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Abstract

Polymerase Chain Reaction (PCR) is largely used in molecular biology
for increasing the copy number of a specific DNA fragment. The succes-
sion of 20 replication cycles makes it possible to multiply the quantity of
the fragment of interest by a factor of one million. The PCR technique has
revolutionized genomics research. Several quantification methodologies are
available to determine the DNA replication efficiency of the reaction which
is the probability of replication of a DNA molecule at a replication cycle.
We elaborate a quantification procedure based on the exponential phaseand
the early saturation phase of PCR. The reaction efficiency is supposed tobe
constant in the exponential phase, and decreasing in the saturation phase.
We propose to model the PCR amplification process by a branching pro-
cess which starts as a Galton-Watson branching process followed by a size-
dependent process. Using this stochastic modelling and the conditional least
squares estimation method, we infer the reaction efficiency from a single
PCR trajectory.

Key words and phrases: Polymerase Chain Reaction; Branching process;
Reaction efficiency estimation.

1 Introduction

Polymerase Chain Reaction (PCR, Mullis and Faloona, 1987) is an in vitro en-
zymatic reaction capable of amplifying the number of copiesof a specific DNA
fragment. Mullis was awarded the 1993 Nobel Prize in chemistry for PCR. This
technique is very commonly used in molecular biology since it is a rapid method
which makes it possible to detect low abundance of DNA (Mullis et al., 1994).
Protocols that quantify rare nucleic acids are increasingly used (Demidov and
Broude, 2004). The ability to monitor the DNA molecules quantity as they ac-
cumulate thanks to fluorescence-based detection methods has led to a strong im-
petus in quantitative analyses of PCR (Bustin, 2003). Quantitative PCR (Q-PCR)
which aims at determining the initial amount of specific DNA,known as the tar-
get, present in a biological sample has many applications invirology (Palmer et
al., 2003) or genes expression studies (Ginzinger, 2002; Pfaffl et al., 2004).

PCR is a DNA amplification technology formed by the repetitionof typically
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30 to 50 replication cycles. The number of copies of the target DNA molecules
is doubled at most at each cycle. But in practice, the probability that a molecule
will be successfully duplicated after one amplification cycle, known as the effi-
ciency of the reaction, is less than one. The precise determination of the effi-
ciency is required in most quantification methodologies of the initial amount of
DNA molecules (Bustin, 2003). The beginning of PCR is characterized by an ex-
ponential increase in target molecules. Then, because of a depletion of reaction
components or because of a decline in polymerase activity orbecause of both (Liu
and Saint, 2002), the reaction efficiency decreases and eventually ceases leading
to a saturation phase decomposed into a linear phase and a plateau phase. Also,
in the course of PCR, mutations may occur along the DNA replicated fragments
(Krawczak et al., 1989). As this is common in most of the studies related to the
determination of the replication efficiency, we will neglect here the copying errors
in replication, that is we will assume that all replicated molecules are identical to
the initial template target molecules.

In the literature, the theory of Galton-Watson branching processes in discrete
time, the time step being a replication cycle, has been extensively used to model
the exponential phase of the amplification process. Sun (1995) and Weiss and Von
Haeseler (1995) examined replication errors of the DNA polymerase enzyme. Ig-
noring these copying errors in replication, Stolovitzky and Cecchi (1996) studied
the number of cycles during which the PCR amplification process undergoes the
exponential phase and may therefore be modelled by a Galton-Watson branch-
ing process. In this setting, Peccoud and Jacob (1996, 1998)built conditional
least squares estimators of the reaction efficiency. Piau (2001) investigated PCR
from a probabilistic perspective. Branching processes provide general popula-
tion dynamic models, and are used in the modelling and analysis of many bio-
logical phenomena (Jagers, 1975; Haccou et al., 2005). Relying on the enzy-
mological approach of PCR performed by Schnell and Mendoza (1997), Jagers
and Klebaner (2003) modelled the DNA amplification process by defining a size-
dependent branching process with the following replication efficiency

p(Nn) =
K

K + Nn

, (1)

whereK is a Michaelis-Menten constant type of the reaction, andNn is the num-
ber of DNA molecules present at replication cyclen.

