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Abstract

Polymerase Chain Reaction (PCR) is largely used in molecular biology
for increasing the copy number of a specific DNA fragment. The succes-
sion of 20 replication cycles makes it possible to multiply the quantity of
the fragment of interest by a factor of one million. The PCR technique has
revolutionized genomics research. Several quantification methodolagies a
available to determine the DNA replication efficiency of the reaction which
is the probability of replication of a DNA molecule at a replication cycle.
We elaborate a quantification procedure based on the exponentialgpithse
the early saturation phase of PCR. The reaction efficiency is suppobed to
constant in the exponential phase, and decreasing in the saturatian phas
We propose to model the PCR amplification process by a branching pro-
cess which starts as a Galton-Watson branching process followed k8- a siz
dependent process. Using this stochastic modelling and the conditiontal leas
squares estimation method, we infer the reaction efficiency from a single
PCR trajectory.

Key words and phrases: Polymerase Chain Reaction; Branching process;
Reaction efficiency estimation.

1 Introduction

Polymerase Chain Reaction (PCR, Mullis and Faloona, 1987) is @tro en-
zymatic reaction capable of amplifying the number of comita specific DNA
fragment. Mullis was awarded the 1993 Nobel Prize in chesnisir PCR. This
technique is very commonly used in molecular biology sinde a rapid method
which makes it possible to detect low abundance of DNA (Mut al., 1994).
Protocols that quantify rare nucleic acids are increagingled (Demidov and
Broude, 2004). The ability to monitor the DNA molecules quigras they ac-
cumulate thanks to fluorescence-based detection methsdsdé&o a strong im-
petus in quantitative analyses of PCR (Bustin, 2003). Quaivit PCR (Q-PCR)
which aims at determining the initial amount of specific DNepwn as the tar-
get, present in a biological sample has many applicationgratogy (Palmer et
al., 2003) or genes expression studies (Ginzinger, 20@f| ef al., 2004).

PCR is a DNA amplification technology formed by the repetitdrypically
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30 to 50 replication cycles. The number of copies of the talj¢A molecules

is doubled at most at each cycle. But in practice, the proitaliilat a molecule

will be successfully duplicated after one amplificationley&nown as the effi-
ciency of the reaction, is less than one. The precise detetan of the effi-

ciency is required in most quantification methodologieshef initial amount of

DNA molecules (Bustin, 2003). The beginning of PCR is charaztd by an ex-

ponential increase in target molecules. Then, because eplkettbn of reaction

components or because of a decline in polymerase activiigcause of both (Liu
and Saint, 2002), the reaction efficiency decreases andualnceases leading
to a saturation phase decomposed into a linear phase anteaipfghase. Also,
in the course of PCR, mutations may occur along the DNA re@ct&iagments
(Krawczak et al., 1989). As this is common in most of the stadelated to the
determination of the replication efficiency, we will negleere the copying errors
in replication, that is we will assume that all replicatedlecoles are identical to
the initial template target molecules.

In the literature, the theory of Galton-Watson branchingcpsses in discrete
time, the time step being a replication cycle, has been sitely used to model
the exponential phase of the amplification process. Surb)l®® Weiss and Von
Haeseler (1995) examined replication errors of the DNA p&gase enzyme. I1g-
noring these copying errors in replication, Stolovitzkyl@ecchi (1996) studied
the number of cycles during which the PCR amplification preegglergoes the
exponential phase and may therefore be modelled by a Gd@ladsen branch-
ing process. In this setting, Peccoud and Jacob (1996, 188B)conditional
least squares estimators of the reaction efficiency. Pidd1(Rinvestigated PCR
from a probabilistic perspective. Branching processesigeogeneral popula-
tion dynamic models, and are used in the modelling and aisabfsmany bio-
logical phenomena (Jagers, 1975; Haccou et al., 2005). mReln the enzy-
mological approach of PCR performed by Schnell and Mendo2a7)l Jagers
and Klebaner (2003) modelled the DNA amplification procesddfining a size-
dependent branching process with the following replicagtiiciency

