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Abstract. We consider the fixed-cycle traffic-light (FCTL) queue, where vehicles arrive

at an intersection controlled by a traffic light and form a queue. The traffic light signal
alternates between green and red periods, and delayed vehicles are assumed to depart
during the green period at equal time intervals.

Most of the research done on the FCTL queue assumes that the vehicles arrive at
the intersection according to a Poisson process and focusses on deriving formulas for

the mean queue length at the end of green periods and the mean delay. For a class
of discrete arrival processes, including the Poisson process, we derive the probability
generating function of both the queue length and delay, from which the whole queue

length and delay distribution can be obtained. This allows for the evaluation of perfor-
mance characteristics other than the mean, such as the variance and percentiles of the

distribution.
We discuss the numerical procedures that are required to obtain the performance

characteristics, and give several numerical examples.

1. Introduction

The fixed-cycle traffic light (FCTL) queue is one of the best-studied models in traffic
engineering. Vehicles arrive at an intersection controlled by a traffic light and form a queue.
The traffic light signal alternates between green and red periods of effective durations g
and r, and delayed vehicles are assumed to depart during the green periods at equal time
intervals.

The vast majority of the research devoted to the FCTL queue is based on the simplifying
assumption that vehicles arrive at the traffic light according to a Poisson process. In this
subfield, Webster’s formula [26] is recognized as the most famous result. It gives the mean
delay of a vehicle in closed form, and is an expression that is partly based on simulation.
It may not come as a surprise that many researchers felt challenged to come up with a
full analytical solution for the average delay. McNeill [18] partially succeeded by providing
the exact expression up to one unknown: the mean size of the overflow queue (the mean
stationary queue length at the end of a green period). We denote this unknown by EXg.
McNeill came to this result by deriving the mean queue length within a cycle–where a cycle
consists of a consecutive green period and red period, and is of c = g+r length–and by using
Little’s theorem. From McNeill’s formula, it became clear that providing an exact formula
for the mean delay was equivalent with providing an exact formula for EXg. Darroch [10]
did this in 1964, using an approach that is both analytically and computationally involved.
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This must be why Ohno [23] gives a detailed algorithmic description of the computation
of Darroch’s rather complicated expression for EXg. Ohno further presents a thorough
overview of the research that uses the Poisson assumption. In particular, Ohno compares
the various formulas for the mean delay: Webster [26], Webster & Cobbe [27], McNeill [18],
Miller [20] and Newell [22]. The latter three were obtained by approximating EXg. Ohno
shows that the differences between the formulas are extremely small, and so he concludes
that approximative formulas, in particular Miller’s and Newell’s, are the ones to be preferred,
since these are easy to evaluate. Despite Ohno’s conclusion, there are still many questions
left to be answered in at least two directions: (1) non-Poisson arrivals and (2) characteristics
of the queue length and delay distribution other than the mean.

1.1. Non-Poisson arrivals. Most of the research is devoted to Poisson arrivals. Notable
exceptions are Newell [22] who derives an approximation for EXg using fairly general argu-
ments, and Darroch [10] and McNeill [18] who both consider a compound Poisson process.
The assumption of (compound) Poisson arrivals allows the fixed-cycle traffic-light queue to
be modelled at embedded points, namely the times just after the departure of a delayed
vehicle, see Darroch [10]. We generalize this by assuming that the number of vehicles that
arrive per time slot follow some discrete distribution (the Poisson and compound Poisson
are also discrete distributions), and therewith model the queue in discrete-time. This allows
one to consider distributions with a larger coefficient of variation, distributions with a finite
support, or distributions fitted to empirical data. For this class of discrete arrival distribu-
tions, Van den Broek et al. [6] recently presented several bounds and approximations for
EXg.

1.2. Beyond the mean. By far, most of the research has been focused on deriving formulas
for the mean of performance characteristics such as the queue length and delay. Meissl [19]
and Darroch [10] derived, independently, the probability generating function (pgf) of the
stationary overflow queue using almost identical methods. From this pgf, one could attempt
to derive the pgf of the stationary delay, but to the best of our knowledge, no research
has been done in that direction in the subsequent years. Most likely, the reason for this it
that the pgf only allows for numerical evaluation, because it requires the determination of
the roots of some characteristic function. The complexity of the solution, together with the
potential difficulties of root-finding, prohibited the transform solutions from finding practical
application. Consensus was reached that easier approximations were to be preferred (see e.g.
[3, 22, 23] and the references therein). A noteworthy contribution is that of Heidemann [14].
For a Poisson arrival process, Heidemann derives, from the pgf of the queue length at arrival
instants, the Laplace transform of the delay distribution. This method is often applied in
queueing theory and relies heavily on the Poisson assumption. Heidemann recognizes that
the method will not work for a more general arrival process.

Root-finding is no longer a difficulty. In Chaudhry et al. [8] every effort is made to dispel
the scepticism towards such root-finding in queueing theory. It is demonstrated that the
root-finding is well-structured, in the sense that the roots are distinct for most models and
that their location is well-predictable, so that numerical problems are not likely to occur.
This is also the case for the FCTL queue, and we return to the issue of root-finding in
Sec. 5.1.