In this paper, we present a statistical procedure to estimate the reaction effi-
ciency from a single amplification trajectory by using a stochastic modelling of the
PCR amplification process. The model generalizes the one proposed by Jagers and
Klebaner (2003). The PCR amplification process is modelled bya size-dependent
branching process which enables one to take into account thestochastic variability
of the reaction and both phases of the amplification process,that is the exponential

2



phase and the saturation phase.
We indicate in section 2 the approximate relationship upon which most current

quantification methodologies are based to estimate the reaction efficiency. In sec-
tion 3, we define a size-dependent branching process modelling of the two phases
of the amplification process based on the notion of saturation (Lalam et al., 2004).
We assume that there exists a saturation thresholdS such that the reaction effi-
ciencyp(Nn) at cyclen is a decreasing function ofS(Nn)/S = max(Nn/S, 1)
with max(a, b) being equal to the maximum betweena andb. Therefore, the re-
action efficiency is modelled as being constant as long asNn < S, where PCR
undergoes its exponential phase, and the reaction efficiency is assumed to decrease
whenNn ≥ S, where PCR is in its saturation phase. The functionp(·) is such that
the model we propose generalizes (1) and leads to good data fits (Lalam, 2003;
Lalam et al., 2004). Furthermore,p(·) is chosen such that we can apply theoreti-
cal asymptotic results related to the estimation of the offspring mean of a general
size-dependent branching process by the conditional leastsquares method (Lalam
and Jacob, 2004). Note that the asymptotics consist in letting n go to infinity
such thatNn goes to infinity. In the PCR setting, even if the replication cycle
n is of the order of a few dozens, the corresponding number of moleculesNn is
very large due to the exponential phase of the PCR amplification so that theoreti-
cal asymptotic results in Lalam and Jacob (2004) may be applied. We define and
study the conditional least squares estimators of the reaction efficiency based on a
single PCR amplification trajectory. We estimate parametersof the reaction effi-
ciency model, and also the cycle of the end of the exponentialphase by using the
conditional least squares method. Although our theoretical results are asymptotic
and although we rely on a few successive observations to infer the reaction effi-
ciency, we obtain accurate estimators with simulated or real-time PCR data. This
is explained by the strong law of large numbers leading to a good precision of the
observations at the end of the exponential phase and in the saturation phase. Fi-
nally, we conclude the paper by a discussion of the presentedresults to determine
the reaction efficiency. Mathematical technicalities are deferred to the appendix.

2 Mathematical model currently used

The release of systems allowing to collect kinetic PCR data asthey are gener-
ated during the amplification has revolutionized Q-PCR (Higuchi et al., 1992): at
each replication cycle, a measurement of the fluorescence emitted by the accumu-
lated DNA molecules is performed. As noted by Rutledge (2004), the fluorescence
chemistry is currently widely used to monitor the amount of DNA molecules am-
plified by PCR.

Current Q-PCR protocols rely on the exponential phase of the PCRampli-
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fication trajectory2 (Bustin, 2003). The quantification is based on the classical
assumption that the fluorescence measured at cyclen, denoted byFn, is propor-
tional to the number of DNA moleculesNn, the present DNA molecules being
measured thanks to the fluorescence they emit (Kang et al., 2000). Current quan-
tification methodologies rely on the approximation

Nn ≃ (1 + p)nN0, (2)