K
K+ N,’

whereK is a Michaelis-Menten constant type of the reaction, Apds the num-
ber of DNA molecules present at replication cygle

In this paper, we present a statistical procedure to estittat reaction effi-
ciency from a single amplification trajectory by using a st&tic modelling of the
PCR amplification process. The model generalizes the on@peoby Jagers and
Klebaner (2003). The PCR amplification process is modellea $ige-dependent
branching process which enables one to take into accoustdahbkastic variability
of the reaction and both phases of the amplification protiessis the exponential

p(Nn) (1)
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phase and the saturation phase.

We indicate in section 2 the approximate relationship upbitkvmost current
guantification methodologies are based to estimate théoaafficiency. In sec-
tion 3, we define a size-dependent branching process muogleliithe two phases
of the amplification process based on the notion of saturdtialam et al., 2004).
We assume that there exists a saturation thresiiddch that the reaction effi-
ciencyp(N,,) at cyclen is a decreasing function &(V,,)/S = max(N, /S, 1)
with max(a, b) being equal to the maximum betweerandb. Therefore, the re-
action efficiency is modelled as being constant as long/as< S, where PCR
undergoes its exponential phase, and the reaction efficisassumed to decrease
whenN,, > S, where PCR is in its saturation phase. The functiphis such that
the model we propose generalizes (1) and leads to good datadiam, 2003;
Lalam et al., 2004). Furthermorg(-) is chosen such that we can apply theoreti-
cal asymptotic results related to the estimation of thepoiifigy mean of a general
size-dependent branching process by the conditional$gastres method (Lalam
and Jacob, 2004). Note that the asymptotics consist imdgttigo to infinity
such thatV,, goes to infinity. In the PCR setting, even if the replicatiorcley
n is of the order of a few dozens, the corresponding number ¢écatesnN,, is
very large due to the exponential phase of the PCR amplifitcatiathat theoreti-
cal asymptotic results in Lalam and Jacob (2004) may be eghplive define and
study the conditional least squares estimators of theicgeeftficiency based on a
single PCR amplification trajectory. We estimate paramedktise reaction effi-
ciency model, and also the cycle of the end of the exponegpitiase by using the
conditional least squares method. Although our theoretesaults are asymptotic
and although we rely on a few successive observations to tinéereaction effi-
ciency, we obtain accurate estimators with simulated drtreee PCR data. This
is explained by the strong law of large numbers leading toclgwecision of the
observations at the end of the exponential phase and in theasan phase. Fi-
nally, we conclude the paper by a discussion of the preseasedts to determine
the reaction efficiency. Mathematical technicalities agteded to the appendix.

2 Mathematical model currently used

The release of systems allowing to collect kinetic PCR data@gare gener-
ated during the amplification has revolutionized Q-PCR (idiget al., 1992): at
each replication cycle, a measurement of the fluoresceniteedry the accumu-
lated DNA molecules is performed. As noted by Rutledge (2004)fluorescence
chemistry is currently widely used to monitor the amount dfDmolecules am-
plified by PCR.

Current Q-PCR protocols rely on the exponential phase of the G-



fication trajectory (Bustin, 2003). The quantification is based on the classical
assumption that the fluorescence measured at eyaenoted byF},, is propor-
tional to the number of DNA molecule¥),, the present DNA molecules being
measured thanks to the fluorescence they emit (Kang et 8I0) 2Current quan-
tification methodologies rely on the approximation