Once the pgf of the delay is known and completed with the numerically determined roots,
a second issue is the inversion of the pgf, so as to obtain the probability distribution. This
can be done analytically, by evaluating derivatives of the pgf, but this would give numerical
problems. However, the numerical inversion of a pgf, as for the root-finding, has become a
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more or less standard exercise due to the availability of efficient algorithms and increased
computational power. A good reference is [1].

From the distribution of the queue length and delay, one can obtain, next to the mean,
other characteristics such as percentiles, variability and the output process. Percentiles
of the queue-length distribution, particularly at the end of the red period, are used for
determining the length of turning lanes, so that the risk of a blockage in the through lanes
can be quantified (see e.g. [28]). Also, from the driver’s perspective, percentiles of the delay
distribution may express the probability that a driver experiences a delay longer than a
certain threshold value.

The delay experienced by vehicles at a signalized intersection is usually subject to a large
variation due to the randomness of the traffic arrival and the interruption by the traffic
light. The variance of the delay is a critical component for the planning and design of signal
controls, because it provides information on the confidence limits on the mean delay (see
e.g. [13]). Also, Darroch’s solution to the FCTL queue leads to a third result of interest:

The output process of the FCTL queue is defined by the departures of vehicles during
green periods. The output process is of importance, because it might determine the input for
another signalized intersection in a network (see [25]). Moreover, at many intersections, the
left-turning vehicles (at least in continental Europe and the United States) from the opposing
stream are expected to filter through the gaps in the output process during the residual or
unused green period. Hence, the output process determines the maximum filtration rate.
Among other things, Darroch’s solution yields a full description of the output process.
Tarko [25] derives approximations for the variance of the output process based on existing
approximations for the mean overflow queue EXg. Tarko does not consider the exact solution
of Darroch. Cowan [9] studies the maximum filtration rate in a model that is closely related
to the FCTL queue.

1.3. Model limitations. The FCTL queue was one of the very first queueing models in-
voked for the analysis of delay and queue length at traffic signals. The pioneering work on
the FCTL queue stems from the 1950s and 1960s, and there have been many developments
since.

One limitation of the FCTL queue is that it focuses on the steady-state (equilibrium)
behavior, which requires the mean arrival rate to be less than the capacity rate. Obviously,
for many signals this is not true, especially in peak hours. Another limitation of the FCTL
queue is that it requires the assumption of independent and identically distributed (i.i.d.)
arrivals. While this assumption could very well be valid in the case of an isolated signal,
an i.i.d. arrival process cannot incorporate the impact of adjacent signals and control. As
a final limitation, we should mention that the FCTL queue has, by definition, a fixed-time
control, and so it does not cover more sophisticated actuated and adaptive signal control
systems.

The above limitations obviously have been observed before, and a huge research effort
has led to other types of models that do capture nonequilibrium or oversaturated conditions,
time-dependency, coordinated signals, and actuated or adaptive signal control systems. For
a good overview we refer to Rouphail et al. [24].

One could argue that the FCTL queue is obsolete, but, evidently, we tend to disagree.
The FCTL queue is classic textbook material and distinguishes itself from most modern
models in the sense that it allows for a detailed and illustrative exact analysis. The FCTL
queue fulfills a prominent role in the literature on queueing models for traffic signals and is
referred to by many researchers to this day.
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1.4. Our contribution. Under certain assumptions (see Sec. 2), Darroch [10] derives for a
compound Poisson arrival process the pgf of the length of the overflow queue. We first show
in Sec. 3 how the same result holds for a more general discrete arrival process, and how
one can obtain from the pgf of the overflow queue the pgf of the queue length throughout
the whole cycle. Next, we derive in Sec. 4 the pgf of the delay. The transform solutions
to the queue length and delay can be inverted by means of the procedures discussed in
Sec. 5, which results in the probability distributions of the queue length and delay. From
the probability distribution we can obtain performance characteristics such as the variance
and percentiles of the distribution.

For Poisson arrivals, approximations of the variance of the delay have been derived (see
[13] and the references therein), and the percentiles of the queue length and delay distribution
have been estimated in [28] using regression analysis. To the best of our knowledge, for both
performance characteristics, no explicit description has appeared in the literature.

Our approach leads to an explicit solution of the pgf of the queue length and delay in
the FCTL queue for a general arrival distribution, and provides as such a broad framework.
For practical application, though, some numerical work is necessary. The issues of root-
finding and inversion of a pgf are addressed in Sec. 5. As it turns out, both issues are rather
straightforward. We provide numerical examples in Sec. 6, followed by some conclusions in
Sec. 7.

2. Basic assumptions

In most studies on the FCTL queue that do not rely on the Poisson assumption, e.g.
[5, 10, 19, 21], the following two assumptions are made:

Assumption 1. (discrete-time assumption) The time axis is divided into constant time
intervals of unit length, so-called slots, where each slot corresponds to the time needed for
a delayed vehicle to depart from the queue. The green and red periods, and thus the cycle
time c (with c = g + r), are assumed to be fixed multiples of one slot. Hence, g and r are
integers expressed in slots. Those vehicles that arrive at the queue and are delayed, join the
queue at the end of the slot in which they arrive.