whereN0 is the number of DNA molecules initially present before amplification
by PCR, andp is the reaction efficiency assumed constant during the exponential
phase (see chapter 3 of Bustin, 2003). The geometric series model (2) does not
take into account the stochasticity of the amplification process. Furthermore, most
of the current quantification procedures use only one observation per amplifica-
tion trajectory, assumed to be in the exponential phase, andneed many of them.
For example, the predominant Q-PCR methodology is a threshold-based proce-
dure requiring the elaboration of standard curves (Rutledgeand Ĉoté, 2003). This
relies on observations of several PCR trajectories at a replication cycle, known
as the fractional cycle, at which the PCR trajectories have identical amounts of
replicated DNA molecules. This common amount of DNA molecules is set above
the background noise of the DNA quantity measuring device. Van et al. (2005)
described a method for determining the fractional cycle relying on the study of the
second derivative of the fluorescence signal with respect tothe replication cycle.
A standard curve is constructed by amplifying known initialamounts of dilutions
of a standard assumed to have the same efficiency as the target. Relying on the ap-
proximate relationship (2) and on the assumption that the amount of fluorescence
signal is proportional to the number of present molecules, the fractional cycle
measured for each dilution is proportional to the logarithmof the initial amount
of the target. The reaction efficiency is then obtained by regression analysis. This
efficiency is assumed to be the same for all the standard dilutions and the target
but some authors noticed that this assumption may be questionable (Raeymakers,
1995). Alvarez et al. (2000) conducted a simulation study ofthe influence that
reaction efficiency differences between the target and the standard templates have
on target quantification.
Note that the fractional cycle is also called threshold cycle, denoted byCt, in ABI
PRISMTM literature (Applied Biosystems, Foster City, CA, USA), whereas it is
called crossing point, denoted byCP in LightCyclerTM literature (Roche Applied
Science, Indianapolis, IN, USA). See Wong and Medrano (2005) for more detail.

2We denote by PCR amplification trajectory, or simply PCR trajectory, the observation of the
successive DNA molecule quantities monitored at each replication cycle, that is the observation of
the fluorescence counterpart of{Nk}1≤k≤nmax

with nmax the total number of replication cycles
performed. Recall thatnmax ranges typically between 30 and 50.
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Q-PCR requires expensive equipment and reagents. Recently, quantification
procedures based on a single PCR trajectory have been proposed (Ramakers et
al., 2003; Rutledge, 2004). This presents the advantage of reducing the costs of
the PCR experiment. In this study, we propose an alternative method to infer the
reaction efficiency from a single PCR trajectory using a particular class of branch-
ing processes. This stochastic modelling enables us to account for the variability
inherent to the amplification by PCR.

3 Stochastic modelling

As in Jagers and Klebaner (2003), we assume that each molecule can give birth
in the next cycle to two identical molecules if the replication succeeds or remains
unchanged otherwise. The number of DNA molecules at cyclen + 1 is given by
the recursion formula

Nn+1 =
Nn∑

i=1

Yn+1,i, (3)

whereYn+1,i is the number of offspring at cyclen+1 of thei-th molecule belong-
ing to cyclen. The random variableYn+1,i can take only two values:Yn+1,i = 2 if
moleculei present at cyclen has been successfully replicated, andYn+1,i = 1 oth-
erwise. We assume that,Nn being given, the offspring{Yn+1,i}i are independent
and identically distributed (i.i.d.) random variables. The stochastic process{Nn}n

thus defined is a branching process. See Haccou et al. (2005) for more detail on
branching process theory. If all the random variables{Yn+1,i}n,i have a common
distribution such that the probability thatYn+1,i = 2 is equal to the constant value
p, then{Nn}n is a Galton-Watson branching process whose expectation satisfies

E(Nn) = (1 + p)nE(N0). (4)

This equality is similar to the approximation (2): relationship (2) is obtained from
(4) where the mean of the random variableNn (respectivelyN0) is substituted by
Nn (respectivelyN0).

We assume here that the replication at a given cycle depends only on the re-
acting components initially introduced in the reaction tube and on the amount of
molecules already synthesized at this cycle. Then, the process{Nn}n may be
considered as a size-dependent branching process: the reaction efficiency at cycle
n is a function of the number of molecules present at cyclen. We will denote by
p(Nn) the efficiency at cyclen.

The aim is estimation of the reaction efficiencyp(·) where the whole amplifi-
cation process is modelled by a size-dependent branching process. The advantage
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of using also the saturation phase is that this phase is relatively much less noisy
than the exponential phase, and it enables one to use more data for inference. The
efficiencyp(Nn) is supposed to satisfy the following assumption: there exists a
saturation threshold, denoted byS ≥ N0, such that, whenNn < S, the underly-
ing branching process is considered as a Galton-Watson branching process with
constant efficiencyp(Nn) = p, whereas whenNn ≥ S, the branching process is a
near-critical size-dependent branching process with efficiency p(Nn) decreasing
to zero asn (and thereforeNn) increases. We assume that the efficiencyp(Nn) is
a decreasing function ofS(Nn)/S (recall thatS(Nn)/S = max(Nn/S, 1)). More
precisely, we consider the following parametric efficiencymodel introduced in
Lalam et al. (2004):

