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Abstract

A stochastic model for the activation of T-cells is analysed. T-cells are part of

the immune system and recognize foreign antigens against a background of the

body’s own molecules. The model under consideration is a slight generalization

of a model introduced by Van den Berg, Rand and Burroughs, and is capable

of explaining how this recognition works on the basis of rare stochastic events.

With the help of a refined large deviation theorem and numerical evaluation it

is shown that, for a wide range of parameters, T-cells can distinguish reliably

between foreign antigens and self-antigens.
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1. Introduction

The mammalian immune system relies critically on so-called T-cells, which recognize

foreign antigens and trigger an immune response. The word “antigen” is derived from

antibody generating (indicating that antigens are molecules that can elicit an immune

reaction).
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Each individual is supplied with a large repertoire of different types of T-cells (each

defined by the special type of T-cell receptor exposed at its surface), and every type

recognizes a certain repertoire of antigens. This recognition, in turn, starts a signalling

cascade, which induces an immune response that finally leads to the elimination of the

antigen (Janeway et al. [8]).

The T-cell repertoire of an organism must, on the one hand, recognize foreign

antigens in a reliable way; on the other hand, it must not respond to the body’s

own antigens, since this would elicit dangerous auto-immune reactions. How does this

“self-nonself distinction” work?

This basic question of immunobiology has remained unanswered for a very long

time. One fundamental difficulty lies in the fact that foreign antigens and self-antigens

are very similar in nature. Van den Berg, Rand and Burroughs [15] (henceforth

referred to as BRB) addressed this difficulty by modelling the probabilistic nature of the

interactions between T-cell receptors and the antigens presented on the surface of so-

called antigen-presenting cells (APCs). A T-cell (with many copies of its given receptor)

encounters these APCs (which carry a random mixture of antigens). By modelling

these encounters as random events, and taking the interaction kinetics between T-cell

receptors and antigens into account, BRB have shown that the T-cell repertoire can

distinguish reliably between APCs that carry foreign antigens and those that do not.

In order to validate the results of BRB, we reconsider their model and refine its

analysis. In mathematical terms, the model boils down to computing the distribution

of a large sum of independent but not identically distributed random variables. Since

a T-cell response is a rare event (for a randomly chosen encounter), the tail of the

distribution is relevant, and a large deviation analysis is required. To obtain a suffi-

ciently sharp asymptotics, we use a generalization of the Bahadur-Rao theorem proved

by Chaganty and Sethuraman [2]. With the help of this theorem, we find substantially

elevated tail probabilities for the case where a foreign antigen is present in a fairly

high copy number, relative to the self-background. Abundance of the foreign antigen

is biologically realistic, since pathogens multiply within the body and swamp it with

their antigens before an immune response is started. Furthermore, the requirement of

a high copy number can be relaxed in a refined version of the model that includes a

biological mechanism known as negative selection (see below).
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The above-mentioned article [15] appeared in a biological context (with lots of

immunological detail not easily accessible to mathematicians) and therefore put little

emphasis on mathematical detail. The aim of the present article is threefold. Firstly,

we will make this fascinating piece of theoretical biology available to a mathematical

readership. To this end, we will streamline the modelling by formulating a set of

explicit assumptions. Secondly, we will put the analysis on a solid mathematical basis

by stating and applying the necessary large deviation result. This result holds under

rather general conditions and therefore opens up interesting perspectives for further

research. Thirdly, we will put forward and analyse numerically an extension of the

BRB-model obtained by replacing the constant copy numbers of antigens on APCs by

random variables, which is biologically more realistic.

The remainder of this article (which builds on the thesis of Zint [24], where many

more details may be found) is organized as follows. Section 2 explains the immuno-

logical problem in a nutshell, with as little biological detail as possible. Section 3

presents the mathematical model in its generalized form, with the emphasis on making

individual modelling steps and assumptions transparent. Section 4 is devoted to the

generalized Bahadur-Rao theorem. Section 5 applies the approximations derived from

this theorem to the biological model to demonstrate its recognition ability. Section 6,

finally, summarizes and discusses the results, the possible extensions, as well as the

limitations of the model.

2. T-cells and antigen recognition in a nutshell

The object of immunobiology is the body’s own defence against pathogens like

bacteria, viruses or fungi. One distinguishes between unspecific and specific defence

mechanisms. The latter form the so-called immune system, which specifically reacts

to intruders. In this reaction, the T-cells play an important role, which we will now

briefly describe; for more details, see the textbook by Janeway et al. [8].