Ny >~ (1+p)"No, )

where N is the number of DNA molecules initially present before aifigation
by PCR, ana is the reaction efficiency assumed constant during the el
phase (see chapter 3 of Bustin, 2003). The geometric seridslr{®) does not
take into account the stochasticity of the amplificationgess. Furthermore, most
of the current quantification procedures use only one observper amplifica-
tion trajectory, assumed to be in the exponential phasenaad many of them.
For example, the predominant Q-PCR methodology is a thrddbeded proce-
dure requiring the elaboration of standard curves (Rutleaged®te, 2003). This
relies on observations of several PCR trajectories at acapin cycle, known
as the fractional cycle, at which the PCR trajectories haeatidal amounts of
replicated DNA molecules. This common amount of DNA molesus set above
the background noise of the DNA quantity measuring devican &t al. (2005)
described a method for determining the fractional cychkgmeglon the study of the
second derivative of the fluorescence signal with respettteaeplication cycle.
A standard curve is constructed by amplifying known iniiedounts of dilutions
of a standard assumed to have the same efficiency as the Rejgihg on the ap-
proximate relationship (2) and on the assumption that theusutrof fluorescence
signal is proportional to the number of present molecules, ftactional cycle
measured for each dilution is proportional to the logarithinthe initial amount
of the target. The reaction efficiency is then obtained byaggjon analysis. This
efficiency is assumed to be the same for all the standardatikind the target
but some authors noticed that this assumption may be quabi® (Raeymakers,
1995). Alvarez et al. (2000) conducted a simulation studthefinfluence that
reaction efficiency differences between the target andttredard templates have
on target quantification.

Note that the fractional cycle is also called threshold eydenoted by’;, in ABI
PRISM'™ literature (Applied Biosystems, Foster City, CA, USA), wherdas
called crossing point, denoted by in LightCycler " literature (Roche Applied
Science, Indianapolis, IN, USA). See Wong and Medrano (R@5more detalil.

2We denote by PCR amplification trajectory, or simply PCReitgry, the observation of the
successive DNA molecule quantities monitored at eacha&{idin cycle, that is the observation of
the fluorescence counterpart@¥y }1<x<n,,.. With n,,4, the total number of replication cycles
performed. Recall that,, . ranges typically between 30 and 50.



Q-PCR requires expensive equipment and reagents. Receamlytification
procedures based on a single PCR trajectory have been ptbffeamakers et
al., 2003; Rutledge, 2004). This presents the advantagedatimg the costs of
the PCR experiment. In this study, we propose an alternatetbod to infer the
reaction efficiency from a single PCR trajectory using a paltdr class of branch-
ing processes. This stochastic modelling enables us taatéor the variability
inherent to the amplification by PCR.

3 Stochastic modelling

As in Jagers and Klebaner (2003), we assume that each meleubive birth
in the next cycle to two identical molecules if the replicatsucceeds or remains
unchanged otherwise. The number of DNA molecules at cyelel is given by
the recursion formula

Nn
Nn+1 - ZYn—‘rl,ia (3)
i=1

whereY,,, ; is the number of offspring at cycle+ 1 of thei-th molecule belong-
ing to cyclen. The random variabl®;, . ; ; can take only two values;, , ; = 2 if
moleculei present at cycle has been successfully replicated, afg, ; = 1 oth-
erwise. We assume thal], being given, the offspringY,,, ;}; are independent
and identically distributed (i.i.d.) random variables.€dtochastic procegsV,, }.,
thus defined is a branching process. See Haccou et al. (200B)dre detail on
branching process theory. If all the random varialf[€s, ; },,; have a common
distribution such that the probability th&} ., ; = 2 is equal to the constant value
p, then{ N, },, is a Galton-Watson branching process whose expectatisfisst

E(N,) = (1+ p)"E(No). (4)

This equality is similar to the approximation (2): relatstip (2) is obtained from
(4) where the mean of the random variablg (respectivelyN,) is substituted by
N, (respectivelyNy).

We assume here that the replication at a given cycle deperig®o the re-
acting components initially introduced in the reactiongw@nd on the amount of
molecules already synthesized at this cycle. Then, theegsjcV,, }, may be
considered as a size-dependent branching process: thi@nesfficiency at cycle
n is a function of the number of molecules present at cyclgve will denote by
p(N,,) the efficiency at cycle.

