
1 Introduction

Scheduling is a common mechanism for improving computer-system performance without purchas-

ing additional resources. Simple policies such as First-Come-First-Served (FCFS) and Processor-

Sharing (PS), which shares the service capacity equally among all jobs in the system, are most

commonly used in computer systems. However, many recent system designs use policies that give

priority to jobs with small service demands in order to reduce the mean response time (sojourn

times) and mean queue length, see, e.g., [25, 42].

The emergence of policies that prioritize small jobs is motivated by the Shortest-Remaining-

Processing-Time (SRPT) policy, which always serves the job in the system that needs the least

amount of service in order to complete: SRPT is known to be optimal with respect to mean

response time and mean queue length [51, 52]. The improvement of SRPT over FCFS and PS with

respect to mean response time is quite dramatic under heavy-tailed service distributions, which

appear frequently as models for service-demand distributions in computer systems, see for example

Crovella and Bestavros [15] and Taqqu et al. [55].

Though SRPT is optimal with respect to mean response time, it is often not possible to use

SRPT in computer systems, because in many cases, the scheduler is blind to the service demands

of jobs. For instance, an operating system does not know how long a process will need to run, and

a router does not know the length of a flow in the network. However, even when the scheduler

cannot use job-size information to prioritize, it can use other statistics in order to prioritize jobs

with small service demands. One such statistic is the age or attained service of a job, which is

defined as the amount of service already given to the job.

The Foreground-Background (FB) discipline uses the age of a job as an indication of the re-

maining size of the job. In particular, FB works according to the following priority rule: priority

is given to the job that has received the least amount of service. If there are n such jobs, then

they are served simultaneously, i.e., each of them is served at rate 1/n. Equivalently, a queue using

the FB discipline always shares the server evenly among the youngest jobs in the system. The

motivation for using the age of a job as an indication of the remaining size of a job is that under

heavy-tailed distributions, jobs that have received a large amount of service are likely to be very

large, and thus have remaining sizes that are still large. So, under heavy-tailed distributions, FB

is acting as a “poor man’s” SRPT: without knowledge of remaining sizes, it does its best to give

some priority to jobs with small remaining sizes. In fact, it can be shown that FB minimizes both

the mean response time and queue-length distribution under a certain class of heavy-tailed service

distributions. Further, the improvement FB provides over PS and FCFS under these distributions

is significant, though it is not as dramatic as the improvement provided by SRPT.

The combination of the growing acceptance of heavy-tailed distributions as models for the

service-demand distributions in computer systems and the need for blind scheduling in many com-
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puter applications has led to the investigation of FB as an alternative for scheduling flows in routers

[40, 41, 42], scheduling processes in operating systems [23, 54], and many other settings. However,

the broad acceptance of designs based on FB has been hindered by a number of practical worries.

In particular, system designers worry about the performance of jobs with large service demands

(large jobs) under FB. It is clear that these jobs are biased against, and thus worries about the

“unfairness” and “starvation” experienced by large jobs are pervasive. Another roadblock to the

acceptance of FB in practical applications is that, though FB performs very well under some classes

of heavy-tailed distributions, there are classes of light-tailed distributions where FB performs quite

badly. Thus, it is important for system designers to understand how to determine if using FB is

appropriate in their situation.

Over the last five years, parallel streams of research studying FB have emerged. While many

researchers have focused on traditional queueing analysis of FB, other researchers focused on ad-

dressing the practical roadblocks to the acceptance of FB in computer systems. Consequently,

results about FB are scattered across the literature. In many cases, even the name of the policy is

not consistent across domains: instead of FB, different acronyms are sometimes used, e.g., Least-

Attained-Service (LAS) and Shortest Elapsed Time (SET). In this paper, we survey recent results

from both theoretical and practical work with the goal of providing an up-to-date reference point

for researchers interested in applying or analyzing FB. By bringing together the results from both

of these research streams, we can provide a complete picture of the behavior of FB and how it com-

pares with other policies. Where possible we will contrast the behavior of FB with the behavior of

the two most common blind policies used in computer systems, FCFS and PS, and we also compare

the behavior of FB with that of SRPT in order to illustrate the penalty that FB pays for not using

job-size information.

This survey is organized as follows. We begin in Section 2 with a more detailed description of

the workings of FB. Then, we discuss the historic evolution of our understanding of FB queues in

Section 3. Following these introductory sections, we move into the body of the survey, the results

about the FB queue. We start in Section 4 by describing the optimality results that make FB such

an attractive discipline to consider. Then we move to qualitative results on FB. In Section 5 we

describe the behavior of the mean response time and mean queue length of FB queues. In this

section we focus on (i) the impact of variability in the service distribution on the mean response

time and (ii) the growth rate of the mean response time as a function of the load in heavy-traffic.

Following this, we move beyond the mean behavior of the FB queue and discuss the distributional

behavior of the response time and queue length in Section 6. In this section we deal with a variety of

distributional measures including the moments of response time and queue length, the tail behavior

of the response time, and the tail behavior of the maximal queue length. Finally, in Section 7 we

discuss work describing the experience of large job sizes under FB. We conclude by highlighting a

number of future research topics in Section 8.
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Figure 1: The age process of three jobs in the FB queue, with service times X1, X2 and X3. Small

circles indicate that the server switches, large circles denote departures.

In this paper, we use the following notation. The generic service time is denoted by X, its

distribution function by F , and the tail of the distribution by F̄ . If the service distribution is

continuous, its density is denoted by f . The endpoint of the service distribution, xU , is defined

by xU = sup{x : F (x) < 1}. In case of M/GI/1 queues, the arrival rate is denoted by λ. Unless

stated otherwise, we consider queues for which the stability condition ρ = λEX < 1 holds. The

response (sojourn) time in the stationary queue is denoted by V , and the stationary queue length

by Q. Service disciplines (policies) are written in sans-serif font, e.g., FCFS.

A function f satisfies f(x) = Ω(g(x)) if lim inf f(x)/g(x) > 0, f(x) = O(g(x)) if lim sup f(x)/g(x) <

∞, and f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x)). Further, f(x) ∼ g(x) means that

lim f(x)/g(x) = 1. Finally, a ∧ b stands for min{a, b}.

2 An introduction to FB

FB works according to the following simple priority rule: priority is given to the job that has

received the least amount of service. If there are n such jobs, for some n ∈ N, then they are

served simultaneously, i.e., each of them is served at rate 1/n. See Figure 1 for an example of this

operation.

As we briefly discussed in the introduction, the motivation for using the age of a job as an

indication of the remaining size of a job is that, under many heavy-tailed distributions, jobs that

have received a large amount of service are likely to be even much larger, and thus have large

remaining sizes. Specifically, if we consider the class of distributions that have a decreasing failure
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rate (DFR), i.e., µ(x) = f(x)/F̄ (x) is non-increasing for all x ≥ 0, then the larger a job, the smaller

the failure rate, and thus the less likely that job is to complete when given service. So, the FB

priority rule corresponds to greedy scheduling in this setting. This intuition is the reason that FB is

appealing: in many computer applications DFR distributions such as the Pareto distribution have

been suggested to model the service distribution. However, the same logic implies that FB is likely

to behave quite badly if the service distribution has an increasing failure rate (IFR).

To get a feeling for the evolution of the queue under the FB discipline, let us consider what

happens when a new job arrives to the FB queue. Since that job is (strictly) the youngest in the

queue, it is served immediately. Then, as the queue evolves, there are three possible scenarios:

1. The new job needs at least as much service as the age of the job(s) that was (were) preempted

at its arrival. In this case, after some time the job joins a cohort, a group of jobs with the

same age. This happens to the second customer in Figure 1.

2. The new job needs less service than the age of the jobs in the cohort that was preempted. In

this case, the new job leaves the queue before joining the older cohort and the server returns

to the cohort that was preempted. This is illustrated by the third customer in Figure 1.

3. Before joining another cohort or leaving the queue, the new job is preempted itself by the

arrival of another new job. This happens to the first customer in Figure 1.

