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Summary

We consider a set of deterministic differential equations describing the
temporal evolution of some system of interest, and containing an unknown
finite-dimensional parameter to infer. The observations of the solution of
the set of differential equations are assumed to be stochastically disturbed
by two sorts of uncertainties: the state variables of the system are measured
with errors, and they are not measured at the intended time, but at an un-
known point in time. We present maximum likelihood based estimators of
the parameter value and prove that these estimators are consistent, and even√

N -consistent provided the statistical model is identifiable. The results are
applied to the analysis of a gene regulatory network modelling the early de-
velopment of a Drosophila embryo.

Key words: Consistency, Gene regulatory network, M -estimator, Ordinary
differential equations, Parameter identification, Statistical modelling.
2000 Mathematics Subject Classification: Primary: 62F12, Secondary: 34A34,
65L99, 62P10.

1



1 Introduction
The formalism that we will study consists of a set of coupled ordinary differ-

ential equations (ODE’s) accounting for the temporal evolution of some state vari-
ables describing a specific phenomenon. For example, this modelling is widely
used in chemical engineering (Cutlip and Shacham, 1999), ecology (Turchin,
2001), epidemiology (Bailey, 1975), and physics (Bellman, 2003).

We consider state variables gk(t; θ), 1 ≤ k ≤ K, satisfying a system of differ-
ential equations where θ is the unknown finite-dimensional parameter of interest.
Denote by g(t; θ) the vector (gk(t; θ), 1 ≤ k ≤ K). We assume that the state
variables gk(t; θ) satisfy the following differential equations for all 1 ≤ k ≤ K:

dgk(t; θ)

dt
= σk(g(t; θ), u(t), θ), for all t ≥ t0, (1)

with gk(t0; θ) independent of θ at the starting time t0, and with u(·) an input func-
tion. The goal is estimation of the true parameter value θ0 arising in (1) from
observations of the solution of the model. Note that statistical inference on the
parameter is also called parameter identification in the differential equations liter-
ature (Voss et al., 2004). This is traditionally done by computing the least squares
estimators (Eason, 1976, Baake et al., 1992, Mueller et al., 2004, Li et al., 2005)
resulting from the minimization of the sum of squared differences between the
observed data and the model. When the observation errors of the state variables
are Gaussian, the least squares estimators coincide with the maximum likelihood
estimators that are well-known to have desirable asymptotic properties such as
consistency and efficiency (Cramér, 1946), the asymptotics consisting in letting
the sample size increase to infinity. Least squares estimation yields useful results
if time is observed exactly, or at least if it is observed with negligible errors. Typ-
ically however, this is not the case and often one misses the intended observation
time by an unknown random amount of time. This is the situation we will study
in this paper and we will present a general likelihood based method here. This so-
called pseudo maximum likelihood method reduces to the least squares method
whenever one realizes the intended observation times exactly.

We will introduce in section 2 the statistical setting allowing to model the ob-
servations of the solution of (1) that are supposed to be performed independently
at different time-points. The proposed statistical model accounts for the errors
inherent to the observation of the state variables, and for the errors inherent to the
time at which the measurements are made. We will define in section 3 the pseudo
maximum likelihood procedure that we propose to obtain asymptotically consis-
tent estimators. The methodology is described in section 3.1, and an illustrative
example of application is given in section 3.2. We will conclude with a discussion
of the presented results in section 4. Proofs are deferred to Appendices.
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2 Statistical model
We assume that observing an ”individual” gives information on gk(t; θ0), for

all k in a subset of {1, . . . , K}, and for one point in time only. We define a statis-
tical model for observations on a group of ”individuals” divided into d subgroups
with d fixed. The data in a subgroup correspond to the observations collected for
the same subset of {1, . . . , K} and with the same intended time-point. The data
in each subgroup i, 1 ≤ i ≤ d, are viewed as realizations of independent and
identically distributed (i.i.d.) random variables Xij , 1 ≤ j ≤ ni. Here ni is the
number of observations in subgroup i. By N =