p(Nn) =

{
K

K+S
if Nn < S

( K
K+Nn

)(1+exp (−C(Nn/S−1))
2

) if Nn ≥ S,
(5)

whereK, S andC are unknown parameters inR∗
+. This efficiency model fits

into the exponential phase and the linear part of the saturation phase (Lalam et al.,
2004). The quantityK/(K + S) = p is the reaction efficiency of the exponential
phase. The assumption (K > 0 andS > 0) yields0 < p < 1 which is consistent
with real-time PCR experiments. Note that the Galton-Watsonbranching process
modelling the PCR exponential phase is called supercriticalbecausep > 0. Model
(5) is expressed in the number of DNA molecules whereas the real-time PCR data
are expressed in fluorescence units. We make the classical assumption that the
fluorescence emitted by the present DNA molecules is proportional to the number
of present DNA molecules (Bustin, 2003). Since the proposed efficiency model
depends on the ratioS(Nn)/S for which the proportionality coefficient between
fluorescence and DNA molecules simplifies, one can obtain efficiency estimators
even when considering real-time measurements expressed influorescence units.

Note that model (1) proposed by Jagers and Klebaner (2003) isan efficiency
model for which saturation occurs at the beginning of the reaction, S = N0

whereas in model (5), there exists an exponential phase ifS > N0.
We estimate the parameters of the efficiency model (5) thanksto the condi-

tional least squares method usingn−h+1 consecutive observations of the process,
starting from the observation at cycleh. The conditional least squares estimator
of (K,S,C), denoted by(K̂n, Ŝn, Ĉn), minimizes the sum of squared differences
between the process and its conditional expectation, each squared difference be-
ing adequately weighted by a positive quantity of the order of the variance of the
process. This sum of squared differences, also called contrast in the statistical
literature, will be denoted bySSn(K,S,C). See the appendix for more detail.
In practice, the starting cycleh taken into account in the contrast will be set large
enough so that we do not consider the first noisy observationsfrom the exponen-
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tial phase. It is well-known that the early observations arebelow the background
noise and therefore useless for quantitative purposes, andthat they become rela-
tively less noisy as more and more DNA molecules accumulate (Bustin, 2003).
From a theoretical perspective, one can describe the asymptotic properties ofK̂n

asn → ∞ (Lalam et al., 2004). We denote byns the first cycle of the satu-
ration phase: ifn < ns thenNn belongs to the exponential phase (Nn < S),
and if n ≥ ns then Nn belongs to the saturation phase (Nn ≥ S). Then let

Φ−1
n (ns) =

√∑ns

k=h+1 (1 + p)k−1 + n − ns be the rate of convergence of the es-
timator. Then we have
Proposition. (a) Strong consistency: limn→∞ K̂n

a.s.
= K,

(b) Asymptotic distribution:

lim
n→∞

Φ−1
n (ns)

K̂n − K√
2K

D
= N(0, 1). (6)

Proof. See Proposition 5.1 of Lalam et al. (2004).
This proposition means that on each trajectory,{K̂n}n tends to the true pa-

rameter valueK with a rate of convergenceΦ−1
n (ns), and that the asymptotic dis-

tribution of Φ−1
n (ns)(K̂n − K)/

√
2K is the standard Gaussian distribution. This

entails that, if the saturation thresholdS is known, one can construct a confidence
interval for the efficiency of the exponential phasep = K/(K + S). In practice,
since the saturation thresholdS and the cyclens of the end of the non-saturated
phase are unknown, one would construct an approximate confidence interval for
which the conditional least squares estimatorŜn is plugged-in instead ofS and the
value ofns is estimated by the cyclêns such that, from this cycle on, the process
is larger than̂Sn.