T-cells. T-cells are produced in the bone marrow and subsequently migrate to

the thymus, where they mature (see below). On leaving the thymus, each T-cell is

characterized by a specific type of T-cell receptor (TCR), which is displayed in many

identical copies on the surface of the particular T-cell (see FIG. 1). These TCRs play
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an important part in the recognition of intruders (see below). It is important to note

that all TCRs on one T-cell are of the same type. However, a large number (roughly

107, Arstila et al. [1]) of different receptors, and hence different T-cell types, are present

in an individual.

APC 1

T−cell 1 APC 2

T−cell 2

APC 3

T−cell 3

Figure 1: A sample of different T-cells and APCs

Antigen-presenting cells. The partners of the T-cells are the antigen-presenting cells

(APCs), each producing so-called MHC molecules of different types (the set of these

different types is the same for all the APCs of a given individual). An APC absorbs

antigens from its vicinity and breaks them down. In the cell the emerging fragments,

so-called peptides (short sequences of amino acids), are bound to the MHC molecules.

The resulting complexes, composed of an MHC molecule and a peptide (abbreviated by

pMHC), are displayed on the surface of the cell (the MHC molecules serve as “carriers”

or “anchors” to the cell surface). Since most of the peptides in the vicinity of an APC

are the body’s own peptides, every APC displays a large variety of different types of

self-peptides and, possibly, one (or a small number of) foreign types. The various types

of peptides occur in various copy numbers, as will be detailed below. For the moment,

we merely note that foreign peptides are often present at elevated copy numbers. As

noted above, this is because pathogens multiply within the body and flood it with their

antigens, before an immune response is initiated.
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Interactions between T-cells and APCs. The presentation of peptides on the surface

of the APCs is of great importance for the immune system, because T-cells will only be

activated when they recognize foreign peptides on the surface of an APC. The contact

between a T-cell and an APC is established by a temporary bond between the cells,

through which a so-called immunological synapse (see FIG. 2) is formed, in which

the TCRs and the pMHCs interact which each other. If a T-cell recognizes a foreign

peptide through its receptors, then it is activated to reproduce, and the resulting clones

of T-cells will initiate an immune reaction against the intruder.

T−cell

APC

MHC
molecule

TCR

peptide

Figure 2: An immunological synapse

Maturation. During the maturation of a T-cell, several processes take place in the

thymus. Initially, the T-cell starts to display the TCRs on its surface. After this,

two selective processes take place. During positive selection, those T-cells that hardly

interact with the MHC molecules of the individual are removed. Furthermore, negative

selection causes the removal of those T-cells that react too strongly to self-peptides.

Thus, both useless and dangerous T-cells are removed.

Problem. Self-peptides and foreign peptides cannot differ from each other by nature.

After all, even tissues of a different individual of the same species are recognized as

foreign (this is the basic problem of transplantation). However, the activation of a T-

cell occurs only when it recognizes a foreign peptide. Therefore the question comes up

how the T-cells can distinguish between self and non-self. At first sight, the task seems

hopeless, since there are vastly more different peptides (roughly 1013, see Mason [9])

than TCRs (roughly 107, as noted earlier), which makes specific recognition (where one

TCR recognizes exactly one pMHC) impossible; this is known as the Mason paradox.

Fortunately, there is an answer to this question.
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3. The model

We present here a slightly generalized version of the model originally proposed in

BRB [15]. To this end, we recapitulate the modelling ideas and idealizations, and

summarize them as assumptions (A1)–(A7) below.

Consider the immunological synapse between a T-cell and an APC (see FIG. 2).

The activation of the T-cell is conceived as follows. If a contact between a TCR

and a pMHC lasts longer than a certain time period, t∗, then the T-cell will receive

a stimulus. The T-cell adds up the stimulation rates of all its receptors. If this sum

exceeds a threshold, gact, then the T-cell will be activated. This model relies on several

hypotheses, which in the biological literature are called kinetic proofreading ([3],[11]),

serial triggering ([13],[14]) and counting of stimulated TCRs ([12],[21]).

3.1. Kinetics of stimulation

Let Ri be an unbound TCR of type i, Mj an unbound pMHC of type j, and Cij a

complex composed of Ri and Mj , where i, j ∈ N. For every such pair, the binding and

unbinding may, in chemical shorthand notation, be symbolized as

Ri + Mj

λij

�
ρij

Cij , (1)

where λij and ρij are the association and dissociation rates, respectively. An encounter