Assumption 2. (independence assumption) Let Yk,n denote the number of vehicles that
arrive at the intersection during slot k in cycle n. The random variables Yk,n are assumed
to be independent and identically distributed (i.i.d.) for all k, n, according to some discrete
random variable Y with pgf Y (z).

These two assumptions allow one to model the queue length at the end of time slots
as a discrete-time Markov chain. We also work under these assumptions and assess their
implications at several places in this paper. Note that a Poisson arrival process satisfies
the independence assumption. Furthermore, although it might seem rather restrictive, the
independence assumption is frequently made and allows for a far larger class of arrival
distributions than just the Poisson case.

The following assumption is always made for the FCTL queue:

Assumption 3. (FCTL assumption) For those cycles in which the queue clears before the
green period terminates, all vehicles that arrive during the residual green period pass through
the system and experience no delay whatsoever.

The FCTL assumption is legitimate in the sense that the vehicles that arrive during
the residual green period can pass the intersection without slowing down, and therefore
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the discharge rate of these vehicles is much higher than the discharge rate of the delayed
vehicles (one per time unit). However, the FCTL assumption does lead to the anomaly
that some of these vehicles would be delayed for at least the duration of the red phase if
any reasonable constraint upon the spacing of departures were imposed. This means that,
due to the FCTL assumption, the delay for a small proportion of vehicles is understated.
However, because of the huge difference in discharge rates of delayed vehicles (these vehicles
have to accelerate) and those vehicles covered by the FCTL queue, we think it nevertheless
is a reasonable assumption.

The FCTL assumption does, however, have some severe consequences for the analysis of
the queue length. Let Xk,n denote the queue length at time k in cycle n (time expressed
in slots). Then, in cycle n, X0,n is the queue length at the beginning of the green period,
and Xg,n the overflow defined as the queue length at the end of the green period (and thus
the beginning of the red period). Let An denote the total number of vehicles that arrive
at the intersection in between the two measurements of the overflow Xg,n and Xg,n+1.
Thus An are the arrivals from Xg,n onwards in a consecutive red and green period, and
An =

∑c
k=g+1 Yk,n +

∑g
k=1 Yk,n+1. Further, An = Ad

n + Ap
n, where Ad

n denotes the delayed
vehicles and Ap

n those vehicles that pass without delay on behalf of the FCTL assumption.
The overflow queue can then be defined as

(2.1) Xg,n+1 = max{Xg,n + Ad
n − g, 0}.

The fact that Ad
n depends on both Xg,n and the exact specification of when the arrivals

occur makes (2.1) hard to analyze. The analysis could be simplified if all vehicles were
delayed, so that all vehicles arrive while the queue length is at least one, and An = Ad

n. The
variables Ad

n are then i.i.d. and (2.1) reduces to the classical bulk service queue, first solved
by Bailey [4]. He derived the pgf of the stationary queue length Xg, defined as limn→∞ Xg,n,
that exists if EA < g. The pgf requires the determination of g (complex-valued) roots on
and within the unit circle of some characteristic equation.

Beckmann et al. [5] and Newell [21] assumed that Y (z) = 1−α+αz. On this assumption
of zero or one arrivals per time slot, An = Ad

n, and Bailey’s solution can be applied to derive
the exact value of EXg. When Y can take values larger than one, the bulk service queue
is obviously an approximation and yields an upper bound on the overflow queue. For a
compound Poisson process, McNeill [18] used Bailey’s solution to derive an upper bound on
EXg. Although one would want an upper bound to be easy to compute, McNeill’s upper
bound is not, because it still requires the numerical calculation of the g roots.

Darroch [10] derived, under the discrete-time assumption, the solution to the true FCTL
queue that is of the same complexity as Bailey’s solution to the bulk service queue, again
requiring the roots of a characteristic equation. The effort put into determining the roots
is in Darroch’s case more justifiable, though, because it leads to the exact solution.

3. Darroch’s solution

We now present Darroch’s solution to the FCTL queue. Darroch allows for a slightly
more general departure process of the delayed vehicles, which we omit for reasons of clarity.

Let Y be a discrete random variable with pgf Y (z) = E(zY ) (Darroch assumes Y to be
of compound Poisson type), and assume all moments of Y exist. We denote the mean and
variance of Y by µY and σ2

Y , respectively. Clearly, to have stability, it is required that the
number of arriving vehicles is less than the maximum number of vehicles that can depart,
and hence Y should satisfy

cµY < g.(3.1)
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The following recursive relation holds for k = 0, 1, . . . , g − 1:

(3.2) Xk+1,n =

{

Xk,n + Yk+1,n − 1, Xk,n ≥ 1,

0, Xk,n = 0,

and Xk+1,n = Xk,n + Yk+1,n for k = g, g + 1, . . . , c − 1. Hence, for k = 0, 1, . . . , g − 1 we
have

P(Xk+1,n = j) =

j+1
∑

p=1

P(Xk,n = p)P(Yk+1,n = j − p + 1), j = 1, 2, . . .(3.3)

P(Xk+1,n = 0) = P(Xk,n = 0) + P(Xk,n = 1)P(Yk+1,n = 0).(3.4)

Let Xk,n(z) denote the pgf of Xk,n. It then follows from (3.3-3.4) that

(3.5) Xk+1,n(z) = P(Xk,n = 0) +

∞
∑

p=1

∞
∑

j=p−1

P(Xk,n = p)P(Yk+1,n = j − p + 1)zj .

