
µ

λ + µ

)k+N−(l+1)

P (k + N, n)

·
∑

(y1,...,yl+1)∈Uk+N

P ((y1, . . . , yl+1) 7→ (x1, . . . , xl)) .

Since
∑

(y1,...,yl+1)∈Uk+N

P ((y1, . . . , yl+1) 7→ (x1, . . . , xl)) =
l+1∑

i=1

p
(l+1)
i µ

λ + µ
=

µ

λ + µ
,

we obtain

Σ2 =
(

λ

λ + µ

)l−1 (
µ

λ + µ

)k−l
{

λ

λ + µ

(
µ

λ + µ

)N

P (k + N,n)

}
. (3.5)

The result now follows from (3.1), (3.4) and (3.5).
Q.E.D.
Theorem 2.1 follows from Theorem 2.2 and reduction to the analysis of the embedded Markov

chain which resulted from the uniformization procedure described in Section 2.

Remark 3. The property of the symmetric queue was essentially used in (3.2)–(3.4).
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4 Counterexample

Once Theorem 2.1 is proved for the symmetric queues with Erlang distributed service re-
quirements, it is natural to ask if it still holds when service requirements have the phase type
distribution. If it were true, a classical approximation procedure (see e.g. [2, Lemma 3.9]) would
give a result for the symmetric queues with general service requirements. Unfortunately the
answer is no. In this section we give an example of a symmetric queue for which Theorem 2.1
does not hold. Let, as before, customers arrive in the queue according to a Poisson process with
intensity parameter λ, and the service requirements are independent and identically distributed
with the density function

1
2
µ1e

−µ1x +
1
2
µ2e

−µ2x, x ≥ 0.

Then, the LST of service time B1 is equal to β(s) = 1
2( µ1

µ1+s + µ2

µ2+s). This system could be
considered as a model with customers of two types: customers of both types arrive according to
independent Poisson processes with intensity parameter λ/2 and their service requirements are
independent and exponentially distributed with parameters µ1 and µ2 respectively. We consider
a symmetric queue with the following service discipline:

p
(1)
1 = 1, p

(2)
1 = p, p

(2)
2 = q = 1− p, p

(n)
i = δn,i, for 1 ≤ i ≤ n, n ≥ 3.

Note that the case of q = 1 corresponds to the LCFS discipline.
Let τ(α) be an independent random variable exponentially distributed with parameter α > 0.

We show that for the symmetric queue introduced above P q
def= P(Qτ(α) ≥ 2) does depend on q.

It is sufficient to show that P q is different for q = 1 and q = 1/2. For q = 1, it is known [1] that

P 1 =
(
1− α

κ(α)

)2
, where κ(α) is the inverse function for ϕ(s) = s− λ(1− β(s)).

Let
γ =

µ1

µ1 + µ2
,

π1 = π1(α) =
µ1

µ1 + κ(α)
, π2 = π2(α) =

µ2

µ2 + κ(α)
, π1,2 = π1,2(α) =

µ1 + µ2

µ1 + µ2 + 2κ(α)
.

We show that, for q = 1/2,

P := P 1/2 =
(

1− α

κ(α)

){
λ

λ + α
− α

λ + α

R
λ

λ+α(π1 + π2)− 4−R

}
, (4.1)

where

R =
λ

λ + α

(
λ

λ + α
(π1π2 + π1,2(γπ1 + (1− γ)π2))− (π1 + π2 + 2π1,2)

)
.

It can be shown analytically that the above expressions for P 1 and P 1/2 are different for
different values of q. But it is much easier to verify it numerically. For λ = 1, µ1 = 1, µ2 = 10
and α = 1, we have κ(α) = 1.346215241 and

P 1 = 0.06613987328 6= P 1/2 = 0.05720076818.

Now we prove (4.1). We denote the two types of customers as a and b. Then (a) stays for the
queue with a single customer of type a, (b) stays for the queue with a single customer of type b.
A use of the total probability formula and memoryless property of the exponential distribution
gives

P = P(Qτ(α) ≥ 2 | τ(α) ≤ τbp)P(Qτ(α) 6= 0) = P(Qτ(α) ≥ 2 | τ(α) ≤ τbp)
(

1− α

κ(α)

)
,
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where τbp is the first busy period. We denote P̃ = P(Qτ(α) ≥ 2 | τ(α) ≤ τbp). Therefore, as in
Section 2, it is sufficient to consider a queue for which the state 0 is deleted, and which jumps
with intensity λ from the state (a) to (a, a) or (a, b) with probabilities 1/2, and from the state (b)
to (a, b) or (b, b) with probabilities 1/2. Note that the states (a, b) and (b, a) are indistinguishable,
since p = q = 1/2.

Let Tn be the n-th return to {(a), (b)}, T0 = 0. The time the queue spends in the set {(a), (b)}
from the time Tn is exponentially distributed with parameter λ. We denote it ξn. Hence

P̃ =
∞∑

n=1

P(Tn−1 + ξn < τ(α) < Tn) =
∞∑

n=1

(
Ee−αTn−1

λ

λ + α
−Ee−αTn

)
(4.2)

=
λ

λ + α
− α

λ + α

∞∑

n=1

Ee−αTn . (4.3)

Note that

Ee−αTn =
(

λ

λ + α

)n

Ee−αeTn ,

where T̃n is the total time the queue spends outside the set {(a), (b)} up to the time Tn. Condi-
tioned that the queue starts from the state (a) or (b) we denote T̃n as T̃n(a) or T̃n(b) respectively.
A lengthy but straightforward computation gives a recursion for the Laplace-Stieltjes transforms
of T̃n(a) and T̃n(b):

Ee−αeTn(a) =
1
2

(π1 + (1− γ)π1,2)Ee−αeTn−1(a) +
1
2
γπ1,2Ee−αeTn−1(b), (4.4)

and
Ee−αeTn(b) =

1
2
(1− γ)π1,2Ee−αeTn−1(a) +

1
2

(π2 + γπ1,2)Ee−αeTn−1(b). (4.5)

Let

S(a) =
∞∑

n=1

(
λ

λ + α

)n

Ee−αeTn(a), S(b) =
∞∑

n=1

(
λ

λ + α

)n

Ee−αeTn(b). (4.6)

Then

S =
∞∑

n=1

Ee−αeTn =
1
2

(S(a) + S(b)) . (4.7)

From (4.4) and (4.5) we obtain a system of equation for S(a) and S(b)

2S(a) =
λ

λ + α
(π1 + π1,2) +

λ

λ + α
{(π1 + (1− γ)π1,2) S(a) + γπ1,2S(b)} , (4.8)

2S(b) =
λ

λ + α
(π2 + π1,2) +

λ

λ + α
{(1− γ)π1,2S(a) + (π2 + γπ1,2) S(b)} , (4.9)

which results in (4.1).
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