Although the results of the proposition are asymptotic, onemay also obtain
accurate estimators at finiten when using a single PCR amplification trajectory.
The efficiency model (5) was validated with two data sets obtained on an ABI
PRISMTM measuring device (Applied Biosystems, Foster City, CA, USA) when
using observations in the exponential phase above the background noise and in the
early saturation phase (Lalam et al., 2004). We proceed as follows when analyz-
ing data expressed in fluorescence units. Recall thatFk represents the measured
fluorescence at replication cyclek, and is assumed proportional to the number of
DNA moleculesNk. LetSSh,n(K,S,C) = SSn(K,S,C)/(n−h) be the normal-
ized contrast. In theory, one should normalizeSSn(·) with the quantityΦ−1

n (ns)
but, since this rate of convergence contains unknown parameters, we use the nor-
malizationn − h instead ofΦ−1

n (ns). In order to derive the reaction efficiency
estimator using the normalized contrast, we consider a window of observations
[h0, n0] such that the observations belonging to this interval are reliable, that is
above the background noise. Cycleh0 belongs to the exponential phase, and cy-
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cle n0 belongs to the linear part of the saturation for which model (5) is valid
(Lalam, 2003; Lalam et al., 2004). Once this window[h0, n0] is selected, we con-
sider several windows[h′, n′] inside[h0, n0], with h′ from the exponential phase
andn′ from the early saturation phase, and we search the best window of obser-
vations[h, n] included in[h0, n0] which leads to the best fit. This means that the
observations from cyclesh to n are such thatSSh,n(K̂n, Ŝn, Ĉn) minimizes the
set

(SSh′,n′(K̂n′ , Ŝn′ , Ĉn′))h0≤h′<bnobs,graph
s <n′≤n0

. (7)

Cycle n̂obs,graph
s is a graphical estimation of the end of the exponential phasede-

fined as the first cycle of the decrease of 10 consecutive values of the simple esti-
mator of the amplification rate{Fk/Fk−1}k (Peccoud and Jacob, 1996). The con-
strainth′ < n̂obs,graph

s < n′ aims at ensuring that cycleh′ belongs to the exponen-
tial phase, and cyclen′ to the saturation phase. We seth0 = sup(k : Fk−1 ≤ 0),
that isFk > 0 for all k ≥ h0, since the values of the measurements of the emitted
fluorescence have a meaning only when they are positive. By trial-and-error, we
setn0 = n̂obs,graph

s + 7. In order to compute the estimates more efficiently, the
preliminary interval[h0, n0] may be given by an experienced experimenter who
should selecth0 from the exponential phase and above the background noise, and
n0 from the linear part of the saturation phase.

We present the results obtained for a simulated PCR trajectory and real-time
PCR data. The simulation is done as follows. Recall that the offspring{Yn+1,i}i

are i.i.d. conditionally toNn with Yn+1,i = 2 when the replication has succeeded,
andYn+1,i = 1 otherwise. Since we have proposed that the probability of repli-
cation at cyclen is modelled byp(Nn) defined in (5), thenP (Yn+1,i = 2|Nn) =
p(Nn). Therefore, in view of (3), the process{Nn}n is recursively defined by

Nn+1 = Nn + Bin(Nn, p(Nn)), n ≥ 0, (8)

where Bin(N, q) is a random variable having a binomial distribution with param-
etersN andq. Consequently, in view of (5), onceN0, K, S andC are given,
one can simulate{Nn}n using (8). In order to reproduce fluorescence data that
are very noisy in the early exponential phase and relativelymore accurate af-
ter a threshold has been crossed, we add a Gaussian noise to{Nn}n. The noise
was tuned such that its influence decreases asn increases and disappears after
some threshold cycle. Figure 1 shows the estimators obtained with a PCR sim-
ulation trajectory for which the true reaction efficiency inthe exponential phase
is p = 0.8. Figure 2 shows the results obtained with a real-time PCR trajectory
obtained on ABI PRISMTM 7700 (Applied Biosystems, Foster City, CA, USA)
and provided by the Laboratory of Phytopathology and Methodology of Detec-
tion, INRA, France. The plot in dotted line is the plot ofFk/Fk−1 − 1 versus
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the replication cyclek. The quantityFk/Fk−1 − 1 is an estimate of the observed
efficiency (Peccoud and Jacob, 1996, 1998). The plot in solidline represents the
estimator of the efficiencyp(Fk−1) defined in (5) for which(K,S,C) is replaced
by (K̂n, Ŝn, Ĉn) which is the conditional least squares estimator computed for the
best window[h, n] chosen by applying criterion (7). Sincep = K/(K + S), the
efficiency of the exponential phase is estimated byp̂n = K̂n/(K̂n+Ŝn). The fitted
reaction efficiency equals the estimatep̂n as long as the replication cyclek is less
than the estimated end of the non-saturated phasen̂s = sup(l : Fl−1 < Ŝn). For
k ≥ ns, the fitted efficiency according to model (5) is the followingdecreasing
function ofFk:

(
K̂n

K̂n + Fk

)(
1 + exp (−Ĉn(Fk/Ŝn − 1))

2
).

In Figures 1 and 2, for the early cycles, the ratioFk/Fk−1 (dotted lines) behaves
very erratically as a result of the fact that the fluorescencevalues are below the
background noise. In the reliable part of the exponential phase, this ratio stabi-
lizes, and then decreases in the saturation part. The obtained fit in Figures 1 and 2
are quite accurate at the end of the exponential phase and in the saturation phase.
As concerning Figure 2 related to real-time PCR data, the fit atthe end of the
saturation phase is relatively less accurate: the solid line is above the dotted line.
This is due to the fact that the process undergoes the linear part of the saturation
for which model (5) is no more valid.

In order to make a distinction between the parameters related to numbers of
molecules and those related to fluorescence data, we denote by KF (respectively
SF andCF ) the counterpart of the parameterK (respectivelyS andC) when the
quantity of DNA molecules is measured through the fluorescence emitted by the
molecules.
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Figure 1: Simulation.y-coordinate: reaction efficiency;x-coordinate: replication
cycle; dashed line: observed reaction efficiency; solid line: estimated reaction ef-
ficiency. The window of observations selected via criterion(7) is [h, n] = [14, 24].
For this window, the estimate of the reaction efficiency of the exponential phase
is p̂n = 0.815, the estimate of the end of the non-saturated phase isn̂s = 17, and
K̂n = 1.965 106, Ŝn = 4.463 105, Ĉn = 0.25.
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Figure 2: Real-time PCR data.y-coordinate: reaction efficiency;x-coordinate:
replication cycle; dashed line: observed reaction efficiency; solid line: estimated
reaction efficiency. The window of observations selected via criterion (7) is
[h, n] = [22, 29]. For this window, the estimate of the reaction efficiency of the ex-
ponential phase iŝpn = 0.731, the estimate of the end of the non-saturated phase
is n̂s = 25, andK̂F

n = 0.254, ŜF
n = 0.094, ĈF

n = 0.07.
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4 Discussion

Q-PCR is widespread in molecular biology and has various applications span-
ning from medical diagnosis to forensic science. The ability to collect data as
PCR proceeds thanks to fluorescence-based methods had a tremendous impact on
quantitative analyses of PCR. Many quantification proceduresare available for Q-
PCR (Bustin, 2003), and a growing number of studies addresses PCR efficiency
calculations (Larionov et al., 2005). The method we proposeallows us to con-
struct an estimator of the reaction efficiency from the observation of consecutive
measurements of a single trajectory as opposed to the threshold-based procedure
that needs many amplification trajectories for the generation of standard curves.
Estimation is based here on a stochastic modelling of the PCR amplification pro-
cess relying on the size-dependent branching process theory, and generalizing the
model of Jagers and Klebaner (2003). This stochastic modelling arises naturally
when considering the size evolution of in vitro populationsfor which the offspring
distribution depends on the existing population size, and possibly on saturation
phenomena. Based on this modelling, we have provided a novel method to deter-
mine the reaction efficiency thanks to a conditional least squares procedure using
reliable observations from both phases of a single PCR trajectory, that is the expo-
nential and the early saturation part. Preliminary resultson two data sets obtained
on an ABI PRISMTM platform (Applied Biosystems, Foster City, CA, USA) have
led to satisfying fits (Lalam et al., 2004).
Our method is based on a parametric modelling of the reactionefficiency in both
PCR phases as a function of the quantity of present DNA molecules, and this
reaction efficiency model is used to define the branching process accounting for
the stochastic accumulation of the DNA molecules. However,other quantification
methods relying on the kinetics of a single amplification trajectory are available.
For example, some authors parameterized directly the fluorescence processFk