(to be used synonymously with an immunological synapse) between a T-cell and an

APC with its mixture of pMHCs is therefore characterized by the type i of the T-cell,

the types j of pMHCs at hand and the associated surface densities zj , as well as the

rates λij and ρij (which will be considered fixed for the purpose of this Subsection). If

the spatial structure in the immunological synapse is ignored, then the corresponding

kinetics in the synapse is described by the deterministic law of mass action, i.e., for

the given i,

d
dt

cij(t) = λijri(t)mj(t) − ρijcij(t) , cij(0) = 0 , ∀j ,

d
dt

mj(t) = −λijri(t)mj(t) + ρijcij(t) , mj(0) = zj , ∀j ,

d
dt

ri(t) = −
∑

j

λijri(t)mj(t) +
∑

j

ρijcij(t) , ri(0) = r ,

(2)
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where ri(t), mj(t) and cij(t) are the surface densities of Ri, Mj and Cij , respectively,

at time t (and we note that only finitely many zj ’s are non-zero). It is easily verified

that the solution of (2), for the given i, satisfies the conservation laws

ri(t) +
∑

j

cij(t) = r and mj(t) + cij(t) = zj ∀j . (3)

Note that this deterministic approach, with its surface densities varying over the

reals rather than a finite set, is justified when the numbers of all the involved molecules

are large enough (see e.g. Ethier and Kurtz [5, Chapter 11, Theorem 2.1]). It is

the standard approach to reaction kinetics in biology in general, and for the binding

kinetics in the immunological synapse in particular (see e.g. BRB [16, Eq. (A.5)], which

describes the equilibrium of this model). It should be noted, however, that some of

the antigen types may be fairly rare in the situation at hand, so that the deterministic

approach may be somewhat crude. But it will become clear later on that we actually

do not depend on details of the binding kinetics.

[Remark: In the probabilistic approach in the next Subsection, we will use the symbol

zj for the copy number of type j pMHC rather than its surface density, since they

differ by an (irrelevant) normalization factor only.]

Equilibrium. The bond between a TCR and a pMHC consists of two parts: contacts

between the TCR and the MHC molecule, and contacts between the TCR and the

peptide. According to Wu et al. [23], the former specify mainly the association rate

and the latter mainly the dissociation rate. We consider mature T-cells, which implies

that they have been positively selected, i.e., each T-cell binds one type of the MHC

molecules of the individual very well. Thus, we idealize λij as very large (� 1/t∗) for

pMHCs containing this type of MHC molecule, and zero otherwise. For every i, we

therefore restrict j in (2) to the set

Pi = {j : λij � 1/t∗} , (4)

since only these pMHCs contribute significantly to the stimulation rate. As a conse-

quence, we may assume that the reaction is in equilibrium, because this is reached on

a time scale that is short relative to the time scale of activation. Therefore, in view of

(2), for every i we have

ĉij =
λij

ρij
r̂im̂j ∀ j ∈ Pi , (5)
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where r̂i, m̂j and ĉij denote the equilibrium quantities. Combining (3) for these

quantities with (5), we get an equation for ĉij that can be solved to give the implicit

system of equations

ĉij = zj

r −
(∑

k∈Pi
ĉik

)
r −

(∑
k∈Pi

ĉik

)
+ ρij/λij

(cf. BRB [16, Appendix A.1]). Assuming further that the concentration of TCRs is

not limiting (i.e., r >
∑

j∈Pi
zj – this is the so-called serial triggering regime) and that

the relevant dissociation rates are very small (i.e., λij � ρij for all j ∈ Pi), we are led

to the idealization

(A1) ĉij = zj .

As will become clear later on, this assumption may actually be relaxed (see Section 6);

we make it here for ease of exposition.

Stimulation rate. A given Cij dissociates at rate ρij . Therefore, Tij , the duration

of a contact between Ri and Mj , is exponentially distributed with mean τij = 1/ρij.

Hence, the probability of Tij exceeding t∗ is e−t∗/τij , which we refer to as the stimulation

probability (of a Cij). Note that, by the above together with (4) and (A1), an encounter

between a T-cell and an APC is now characterized by i, Pi as well as the collections

of zj and τij for all j ∈ Pi with zj > 0.

The T-cell receives a stimulus every time a complex dissociates that has existed for

at least time t∗. Therefore the average stimulation rate of type ij complexes is given

by

(A2) ρij P(Tij > t∗) = w(τij) with w(τ) = 1
τ e

−t∗
τ .

In FIG. 3, w(τ) is plotted as a function of τ . This curve can be interpreted as follows.

1. If τ � t∗, then the complex will typically dissociate before stimulation.

2. If τ � t∗, then the TCR and the pMHC will typically be associated for a long

time. Therefore the T-cell will get a stimulus through practically every binding

event, but the pMHC keeps the receptor occupied for a long time, so only few

stimuli are expected per time unit.

By (A1) and (A2), we finally get the total stimulation rate for a conjunction of a

T-cell of type i and a particular APC:
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Figure 3: Average stimulation rate of an individual complex type as a function of the average

waiting time

(A3) gi =
∑

j∈Pi
zjw(τij) .