Since a job with service time x is younger than x throughout its stay in the queue, it has

priority over all jobs older than x. As a consequence, the time such a job spends in the system is

the same as if all service times would be truncated at x, i.e., if all service times y would have value

min{y, x} instead. Hence, in the FB queue, small jobs do not suffer from the presence of large jobs

in their midst. The response times of small jobs are therefore insensitive to the shape of tail of

the service-time distribution. This property turns out to be very useful when studying response

times in the FB queue. One consequence of the isolation of small jobs is felt by the jobs with large

service demands: these jobs receive service primarily when no other jobs are present in the queue,

see Theorem 7.1 and the related discussion. As a result, one of the main issues addressed by recent

studies of FB queues is determining the price that large jobs have to pay as a result of the priority

FB provides for small jobs, i.e., the question of how “unfairly” large jobs are treated.

3 The history of FB

FB first emerged in the literature in the second half of the 1960s. The term FB, or rather FBn, was

used as an abbreviation for both Foreground-Background and Feedback queueing systems. These

different names referred to the same model, see Schrage [50], Coffman and Kleinrock [14], and the

survey article on time-sharing models by McKinney [31]. The FBn queue with so-called quantum
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size q is a one-server queue with n states, or priority classes. This queue operates as follows. Upon

arrival in the queue, a job enters the first (or highest priority) state. Within each priority state, the

priority of jobs depends on their arrival time to that state, in a FCFS manner. Jobs are served one

at a time and uninterruptedly for a time period of length q. After the server has completed a job’s

service request in a certain state, a job from the highest (non-empty) priority state is selected for

service. If a job does not leave the queue during its time in the kth state, it moves to state k + 1

(which has lower priority) and waits until it is served in that state. In the nth and final state, jobs

are served only if there are no jobs in other states. In that final state, they are served until they

leave the system. So, for example, FB1=FCFS.

The interest in the FBn model with n states and positive quantum size q has faded, although

Aalto et al. [1, 3, 4] have recently published a number of interesting papers on these policies.

Instead, people have studied the limiting case where (first) n → ∞ and (then) q → 0. After

Kleinrock devoted a section of [28] to this limiting case of the FBn model, the term Foreground-

Background (FB) became the generally accepted name for this model in the queueing community,

and so it is in this paper.

However, in the literature many other names for FB appear. To distinguish FB from the FBn

model, some authors prefer to use the term Foreground-Background Processor Sharing (FBPS), FB∞

or Generalized Foreground-Background (GFB). Others have come across the policy independently

and named it based on its priority rule. For example, in the computer science community the

acronyms LAS (Least Attained Service first) and LAST (Least Attained Service Time first) tend

to be used. Further, in the worst-case scheduling community the acronyms SET (Shortest Elapsed

Time) or SEPT (Shortest Elapse Processing Time) tend to be used. Furthermore, FB may be

disguised as ‘advantageous sharing of a processor’ [39] as well. Due to this cacophony of names,

some results on FB queues are difficult to find in the literature. One of the goals of the present

survey is to unite the FB world again, and to provide a clear overview of all available results. This

should prevent theorems from being re-proved as has happened in the past, e.g., Theorem 2.1 in

Feng and Misra [21].

Though FB was first discussed as early as the 1960s, it was given very little attention until

the 1980s, when more results started to appear. During the 1960s and 1970s much of the research

on FB queues was done by Schrage [50] and Kleinrock [28], who derived the mean and Laplace

transform of the response time for a job of size x under FB. However, little else about FB was

studied. There seem to be two reasons for this lack of attention: (i) in those days, there was less

interest in queues with heavy-tailed characteristics, and (ii) the analysis of the FB queue tends

to be more difficult than queues with other common policies. However, around 1980 interest in

FB began to build. Pechinkin [39], Schassberger [49] and Yashkov [60] obtained expressions for

the generating functional of the steady-state queue length, and using these expressions along with

the earlier analyses of Kleinrock and Schrage, people began to study behavioral properties of FB.
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Yashkov [62] provided a survey of most results known at the time. Soon after, during the early

1990s, Righter and Shanthikumar [45, 53] proved a set of optimality results for the queue length of

FB.

Since 2000, there have been a host of new results about FB. Much of this recent work on FB has

been motivated by proposals of computer system designers suggesting the use of FB in a variety of

applications such as scheduling flows at routers [40, 41, 42] and scheduling processes in operating

systems [23, 54]. These proposals have created the need for a more detailed study of the behavior

of FB with respect to traditional queueing measures, in addition to introducing a number of new,

non-traditional queueing measures. We will survey a large number of these results further on in

this paper, but now we conclude this section by highlighting only a few of the recent papers on

FB: the distribution of the response time was studied by Borst et al. [11] and Nuyens et al. [37];

the fairness of FB was studied by Wierman and Harchol-Balter [57] and Rai et al. [42], and the

maximal queue length was studied by Nuyens [36].

4 The optimality of FB

The fundamental motivation for the use of FB in practical settings is that under a large class of

practical distributions, FB minimizes the queue-length distribution and mean response time among

all blind scheduling policies. In this section, we will summarize these optimality properties of FB.

The first result about the optimality of FB was provided by Yashkov, who showed in [61]

that FB minimizes the mean queue length (and thus the mean response time) across all blind

disciplines when the service distribution has a decreasing failure rate (DFR). Soon after, Righter

and Shantikumar [45] proved that FB minimizes not only the mean queue length, but even the

marginal distribution of the queue length. In particular, let Q(t)P denote the queue length at time

t in the queue with discipline P. Then regardless of the number of jobs present at time 0 and their

ages, we have the following result. Recall that a random variable X is stochastically smaller than

Y , denoted X ≤st Y , if P (X ≤ x) ≥ P (Y ≤ x) for all x.

Theorem 4.1 Consider a GI/GI/1 queue. Let P be a blind policy and let NP be a policy that is

both non-preemptive and blind. If the service-time distribution belongs to the class DFR, then for

every t ≥ 0,

Q(t)FB ≤st Q(t)P ≤st Q(t)NP.

Further, for IFR service distributions the inequalities are reversed.

The condition in Theorem 4.1 that the service distribution should have a decreasing failure

rate is not very surprising, considering that the failure of a job, f(x)/F̄ (x), can be seen as its

“instantaneous departure probability”. It is intuitively obvious that to minimize the queue length
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at any point in time, service should always be given to the job that is most likely to complete, and

hence, the job with the highest failure rate. For DFR distributions, the FB discipline is doing just

that. The proof of Theorem 4.1 uses a coupling argument based on exactly the above intuition, i.e.,

any policy other than FB must pay a price for not serving the job that is most likely to complete.

Although Theorem 4.1 was originally proven in the GI/GI/1 setting, the proof also goes through

when the arrival process is allowed to be any sequence, e.g., a deterministic sequence.

Although FB optimizes the marginal distributions of the queue length for DFR service dis-

tributions, a stronger condition on the density of the service distribution is needed to obtain an

optimality result for the law of the whole queue-length process, {Q(t), t ≥ 0}. This stronger condi-

tion is that the density f be log-convex (log-concave), i.e., log f is convex (concave). By integration,

one can show that the class of log-convex densities is a subclass of DFR and the class of log-concave

densities is a subclass of IFR. Note that the class of distributions with a log-convex density includes

many well-known distributions, e.g., Pareto distributions, and gamma distributions with density

f(x) = λnxn−1 exp(−λx)/Γ(n), λ ≥ 1, x ≥ 0. For more results on these classes of distributions we

refer to Shaked and Shanthikumar [53].

Using the stronger condition of log-convex service densities, Righter proved in [45] the following

result by means of another coupling argument:

Theorem 4.2 Let P be a blind policy and let NP be a policy that is both non-preemptive and blind.

If the service-time distribution has a log-convex density, then1

{Q(t)FB, t ≥ 0} ≤st {Q(t)P, t ≥ 0} ≤st {Q(t)NP, t ≥ 0}. (1)

For service times with a log-concave density, the inequalities are reversed.