The aim is estimation of the reaction efficiengy) where the whole amplifi-
cation process is modelled by a size-dependent branchauggs. The advantage

5



of using also the saturation phase is that this phase isvediamuch less noisy
than the exponential phase, and it enables one to use maré&datference. The
efficiency p(NN,,) is supposed to satisfy the following assumption: theretgxs
saturation threshold, denoted By> N,, such that, whemV,, < S, the underly-
ing branching process is considered as a Galton-Watsorctiranprocess with
constant efficiency(N,,) = p, whereas whetv,, > S, the branching process is a
near-critical size-dependent branching process withieffay p(/V,,) decreasing
to zero as (and thereforeV,,) increases. We assume that the efficiengy,,) is
a decreasing function & (N,,)/S (recall thatS(N,,)/S = max(N,,/S,1)). More
precisely, we consider the following parametric efficiemogdel introduced in
Lalam et al. (2004):

L if N,<S
p(Nn> - { (I(I:_EV(Nn)(1+exp(—02(Nn/S—1))) if Nn 2 S, (5)

where K, S and C' are unknown parameters i . This efficiency model fits
into the exponential phase and the linear part of the sauarphase (Lalam et al.,
2004). The quantitys/(K + S) = p is the reaction efficiency of the exponential
phase. The assumptioA’(> 0 andS > 0) yields0 < p < 1 which is consistent
with real-time PCR experiments. Note that the Galton-Watsanching process
modelling the PCR exponential phase is called supercriiesduse > 0. Model
(5) is expressed in the number of DNA molecules whereas tidiree PCR data
are expressed in fluorescence units. We make the classgahpson that the
fluorescence emitted by the present DNA molecules is prigo@itto the number
of present DNA molecules (Bustin, 2003). Since the proposiciency model
depends on the rati§(XV,,)/S for which the proportionality coefficient between
fluorescence and DNA molecules simplifies, one can obtaicieffity estimators
even when considering real-time measurements expresfediascence units.

Note that model (1) proposed by Jagers and Klebaner (20@8) efficiency
model for which saturation occurs at the beginning of theties, S = N,
whereas in model (5), there exists an exponential phaSe-ifN,.

We estimate the parameters of the efficiency model (5) thémkise condi-
tional least squares method usimg h-+1 consecutive observations of the process,
starting from the observation at cydle The conditional least squares estimator
of (K, S,C), denoted by K, S,,, C,,), minimizes the sum of squared differences
between the process and its conditional expectation, epdred difference be-
ing adequately weighted by a positive quantity of the orde¢he variance of the
process. This sum of squared differences, also called asinin the statistical
literature, will be denoted by S, (K, S, C). See the appendix for more detail.

In practice, the starting cycletaken into account in the contrast will be set large
enough so that we do not consider the first noisy observationsthe exponen-
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tial phase. It is well-known that the early observationstatw the background
noise and therefore useless for quantitative purposesthadhey become rela-
tively less noisy as more and more DNA molecules accumuist{n, 2003).
From a theoretical perspective, one can describe the asyimptoperties ofi,,
asn — oo (Lalam et al., 2004). We denote by, the first cycle of the satu-
ration phase: il < n, then NV, belongs to the exponential phas¥,( < 5),
and if n > n, then N,, belongs to the saturation phas¥,( > S). Then let

O 1(n,) = \/ZZ;,LH (14 p)" ' +n — n, be the rate of convergence of the es-
timator. Then we have

Proposition. (a) Srong consistency: lim,,_. K, = K,

(b) Asymptotic distribution:

. 1 K,—K p
Jim @, (ns) NeT
Proof. See Proposition 5.1 of Lalamet al. (2004).