∑d
i=1 ni we denote the total num-

ber of observations. The assumption of independence of these random variables
relies on the fact that each measurement comes from a different ”individual”, and
each ”individual” is observed at a single time-point. Each Xij is a table (Xijk)k

where k indexes the subset κi of {1, . . . , K} for which the values of (gk(ti; θ0))k

are observed at some time-point ti.
Write

gθ = (gk(t; θ) : t ≥ t0, 1 ≤ k ≤ K)

for the solution of system (1) of ODE’s under parameter value θ and with given
initial conditions. Note that Xij from ”individual” j, 1 ≤ j ≤ ni, of subgroup
i, 1 ≤ i ≤ d, contains only limited information about gθ, namely only about
gk(ti; θ), k ∈ κi. Time ti and subset κi characterize subgroup i. Observing ”in-
dividual” j in subgroup i yields measurements xijk of gk(ti; θ). We view these
measurements xijk as realizations of the random variables Xijk, where in princi-
ple

Xijk = gk(ti + τδδij; θ) + τεεijk, (2)
k ∈ κi, 1 ≤ j ≤ ni, 1 ≤ i ≤ d,

holds with εijk and δij random errors with variance 1. The unknown quantities
τε and τδ are the standard deviations of the random errors in the state variable
observation and the time at which the state variable is observed respectively.
We stress the fact that in this model, we do not observe the realized time ti +τδδij .
We only know ti, the intended time for observation and measurement. So, the
complete set of data is

(xijk, ti : 1 ≤ j ≤ ni, k ∈ κi, 1 ≤ i ≤ d). (3)

Actually, we will use the linear approximation

gk(ti + τδδij; θ) ≈ gk(ti; θ) + σk(ti; θ)τδδij (4)
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with σk(ti; θ) = σk(g(ti; θ), u(ti), θ) the right-hand side of (1) at time ti. Together
(2) and (4) yield our statistical model

Xijk = gk(ti; θ) + σk(ti; θ)τδδij + τεεijk, (5)

where all εijk are assumed to be i.i.d. with unknown density function f(·) with
variance 1, and all δij are assumed to be i.i.d. with unknown density function p(·)
with variance 1. We also assume that εijk and δij are independent and centered
with mean 0.

Within the model given by (1) and (5), we aim at estimating the true value of
the unknown parameter γ = (θ, τ 2

ε , τ 2
δ ) based on the data (3). Here γ is assumed

to belong to a set Γ ⊂ Θ × R2
+, but θ remains the main parameter of interest. In

case one is not sure about the assumption of the error δij having mean 0, one might
consider to view ti as unknown and add these ti as additional nuisance parameters
to γ. Another possible intermediary case is that the intended time is perturbed by
a systematic bias considered as an additional nuisance parameter to γ.

3 Pseudo maximum likelihood estimation

3.1 Methodology and results
We will use a likelihood based method to estimate the parameter values. The

joint likelihood of the random variables (Xijk)i,j,k satisfying (5) is equal to

d∏
i=1

ni∏
j=1

∫
R
[
∏
k∈κi

1

τε

f(
Xijk − gk(ti; θ)− σk(ti; θ)τδy

τε

)]p(y)dy. (6)

Since the densities f(·) and p(·) are unknown, we propose to estimate the true
parameter value of γ, denoted by γ0 = (θ0, τ

2
ε0

, τ 2
δ0

), by using the pseudo max-
imum likelihood methodology. This approach consists in replacing the densi-
ties f(·) and p(·) in the above relationship by the standard normal density func-
tion φ(x) = (2π)−1/2exp(−x2/2), and in subsequently maximizing the resulting
pseudo likelihood function. This estimation technique is classically used in econo-
metrics (Greene, 2003).
Recall that N =