So far we have seen that FB optimizes the queue-length distribution under DFR distributions

and the queue length process under log-convex distributions; however, one expects that FB may

perform well even when the service distribution is outside of these classes. In particular, one

expects that FB will perform well whenever the age of a job is correlated with the remaining size of

a job. Thus, it is natural to wonder whether FB will also have optimality properties under service

distributions with an increasing mean residual life (IMRL), since under these distributions a job

with a larger age has a larger expected remaining size. However, studying the behavior of FB under

IMRL distributions has proven to be tricky. In [46], Righter et al. state that FB minimizes the

mean queue length under IMRL distributions, but the proof of the result contains an error that
1The stochastic ordering of processes is a generalization of stochastic ordering for random variables, and can be

defined similarly, see also Section 4.B.7 of Shaked and Shanthikumar [53]. We say that two processes {X(t), t ≥ 0}
and {Y (t), t ≥ 0} are stochastically ordered, notation {X(t), t ≥ 0} ≤st {Y (t), t ≥ 0}, if there exist processes

{X̄(t), t ≥ 0} and {Y (t), t ≥ 0}, defined on an common probability space, such that P (X̄(t) ≤ Ȳ (t) ∀t) = 1 and

{X(t), t ≥ 0} d
= {X̄(t), t ≥ 0}, {Y (t), t ≥ 0} d

= {Ȳ (t), t ≥ 0}.
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cannot be immediately fixed, as was noted by Aalto et al. [3]. The proof considers the unfinished

work of jobs with age less than x, but they do not take into account that this quantity makes a

vertical downward jump whenever a job reaches age x. A similar result of Feng and Misra [21]

contains the same mistake.

Further, Aalto and Ayesta [2] have recently found a counter-example to the idea that FB op-

timizes mean queue length under IMRL distributions. They showed that a hybrid policy that

combines FB and FCFS can have smaller mean queue length than FB under IMRL service distribu-

tions having the form

f(x) =

{
c−x log c, 0 ≤ x ≤ c,

cx−c−1, x > c,

with 1 < c < e. Notice that this distribution has a failure rate that is first increasing and then

decreasing, so in the light of Theorem 4.1, it is not too surprising that a combination of FCFS and

FB can provide a smaller mean queue length than FB under such service distributions. Of course

this does not mean that FB does not perform well under IMRL service distributions. As we will

see later, the mean queue length (and mean delay) of FB under IMRL distributions is smaller than

under other common blind policies, e.g., PS and FCFS.

5 The mean performance of FB

To this point, we have seen that FB minimizes/maximizes the queue-length distribution under

DFR/IFR distributions, and thus also the mean queue length EQ and the mean response time EV .

However, these results do not say to what extent the mean response time of FB is better/worse

than that of other blind policies. Further, the results provide no indication of how much worse

the performance of FB is than the performance of policies that can use job-size information, e.g.,

SRPT. Also, it is important to understand how FB performs under distributions that are not DFR

or IFR. These and related questions are of fundamental importance if one is considering to use FB

in practice. To answer them, we need explicit expressions for the mean response time and mean

queue length under FB.

In this section we will focus entirely on mean response time. Using Little’s Law, EQ = λEV ,

the results can easily be translated to the mean queue length as well.

As is common under priority-based policies, the approach for deriving the mean response time

of FB is to first study the conditional response time of FB, V (x)FB, which is defined as the response

time experienced by a job of size x. The first derivation of EV (x)FB was by Schrage [50] and holds

for the M/GI/1 queue:

EV (x)FB =
x

1− ρ(x)
+

λm2(x)
2(1− ρ(x))2

=
x

1− λ
∫ x
0 F̄ (t)dt

+
λ

∫ x
0 tF̄ (t)dt

(1− λ
∫ x
0 F̄ (t)dt)2

, (2)
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where mi(x) = i
∫ x
0 ti−1F̄ (t)dt are the moments of X ∧ x and ρ(x) = λm1(x).

Though this expression may look complicated at first, it is actually quite natural. Consider the

experience of a job of size x, jx, under FB. Since no job older than x will ever receive service while

there is a job younger than x in the system, we can transform the service distribution from X to

X ∧x without affecting the response time of jx. Further, notice that the transformed system is still

work conserving. Finally, notice that jx finishes exactly when this transformed system goes idle.

Define Lx(y) as the length of a busy period, started by y work, where arrivals occur at rate λ and

with service times distributed as X ∧ x. Denoting the steady-state workload of the transformed

system by W FB
x , we then have

V (x)FB d= Lx(x + W FB
x ) d= Lx(x) + Lx(W FB

x ). (3)

Since Lx(y) is the same for all work-conserving disciplines, equation (2) follows from E[Lx(Y )] =

EY/(1− ρ(x)) and EW FB
x = λm2(x)/(2(1− ρ(x))).

Before moving to a discussion of the overall mean response time of FB, it is worthwhile to make a

few observations about the behavior of V (x)FB described by (2). An important observation we can

make about (2) is that it clearly indicates that FB results in a strong bias towards small job sizes,

regardless of the service distribution. In fact, small job sizes are insensitive to the tail behavior of

the service distribution. To illustrate this, notice that as x → 0, EV (x) ∼ x, which indicates that

the smallest jobs have response times that are as small as if they were served in isolation, regardless

of the system load. In fact, small job sizes are isolated from large job sizes even when ρ > 1. In

particular, FB will remain stable for all job sizes x such that ρ(x) < 1.

From (2) it may be seen that, in contrast to the behavior of small jobs, FB has a strong

bias against large jobs sizes, regardless of the service distribution. As was shown in [26, 35],

EV (x) ∼ x/(1 − ρ) for x → ∞. This indicates that the largest job sizes are receiving service

primarily when there are no other jobs in the system. In particular, the average service rate given

to large jobs is the total service rate, namely 1, reduced by the load of jobs that pass through the

system in the meantime, which in the limit is ρ, since the system remains stable.

Moving to the overall mean response time, we can now use (2) to calculate EV FB as follows:

EV FB =
∫ ∞

0
EV (x)FBdF (x) =

∫ ∞

0

(
x

1− λ
∫ x
0 F̄ (t)dt

+
λ

∫ x
0 tF̄ (t)dt

(1− λ
∫ x
0 F̄ (t)dt)2

)
dF (x). (4)

Using (4) we can easily obtain the stability conditions for an FB queue. In particular, by

combining equation (4) with the relation EV (x)FB ∼ x/(1 − ρ) as x → ∞, we can prove that

EV FB < ∞ and EQFB < ∞ whenever EX < ∞ and ρ < 1.

Beyond showing stability, (4) can also be used to bound the attainable mean response time

under FB. In particular, combining the results of Yashkov [62] and Wierman et al. [59], we have

the following bounds:
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Figure 2: An illustration of the impact of service time variability on the mean response time of FB.

The service distributions in this figure are Weibull with mean 1 and varying squared coefficient of

variation, C2, and the load is 0.7. Notice that EV FB is decreasing, while EV PS is constant and

EV FCFS is increasing. Further, notice that FB is nearly insensitive to increased variability above

C2 = 1. Finally, notice that the upper bound on EV FB is tight for deterministic job sizes, while

the lower bound appears loose, though Theorem 5.3 illustrates that it is asymptotically tight as

ρ → 1.

Theorem 5.1 In an M/GI/1 queue,

EX

ρ
log

(
1

1− ρ

)
≤ EV FB ≤ EX

(
1− ρ/2
(1− ρ)2

)
. (5)

These bounds, illustrated in Figure 2, give an indication of how well FB can do when it is at its

best and how poorly it behaves when it is at its worst. It is easy to see that the upper bound is

achieved when the service distribution is deterministic. The lower bound has also been shown to

be asymptotically tight in heavy traffic, though it is not as easy to see. Specifically, it has been

shown that as ρ → 1, EV FB = Θ(log(1/(1 − ρ)) under certain Pareto service distributions [8, 9],

see also Theorem 5.3 below.

Though (4) can be used to bound on the mean response time of FB, its complicated form means

that it is difficult to gain an understanding of the behavior of EV FB. For example, the impact of

(i) the variability in the service distribution and (ii) the load on EV FB are not obvious from (4).

In the next two subsections we will describe some recent work that has begun to characterize the

impact of these parameters.