This proposition means that on each trajectdt,, },, tends to the true pa-
rameter valudl with a rate of convergence; ! (n,), and that the asymptotic dis-
tribution of ®-(n,)(K, — K)/V2K is the standard Gaussian distribution. This
entails that, if the saturation threshadlds known, one can construct a confidence
interval for the efficiency of the exponential phase- K/(K + S). In practice,
since the saturation threshofdand the cycle:, of the end of the non-saturated
phase are unknown, one would construct an approximate eowidinterval for
which the conditional least squares estimatiprs plugged-in instead & and the
value ofn, is estimated by the cycle, such that, from this cycle on, the process
is larger thars,,.

Although the results of the proposition are asymptotic, ot/ also obtain
accurate estimators at finitewhen using a single PCR amplification trajectory.
The efficiency model (5) was validated with two data setsiabthon an ABI
PRISM'™ measuring device (Applied Biosystems, Foster City, CA, USAgwh
using observations in the exponential phase above the baokg noise and in the
early saturation phase (Lalam et al., 2004). We proceedllasv®owhen analyz-
ing data expressed in fluorescence units. Recall fhatpresents the measured
fluorescence at replication cycdle and is assumed proportional to the number of
DNA moleculesN,. LetSS;, (K, S,C) = SS,(K, S, C)/(n— h) be the normal-
ized contrast. In theory, one should normalig, (-) with the quantity®_*(n,)
but, since this rate of convergence contains unknown paeameve use the nor-
malizationn — h instead of®,!(n,). In order to derive the reaction efficiency
estimator using the normalized contrast, we consider aawnof observations
[ho, no] such that the observations belonging to this interval aiahie, that is
above the background noise. Cyélgbelongs to the exponential phase, and cy-

N(0,1). (6)
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cle ny belongs to the linear part of the saturation for which mod&gli¢ valid
(Lalam, 2003; Lalam et al., 2004). Once this wind@wy, no| is selected, we con-
sider several window', n’] inside [, no], with A’ from the exponential phase
andn’ from the early saturation phase, and we search the best wintiobser-
vations|h, n] included in[hq, no] which leads to the best fit. This means that the
observations from cyclek to n are such thaﬁhvn(f{n, §n, én) minimizes the
set

(@h’,n/ (Kn/ y ST'L/7 C’I’L/ ))hogh,<ﬁgbs,graph<n,§n0 . (7)

Cyclencts9rarh js a graphical estimation of the end of the exponential pliase
fined as the first cycle of the decrease of 10 consecutive valuthe simple esti-
mator of the amplification ratéF./ F.1 }» (Peccoud and Jacob, 1996). The con-
strainth’ < nobs9mePh </ aims at ensuring that cyclé belongs to the exponen-
tial phase, and cycle’ to the saturation phase. We dgt= sup(k : Fy_; < 0),
that isF), > 0 for all &k > hy, since the values of the measurements of the emitted
fluorescence have a meaning only when they are positive. 8lyanid-error, we
setng = net9rePh 4 7. In order to compute the estimates more efficiently, the
preliminary intervallhy, no] may be given by an experienced experimenter who
should seleck, from the exponential phase and above the background noide, a
no from the linear part of the saturation phase.

We present the results obtained for a simulated PCR trajeatut real-time
PCR data. The simulation is done as follows. Recall that thepdfig{Y,, .1}
are i.i.d. conditionally taV,, with Y,,.; ; = 2 when the replication has succeeded,
andY, 1, = 1 otherwise. Since we have proposed that the probability gif-re
cation at cyclen is modelled byp(N,,) defined in (5), therP(Y,,;1, = 2|N,,) =
p(N,,). Therefore, in view of (3), the proce$dV, },, is recursively defined by