∑d
i=1 ni denotes the total number of observations. Straightfor-

ward but tedious computation shows that the pseudo maximum likelihood esti-
mator (PMLE) γ̂N = (θ̂PMLE

N , τ̂ 2 PMLE
εN

, τ̂ 2 PMLE
δN

) of the true parameter value γ0

minimizes the following pseudo likelihood based cost function MN(·) which is
−2/N times the joint log-density of all the Xijk if the densities f(·) and p(·) were
standard Gaussian in (6) (with the constant term

∑d
i=1 ni|κi| log(2π)/N not taken
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into account, |κi| being the cardinality of κi):

MN(γ) =
1

N

d∑
i=1

ni∑
j=1

mi(Xij, γ) (7)

with

mi(Xij, γ) = (|κi| − 1) log τ 2
ε + log (τ 2

ε + τ 2
δ

∑
k∈κi

σ2
k(ti; θ)) (8)

+
1

τ 2
ε

∑
k∈κi

(Xijk − gk(ti; θ))
2 −

τ 2
δ [

∑
k∈κi

(Xijk − gk(ti; θ))σk(ti; θ)]
2

τ 2
ε (τ 2

ε + τ 2
δ

∑
k∈κi

σ2
k(ti; θ))

.

Remark 1 If the time measurement is assumed to be performed without error, that
is τδ = 0, then the PMLE θ̂PMLE

N reduces to the ordinary least squares estimator.

We will prove that γ̂N is consistent and typically even
√

N -consistent as the total
number of observations N tends to infinity.
Assume that

lim
N→∞

ni

N
= pi > 0, for all 1 ≤ i ≤ d, (9)

holds. By the strong law of large numbers, MN(γ) converges a.s. under the true
parameter value γ0 to

M(γ; γ0) =
d∑

i=1

pi

{
(|κi| − 1) log τ 2

ε + log(τ 2
ε + τ 2

δ

∑
k∈κi

σ2
k(ti; θ)) (10)

+
1

τ 2
ε

∑
k∈κi

[τ 2
ε0

+ τ 2
δ0

σ2
k(ti; θ0) + (gk(ti; θ0)− gk(ti; θ))

2]

− τ 2
δ

τ 2
ε (τ 2

ε + τ 2
δ

∑
k∈κi

σ2
k(ti; θ))

[
τ 2
ε0

∑
k∈κi

σ2
k(ti; θ) + τ 2

δ0
[
∑
k∈κi

σk(ti; θ0)σk(ti; θ)]
2

+[
∑
k∈κi

(gk(ti; θ0)− gk(ti; θ))σk(ti; θ)]
2

]}
.

Proposition 3.1 The parameter value γ0 minimizes M(γ; γ0) with respect to γ,
that is, with Γ0 = {γ∗ ∈ Γ : γ∗ = argminγ∈ΓM(γ; γ0)} denoting the set of
minimizers, γ0 ∈ Γ0 holds.

Proof. See Appendix A.

If Γ0 consists of the singleton {γ0}, then the statistical model is locally identifiable
in the sense that there does not exist a γ 6= γ0 such that the observations have the
same distribution under γ and γ0. Denote by Pγ0 the probability under γ0, and let
d(·, ·) be the Euclidean distance on Γ.
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Theorem 3.2 Consistency. Consider the model defined by (5) and (1), and as-
sume that (9) holds. If the functions σk(·, ·, ·) are Lipschitz continuous in their
first and third argument with Lipschitz constants that are independent of the sec-
ond argument, and if Γ is compact, then the pseudo maximum likelihood estimator
γ̂N defined as the minimizer of (7), is consistent in the sense that, for all ε > 0,

lim
N→∞

Pγ0( inf
γ∈Γ0

d(γ̂N , γ) ≥ ε) = 0.