3.2. A probabilistic approach

So far, Pi, zj and τij are considered to be given quantities for all i, j ∈ N. Indeed, zj

and τij may be determined experimentally for a given i, j pair (cf. [7, 10]). However,

owing to the diversity of complexes Cij and mixtures of peptides presented on the

APCs, it is not possible to specify all these quantities individually. Therefore, in

order to derive the overall probability of T-cell activation, a probabilistic approach is

required.

Presentation of antigens. The genes of an organism can be classified as constitutive

ones and inducible ones. The former encode proteins that are always present in every

cell (e.g. proteins of the basic metabolism). In contrast, the latter encode proteins

that only exist in some cells (like for example muscle proteins) and/or occur only

temporarily, i.e., they are variable. Accordingly, the types of self-peptides on each APC

may be partitioned into constitutive and variable, i.e., Pi = Ci ∪Vi, where Ci ∩Vi = ∅,
and we suppose that:

(A4) There are constant numbers nc and nv of constitutive and variable types of

peptides, respectively, on each APC.

The constitutive types (Ci) are the same on each APC, whereas there is a different

sample of variable types (Vi) on each APC. As a generalization of BRB [15] and Zint

[24], we allow the copy numbers of the individual types within each class to vary.

Therefore we suppose that:
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(A5) The zj are realizations of random variables denoted by Zj. These random

variables are i.i.d. within each of the two classes, and are referred to as Z
(c)
j

and Z
(v)
j .

[Remark: The i.i.d. assumption is made for simplicity; we do not model a particular

biological mechanism here. Realistic models would be based on MHC loading fluctua-

tions (cf. BRB [15, Appendix C]). They invariably induce dependencies, the treatment

of which is beyond the scope of this paper.]

Let us now add in foreign peptides, and make the simplifying assumption that only

one type of foreign peptide is present on an APC, in zf copies. In the following, the

index set for the pMHCs is therefore the union of N and {f}.

The total stimulation rate with respect to a conjunction of a T-cell of type i and a

randomly chosen APC is given by

Gi(zf ) =

⎛
⎝∑

j∈Ci

qZ
(c)
j w(τij)

⎞
⎠ +

⎛
⎝∑

j∈Vi

qZ
(v)
j w(τij)

⎞
⎠ + zfw(τif ) .

Here, the factor q = (nM − zf)/nM ensures that adding the foreign peptides does not

change the expected number nM = nc E(Z(c)
1 ) + nv E(Z(v)

1 ) of MHC molecules on the

surface of an APC, since also q(nc E(Z(c)
1 ) + nv E(Z(v)

1 )) + zf = nM .

Probability of activation. In line with the original model, we suppose that:

(A6) For all i and j, the τij are realizations of i.i.d. random variables Tij with mean τ̄

(see BRB [15] and Zint [24] for explanations).

In particular, this assumption means that no distinction between foreign and self is

built into the interaction between receptors and antigens. This reflects the fact that

there is no a-priori difference between the peptides.

Note that (A6) also implies that the Pi need not be specified and the index i may

be suppressed, because we consider an arbitrary T-cell and the Gi are i.i.d. random

variables. Since we choose a new T-cell for each encounter, the partitioning into

constitutive and variable peptides has, at this stage, no effect except for the different

abundances.
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Altogether the total stimulation rate with respect to a conjunction of a randomly

chosen T-cell and an APC is given by

G(zf ) =

⎛
⎝ nc∑

j=1

qZ
(c)
j Wj

⎞
⎠ +

⎛
⎝ nc+nv∑

j=nc+1

qZ
(v)
j Wj

⎞
⎠ + zfWnc+nv+1 , (6)

where Wj = w(Tj), and:

(A7) The probability of T-cell activation is P{G(zf ) ≥ gact}.

Specification of distributions and parameter values. For ease of exposition (and

in line with the original model), Tij is exponentially distributed and we have chosen

t∗ = 1, τ̄ = 0.04 t∗, nc = 50 and nv = 1500. As stated in BRB [15], the number of MHC

molecules ranges between 104 and 106. Therefore we take nM = 105. Furthermore,

we use binomial distributions Binmc,p and Binmv,p for Z
(c)
j and Z

(v)
j , for all j, with

parameters mc = 1000, mv = 100 and p = 0.5, so that the means E(Z(c)
1 ) = 500 and

E(Z(v)
1 ) = 50 correspond to the values zc/nM = 0.005 and zv/nM = 0.0005 in the

BRB-model. (Apart from the expectation, the distribution is an ad-hoc choice).

3.3. Distinction between foreign and self

For the immune system to work, two conditions are essential: (a) if a foreign antigen

is present, then at least one T-cell will be activated; (b) there will be no activation

when only self-antigens are present.