Nn+1 = Nn + Bln(Nnap(Nn)>a n > O, (8)

where Bir(N, q) is a random variable having a binomial distribution withgar
etersN andq. Consequently, in view of (5), onc&,, K, S andC are given,
one can simulat¢ N, },, using (8). In order to reproduce fluorescence data that
are very noisy in the early exponential phase and relativetye accurate af-
ter a threshold has been crossed, we add a Gaussian ndi8g ¥p. The noise
was tuned such that its influence decreases agreases and disappears after
some threshold cycle. Figure 1 shows the estimators olataiih a PCR sim-
ulation trajectory for which the true reaction efficiencytire exponential phase
is p = 0.8. Figure 2 shows the results obtained with a real-time PCRdtary
obtained on ABI PRISNI™ 7700 (Applied Biosystems, Foster City, CA, USA)
and provided by the Laboratory of Phytopathology and Mettagly of Detec-
tion, INRA, France. The plot in dotted line is the plot Bf/F;,_; — 1 versus
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the replication cyclé:. The quantityF,/F,_; — 1 is an estimate of the observed
efficiency (Peccoud and Jacob, 1996, 1998). The plot in $okdrepresents the
estimator of the efficiency(Fy_,) defined in (5) for which K, S, C) is replaced
by (K,, S,,C,,) which is the conditional least squares estimator comptethé
best window{h, n] chosen by applying criterion (7). Sinpe= K/(K + .9), the
efficiency of the exponential phase is estimate@,by- Kn/( Ko+3, ). The fitted
reaction efficiency equals the estimafeas long as the replication cycleis less
than the estimated end of the non-saturated phase sup(l : F;_; < S,,). For

k > ng, the fitted efficiency according to model (5) is the followidgcreasing
function of F}:

)(1 +exp (— ,;(Fk/Sn — 1))>

([A(n + F,
In Figures 1 and 2, for the early cycles, the rafig' F),_, (dotted lines) behaves
very erratically as a result of the fact that the fluoresceradees are below the
background noise. In the reliable part of the exponentialsph this ratio stabi-
lizes, and then decreases in the saturation part. The ebtéitnn Figures 1 and 2
are quite accurate at the end of the exponential phase ahd saturation phase.
As concerning Figure 2 related to real-time PCR data, the fihatend of the
saturation phase is relatively less accurate: the soleifirabove the dotted line.
This is due to the fact that the process undergoes the lirsraopthe saturation
for which model (5) is no more valid.

In order to make a distinction between the parameters celateumbers of
molecules and those related to fluorescence data, we dendié lfrespectively
S andCT) the counterpart of the parametir(respectivelyS andC) when the
qguantity of DNA molecules is measured through the fluorese@mitted by the
molecules.



Figure 1: Simulationy-coordinate: reaction efficiency:coordinate: replication
cycle; dashed line: observed reaction efficiency; solid:liestimated reaction ef-
ficiency. The window of observations selected via critefionis [h, n] = [14, 24].
For this window, the estimate of the reaction efficiency & éxponential phase
is pn = 0.815, the estimate of the end of the non-saturated phasgis 17, and
K, = 1.965 106, S, = 4.463 10°, C,, = 0.25.

—

232280000

Figure 2: Real-time PCR data-coordinate: reaction efficiency;-coordinate:
replication cycle; dashed line: observed reaction effyesolid line: estimated
reaction efficiency. The window of observations selectea ariterion (7) is

[h,n] = [22,29]. For this window, the estimate of the reaction efficiencyhef éx-
ponential phase i§, = 0.731, the estimate of the end of the non-saturated phase
isn, = 25, andKF = 0.254, SF = 0.094, CF = 0.07.
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4 Discussion