In particular, if the set of minimizers Γ0 contains only γ0 , then γ̂N is consistent
under γ0 in the classical sense, that is, for all ε > 0,

lim
N→∞

Pγ0(d(γ̂N , γ0) ≥ ε) = 0.

Proof. See Appendix B.

Theorem 3.3
√

N -consistency. Consider the model given by (5) and (1), and
assume that (9) holds. Let Γ0 = {γ0} hold and let the functions σk(·, ·, ·) be twice
continuously differentiable in their first and third argument with their first and
second derivatives bounded uniformly in the second argument of σk(·, ·, ·). Then
the matrix of second derivatives of

∑d
i=1 pimi(Xij, γ) with respect to γ at γ = γ0

exists a.s. and has finite expectation −I(γ0) under γ0. If γ̂N is consistent under
γ0 and the matrix I(γ0) is nonsingular, then γ̂N is

√
N -consistent at γ0, that is

lim
M→∞

lim sup
N→∞

Pγ0(
√

Nd(γ̂N , γ0) > M) = 0,

and γ̂N is even asymptotically normal at γ0.

Proof. See Appendix C.

Note that the continuous differentiability conditions and the boundedness of the
derivatives of σk(·, ·, ·) in Theorem 3.3 imply the Lipschitz continuity of Theorem
3.2.

Under the normality assumption of the errors δij and εijk in (5), the PMLE
reduces to the MLE (maximum likelihood estimator) which is asymptotically effi-
cient meaning that its asymptotic distribution is Gaussian with covariance matrix
equal to the inverse of the Fisher information matrix I(γ0), which is the asymp-
totic bound on the performance of the estimators.

3.2 Application to a gene regulatory network
The previous results may be applied to the analysis of the behavior of a bio-

chemical system such as gene products interacting in a regulatory network (de
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Jong, 2002, Bolouri and Davidson, 2002). The study of gene regulatory net-
works constitutes a growing field in functional genomics (Kitano, 2003, Tyers
and Mann, 2003). The amount of omics data on these networks is increasing
at a fast rate (Quackenbush, 2004). The extraction of relevant information from
these data requires the development of adequate mathematical tools (Hasty et al.,
2001). For example, let us consider the developmental gene regulatory network
model, developed by Mjolsness et al. (1991), which is formed by Ng genes and
accounts for the early Drosophila melanogaster segmentation. Mjolsness et al.
(1991) noted that one can approximate the region of interest for the emergence
of early Drosophila segmentation patterns by a line of K nuclei along the embryo
anterior-posterior axis. The gene product concentrations gk`(t; θ) for gene product
`, 1 ≤ ` ≤ Ng, in nucleus k, 1 ≤ k ≤ K, are assumed to satisfy the following
set of coupled nonlinear ODE’s of reaction-diffusion type, with 1 ≤ k ≤ K and
1 ≤ ` ≤ Ng:

dgk`(t; θ)

dt
= R`Φ(

Ng∑
`′=1

W``′gk`′(t; θ) + m`gk bcd(t) + h`) (11)

+D`[gk−1 `(t; θ)− 2gk`(t; θ) + gk+1 `(t; θ)]− λ`gk`(t; θ),

with θ = ((R`, m`, h`, D`, λ`)1≤`≤Ng , (W``′)1≤`,`′≤Ng). Model (11) is a particular
case of (1) for which the index k is replaced by the index (k, `). The function
Φ : R → [0, 1] is assumed to be one-to-one, onto, increasing, and even sigmoidal.
Such an S-shaped distribution function accounts for the nonlinearity of the model.
An often used example is Φ(x) = 0.5[(x/

√
x2 + 1) + 1].