We start from assumptions (A1)–(A7). A necessary condition for (a) and (b) to

hold is that gact can be chosen in such a way that, for physiologically attainable values

of zf ,

(C1) P{G(zf ) ≥ gact} � P{G(0) ≥ gact}.

In this condition, G(zf ) is the sum of random variables introduced in Equation (6), with

constants nc, nv and parameter zf . In particular, G(0) denotes the total stimulation

rate in the absence of foreign peptides. Note that gact is a parameter that can be

fine-tuned by the cell; for more on activation threshold tuning, see Van den Berg and

Rand [19].
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4. Large deviations

In this Section we formulate the large deviation result by Chaganty and Sethuraman

[2] that plays a crucial role in our analysis.

Let (Sn)n∈N be a sequence of R-valued random variables, with moment generating

functions φn(ϑ) = E(exp[ϑSn]), ϑ ∈ R. Suppose that there exists a ϑ∗ ∈ (0,∞) such

that

sup
n∈N

sup
ϑ∈Bϑ∗

φn(ϑ) < ∞ , (7)

where Bϑ∗ = {ϑ ∈ C : |ϑ| < ϑ∗}. Define

ψn(ϑ) =
1
n

log φn(ϑ) , (8)

and let (an)n∈N be a bounded sequence in R such that for each n the equation

an = ψ′
n(ϑ) (9)

has a solution ϑn ∈ (0, ϑ∗∗) for some ϑ∗∗ ∈ (0, ϑ∗). This solution is unique by strict

convexity of ψn. Define

σ2
n = ψ′′

n(ϑn) ,

In(an) = anϑn − ψn(ϑn) .
(10)

Theorem 4.1. (Chaganty-Sethuraman [2].) If infn∈N σ2
n > 0, limn→∞ ϑn

√
n = ∞

and

lim
n→∞

√
n sup

δ1≤|t|≤δ2ϑn

∣∣∣∣φn(ϑn + it)
φn(ϑn)

∣∣∣∣ = 0 ∀ 0 < δ1 < δ2 < ∞ , (11)

then

P {Sn ≥ nan} =
e−nIn(an)

ϑnσn

√
2πn

[1 + o(1)] as n → ∞ . (12)

�

In the language of large deviation theory (see e.g. Den Hollander [4]), ϑn is the

“tilting parameter” for the distribution of 1
nSn, σ2

n is the variance of the “tilted” 1
nSn,

and In(an) is the large deviation rate function. Let us further remark that, in principle,

finer error estimates (of Berry-Esséen type) can be obtained beyond the asymptotics

in Theorem 4.1, but this becomes technically more involved.
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5. Activation curves

In order to investigate whether condition (C1) can be fulfilled for physiologically

attainable values of zf , we consider the so-called activation curves, i.e., 1 − Fzf
(gact)

with Fzf
the distribution function of G(zf ).

5.1. Simulation and approximation

We begin by deriving an approximation for the activation probability in condition

(C1) based on Theorem 4.1. Consider a sequence of models defined by increasing

numbers of constitutive and variable peptide types. Let

n =

⎧⎪⎨
⎪⎩

nc + nv, if zf = 0,

nc + nv + 1, otherwise,

and consider the limit n → ∞ with limn→∞ nc/nv = C1 ∈ (0,∞); note that the

number of foreign peptides remains 1 throughout. Let Sn in Theorem 4.1 be

Gn(zf ) =

⎛
⎝ nc∑

j=1

qnZ
(c)
j Wj

⎞
⎠ +

⎛
⎝ nc+nv∑

j=nc+1

qnZ
(v)
j Wj

⎞
⎠ + zfWnc+nv+1

where

qn =
nc mc p + nv mv p − zf

nc mc p + nv mv p
,

and let Mc, Mv and M be the moment generating functions of Z
(c)
j Wj , Z

(v)
j Wj and

Wj , respectively, i.e., for γ ∈ {c, v},

Mγ(ϑ) =
1
τ

mγ∑
k=0

(∫ ∞

0

exp
(

kϑ
exp(−t∗/τ)

τ
− τ

τ

)
dτ

)
Binmγ ,p(k) , (13)

and

M(ϑ) =
1
τ

∫ ∞

0

exp
(

ϑ
exp(−t∗/τ)

τ
− τ

τ

)
dτ . (14)

Choose an ≡ a and gact(n) = an. Let ϑn be the unique solution of

a =
nc

n
qn

[
d
dϑ

log Mc(ϑ)
] ∣∣∣

ϑ=qnϑn

+
nv

n
qn

[
d
dϑ

log Mv(ϑ)
] ∣∣∣

ϑ=qnϑn

+
1
n

zf

[
d
dϑ

log M(ϑ)
] ∣∣∣

ϑ=zf ϑn

.