5.1 The impact of variability

We have already seen a number of indications of how large an effect the variability of the service

distribution can have on the response times of FB. We have seen that FB minimizes mean response

time across blind policies under DFR distributions (which tend to be highly variable), and max-
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imizes mean response time across blind policies under IFR distributions (which tend to have low

variability). From these results, the expectation is that FB will perform well for all highly variable

distributions and poorly for all distributions with low variability, and there exist many statements

in the literature to this effect. For instance, Yashkov [62] writes that, in the stationary FB queue,

“EV decreases with an increase in the dispersion of F (x), and conversely increases as the dispersion

of F (x) decreases.” This seems to be supported by Figure 2; however the story is not so simple.

Throughout this section, we will use the squared coefficient of variation, defined by C2[X] =

V ar[X2]/E[X]2, in order to characterize the variability or dispersion of the service distribution.

Distributions with C2[X] > 1 are said to have high variability and distributions with C2[X] < 1 are

said to have low variability. It can be seen that DFR and IMRL distributions all have C2[X] ≥ 1,

while IFR and DMRL distributions all have C2[X] ≤ 1. The exponential distribution has C2[X] =

1.

A good starting point for discussing the effect of variability on EV FB is the M/M/1 queue. In

this setting, the service distribution has a constant failure rate, and is thus both IFR and DFR.

Thus, all blind policies have the same queue-length distribution and mean response time, and in

particular

EV FB = EV FCFS = EV PS =
EX

1− ρ
.

Interestingly, the M/M/1 queue serves as the crossover point for the mean response times of FCFS

and PS, i.e.,

EV FCFS ≥ EV PS ⇔ C2[X] ≥ 1.

Based on this observation, Coffman and Denning [13] made the natural parallel suggestion for FB:

EV FB ≤ EV PS ⇔ C2[X] ≥ 1.

This was thought to be true until recently when Wierman et al. [56] provided a counterexample.

They showed that when the service distribution is such that P (X = 1) = 4/5 + ε and P (X = 6) =

1/5− ε for some 0 < ε < 1/10, then C2[X] > 1, but EV FB > EV PS. Using a similar distribution,

Feng and Misra [22] go on to show that not only does C2[X] > 1 not imply that EV FB < EV PS,

but there exist distributions with C2[X] > 1 for which FB has mean response time arbitrarily close

to the upper bound in (5), which is the maximal mean response time across all work conserving

policies.

Surprisingly, we have seen that variability (as measured by C2[X]) is not a strong enough

criterion to guarantee that FB performs well. However, we still expect that FB should be guaranteed

to perform well for some subclass of highly variable distributions. Very recently, Aalto and Ayesta

[2] show that this is indeed the case: though we discussed earlier that FB does not optimize mean

response time under IMRL distributions, they showed that FB does have smaller mean response

time than PS under all IMRL distributions:
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Theorem 5.2 In an M/GI/1 queue with an IMRL service distribution,

EV FB ≤ EV PS =
EX

1− ρ
.

Further, the inequality is reversed under DMRL service distributions.

5.2 The impact of load

We will now discuss how the mean response time of FB grows with the system load. There are two

types of results along these lines. The first type of result characterizes the growth rate of EV FB

as ρ → 1, i.e., the heavy traffic growth rate of FB. The heavy traffic growth rate is a key metric

to many computer applications, since systems are often run at very high loads. The second type

of result characterizes the growth rate of the queue length when the system is unstable, i.e., the

behavior of Q(t)/t when ρ > 1. This growth rate is important in many practical settings since

computer applications tend to experience periods of overload, and minimizing the number of jobs

that build up during these periods limits the impact of these overload periods. For instance, buffer

provisioning must be done with the overload periods in mind, so limiting the number of jobs that

build up during overload allows designs to minimize buffer sizes. We will start by presenting results

characterizing the heavy-traffic growth rate of EV FB as ρ → 1 and then discuss the behavior of FB

when ρ > 1.

For many common policies, determining the heavy traffic growth rate is quite easy. For instance,

EV PS = EX/(1−ρ), thus the mean response time is Θ(1/(1−ρ)) as ρ → 1 regardless of the service

distribution. Similarly, the growth rate of EV FCFS is Θ(1/(1−ρ)) whenever EX2 < ∞. In contrast,

determining the heavy traffic growth rate of FB is a difficult task due to the complex form of EV FB

in (4).

As an indication of this difficulty, notice that the (sharp) bounds in (5) show that the behavior

of EV FB as a function of load strongly depends on the service distribution: the lower bound grows

as Θ(log(1/(1 − ρ))), while the upper bound grows as Θ(1/(1 − ρ)2). Therefore, many of the

results characterizing the heavy-traffic growth rate of FB do so for only a small class of service

distributions. Summarizing the results of Nuyens [35], Bansal and Gamarnik [8], and Wierman et

al. [59], we have the following

Theorem 5.3 Consider an M/GI/1 queue.

(i) If the service distribution is deterministic, then EV FB = Θ
(

1
(1−ρ)2

)
as ρ → 1.

(ii) If xU < ∞, and the service distribution is of the form F̄ (x) ∼ α(xU − x)β as x → xU for

some α, β > 0, then EV FB = Θ
(

1
(1−ρ)1+1/(β+1)

)
as ρ → 1.

(iii) If the service distribution is exponential, then EV FB = Θ
(

1
1−ρ

)
as ρ → 1.
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(a) Deterministic job sizes
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(b) Exponential job sizes
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(c) Pareto job sizes, α = 1.5.

Figure 3: An illustration of the impact of the service distribution on the growth rate of EV FB with

load. The behavior under deterministic, exponential, and Pareto job sizes is illustrated. Notice that

FB behaves far worse than SRPT under both exponential and deterministic service distributions,

but that FB nearly matches the behavior of SRPT under Pareto service distributions.

(iv) If the service distribution is Pareto(α), then as ρ → 1,

EV FB =


Θ

(
log

(
1

1−ρ

))
, if 1 < α < 2

Θ
(
log2

(
1

1−ρ

))
, if α = 2

Θ
(
(1− ρ)−

α−2
α−1

)
, if α > 2.

The results in Theorem 5.3 illustrate the contrasting impact of load on FB under different service

distributions. These are illustrated in Figure 3. We can see that in cases (i) and (ii) the heavy

traffic growth rate of FB is strictly worse than that of PS and FCFS, while in case (iv) the heavy

traffic growth rate is much small er than that of PS and FCFS. In fact, under Pareto distributions

with 1 < α < 2, the heavy traffic growth rate matches that in the lower bound on EV FB in (5),

which indicates that FB performs best when the service distribution is very heavy-tailed. Further,

Bansal and Wierman have shown in [9] that under regularly varying distributions (a generalization

of Pareto distributions, see Definition 6.2 below), the growth rate of FB matches that of SRPT, the

policy with the smallest mean response time.

Theorem 5.3 illustrates a trend that we are seeing throughout this survey: the heavy traffic

growth rate of FB is better than that of PS and FCFS when the service distribution is “highly

variable”, and worse when the service distribution is “lightly variable.” However, apart from the

four classes of distributions studied in Theorem 5.3, it has not been determined what properties of

the service distribution lead to good/bad heavy-traffic growth rates under FB. As a step towards

answering this question, we prove the following new theorem. The theorem shows that a key

determining factor as to whether the heavy traffic growth rate of FB is better or worse that PS

and FCFS is whether or not there is an upper bound on the service distribution. The proof of the

theorem is included to serve as an example of how results about the heavy-traffic growth rate tend

to be proven.
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Theorem 5.4 Consider an M/GI/1 queue with a continuous service distribution.

(i) If the service distribution is bounded, then EV FB = Ω(1/(1− ρ)) as ρ → 1.

(ii) If the service distribution is unbounded and m2(x)µ(x) = O(1), then EV FB = O(1/(1−ρ)) as

ρ → 1.

Note that the condition in (ii) includes most well-behaved distributions. For instance, if

EX2 < ∞, then it simply requires that µ(x) is bounded, which occurs under all common un-

bounded distributions – though it is possible to construct examples where this is not the case,

e.g., f(x) =
∑∞

n=1 I[n,n+2−n](x), where IA is the indicator function of the set A. If, on the other

hand, EX2 = ∞, then µ(x)m2(x) = O(1) requires a tradeoff between the growth of the second

moment and the rate of decrease of the hazard rate. However, this tradeoff is met under most com-

mon distributions. For example, under regularly varying distributions (e.g. Pareto distributions),

µ(x) = Θ(1/x) and m2(x) = O(x).