Some rewriting yields

(3.6) Xk+1,n(z) = z−1Y (z)Xk,n(z) + (1 − z−1Y (z))P(Xk,n = 0).

Hence, it follows from (3.6) that

(3.7) Xg,n(z) = (z−1Y (z))gX0,n(z) + (1 − z−1Y (z))

g−1
∑

k=0

P(Xk,n = 0)(z−1Y (z))g−k−1.

Note that X0,n+1(z) = Xg,n(z)Y (z)r and in equilibrium X0,n+1(z) = X0,n(z). Denote by
Xk the stationary distribution of Xk,n. After some rewriting, we then obtain from (3.7)

(3.8) Xg(z) =
Y (z)g(ζ(z) − 1)

∑g−1
k=0 qkζ(z)k

zg − Y (z)c
,

where qk = P(Xk = 0) and ζ(z) = z/Y (z). This expression still contains g unknowns
q0, . . . , qg−1, which can be found using the following classical approach (see e.g. Bailey [4],
Darroch [10]). With Rouché’s theorem, it can be shown that the denominator of (3.8) has
g zeros on or within the unit circle |z| ≤ 1. Because a pgf is analytic and well-defined in
|z| ≤ 1, the numerator of Xg(z) should vanish at each of the zeros. This gives g equations.
One of the zeros equals 1, and leads to a trivial equation. However, the normalization
condition Xg(1) = 1 provides an additional equation. Using l’Hôpital’s rule, this condition
is found to be

(3.9)

g−1
∑

k=0

qk =
g − cµY

1 − µY
=: η,

which can be written as

(3.10) g −
g−1
∑

k=1

qk =
(

c −
g−1
∑

k=1

qk

)

µY .

The right-hand side of (3.10) represents the mean number of delayed vehicles that arrive
per cycle EAd, see (2.1). The left-hand side of (3.10) represents the mean number of slots
per green period used for the departure of delayed vehicles.
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Denote the g roots of zg = Y (z)c on and within the unit circle by z0 = 1, z1, . . . , zg−1.
The g unknowns q0, . . . , qg−1 then follow from solving the set of linear equations

(3.11)















1 1 1 . . . 1
1 ζ(z1) ζ(z1)

2 . . . ζ(z1)
g−1

1 ζ(z2) ζ(z2)
2 . . . ζ(z2)

g−1

...
...

...
...

...
1 ζ(zg−1) ζ(zg−1)

2 . . . ζ(zg−1)
g−1





























q0

q1

q2

...
qg−1















=















η
0
0
...
0















.

The above system can by solved by applying Cramer’s rule. The system can then be trans-
formed into a Vandermonde system, leading to the following explicit solution for q0, . . . , qg−1

(with τk = ζ(zk)):

(3.12) qj = η(−1)j 1
∏g−1

k=1(τk − 1)

∑

1≤i1<i2<···<ig−1−j≤g−1

τi1τi2 . . . τig−1−j
.

Note that the probabilities q0, . . . , qg−1 describe the output process of the FCTL queue.

The mean stationary overflow queue follows from d
dz Xg(z)|z=1, i.e,

(3.13) EXg =
cσ2

Y + r2µ2
Y − g2(1 − µY )2

2(g − cµY )
− σ2

Y

2(1 − µY )
+

1 − µY

2
+

(1 − µY )2

g − cµY

g−1
∑

k=0

kqk.

3.1. Mean stationary delay. In the sequel we will only work with stationary variables.
From the pgf of the overflow queue, the pgf of the queue length at every other time point
can be determined. In a way similar to (3.7), we find for k = 1, 2, . . . , g

(3.14) Xk(z) = Xg(z)Y (z)r(Y (z)z−1)k + (1 − Y (z)z−1)

k−1
∑

i=0

qi(Y (z)z−1)k−i−1.

For k = g + 1, . . . , c − 1 we have

(3.15) Xk(z) = Xg(z)Y (z)k−g.

The mean queue length at the beginning of an arbitrary slot is given by

(3.16) EX̄ =
1

c

c−1
∑

k=0

EXk.

From (3.16) the mean delay can be determined, where we define delay as:

Definition 1. (delay) The delay of a vehicle, denoted by D, is defined as the number of
slots from the beginning of the first slot after the slot in which the vehicle arrives, until the
end of the slot in which the delayed vehicle departs from the queue.

From Little’s theorem it then follows that the mean delay of a vehicle is given by
EX̄/(cµY ), which can be shown to be

(3.17) ED =
r

2cµY (1 − µY )

[ σ2
Y

1 − µY
+ rµY + 2EXg

]
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3.2. On the definition of delay. Delay in the FCTL queue can be defined in several
ways, depending on how one handles the delay of a vehicle experienced within the slot of
its arrival. We use Definition 1, which does not include this part of the delay; we assume,
as does Darroch [10], that the vehicle joins the queue at the beginning of the next slot
after its arrival. This is in line with the discrete-time assumption, where we assume that
the arrival of vehicles only occurs at the end of a time slot; the vehicles then arrive as a
batch. In reality, the vehicles arrive one-by-one, each vehicle arriving at some different time
point during the slot, and the total delay DT satisfies DT = D + DR where D defined as in
Definition 1, and DR the residual delay within the slot of arrival, DR ∈ [0, 1].