(15)
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We further define

σ2
n =

nc

n
q2
n

[
d2

dϑ2
log Mc(ϑ)

] ∣∣∣
ϑ=qnϑn

+
nv

n
q2
n

[
d2

dϑ2
log Mv(ϑ)

] ∣∣∣
ϑ=qnϑn

+
1
n

z2
f

[
d2

dϑ2
log M(ϑ)

] ∣∣∣
ϑ=zf ϑn

(16)

and

In(a) = aϑn − nc

n
log Mc(qnϑn) − nv

n
log Mv(qnϑn) − 1

n
log M(zfϑn) . (17)

Since we have only finitely many different types of random variables, all independent,

it is straightforward to check

Lemma 5.1. The conditions for Theorem 4.1 are satisfied.

Proof. The moment generating function φn(ϑ) is given by

φn(ϑ) =

⎧⎪⎨
⎪⎩

(Mc(ϑ))nc (Mv(ϑ))nv , if zf = 0,

(Mc(qnϑ))nc (Mv(qnϑ))nv M(zfϑ), otherwise.

If a is chosen such that gact(n) > E(Gn(0)) and gact(n) > E(Gn(zf )) for all n (in which

case the strict inequalities are in fact uniform in n), then limn→∞ ϑn = C2 ∈ (0,∞).

Consequently, limn→∞ ϑn
√

n = ∞, and also infn∈N σ2
n > 0. It thus remains to verify

Condition (11). Let Fc(x), Fv(x) and F (x) be the distribution functions of Z
(c)
j Wj ,

Z
(v)
j Wj and Wj , respectively. Since

ν(n)
γ (t) =

Mγ(qn(ϑn + it))
Mγ(qnϑn)

=
∫

R

exp(iqntx)
exp(qnϑnx)
Mγ(qnϑn)

dFγ(x) γ ∈ {c, v} ,

and

ν(n)(t) =
M(zf (ϑn + it))

M(zfϑn)
=

∫
R

exp(izf tx)
exp(zfϑnx)
M(zfϑn)

dF (x)

are characteristic functions of random variables that are not constant nor are lattice

valued, and ϑn and qn converge as n → ∞, there exists an ε > 0 and an n0 < ∞ such

that, for all t �= 0 and n ≥ n0, |ν(n)
c (t)| ≤ 1 − ε, |ν(n)

v (t)| ≤ 1 − ε and |ν(n)(t)| ≤ 1 − ε

(see Feller [6, Chapter XV.1, Lemma 4]). From this it follows that∣∣∣∣φn(ϑn + it)
φn(ϑn)

∣∣∣∣
=

∣∣∣∣ (Mc(qn(ϑn + it)))nc (Mv(qn(ϑn + it)))nv M(zf (ϑn + it))
(Mc(qnϑn))nc (Mv(qnϑn))nv M(zfϑn)

∣∣∣∣
=

∣∣∣(ν(n)
c (t)

)nc
(
ν(n)

v (t)
)nv

ν(n)(t)
∣∣∣

= o(1/
√

n)
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as n → ∞ for all t �= 0 (compare the argument leading to [6, Chapter XVI.6, Equation

(6.6)]), which guarantees (11). �

In view of Lemma 5.1, we may approximate the probability of T-cell activation as

P {G(zf ) ≥ gact} ≈ e−nIn(a)

ϑnσn

√
2πn

, (18)

where G(zf ) is the original stimulation rate of (6), and we assume that n is large

enough for a good approximation. The expression in the right-hand side must be eval-

uated numerically (we used Mathematica r© [22]), since already the moment generating

functions in (13) and (14) are unavailable analytically, and this carries over to ϑn, σ2
n,

and In(a) in (15)-(17).

Let us consider the activation curve for two extreme cases, namely, the self-background

(zf = 0), and a very large number of foreign peptides (zf = 2500). FIG. 4 shows the

simulated curve in comparison to the normal approximation and the approximation in

(18). As was to be expected, the normal approximation describes the central part well,

whereas for the right tail (the relevant part of the distribution for the problem at hand)

the large deviation approximation is appropriate. For zf = 0, the latter describes the

simulated distribution in an excellent way; for zf = 2500, it still gives correct order-of-

magnitude approximations beyond gact = 500, which is the region we are interested in

(see the next Subsection). An improved approximation of the entire curve is obtained

in BRB [15] by combining the normal and the large deviation approximations, applying

them to the self-peptides only, and perform a convolution with the single foreign one.