Proof: We will start by proving the result in the case of a bounded service distribution. Let xU be

the upper bound of the service distribution and define ρ̄(x) = λ
∫ x
0 tf(t)dt. Note that ρ(x) ≥ ρ̄(x)

and ρ̄′(x) = λxf(x). Then by (2), for all y,

EV FB ≥
∫ xU

0

λm2(x)f(x)
2(1− ρ̄(x))2

dx

≥ m2(y)
2

∫ xU

y

λxf(x)
(1− ρ̄(x))2

1
x

dx

≥ m2(y)
2xU

∫ xU

y

ρ̄′(x)
(1− ρ̄(x))2

dx = Ω
(

1
1− ρ

)
as ρ → 1.

To prove the result in the case of an unbounded service distribution, note that ρ(x)′ = λF̄ (x).

Then for all z ≥ 0,

EV FB =
∫ ∞

0

x

1− ρ(x)
f(x)dx +

∫ ∞

0

λm2(x)f(x)
2(1− ρ(x))2

dx

≤ EX

1− ρ
+

∫ z

0

λ

2
m2(x)

(1− ρ(x))2
f(x)dx +

∫ ∞

z
m2(x)µ(x)

ρ′(x)
2(1− ρ(x))2

dx. (6)

Since m2(x)µ(x) = O(1), there exists an x0 and an N such that m2(x)µ(x) ≤ N for x ≥ x0.

Taking z = x0 in (6) yields that

EV FB ≤ EX

1− ρ
+

λx0x
2
0F (x0)

2(1− ρ(x0))2
+

∫ ∞

x0

m2(x)µ(x)
ρ′(x)

2(1− ρ(x))2
dx

≤ EX

1− ρ
+ O(1) +

N

1− ρ
= O

(
1

1− ρ

)
as ρ → 1.

This concludes the proof. �
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We will now move from discussing the behavior of EV FB in heavy traffic (as ρ → 1) to discussing

the behavior of FB under overload (when ρ > 1). In this setting, the queue is unstable, so the goal

is to characterize the growth rate of the queue length over time. Policies that have smaller growth

rates are much more practical in computer systems since they limit the amount of overprovisioning

necessary to handle periods of overload.

Balkema and Verwijmeren [7] have characterized the growth rate of QFB as follows:

Q(t)FB

t
→ λF̄ (x∗) a.s. as t →∞,

where the critical service time x∗ is the unique solution of ρ(x) = 1. Notice that the growth rate of

the queue length in overload depends only on the behavior of the largest job sizes. This is in stark

contrast with the behavior of PS and FCFS. For example, under PS, Jean-Marie and Robert [27]

have proven that

Q(t)PS

t
→ η∗ a.s. as t →∞,

where η∗ is the unique (positive) solution to

λ

∫ ∞

0
e−ηxF̄ (x)dx = 1.

Further, under FCFS it is straightforward to see that

Q(t)FCFS

t
→ λ− 1

EX
a.s. as t →∞.

From the above, we see that there is an interesting contrast between the growth rate of the

queue length under FCFS and those of FB and PS. If EX = ∞, then Q(t)FCFS/t → λ a.s. and the

number of customers that manage to leave the system is negligible. However, under PS and FB, a

positive fraction of all customers leaves the queue.

Beyond this observation, we can also compare the growth rates of the queue lengths under these

policies numerically. In particular, Nuyens [35] has observed that under Pareto service times, the

asymptotic growth rate of the queue length of FB is smaller than those of PS and FCFS. Further,

under exponential service distributions, the queue lengths under FB and PS are stochastically equal,

and under deterministic distributions the growth rate of FCFS is smaller than those of PS and FB.

6 Beyond the mean performance of FB

In the last section we focused on the mean performance of FB. Though the mean performance is

clearly an important measure for practical settings, the distributional performance is often just

as important. In fact, users even seem to prefer response times that are larger on average if the

response times are less variable, and thus more predictable [18, 64]. Further, understanding the
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distributional behavior of response times and queue lengths is fundamental when considering QoS,

admission control, buffer provisioning, and capacity planning applications, where guarantees of the

form “95% of the time the response time (buffer size) is smaller than C” are desired.

In this section, we will summarize the results characterizing the behavior of the response-time

distribution (Section 6.1) and the queue-length distribution (Section 6.2). Note that direct analysis

of the distributional behavior of response times and queue lengths is typically only possible in very

specialized settings, such as the M/M/1 queue, and under only very simple policies, such as FCFS.

Thus, under FB, studies of the distributional behavior of response time and queue length typically

use asymptotic scalings of the distributions.

6.1 The response time distribution

In order to study the distribution of V FB, we will use the same approach that we used earlier when

studying EV FB. In particular, we will start by studying the distribution of the conditional response

time V (x)FB, and then apply the results in order to characterize the distribution of V FB.

We saw during our derivation of EV (x)FB that it is not too difficult to characterize the entire

distribution of V (x)FB. In fact, the Laplace transform of V (x)FB, defined as LV (x)(s) = EesV (x),

follows immediately from (3):

LV (x)(s) =
(1− ρ(x))(s + λ− λLLx(s))

s
e−x(s+λ−λLLx (s)). (7)

From (7) we can calculate the moments of V (x)FB, e.g.,

V ar[V (x)FB] =
λxm2(x)

(1− ρ(x))3
+

λm3(x)
3(1− ρ(x))3

+
3
4

(
λm2(x)

(1− ρ(x))2

)2

. (8)

Although expressions for the moments often appear complex, they can often be composed into

pieces that have a natural interpretation. For example, the first term in (8) is V ar[Lx(x)], and the

other two terms combine to form V ar[Lx(W FB
x )]. Further, many of the comments we made about

EV (x)FB also apply to V ar[V (x)]FB and other higher moments. For instance, very small jobs are

treated as if they are served in isolation, independently of the distribution of large job sizes.

Using the transform of V (x)FB, it is easy to write the transform of the overall response time

of FB by integration. However, as in the case of EV FB, understanding the distributional behavior

of V FB in this way is not straightforward. Only very recently have distributional results for V FB

begun to appear.

One of the most fundamental questions to answer about the distribution of V FB is what re-

quirements on the service distribution guarantee finiteness of the moments of V FB. Nuyens [35]

recently used differentiation of the transform in (7) to prove that

E[V (x)n]FB =
xn

(1− ρ(x))n
+

O(xn−1) if ∃α ≥ 2 : EXα < ∞,

o(xn+1−α) if ∃ 1 < α < 2 : EXα < ∞
(9)
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Since V (x) ≥ x, using (9) yields the following result.

Theorem 6.1 In the M/GI/1 FB queue, for any n ∈ N, we have EV n < ∞ if and only if EXn <

∞.

This result is quite appealing since these are the weakest moment conditions possible. Further,

it illustrates the benefits of using FB over non-preemptive policies, for which EV n < ∞ if and only

if EXn+1 < ∞. Note though that FB is far from unique in this behavior. Zwart and Boxma [65]

have proven that PS also requires only EXn < ∞ in order to have EV n < ∞, and Nuyens et al.

[37] have proven that V (x)SRPT ≤st V (x)FB and thus SRPT also requires only EXn < ∞ in order

to have EV n < ∞.

Theorem 6.1 provides a first indication of the parallels between the tail behavior of the service

distribution and the tail behavior of the response time under FB. In fact, we will see that under

heavy-tailed service distributions this parallel is even stronger. To illustrate this, let us consider the

class of regularly varying service distributions. This class is a generalization of Pareto distributions

and thus includes a number of practical distributions.

Definition 6.2 We say that L is a slowly varying function if limx→∞ L(yx)/L(x) = 1 for all y > 0.

We say that F is regularly varying with index α when F̄ (x) = L(x)x−α, where L(x) is a slowly

varying function.