The first term at the right-hand side of (11) models the gene regulation and gene
product synthesis, the second term models the exchange by diffusion of gene prod-
ucts between neighboring nuclei, and the third term accounts for the decay of the
gene product. No diffusion is assumed to occur at both ends of the linear array
of nuclei, k = 1 and k = K, for which equation (11) holds with the second term
at the right-hand side ignored. The initial conditions are described in the supple-
mentary information of Jaeger et al. (2004).
The interaction between genes ` and `′ is represented by a single real number W``′

accounting for a connection strength or weight. If the product of gene `′ activates
gene `, then W``′ is positive; if the product of gene `′ represses gene `, then W``′ is
negative; if genes ` and `′ do not interact, then W``′ = 0. The bias term m`gk bcd(t)
arises from the bicoid protein (bcd), which is treated as an input element in the
model that induces the Drosophila segmentation (Reinitz and Sharp, 1995), and
which equals the input function u(t) in (1). The parameter m` is the connection
strength of bcd acting on gene `, that is m` = W` bcd . The maximum rate of syn-
thesis from gene ` is denoted by R`. The parameter h` is the activation threshold
of gene `, and D` is its diffusion parameter. The quantity λ` is the decay rate of
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the product of gene `.
In order to infer the true value of the parameter θ in (11), we may rely on gene

expression data collected at the Reinitz Fly Lab1, Stony Brook University, New
York. As concerning these data obtained by confocal laser scanning microscopy,
exactly three protein concentrations are measured for each fixed embryo (Kosman
et al., 1998, Poustelnikova et al., 2004) whereas the Drosophila segmentation
gene network contains Ng = 16 interacting genes (Kozlov et al., 2000). Such
proteomic data fit into the statistical model (5) of section 2 for which an observa-
tion of an ”individual” (here a Drosophila embryo) gives insight only into part of
the vector of state variables (here the gene product concentrations).

The methodology used by Reinitz and Sharp (1995) to derive an estimator
of the true value of the biological parameter θ from (11) is the minimization of
the sum of squared differences between the data and the model, yielding a least
squares estimator (LSE).

Remark 2 Set the averages Xi . k = 1/ni

∑ni

j=1 Xijk. Noticing that
∑

i,j,k(Xijk −
Xi . k)(Xi . k − gk(ti; θ)) = 0, one obtains that the LSE also minimizes the quantity∑

i,k ni(Xi . k − gk(ti; θ))
2. It is therefore equivalent to derive the LSE from the

individual data xijk or from the averaged data xi . k.

The uncertainty about the time at which the Drosophila embryo is observed
is not accounted for in the LSE introduced by Reinitz and Sharp (1995). In ad-
dition, another possible limitation of the current LSE is that it relies on so-called
integrated data which result from the merging of individual, registered data from
several embryos belonging to the same temporal class and stained for different
combinations of three gene products. The data registration is explained in more
detail in Kozlov et al. (2000). With the PMLE from section 3.1, we may ex-
tract the information contained in the individual unregistered data in a more direct
manner, and account for the uncertainty in the time at which the data are collected.

4 Conclusion
We have proposed a pseudo maximum likelihood procedure to infer the pa-

rameters arising in a system of coupled differential equations (1) based on the
statistical model (5). This statistical modelling accounts for two kinds of un-
certainties in the observations of the solution of the system: the uncertainty in the
measurement of the state variable of the differential equations, and the uncertainty
in the time at which the observation of the state variable is made. We have proved
the consistency and

√
N -consistency of the PMLE of the parameters arising in

1http://flyex.ams.sunysb.edu/flyex/
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(1) and (5). We provided results in a quite general setting with a large range of
applications. For example, our method may be applied to analyze gene regulatory
networks as defined in Mjolsness et al. (1991) from proteomic data collected by
confocal laser scanning microscopy.