Q-PCR is widespread in molecular biology and has various@ns span-
ning from medical diagnosis to forensic science. The abibt collect data as
PCR proceeds thanks to fluorescence-based methods had admmémpact on
guantitative analyses of PCR. Many quantification procedaregavailable for Q-
PCR (Bustin, 2003), and a growing number of studies addresSBsefficiency
calculations (Larionov et al., 2005). The method we propalk®vs us to con-
struct an estimator of the reaction efficiency from the obst®sn of consecutive
measurements of a single trajectory as opposed to the tildeshsed procedure
that needs many amplification trajectories for the genemadif standard curves.
Estimation is based here on a stochastic modelling of the R@ftifecation pro-
cess relying on the size-dependent branching processyitzeat generalizing the
model of Jagers and Klebaner (2003). This stochastic madedrises naturally
when considering the size evolution of in vitro populatiéorswhich the offspring
distribution depends on the existing population size, apssibly on saturation
phenomena. Based on this modelling, we have provided a ncetblad to deter-
mine the reaction efficiency thanks to a conditional leagases procedure using
reliable observations from both phases of a single PCR tajgcthat is the expo-
nential and the early saturation part. Preliminary resuitsvo data sets obtained
on an ABI PRISM ™ platform (Applied Biosystems, Foster City, CA, USA) have
led to satisfying fits (Lalam et al., 2004).

Our method is based on a parametric modelling of the reaeffoziency in both
PCR phases as a function of the quantity of present DNA matscund this
reaction efficiency model is used to define the branchingge®accounting for
the stochastic accumulation of the DNA molecules. Howeatiier quantification
methods relying on the kinetics of a single amplificatioeitéory are available.
For example, some authors parameterized directly the Boeree process;,
versus the replication cycle Rutledge (2004) proposed to fit a sigmoid function
to the PCR amplification trajectory. Goll et al. (2006) penfied nonlinear re-
gressions of fluorescence ddfaversus cyclé: by using sigmoid type functions
possibly corrected with a linear term to model a baselint. dfihey considered
fluorescence data belonging to both phases of PCR, and they ééfined a spe-
cific weight function or theylog,, transformed the data to account for the late
plateau phase. Tichopad et al. (2003a, b) inferred theiozaefficiency from a
single amplification trajectory by using successive olmons of the early ex-
ponential phase, the other observations being discarded tihe estimation via
adequate algorithms. The advantage of our method is thaeg both phases of
PCR and it accounts for the stochastic variability inherenhé amplification tra-
jectory.

An interesting line of research would be to propose an autednaethod to
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select the preliminary window of observatiditg, no| appearing for selecting the

observations from cycle:, n] in (7) upon which the reaction efficiency is es-
timated. Future investigation consists in implementing pioposed estimation

procedure with other data sets.

5 Appendix

At cyclen + 1, the conditional probability that), ., = 2, given the number
of moleculesN,, at the previous cycle, equal¥Y,,.1; = 2|N,) = p(N,). Note
that, sincev,, ., ; equals either 1 or 2, this entailyV,, .1 ; = 1|N,) = 1 — p(N,,).
Furthermore the conditional expectation and variancg,ef ;, givenN,,, reads

E(Ypi1.4Nn) = 14 p(Ny), var(Y,i1.:|Nn) = p(Ny) (1 — p(N,)).

We denote herg(N,,) by pk s.c(V,,) to indicate in the notation that the model
efficiency (5) is parametric with unknown parametés, S, C). The offspring
mean modeE (Y, 11| N,) = m(N,) = 1 + pk s.c(N,,) reads

B 1—Fpifpﬁl<‘s

with the remainder term(N,,) satisfying

exp (—C(N,/S —1))

r() = e 5

N,
N, (K + N,,) -

) = 0(N,®).

K K
2

The notatiors,, = 0(b,) means thalim,, ., a,,/b, < 0.

In view of (9), it was proved in Lalam et al. (2004) that the ditional least
squares estimator ok is strongly consistent (part (a) of the proposition), and
that its asymptotic distribution, under appropriate ndimagion, is Gaussian (part
(b)). More precisely, we consider the contrést, () defined by the following
sum of conditional weighted squares:

Ns

SSu(K,8,C) = > (Ne— (1+prsc(S)Ne1)’ Ny N,
k=h+1
+ Z (N, — (1 +pK,S,C<Nk71>>Nk71)2- (10)
k=ns+1

The conditional least squares estimatéf,, S,, C,) minimizes 55, (K, S,C)
with respect tak’, S, andC.
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