We prefer the direct approach (18) here, because it makes the large deviation aspect

more transparent, and because it generalizes easily to situations with more than one

foreign peptide. In fact, rather than taking the limit in the way described above, we

could as well consider a sequence of models with nf different foreign peptides and let

n → ∞ such that nc/n, nv/n and nf/n each tend to a constant; the approximation of

our given finite system by (15)-(18) would remain unchanged.

5.2. Activation curves without negative selection

As we have seen in the last Subsection, the approximation in (18) is suitable for

the calculation of the activation curves for various values of zf . FIG. 5 shows the

curves as a function of gact. We observe that the curves for zf = 250 and zf = 500
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(a) zf = 0, linear scale (b) zf = 0, logarithmic scale

(c) zf = 2500, logarithmic scale

Figure 4: P{G(zf ) ≥ gact} as a function of gact, for the self background (zf = 0), and a very

large number of foreign peptides (zf = 2500). The thick black curve and the black points,

respectively, form the simulated distribution of two million sampling points, the dashed curve

is the normal approximation, and the grey curve is the large deviation approximation (18)

(both ≤ E(Z(c)
1 ) = 500) do not differ visibly from the curve for the self-background.

However, for zf > 1000 and gact > 500, condition (C1) is fulfilled. Therefore the

model can indeed explain how T-cells are able to distinguish between self and non-self.

Comparison with FIG. 3 of BRB [15] shows that the separation of the activation curves

is indeed similar to that in the original model. In terms of the cartoon in FIG. 1, the

threshold value gact can be chosen so that T-cell 2 will be activated when it encounters

APC 2 with three foreign peptides (the circles), while the other APCs without foreign

peptides (the non-circles) will not activate any T-cell.

The intuitive reason behind the self versus non-self distinction is an elevated number
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of presented foreign peptides in comparison with the numbers of self-peptides. Indeed,

this increases the variability of G (which is reminiscent of the fact that for i.i.d. random

variables Y1, . . . , Yn, nY1 has a larger variance than
∑n

i=1 Yi). So far the number of

presented foreign peptides has to be fairly large (at least as large as the copy number of

constitutive ones, which are, in turn, more abundant than the variable ones). However,

this restriction vanishes when we take the training phase of the young T-cells into

account, as will be done in the next Subsection.

200 400 600 800 1000

1

10�2

10�4

10�6

10�8

0
250
500

1000

1500

2000

2500

P�G�zf� � gact�

gact

Figure 5: Activation curves for values of zf ranging from 0 to 2500, calculated according

to approximation (18). The horizontal axis is chosen to start at a value of gact that yields a

probability close to 1 in this approximation.

5.3. Activation curves with negative selection

Modelling the process called negative selection, one postulates a second threshold

gthy with a similar role as gact. If the stimulation rate of a young T-cell in its maturation

phase in the thymus (where the APCs only present self-peptides) exceeds this threshold,

then the T-cell is induced to die. For a caricature version of this process, let us assume

that T-cell types present in the thymus exist in one copy each and encounter exactly

one APC there.

The model then consists of two parts: first, the maturation phase is modelled to

characterize the T-cell repertoire surviving negative selection; second, activation curves

are calculated for this surviving repertoire. In the first step, we have to calculate the

probability to survive negative selection conditional on the type of the T-cell:

P{survival of a T-cell of type i} = P

⎧⎨
⎩

∑
j∈Ci

Z
(c)
j w(τij) +

∑
j∈Vi

Z
(v)
j w(τij) < gthy

⎫⎬
⎭ .
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In this case the conceptual difference between Ci and Vi has an effect, which is essential.

The constitutive types of peptides are the same on each APC, both in the thymus and

in the rest of the body. Only these can be “learnt” as self by negative selection – the

Vi, being a fresh sample for every APC, are entirely unpredictable. Therefore we have

P{survival of a T-cell of type i} = P{survival |Wij = w(τij)∀j ∈ Ci} .

But in the case of fixed constitutive copy numbers zc, the constitutive part of the

stimulation rate reads G(c) =
∑

j∈Ci
zcw(τij), which is constant for fixed i. Therefore

we have

P{survival |Wij = w(τij)∀j ∈ Ci} = P{survival |G(c) = gi} .

This simplifies the second step, the calculation of the activation curves conditional on

survival: only a single integration step is required. Numerically, it turns out that (C1)

is already fulfilled for zf ≤ 500 (= E(Z(c)
1 )). Actually, the detection threshold for

foreign antigens is reduced drastically (to about a third of the original value).