versus the replication cyclek. Rutledge (2004) proposed to fit a sigmoid function
to the PCR amplification trajectory. Goll et al. (2006) performed nonlinear re-
gressions of fluorescence dataFk versus cyclek by using sigmoid type functions
possibly corrected with a linear term to model a baseline drift. They considered
fluorescence data belonging to both phases of PCR, and they either defined a spe-
cific weight function or theylog10 transformed the data to account for the late
plateau phase. Tichopad et al. (2003a, b) inferred the reaction efficiency from a
single amplification trajectory by using successive observations of the early ex-
ponential phase, the other observations being discarded from the estimation via
adequate algorithms. The advantage of our method is that it uses both phases of
PCR and it accounts for the stochastic variability inherent to the amplification tra-
jectory.

An interesting line of research would be to propose an automated method to
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select the preliminary window of observations[h0, n0] appearing for selecting the
observations from cycles[h, n] in (7) upon which the reaction efficiency is es-
timated. Future investigation consists in implementing the proposed estimation
procedure with other data sets.

5 Appendix

At cycle n + 1, the conditional probability thatYn+1,i = 2, given the number
of moleculesNn at the previous cycle, equalsP (Yn+1,i = 2|Nn) = p(Nn). Note
that, sinceYn+1,i equals either 1 or 2, this entailsP (Yn+1,i = 1|Nn) = 1− p(Nn).
Furthermore the conditional expectation and variance ofYn+1,i, givenNn, reads

E(Yn+1,i|Nn) = 1 + p(Nn), var(Yn+1,i|Nn) = p(Nn)(1 − p(Nn)).

We denote herep(Nn) by pK,S,C(Nn) to indicate in the notation that the model
efficiency (5) is parametric with unknown parameter(K,S,C). The offspring
mean modelE(Yn+1,i|Nn) = m(Nn) = 1 + pK,S,C(Nn) reads

m(Nn) =

{
1 + p if Nn < S
1 + K

2Nn
+ r(Nn) if Nn ≥ S,

(9)

with the remainder termr(Nn) satisfying

r(Nn) =
K

Nn(K + Nn)
(−K

2
+ Nn

exp (−C(Nn/S − 1))

2
) = 0(N−2

n ).

The notationan = 0(bn) means thatlimn→∞ an/bn < ∞.
In view of (9), it was proved in Lalam et al. (2004) that the conditional least
squares estimator ofK is strongly consistent (part (a) of the proposition), and
that its asymptotic distribution, under appropriate normalization, is Gaussian (part
(b)). More precisely, we consider the contrastSSn(·) defined by the following
sum of conditional weighted squares:

SSn(K,S,C) =
ns∑

k=h+1

(Nk − (1 + pK,S,C(S))Nk−1)
2N−1

k−1Nns

+
n∑

k=ns+1

(Nk − (1 + pK,S,C(Nk−1))Nk−1)
2. (10)

The conditional least squares estimator(K̂n, Ŝn, Ĉn) minimizesSSn(K,S,C)
with respect toK, S, andC.
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128.

14



[22] Pfaffl, M. W., Tichopad, A., Prgomet, C., Neuvians, T. P.,2004. Determina-
tion of stable housekeeping genes, differentially regulated target genes and
sample integrity: BestKeeper-Excel-based tool using pair-wise correlations.
Biotechnol. Lett., 26, 509–515.

[23] Piau, D., 2001. Processus de branchement et champ moyen. Adv. Appl.
Prob., 33, 391–403.

[24] Raeymakers, L., 1995. A commentary on the practical applications of com-
petitive PCR. Genome Res., 5, 91–94.

[25] Ramakers, C., Ruijter, J. M., Lekanne Deprez, R. H., Moorman, A. F. M.,
2003. Assumption-free analysis of quantitative real-timepolymerase chain
reaction (PCR) data. Neuroscience Lett., 339, 62–66.
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