It would be of interest to study the statistical model (5) under the general as-
sumption that the densities of the errors in state variable measurements and in
time determination are unknown nuisance functions. Within this semiparametric
formalism, a line of research is the investigation of asymptotically efficient esti-
mators of the true value of the finite-dimensional parameter θ. These estimators
may be defined as one-step estimators constructed following a Newton-Raphson
approach based on the preliminary pseudo maximum likelihood estimators pre-
sented in this study. This research will be presented elsewhere.
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Appendix A: Proof of Proposition 3.1
The asymptotic deterministic criterion M(·; γ0) defined in (10) may be rewrit-

ten as

M(γ; γ0) =
d∑

i=1

pi

{
(|κi| − 1)[

τ 2
ε0

τ 2
ε

+ log τ 2
ε ] + log(τ 2

ε + τ 2
δ

∑
k∈κi

σ2
k(ti; θ))

+
1

τ 2
ε

[τ 2
ε0

+ τ 2
δ0

∑
k∈κi

σ2
k(ti; θ0) +

∑
k∈κi

(gk(ti; θ0)− gk(ti; θ))
2]

− τ 2
δ

τ 2
ε (τ 2

ε + τ 2
δ

∑
k∈κi

σ2
k(ti; θ))

[
τ 2
ε0

∑
k∈κi

σ2
k(ti; θ) + τ 2

δ0
[
∑
k∈κi

σk(ti; θ0)σk(ti; θ)]
2

+[
∑
k∈κi

(gk(ti; θ0)− gk(ti; θ))σk(ti; θ)]
2

]}
.
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Applying twice both the Cauchy-Schwarz inequality and the inequality α/x +
log(x) ≥ 1 + log(α), for all x > 0, α > 0, yields

M(γ; γ0) ≥
d∑

i=1

pi

{
(|κi| − 1)[

τ 2
ε0

τ 2
ε

+ log τ 2
ε ] + log(τ 2

ε + τ 2
δ

∑
k∈κi

σ2
k(ti; θ))

+
τ 2
ε0

+ τ 2
δ0

∑
k∈κi

σ2
k(ti; θ0) +

∑
k∈κi

(gk(ti; θ0)− gk(ti; θ))
2

τ 2
ε + τ 2

δ

∑
k∈κi

σ2
k(ti; θ)

}

≥
d∑

i=1

pi

{
(|κi| − 1)[1 + log(τ 2

ε0
)] + 1 + log(τ 2

ε0
+ τ 2

δ0

∑
k∈κi

σ2
k(ti; θ0)

+
∑
k∈κi

(gk(ti; θ0)− gk(ti; θ))
2)

}
.

Denote by F (θ; γ0) the right-hand side of this string of inequalities. This function
F (·; γ0) is minimized at θ0 with value F (θ0; γ0) = M(γ0; γ0). Therefore, the
parameter value γ0 minimizes M(·; γ0) as well, that is, Γ0 contains γ0.

Appendix B: Proof of Theorem 3.2
We apply Wald’s consistency result as given in Theorem 5.14 of van der Vaart

(1998). Recall that γ = (θ, τ 2
ε , τ 2

δ ) belongs to the compact subset Γ of Θ × R2
+.

First note that Cauchy-Schwarz implies

mi(Xij, γ) ≥ (|κi| − 1) log τ 2
ε + log(τ 2

ε + τ 2
δ

∑
k∈κi

σ2
k(ti; θ))

+

∑
k∈κi

(Xijk − gk(ti; θ))
2

τ 2
ε + τ 2

δ

∑
k∈κi

σ2
k(ti; θ)

≥ |κi| log τ 2
ε .

Consequently, we have Eγ0(infγ∈Γ mi(Xij, γ)) > −∞, where Eγ0 is the expecta-
tion under the true parameter value. Hence it suffices to show that γ 7→ mi(Xij, γ)
is continuous a.s., 1 ≤ i ≤ d. To this end, in view of the expression of mi(Xij, γ)
in (8), it suffices to prove that for each t, the map θ 7→ g(t; θ) is continuous. Note
that in an obvious vector notation (1) implies

g(t; θ)− g(s1; θ) =

∫ t

s1

σ(g(s; θ), u(s), θ)ds
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and hence, for t0 ≤ s1 ≤ t,