When the service distribution is regularly varying, Núñez-Queija and others showed in [11, 33,

34] that the tail of the service distribution and the tail of the response time are asymptotically

equivalent in the M/GI/1 FB queue. Very recently, this result was generalized to the GI/GI/1 FB

queue by Nuyens et al. [37]:

Theorem 6.3 In a GI/GI/1 queue where F̄ is regularly varying2,

P (V FB > x) ∼ P (X > (1− ρ)x), as x →∞. (10)

Theorem 6.3 can be interpreted as stating that whenever a job experiences a long response time,

the most likely cause of the long response time is that the job itself is very large. Similar results

have been proven for a number of other policies as well. For example, (10) has also been shown to

hold for SRPT [34, 37] and PS [24, 65].

The proof of Theorem 6.3 uses at its core a technique developed by Guillemin et al. [24] for the

analysis of the tail behavior of PSİn particular, [24] introduces two conditions on V (x) that are

sufficient for showing that (10) holds. The first of these conditions requires that V (x)/x → 1/(1−ρ)
2This result has actually been shown to hold for the class of distributions that are of intermediate regular variation

at infinity, which is slightly more general. See [33] for a discussion.
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in probability as x →∞.3 The second requires that there exists some k such that P (V (x) > kx) =

o(F̄ (x)). Thus, the two conditions together show that the conditional response time is tightly

concentrated around x/(1− ρ) as x →∞, which in the heavy-tailed setting is enough to guarantee

that (10) holds. The main difficulty in applying these conditions to FB is in showing that the

second condition holds. To accomplish this, Nuyens et al. [37] apply a probabilistic approach using

an explicit random walk representation of the workload made up of jobs having service distribution

X ∧ y seen at the arrival of a tagged job with size y.

Relation (10) is a very appealing property for computer systems, because it means large job

sizes cannot cause the system to provide poor overall response times: the effect of a large job is

only felt by other large jobs. This is in contrast to the behavior of FCFS, under which the arrival

of a large job causes subsequent arrivals of all sizes to experience large response times. In fact,

under FCFS (and all non-preemptive policies), the most likely reason for a job to experience a large

response time is to find at the server, upon arrival, a job with a large remaining size. The result

is that FCFS and all other non-preemptive policies have a response-time tail that is ‘one degree

heavier’ than the tail of the service distribution, i.e., it is of the order xP (X > x), see Borst et al.

[33] for a survey.

Not only is the response-time tail of FB lighter than that of FCFS, the tail of FB seems to

be “asymptotically optimal”: there seem to be no policies with a smaller tail of the response-

time distribution than the one described in (10). In any case, this behavior is asymptotically near

optimal, in the sense that no policy can have a response time tail more than a multiplicative constant

smaller. This is quite encouraging since the service distributions in many computer applications

are modeled using Pareto distributions.

However, the story is not completely rosy. As we have seen throughout this survey, while FB

performs well under heavy-tailed service distributions, it can perform quite badly under light-tailed

service distributions. In particular, Mandjes and Nuyens [29] have shown that in an M/GI/1 queue

with a light-tailed service distribution, the response-time tail of FB is asymptotically equivalent

(on a logarithmic scale) to that of the busy period, which can be far from optimal. This result was

later generalized to the GI/GI/1 queue by Nuyens et al. [37]:

Theorem 6.4 In a GI/GI/1 queue with a light tailed service distribution, i.e., E[esX ] < ∞ for

some s > 0, we have

log P (V FB > x) ∼ log P (L > x), as x →∞, (11)

where L is distributed like a busy period. Further, the logarithmic decay rate is

lim
x→∞

1
x

log P (V FB > x) = − sup
s≥0

{
s + Φ−1

A

(
1

ΦX(s)

)}
, (12)

3Guillemin et al. [24] actually required almost sure convergence, but this was weakened by Borst et al. [12] to

require only convergence in probability.
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where ΦX and ΦA are the generating functions of X and the generic interarrival time A, and Φ−1
A

is the inverse of ΦA.

The proof of Theorem 6.4 has two parts. First, it is shown that in the light-tailed setting, the

response time of a job cannot have a heavier tail than that of the busy period, L. Then, in order to

prove a lower bound, the proof identifies an event Ay with P (Ay) > 0 that causes the response time

of a job to be larger than Ly, the busy period in a queue with service times distributed like X ∧ y.

After taking logarithms, dividing by x, and taking the limit x →∞, the effect of P (Ay) disappears

and the proof is then completed by showing that the distribution of Ly converges, roughly speaking,

to that of L as y → xU .

Though the logarithmic decay rate in Theorem 6.4 appears complicated, it can be illustrative in

special cases. In particular, for the M/GI/1 queue, the right-hand side of (12) becomes sups≥0{s+

λ − λE[esX ]}, and for the M/M/1 queue with mean service time 1/µ, it further simplifies to

(
√

µ−
√

λ)2.

Theorem 6.4 can be interpreted as saying that if a job experiences a large response time, it is

likely the result of arriving during a very long busy period. Again this behavior is similar to that

of a number of other policies: under additional conditions, (11) holds for both SRPT [38] and PS

[30], though in both cases there exist some light-tailed distributions under which the response-time

distribution has a lighter tail than that of FB. For (11) to hold under SRPT there must not be

any probability mass in xU , the right endpoint of the service distribution [38]: if there is mass

in xU , the response-time tail of SRPT is lighter than that of FB. For (11) to hold under PS, the

service distribution must satisfy 1
x log P (X > c log x) → 0 for all c > 0 as x →∞, which eliminates

distributions with bounded support and very light tails, e.g., the deterministic distribution. For

the M/D/1 queue, it has recently been shown that the response-time tail of PS is lighter than that

of FB [20].

As in the case of heavy-tailed service distributions, (11) is in contrast with the behavior of

FCFS, under which a large response time is likely due to seeing a large workload in the queue

upon arrival. Interestingly, in the light-tailed setting, the tail of the workload is much lighter than

the tail of the busy period, which is actually as heavy as possible (on a logarithmic scale). It

should be noted though that the poor behavior of FB with respect to the response-time tail is not

necessarily indicative of other performance measures. For example, some gamma distributions are

both light-tailed and DFR. So, for those service distributions, the tail of the response time is as

heavy as possible (Theorem 6.4), but the queue-length distribution and mean response time are

optimal among blind policies (Theorem 4.1). Additionally, it is important to point out that the

poor behavior of the response-time tail under FB in the case of light-tailed service distributions is

merely caused by the behavior of the largest jobs. In particular, if we look at the distribution of

the response time experienced by jobs of size x, Nuyens et al. [37] have proven the following:
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Theorem 6.5 In a GI/GI/1 queue with a light tailed service distribution, i.e., E[esX ] < ∞ for

some s > 0, for all x,

log P (V (x) > y) ∼ log P (Lx > y) as y →∞,

where Lx is the length of a busy period in a queue with generic service time X ∧ x.

Theorem 6.5 implies that for many job sizes, the tail of the conditional sojourn time is lighter

than under FCFS. In fact, calculations similar to those performed in Nuyens and Zwart [38] show

that for the M/M/1 queue, regardless of the load, at least 63% of the jobs prefer FB over FCFS as

far as the sojourn time tail is concerned. In addition, this percentage increases to 100% as ρ → 1.

Let us conclude this section by pointing out that Theorems 6.3 and 6.4 illustrate a trade-off

that seems to be a general tendency: policies that have (near) optimal response-time tail behavior

under heavy-tailed service distributions, behave poorly under light-tailed service distributions. In

particular, it seems unlikely that any policy can obtain the “best of both worlds.” The reason for

this tradeoff is simple. Policies that behave well in the heavy-tailed setting, have a response-time

tail that is asymptotically equivalent to the tail of the service distribution, which in this setting

is in turn asymptotically equivalent to the length of a busy period. In particular, De Meyer and

Teugels [17] have shown that (10) holds for the length of a busy period as well. Thus, if a policy

behaves well in the heavy-tailed setting, it has a response-time tail asymptotically equivalent to

the length of a busy period. However, if the policy is asymptotically equivalent to a busy period

in the light-tailed setting as well, it is far from optimal there.