McNeill [18] does include DR. In comparison with (3.17), McNeill’s expression has an
additional term r/(2cµY (1 − µY )), which can be easily shown to be EDR. For Poisson
arrivals, Ohno [23] gives a comparison between McNeill’s expression, Darroch’s expression
(3.17) (where Ohno’s formula (17) for Darroch’s mean delay formula is incorrect), and
several other approximations. Ohno shows that the differences are only marginal.

To be consistent with the discrete-time assumption, we do not include DR in the delay
analysis that is presented in Sec. 4, although the results derived for D can be easily extended
to DT .

4. Full delay analysis

Although in a different context (buffer management in cable access networks), in van
Leeuwaarden et al. [17] the pgf of the vehicle delay was derived for the discrete bulk service
queue. In Sec. 2 we have stressed that the crucial difference between the FCTL queue
and the discrete bulk service queue is the FCTL assumption. In this section we adapt the
approach taken in [17] as to derive the pgf of the vehicle delay in the FCTL queue.

We tag a vehicle that arrives in time slot m during the green period, and introduce Ug
[m]

as the number of vehicles that depart before the tagged vehicle, counted from the beginning
of the green period and given that the vehicle is delayed. It then holds that

(4.1) Ug
[m] = Xm−1|Xm−1 > 0 + Z1 + m − 1,

where Xm−1|Xm−1 > 0 denotes the vehicles present at the end of time slot m − 1 (cannot
be zero because the tagged vehicle is delayed), Z1 the number of vehicles that arrive in the
same time slot as the tagged vehicle but before it, and m − 1 vehicles because we start
counting from the beginning of the green period. The pgf of Z1 is given by (see Bruneel &
Kim [7], p.20)

(4.2) Z1(z) =
1 − Y (z)

(1 − z)µY
,

and the pgf of Ug
[m] thus satisfies (since Z1 and Xm−1 are independent)

(4.3) Ug
[m](z) =

(

Xm−1(z) − qm−1

1 − qm−1

) (

1 − Y (z)

(1 − z)µY

)

zm−1.

We express Ug
[m] in terms of two integer random variables F[m] and R[m]:

(4.4) Ug
[m] = gF[m] + R[m], F[m] ≥ 0, 0 ≤ R[m] ≤ g − 1,

where F[m] denotes the number of complete cycles enclosed in the tagged vehicle’s delay,
and R[m] the number of vehicles that will depart during the same green period as the
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tagged vehicle, but before it. Let D[m] denote the delay of the tagged vehicle. It holds (for
m = 1, . . . , g)

(4.5) D[m] =

{

cF[m] + R[m] − m + 1, w.p. 1 − qm−1,

0, w.p. qm−1.

The delay of a delayed tagged vehicle consists of F[m] cycles, R[m] time slots in the green
period of departure, minus m time slots since we started counting at the beginning of a
green period, plus one time slot that the tagged vehicle itself needs to depart. The pgf of
D[m] then reads (for m = 1, . . . , g)

D[m](z) =

∞
∑

i=0

P(D[m] = i)zi

= qm−1 + (1 − qm−1)z
−m+1

∞
∑

j=0

g−1
∑

k=0

P(F[m] = j, R[m] = k)zcj+k

= qm−1 + (1 − qm−1)z
−m+1

∞
∑

j=0

g−1
∑

k=0

P(Ug
[m] = gj + k)zcj+k.(4.6)

From (4.6) it follows that (for m = 1, . . . , g)

(4.7) D[m](z
g) = qm−1 + (1 − qm−1)z

−(m−1)g

g−1
∑

k=0

zgkϑmk(z),

where the functions ϑmk(z) are defined as

(4.8) ϑmk(z) =
∞
∑

j=0

P(Ug
[m] = gj + k)zgcj .

The problem now is that (4.8) does not allow a direct substitution of the pgf of U[m]. To
circumvent this, we use a basic approach that can be found in e.g. Bruneel & Kim [7]
or Kang & Steyaert [16], and which has also been applied in van Leeuwaarden et al. [17].
Substituting l = gj + k in (4.8) yields

(4.9) ϑmk(z) =

∞
∑

l=0

P(Ug
[m] = l)z(l−k)c

∞
∑

j=−∞

δ(l − gj − k),

with δ(n) the Kronecker delta function, which equals 1 for n = 0 and 0 for all other n.

Property 1.

(4.10)
1

g

g−1
∑

t=0

atm =

∞
∑

j=−∞

δ(m − jg),

where a = exp(2πi/g), i =
√
−1, and m and g integer values. The sum on the left-hand

side is zero unless m is a multiple of g.