|g(t; θ1)− g(t; θ2)| ≤ |g(s1; θ1)− g(s1; θ2)|

+

∫ t

s1

|σ(g(s; θ1), u(s), θ1)− σ(g(s; θ2), u(s), θ2)|ds,

by the triangle inequality with | · | the Euclidean norm on RK . For t0 ≤ s1 < s2,
this yields by the Lipschitz properties of σ(·, ·, ·)

sups1≤t≤s2
|g(t; θ1)− g(t; θ2)| ≤ |g(s1; θ1)− g(s1; θ2)|

+C1(s2 − s1)sups1≤s≤s2
|g(s; θ1)− g(s; θ2)|

+C3(s2 − s1)||θ1 − θ2||

with || · || the Euclidean norm on Θ. Hence

sups1≤s≤s2
|g(s; θ1)− g(s; θ2)| ≤

|g(s1; θ1)− g(s1; θ2)|+ C3(s2 − s1)||θ1 − θ2||
1− C1(s2 − s1)

provided 1− C1(s2 − s1) > 0. It follows that for r sufficiently small

supt0≤s≤t|g(s; θ1)− g(s; θ2)| ≤ 1

1− r
supt0≤s≤t−rC−1

1
|g(s; θ1)− g(s; θ2)|

+
rC3C

−1
1

1− r
||θ1 − θ2||

holds, and by iteration

supt0≤s≤t|g(s; θ1)− g(s; θ2)| ≤ (1− r)−
C1(t−t0)

r |g(t0; θ1)− g(t0; θ2)| (12)

+C3C
−1
1 ||θ1 − θ2||r

dC1(t−t0)/re∑
j=1

(
1

1− r
)
j

,

where dxe is the smallest integer larger than x. Since g(t0; θ) does not depend on
θ, the right-hand side of (12) equals at most

C3C
−1
1 ||θ1 − θ2||r(1− r)−

C1(t−t0)
r

∞∑
i=0

(1− r)i

= C3C
−1
1 ||θ1 − θ2||(1− r)−

C1(t−t0)
r ,

which as r ↓ 0 converges to C3C
−1
1 ||θ1 − θ2||eC1(t−t0). This proves the continuity

of θ 7→ g(t; θ) (in fact, uniformly in t in a compact) and hence the first part of the
theorem, which implies the second part straightforwardly.
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Appendix C: Proof of Theorem 3.3
Denoting differentiation of (the components of) σ(·, ·, ·) in the first argument

by ′ and in the third argument by ., we see that, using matrix notation,

ġ(t; θ) = [

∫ t

t0

σ̇(g(s; θ), u(s), θ) exp {−
∫ s

t0

σ′(g(v; θ), u(v), θ)dv}ds]

. exp

∫ t

t0

σ′(g(s; θ), u(s), θ)ds (13)

solves the equation that results from differentiation of (1) with respect to θ, that is

ġ′(t; θ) = σ′(g(t; θ), u(t), θ)ġ(t; θ) + σ̇(g(t; θ), u(t), θ).

Note that the boundedness of the derivatives implies the existence of the inte-
grals in (13) and hence the continuous differentiability of g(t; θ). Repeating this
argument, we see that θ 7→ g(t; θ) is twice continuously differentiable and con-
sequently that γ 7→

∑d
i=1 pimi(Xij, γ) is, a.s. Furthermore, for a sufficiently

small neighborhood of γ0, the supremum over this neighborhood of the absolute
values of these second derivatives of

∑d
i=1 pimi(Xij, γ) is a function in the Xijk

that grows at most quadratically in these Xijk. Therefore, it has finite expecta-
tion under γ0. We have verified now conditions (D1) and (D2) of Corollary 7.2.1,
page 303, of Bickel et al. (1998), and we note that its condition (D3) means the
nonsingularity of I(γ0). This entails the

√
N -consistency of γ̂N . The proof is

complete.
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