6.2 The queue-length distribution

Understanding the queue-length distribution of FB is key when considering applying the policy in

applications such as routers, where buffer provisioning is fundamental.

Though the mean response time and mean queue length are related by Little’s Law, distribu-

tional forms of Little’s Law do not apply because FB allows later arrivals to overtake earlier arrivals

in the queue. And, in fact, the analysis of the queue-length distribution of FB has proceeded much

more slowly than the analysis of the response-time distribution. The first derivation of the generat-

ing function of the queue-length distribution did not occur until nearly 15 years after the derivation

of the Laplace transform of response time. Pechinkin [39] was the first to derive the generating

function of Q:

Theorem 6.6 Let Q be the number of jobs in the stationary M/GI/1 queue. Then for z < 1,

EzQ = (1− ρ) exp
(
−

∫ ∞

0
z
∂v(t, z)

∂z
dt

)
, (13)
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where v(t, z) is the unique non-negative root of the equation

v(t, z) = λ
(
1−

∫ t

0
e−v(t,z)xdF (x)− z(1− F (t))e−v(t,z)t

)
. (14)

Yashkov [60] obtained the counterpart of (13) for the case of batch arrivals. From the proof

of Theorem 6.6 it follows that v(t, 1) = 0. This allows for computing the moments of Q by

differentiating (13).

Using Theorem 6.6, the primary question of interest is to determine the requirements for the

finiteness of moments of Q. Very recently, Nuyens [35] was able to obtain the first such result

through a detailed analysis of the derivative of v(t, z).

Theorem 6.7 In the M/GI/1 FB queue, if EXα < ∞ for some α > 1, then all moments of Q are

finite.

Notice the contrast between these moment conditions and those of FCFS: FCFS requires EXn+1 <

∞ in order for EQn to be finite. Further, FB almost matches the behavior of SRPT and PS, which

have the property that all moments of Q are finite if EX < ∞. In fact, an interesting question

that is left open at this point is to determine whether EX < ∞ is also a strong enough condition

to guarantee that all moments of QFB are finite.

Beyond the transform and moment conditions of QFB, there are only a few scattered results

in the literature. These results focus on two practical questions: (1) what happens to QFB in

heavy traffic and (2) what is the distribution of the maximal queue length in a busy period? These

two questions are fundamental issues when addressing the task of buffer provisioning in computer

networks.

In answer to the first question, Nagorenko and Pechinkin [32] prove the following asymptotic

characterization of the distribution of QFB under heavy traffic, which can provide a useful rule-of-

thumb for buffer management.

Theorem 6.8 For service-time distributions with tail F̄ (x) ∼ axbe−cx, for some a > 0, b ≥ 0 and

c > 0, the stationary queue length Q in the M/GI/1 FB queue satisfies

lim
ρ↑1

P (Q/EQ < x) = 1− e−x, x ≥ 0.

In addition, for the special case of the M/D/1 FB queue, an expression for the Laplace transform

of limρ↑1 Q/EQ has been derived by Yashkov and Yashkova in [63].

In answer to the second question, Borel [10] has analyzed avant la lettre the distribution of the

maximal queue length during a busy period under FB, denoted by QFB
max, in the M/D/1 setting:
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Theorem 6.9 In the M/D/1 FB queue with arrival rate λ and service times equal to 1,

P (Qmax = n) = λn−1e−λn nn−1

n!
∼ en(log λ+1−λ)/(n

√
nλ
√

2π), as n →∞.

Beyond the M/D/1 setting, such asymptotics have not been derived. However, Nuyens [36]

proved the following bound on QFB
max under log-convex service distributions.

Theorem 6.10 In an M/GI/1 queue where the service-time distribution has a log-convex density,

P (QFB
max > n) ≤ ρn, n = 0, 1, . . . . (15)

Amazingly, this result indicates that for log-convex service distributions, the bound on the distri-

bution of the maximal queue length under FB is not much larger than the stationary queue length

distribution of PS. (Recall that P (QPS = n) = (1−ρ)ρn. ) Further, the bound on the distribution

of QFB
max is insensitive to the form of the service distribution beyond its mean.

Theorem 6.10 is proved by first calculating the maximal queue length of FB∗, an artificial

discipline very similar to FB: under FB∗, the first customer in a busy period has lowest priority,

and all other customers are treated according to FB. The busy period of FB∗ can be decomposed in

a random number of sub-busy periods that behave like FB busy periods, and so the maximal queue

length of FB∗ can be expressed in terms of the FB maximum. This similarity, in combination with

the optimality of FB (Theorem 4.2), is enough to find the bound in (15).

Using the regenerative structure of the queue length process, it is possible to relate the maximal

queue length during a busy period to the maximal queue length over the time interval [0, t] for

t →∞, see the survey article of Asmussen [5]. In particular, define QFB
max(t) as the maximal queue

length over the time interval [0, t] under FB. Then, Nuyens [36] used Theorem 6.10 to prove the

following:

Theorem 6.11 Consider an M/GI/1 FB where service times have a log-convex density. Then for

any x > 0, the inequality

P (QFB
max(t) > a log t + b + x) ≤ ρx

holds for t large enough and a = −1/(log ρ), b = −(log λ + log(1− ρ))/(log ρ) + 1.

The key observation about Theorem 6.11 is that it indicates that the maximal queue length

under FB grows logarithmically in time, with rate at most a = −1/ log ρ. If we consider the case

of heavy traffic (ρ → 1), this growth rate satisfies −1/ log ρ ∼ 1/(1− ρ).

Comparing this growth rate with that of other policies is difficult because little is known about

the maximal queue length under other disciplines, but we can provide some comparison with the

behavior of FCFS.
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Cohen [16] has described the asymptotic behavior of the maximal queue length in the first

n busy periods in the FCFS queue, but under the condition that an exponential moment exists,

i.e., E[esX ] < ∞ for some s > 0. Combining the analysis in Cohen [16] with the technique from

Asmussen [5] we described above, it can be seen that the maximal queue length under FCFS in the

time interval [0, t] grows logarithmically in t with rate 1/ log(1+θ∗), where θ∗ is the positive solution

of the equation θ+1 = E[eθX ]. Note that θ∗ can be interpreted as the decay rate of the busy-period

distribution, see, e.g., Mandjes and Zwart [30]. In heavy traffic, θ∗ → 0, so the logarithmic growth

rate behaves like 1/θ∗, and θ∗(ρ) ∼ 2(1 − ρ)/(1 + c2
X) for ρ → 1, see [30]. Unfortunately, due

to the conditions on the service distributions, we can only compare the asymptotic growth rates

under FB and FCFS for log-convex densities with an exponential moment, for example the gamma

distributions mentioned before Theorem 4.2. For those distributions, we can conclude that the

growth rate under FB is smaller in heavy traffic than under FCFS, since the coefficient of variation

satisfies c2
X > 1 for all log-convex densities.

7 The performance of large jobs under FB

To this point, we have concerned ourselves primarily with traditional queueing metrics such as

measures of the queue-length distribution and response-time distribution. With respect to these

measures, we have repeatedly seen that FB performs well when the service distribution is heavy-

tailed, but that it can behave very poorly if the service distribution is light-tailed. Since many

computer applications have service distributions that are typically modeled as heavy-tailed distri-

butions, these results suggest that FB is quite applicable in practical applications. However, there is

a key worry that has traditionally kept FB from being used in practice: how bad is the performance

of large jobs? Phrased differently, the worry is that large job sizes are treated “unfairly.”

Addressing this issue is a difficult task because of the amorphous nature of “fairness,” and this

difficulty is likely the reason that the fairness of FB went unstudied for so long. Only very recently

did Harchol-Balter, Sigman and Wierman [26] provide a first analysis of the fairness of FB. This

was followed shortly by a number of more detailed analyses, e.g., Wierman and Harchol-Balter [57]

and Rai et al. [42], which were motivated by the need to address fairness concerns in the context

of web servers and routers.