In our case (where the copy numbers vary from APC to APC), the constitutive

part, G(c) =
∑

j∈Ci
Z

(c)
j w(τij), varies from encounter to encounter. Indeed, whereas

the w(τij) are fixed for each T-cell, the copy numbers are tied to the APCs. Therefore∑
j∈Ci

w(τij) is not sufficient to determine G(c), and hence the survival probability;

rather, the entire collection of the individual stimulation rates w(τij) for the constitu-

tive types must be known to calculate the probability of the young T-cell to survive

negative selection. The corresponding convolution required in the second step involves

high-dimensional integrals, which appear to be computationally infeasible. In Van den

Berg and Molina-Paris [17] this difficulty is tackled by simplifying the distribution of

W to a Bernoulli variable. Here we resort to simulations.

To this end, we assume that each mature T-cell encounters the same number (in our

simulation 1) of APCs in the rest of the body. For gthy = 140 (which for our choice of

parameters corresponds to a selection of about 5% of the young T-cells) the activation

curves are shown in FIG. 6. As in the case of fixed copy numbers, we observe an

incipient separation of the activation curves for zf = 0 and zf = 500. All in all, the

above shows that the reduced detection threshold for foreign antigens occurs in the case

of random copy numbers too. However, it seems that the separation of the activation

curves is less pronounced here than in the case of constant copy numbers. This is
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plausible because the copy numbers of several constitutive peptides could be large

(comparable to the copy number of the foreign peptide) and therefore the recognition

does not work equally well.

Figure 6: Simulated activation curves with gthy = 140 for zf = 0 (black curve) and zf = 500

(grey curve)

6. Discussion

We have analysed mathematically how T-cells can use large deviations to recognize

foreign antigens. Before we discuss details of our results, let us pause here to discuss

the notion of recognition that emerges from this analysis.

As explained in the Introduction, the task the immune system faces is to recognize

foreign antigens against a background of self-molecules. In much of the biological

literature (and in line with intuitive understanding), this recognition is implied to be

specific on a molecular basis. In sharp contrast, the mechanism proposed by BRB [15],

and further analysed here, dispenses with such a high degree of strict specificity and,

instead, is based on elevated copy numbers of the foreign antigen, relative to the self-

background. This alleviates the Mason paradox about the repertoire size versus the

universe of potentially relevant peptides. In this sense, specific recognition of antigen

types is replaced by statistical recognition. We have examined this fact in detail for the

situation without negative selection, where the principle becomes most transparent and

can be largely dealt with via a large deviation analysis. Negative selection basically

lowers the relevant background stimulation rate. Therefore it is easier for the foreign

peptide to stand out against it, but the basic principle of recognition on the basis of
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frequencies remains the same.

The generalization we have examined in this article concerns precisely this funda-

mental issue of frequencies. In the original BRB-model [15], these frequencies were

considered fixed (within the variable and constitutive class). In a subsequent paper,

[17], a more sophisticated model of copy number variability was introduced (to reflect

the fact that different cell types produce different proteins in different amounts, and

some specialized cells may even produce large amounts of a variable peptide). We have

replaced this here by a simpler approach that makes the analysis more amenable.

At the same time, allowing the Zj to vary allows us to weaken assumption (A1),

which is somewhat too restrictive in that it assumes that, for all j ∈ Pi, all pMHCs

are in the perfectly bound state. But if we simply reinterpret Zj as the (fluctuating)

number of bound antigens rather than the total number (i.e., corresponding to ĉij

rather than to zj), then we can circumvent (A1) and, at the same time, free ourselves

from the details and limitations of the deterministic binding kinetics, the assumptions

of which may sometimes be violated, for example, if copy numbers are low.

Although, in this vein, a detailed model of the binding kinetics may not be required,

one last remark is in order concerning a potential stochastic model. Stochastic models

of binding kinetics, e.g. as described in Ethier and Kurtz [5, Chapter 11], take care of

the finite number of molecules, and of the resulting fluctuations of bound molecules

over the short time scales of the binding kinetics. Over the longer time scales to be

considered for our averaged stimulation rates, the corresponding time averages would

be relevant. In particular, these would in general not be integers; in this light, the

factor q, which turns the multipliers of the sums in (6) into non-integer values, is

rendered plausible.

Summarizing, our results show that the statistical recognition phenomenon is as-

tonishingly robust against fluctuations of the copy numbers. Similarly, generalizations

in various other directions that take into account many more biological details (see

e.g. [17, 18, 20]), have shown that the phenomenon persists in a robust way. One

may therefore hope that several details of the assumptions may actually be dispensed

with. Future work will thus aim at identifying the joint mathematical content of

the underlying family of models. In particular, this will include an analysis of what

aspects of the distribution of the W ’s are key to the observed phenomenon. Luckily,
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the scope of the large deviation result Theorem 4.1 is wide enough to cope with very

general situations. In particular, one is not bound to sums of independent random

variables, but can also tackle dependencies (like, for example, those introduced by

negative selection) within the present framework.
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