Using Property 1 we obtain

ϑmk(z) =
∞
∑

l=0

P(Ug
[m] = l)z(l−k)c 1

g

g−1
∑

t=0

at(l−k)
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=
z−kc

g

g−1
∑

t=0

a−tk
∞
∑

l=0

P(Ug
[m] = l)zclatl

=
z−kc

g

g−1
∑

t=0

a−tkUg
[m](a

tzc).(4.11)

Substituting (4.11) into (4.7) yields (for m = 1, . . . , g)

D[m](z
g) = qm−1 + (1 − qm−1)z

−(m−1)g

g−1
∑

k=0

zgk z−kc

g

g−1
∑

t=0

a−tkUg
[m](a

tzc)

= qm−1 + (1 − qm−1)
z−(m−1)g

g

g−1
∑

t=0

Ug
[m](a

tzc)

g−1
∑

k=0

(z−ra−t)k

= qm−1 + (1 − qm−1)
z−(m−1)g

g

g−1
∑

t=0

Ug
[m](a

tzc)
1 − (z−ra−t)g

1 − z−ra−t
.(4.12)

Now tag a vehicle that arrives in time slot m during the red period, and introduce Ur
[m]

as the number of vehicles that depart before the tagged vehicle, counted from the end of
the time slot in which the tagged vehicle arrives (the vehicle is by definition delayed). We
then get (for m = g + 1, . . . , c)

(4.13) Ur
[m] = Xg +

m−g−1
∑

i=1

Yi + Z1, Yi ∼ Y i.i.d.

That is, Ur
[m] consists of the overflow queue, the vehicles that arrives in the first m − g − 1

time slots of the red period and Z1. Because these elements are independent, the pgf of
Ur

[m] thus satisfies (for m = g + 1, . . . , c)

(4.14) Ur
[m](z) = Xg(z)Y (z)m−g−1 1 − Y (z)

(1 − z)µY
.

The delay of the tagged vehicle consists of (for m = g + 1, . . . , c)

(4.15) D[m] = c − m + cF[m] + R[m] + 1,

that is c−m time slots till the beginning of the next green period, F[m] cycles, R[m] time slots
of those vehicles that depart within the same green period but before the tagged vehicle,
and one time slot that the tagged vehicle needs itself to depart. Using the same approach
as for deriving (4.12) we obtain (for m = g + 1, . . . , c)

(4.16) D[m](z
g) =

z(c−m+1)g

g

g−1
∑

t=0

Ur
[m](a

tzc)
1 − (z−ra−t)g

1 − z−ra−t
.

From (4.12) and (4.16) we obtain the pgf of the vehicle delay as

(4.17) D(zg) =
1

c

c
∑

m=1

D[m](z
g).

The mean delay of a vehicle follows from ED = 1
g

d
dz D(zg)|z=1, which can be shown, after

tedious calculations, to be equal to (3.17).
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5. Numerical issues

5.1. Back to the roots. The applicability of the theory presented in Secs. 3 and 4 of this
paper indisputably depends on finding the roots of zg = Y (z)c on and inside the unit circle,
because these are needed to determine the unknowns q0, q1, . . . , qg−1 in the pgf of the overflow
queue Xg, see (3.8). Because this issue of root-finding goes a long way back in queueing
theory, it has often been addressed, both from analytical and numerical perspectives. We
now give a short overview of this root-finding for the Poisson case Y (z) = exp(λ(z − 1)),
λ < g/c, and point out where extensions can be made to other distributions of Y .

The easiest way to determine the roots in the Poisson case is to apply successive sub-
stitution to a fixed-point equation. We know that the g roots of zg = Y (z)c in |z| ≤ 1
satisfy

(5.1) z = wY (z)c/g = w exp(cλ(z − 1)/g),

wg = 1. For each feasible w, (5.1) can be shown to have one unique root in |z| ≤ 1.
Moreover, the equations can be solved by successive substitutions as

(5.2) z
(n+1)
k = wkY (z

(n)
k )c/g, k = 0, 1, ..., g − 1,

where wk = exp(2πik/g), i =
√
−1, and starting values z

(0)
k = 0. It can be shown that

the fixed-point equations (5.2) converge to the desired roots. Adan & Zhao [2] distinguish
a class of compound Poisson distributions for which the method works. For more general
discrete distributions, the method is further investigated in [15].

For the Poisson case, an exact description of the roots can be obtained as well. In [15] it
is shown, using the Lagrange inversion theorem, that the roots are given by (with θ = cλ/g)

(5.3) zk =
∞
∑

l=1

e−lθ (lθ)l−1

l!
wl

k, k = 0, 1, ... , g − 1.

One could truncate the infinite series over l in (5.3) to determine the roots. For a large class
of discrete distributions, exact expressions for the roots, similar to (5.3), are derived in [15].

Although the class of distributions of Y for which one can derive an exact expression such
as (5.3) is far larger than the class for which the method of successive substitutions (5.2)
works, see [15], neither method works for all distributions. Therefore, the most general
method relies on numerical techniques. Chaudhry et al. [8] have developed an applica-
tion to solve root-finding problems in queueing theory numerically. In our experience, this
application works for almost all distributions.

5.2. Inversion of a pgf. For the inversion of a pgf we use a technique of Abate and Whitt
[1] that relies on the Fourier series method. A distribution p0, p1, . . ., can be retrieved from
its pgf P (z) =

∑∞

k=0 pkzk via

(5.4) pk =
1

2πi

∮

Cr

P (z)

zk+1
dz,

where i =
√
−1 and Cr is a circle about the origin of radius r, 0 < r < 1. Abate and Whitt

[1] approximate (5.4) by

(5.5) p̂k =
1

2krk

2k
∑

j=1

(−1)jRe(P (reijπ/k)),
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and derive for 0 < r < 1, k ≥ 1 the following error bound

(5.6) |pk − p̂k| ≤
r2k

1 − r2k
.

For practical purposes one can think of the error bound as r2k, because r2k/(1− r2k) ≈ r2k

for r2k small. To have accuracy up to the γth decimal, we let r = 10−γ/2k. In the upcoming
numerical examples, we set γ equal to 7.

6. Examples

We now give some examples of performance characteristics that can be derived using the
framework presented in Secs. 3, 4, and 5. We consider two arrival distributions: the Poisson
distribution

(6.1) P(Y = j) = e−λ λj

j!
, j = 0, 1, . . . ,

with µY = σ2
Y = λ < g/c, Y (z) = exp(λ(z − 1)), and the geometric distribution

(6.2) P(Y = j) = (1 − p)pj , j = 0, 1, . . . ,

with µY = p/(1 − p) < g/c, σ2
Y = p/(1 − p)2, Y (z) = (1 − p)/(1 − pz). For the Poisson

distribution, the g roots of zg = Y (z)c on and within the unit circle are determined with

the fixed point iteration (5.2), using the stopping criterion |z(n+1)
k − z

(n)
k | < 1.0 · 10−13. For

the geometric distribution, the roots are determined with the software program QROOT
(see [8]). All results presented in this section have been checked to be in accordance with
the results of extensive simulations.

6.1. Queue length distribution. The pgf of the overflow queue Xg is given by (3.8), still
containing g unknowns q0, q1, . . . , qg−1. As explained, these can be determined from (3.11)
using the g roots of zg = Y (z)c on and within the unit circle as input. The mean overflow
queue can then be calculated from (3.13). Furthermore, we can apply the inversion formula
(5.5) to retrieve the whole distribution of Xg.

From the probability distribution, we can calculate characteristics such as the variance
of the overflow queue, denoted by VarXg, and the tail of the overflow queue distribution,
i.e. P(Xg ≥ m) for some value m ≥ 0. In Table 1 we display some of the characteristics
of the overflow queue distribution for g = r = 5 and several values of µY . Observe that

Table 1. Characteristics of the overflow queue Xg in the FCTL queue
with g = r = 5.

µY EXg VarXg P(Xg ≥ 10) P(Xg ≥ 20) P(Xg ≥ 30)

Poisson 0.30 0.1800 0.4285 2.92·10−5 2.25·10−9 1.96·10−13

0.40 1.0971 4.1807 8.41·10−3 1.13·10−4 1.52·10−6

0.45 3.3998 21.7546 9.99·10−2 1.26·10−2 1.61·10−3

0.49 23.2249 442.6453 6.22·10−1 4.10·10−1 2.69·10−1

geometric 0.30 0.3000 0.9509 4.69·10−4 6.19·10−7 8.69·10−10

0.40 1.7088 9.1760 3.23·10−2 1.71·10−3 9.04·10−5

0.45 5.1807 48.1236 1.94·10−1 4.89·10−2 1.17·10−2

0.49 34.9317 1203.3224 7.24·10−1 5.52·10−1 4.21·10−1

the geometric distribution, which has a much larger coefficient of variation than the Poisson
distribution, results in a larger mean and variance of the overflow queue. Also, the percentiles
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Figure 1. Delay distribution of a vehicle that arrives in the first slot of
the green period, for g = r = 5, and Poisson arrivals with µY = 0.45

of the distribution, which give the probabilities of exceeding certain thresholds, are much
higher for the geometric distribution, which implies that the queue-length distribution has
a thicker tail in the case of geometric arrivals. One may thus conclude that the arrival
distribution has a substantial impact on the characteristics of the overflow queue.

In a similar way as for the length of the overflow queue, one can obtain the queue-length
distribution at the end of each time slot within a cycle from the expressions (3.14) and
(3.15).

6.2. Delay distribution. From the mean overflow queue (3.13) we obtain the mean delay
through (3.17). However, thanks to the analysis presented in Sec. 4, we can go some steps
further. The pgf of the delay is given by (4.17) and relies on the results (4.12) and (4.16).
Then, from applying the inversion formula (5.5) we can obtain the whole distribution of D.
From the distribution we can again obtain ED, which should be equal to (3.17).

Further, as for the overflow queue, we can calculate delay characteristics such as the
variance and percentiles. The pgf (4.17) is a bit typical, though, because its argument is
zg instead of z. This turns out to be necessary, due to the following phenomenon. Tag a
vehicle that joins the queue in the first time slot of a green period, and assume that it meets
a batch of more than g − 1 delayed vehicles in front of him. Then, for the next g − 1 time
slots (remainder of the green period), the batch will diminish by one vehicle per time slot.
For the next r time slots the batch remains unaltered, after which again, for a period of g
time slots, the batch decreases. This pattern repeats itself until the tagged vehicle itself can
depart. The tagged vehicle experiences this as if it is served periodically by a server that
works during green periods and takes vacations during red periods. To exemplify this, we
give in Fig. 1 the delay distribution of a vehicle that arrives in the first slot of the green
period, for a situation of g = r = 5, and Poisson arrivals with µY = 0.45. With a probability
of 0.415, the vehicle meets no delayed vehicles and can pass through without delay. If the
vehicle meets fewer than four delayed vehicles, it can depart from the queue within the same
green period of its arrival. However, if the vehicle meets more than four delayed vehicles, it
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Figure 2. Delay distribution for g = r = 5, and Poisson arrivals with µY = 0.45

will receive periodic service. This implies, for instance, that the vehicle cannot experience
a delay of 5 till 9 slots, because no vehicle departs during the red period.

This phenomenon of periodic service complicates the analysis, see (4.8)-(4.11), and thus
leads to a change of argument of the pgf of D from z to zg. D(zg) is a pgf of a random

variable D̃ that is related to D in the following way (with u = zg):

(6.3) D(zg) =

∞
∑

j=0

P(D = j)zgj =

∞
∑

j=0

P(D̃ = j)uj = D̃(u),

which implies that P(D = j) = P(D̃ = gj) for j = 0, 1, . . .. Hence, to obtain the delay

distribution, we can apply the inversion formula (5.5) to determine from D̃(u) the proba-

bilities P(D̃ = j), j = 0, g, 2g, . . .. In Fig. 1 the delay distribution is plotted for a situation
of g = r = 5 and Poisson arrivals with µY = 0.45.

In Table 2 we display some of the characteristics of the delay distribution for g = r = 5
and several values of µY . As for the overflow queue, the arrival distribution has a large
impact on the characteristics of the delay distribution.

Table 2. Characteristics of the delay D in the FCTL queue with g = r = 5.

µY ED VarD P(D ≥ 10) P(D ≥ 20) P(D ≥ 30)

Poisson 0.30 2.7245 6.5537 1.82·10−2 4.85·10−5 3.40·10−9

0.40 5.0634 23.2241 1.47·10−1 1.75·10−2 2.51·10−3

0.45 9.9675 92.9784 3.89·10−1 1.38·10−1 4.87·10−2

0.49 49.8805 1876.1027 8.23·10−1 6.44·10−1 5.21·10−1

geometric 0.30 3.1632 0.9509 4.69·10−4 6.19·10−7 8.69·10−10

0.40 6.6154 9.1760 3.23·10−2 1.71·10−3 9.04·10−5

0.45 13.9372 48.1236 1.94·10−1 4.89·10−2 1.17·10−2

0.49 73.7745 4124.3596 8.74·10−1 7.64·10−1 6.51·10−1
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7. Concluding remarks

(i) Many of the results in queueing theory are derived and presented in the form of
generating functions or Laplace transforms. Although mathematically elegant, these types
of results stumble across some scepticism, as obtaining performance characteristics often
requires inversion of the transform or root-finding (see e.g. [22]). One might say that
Darroch’s solution to the FCTL queue, presented in Sec. 3, belongs to this category. To
this day, Darroch’s formula for the mean overflow queue (3.13) is considered to be not of
practical importance, because it is numerically involved (see e.g. [24], p. 4). We tend to
disagree. Whether or not the evaluation of some expression is numerically involved is highly
subjective and very much dependent on the spirit of the times. In the early days of queueing
theory (1950’s, 1960’s), root-finding and inverting a transform were rightfully considered to
be difficult and perhaps even prohibitive. However, due to improved numerical algorithms
and the increase in computational power, both issues can be dealt with adequately nowadays,
as discussed in Sec. 5. Also, the roots of zg = Y (z)c on and within the unit circle can be
given explicitly for a large class of distributions of Y , among them the Poisson distribution,
see (5.3).

(ii) As mentioned in the introduction, many approximations have been derived for the
mean delay in the FCTL queue. For Poisson arrivals, Webster’s formula is quite accurate.
Approximations for more general arrival distributions are mostly based on the assumption
that the mean delay is not very sensitive to detailed stochastic properties (see [20, 22]).
However, the results presented in Sec. 6 show that the differences in terms of performance
characteristics between Poisson and geometric arrivals are considerable. From this we con-
clude that it is of importance to consider the stochastic properties of the arrival distribution.
Our model can incorporate almost every discrete arrival process and provides, as such, a
high level of generality.

(iii) The framework presented in this paper allows for the evaluation of characteristics
other than the mean delay. The transform solutions to the queue length and delay can
be inverted by means of the procedures discussed in Sec. 5, which gives the probability
distributions of the queue length and delay. From the probability distribution one can
obtain characteristics such as the variance and percentiles of the distribution. These types
of characteristics can be very useful for the design and performance evaluation of signalized
intersections.

(iv) Finally, let us mention some possible model extensions. It is our belief that the same
type of modeling presented in this paper can be applied to a two-dimensional model for two
opposed traffic streams at an intersection. In that case, we model two queues simultaneously,
and green for queue 1 means red for queue 2 and vice versa. For this two-dimensional model,
we expect that we can handle, next to a fixed cycle control, other types of control as well.
One could think of priority for either one of the queues, and switching from green to red
whenever a queue idles. These models are interesting subjects for future research.
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