The notion of fairness that emerged in these papers is derived intuitively from Aristotle’s no-

tion of fairness: like cases should be treated alike, different cases should be treated differently, and

different cases should be treated differently in proportion to the difference at stake. In the context of

scheduling queues, this matches the common intuition that small jobs should have small response

times, large jobs should have large response times, and the differences in response times of small

and large jobs should be proportional to the differences the job sizes. Specifically, the response

time for a job of size x, V (x), should be proportional to x.
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The first analysis of the fairness of FB by Harchol-Balter, Sigman, and Wierman [26] focused

only on the experience of the largest job sizes, motivated by the intuition that the largest jobs

will be treated the most unfairly under FB. Surprisingly, this analysis showed that in the M/GI/1

setting these largest jobs are treated no worse under FB than under PS, which is intuitively the

most fair policy, since all jobs in the system share the server evenly at all times. The results in [26]

were later generalized by Nuyens et al. [37], who proved that:

Theorem 7.1 In a GI/GI/1 queue,

lim
x→∞

V (x)FB

x
= lim

x→∞

V (x)PS

x
=

1
1− ρ

a.s.

This result may be interpreted as follows: during the response time of an exceptionally large

job, the service rate it gets is the total service rate (namely 1) reduced by the load of jobs that

pass through the system in the meantime, which is ρ in the limit since the system remains stable.

Wierman and Harchol-Balter [58] have also shown that this limit is achieved by almost all common

preemptive policies. Thus, it seems one need not worry about the largest jobs being treated unfairly

since most common preemptive policies treat them asymptotically equivalently.

Surprisingly though, Wierman and Harchol-Balter [57] and Rai et al. [42] have illustrated that

it is not the largest job sizes that receive the most unfair treatment under FB:

Theorem 7.2 For all 0 < ρ < 1 and all continuous service distributions with EX2 < ∞,

EV (x)FB/x is not monotonically increasing. Further, EV (x)FB/x converges from above to 1/(1−ρ)

as x →∞.

So it seems that, though the largest job sizes are not treated worse under FB than under PS,

some range of large (but not the largest) job sizes does receive unfairly long response times. Figure

4 illustrates this “hump” behavior, which is in stark contrast to the behavior of PS. This behavior is

termed by Wierman and Harchol-Balter [57] as “Always Unfair” since under all service distributions

and all loads there exists some x such that EV (x)FB/x > 1/(1 − ρ), and 1/(1 − ρ) is a natural

criterion for fairness because (i) minP maxx EV (x)P/x = 1/(1− ρ) [57] and (ii) the intuitively-fair

PS has EV (x)PS/x = 1/(1− ρ). Notice that this criterion for fairness is very useful from practical

perspective as well since PS is typically the default scheduling policy used in computer systems

where FB is being suggested as an alternative.

It is important to note that FB is far from alone in being classified as Always Unfair. In fact,

among blind scheduling policies, PS is the only policy that avoids being Always Unfair. To see why

this is true, recall Kleinrock’s conservation law:

λ

∫ ∞

0
EV (x)F̄ (x)dx =

λE[X2]
2(1− ρ)

. (16)
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Figure 4: An illustration of the behavior of EV (x)FB and V ar[V (x)]FB. In all cases the service

distribution is exponential and the load is 0.9. The top row shows the behavior as a function of

x while the bottom row shows the behavior as a function of F (x), i.e., the percentile of x. Notice

that the behavior of all the policies shown is similar for the mean and variance of V (x). Further,

notice that FB mimics the behavior of SRPT, and that both policies have a “hump” made up of

large, but not the largest, jobs.

For a policy P to avoid being Always Unfair, there must be a service distribution such that

EV (x)P ≤ x/(1− ρ) for all x, but using this bound in the conservation law, we see that

λ

∫ ∞

0
EV (x)PF̄ (x)dx ≤ λ

1− ρ

∫ ∞

0
xF̄ (x)dx =

λE[X2]
2(1− ρ)

. (17)

So, it must hold that EV (x)P = x/(1− ρ) for all x.

Given that FB always treats some range of job sizes unfairly, it becomes important to char-

acterize (i) what percentage of jobs are treated unfairly, (ii) which job sizes are treated unfairly,

and (iii) how unfairly are these jobs treated. These questions are addressed by both Wierman and

Harchol-Balter [57] and Rai et al. [42]. We summarize their results in the following theorem:

Theorem 7.3 In an M/GI/1 queue, for all x,

EV (x)FB ≤
(

1− ρ/2
1− ρ

)
EV (x)PS.
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Further, EV (x)FB ≤ EV (x)PS for all x such that ρ(x) ≤ ρ/(1 +
√

1− ρ).

Thus, we see that not too large a fraction of jobs is treated worse under FB than under PS.

This fraction is especially small under heavy-tailed distributions, where a larger percentage of the

load is made up by a small percentage of large jobs. For example, if the load is 0.9, then any

x such that ρ(x) < 0.68 will have EV (x)FB ≤ EV (x)PS. Under heavy-tailed distributions, this

condition can be satisfied by more than 95% of arrivals. Even under the exponential distribution,

this condition is satisfied by 86% of arrivals. Further, we see that even when a job size is treated

unfairly, EV (x)FB is not too much larger than EV (x)PS unless ρ is very close to 1. However, as

ρ → 1, ρ/(1+
√

1− ρ) → 1, so very few jobs are treated unfairly. Further, if the degree of unfairness

of FB is judged to be too large, one might turn to hybrid policies, investigated by Rai et al. [43],

that combine aspects of FCFS and FB in order to shrink the worst case of V (x)/x.

So far we have focused on fairness with respect to mean response times, but worries about

unfairness are not limited to the mean. In fact, worries about large job sizes being starved of service

also lead to the suggestion that response times of large jobs are unfairly variable (in addition to

being unfairly long). To address such worries, Wierman and Harchol-Balter studied the behavior of

higher moments of V (x)FB in [58]. Interestingly, the non-monotonic behavior of EV (x)FB/x seems

to extend to higher moments as well. In particular, Wierman and Harchol-Balter [58] have proven

that the behavior of V ar[V (x)]FB/x parallels that of EV (x)FB/x when λE[L2] is used in place of

1/(1− ρ), see Figure 4.

Further, experimental evidence suggests that this non-monotonic behavior extends beyond

EV (x)FB/x and V ar[V (x)]FB/x. Wierman and Harchol-Balter [58] conjecture that the same behav-

ior will occur for all normalized cumulant moments of V (x)FB, κn[V (x)]FB/x, when I[n=1] +λE[Ln]

plays the role of 1/(1 − ρ). Recall that the mean and the variance are the first two cumu-

lant moments, and notice that I[n=1] + λE[Ln] equals 1/(1 − ρ) when n = 1 and λE[L2] when

n = 2. Further, higher cumulant moments κi[Y ] are defined using the cumulant generating func-

tion KY (s) = log E[esY ] as follows: κn[Y ] = (−1)nK(n)
Y (0). They can also be defined recursively

using the moments

κn[Y ] = E[Y n]−
n−1∑
j=1

(
n− 1

j

)
E[Y j ]κn−j [Y ] (18)

8 Future research topics

From this survey, it is clear that we have come a long way towards characterizing the performance

of FB in single server queues. However, it should also be clear than many interesting questions

remain.

For example, much progress has been made towards characterizing under which service dis-

tributions FB is appropriate. We have seen that for DFR service distributions, FB optimizes the
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queue-length distribution among all blind policies, and that for IMRL distributions FB still has

a smaller mean response time that PS. But we have also seen that IMRL is not a strong enough

condition for FB to minimize the mean response time. It would therefore be interesting to see if

there is a class larger than DFR but smaller than IMRL for which FB does minimize the mean

response time.

Another open problem is for which service distributions the mean response time achieves the

theoretical upper and lower bounds. So far, it has only been shown that the lower bound is achieved

for regularly varying service distributions (in the limit as the system load approaches 1), and that

the upper bound is tight for deterministic distributions.

Further, we have seen that in many cases FB can perform nearly as well as SRPT, which

optimizes the queue-length distribution among all scheduling policies. For instance, under regularly

varying service distributions, FB has mean response time within a constant of SRPT for all loads,

and the tail behavior of the response time under FB is asymptotically equivalent to that of SRPT.

However, is it necessary for the service distribution to be regularly varying for FB to match the

performance of SRPT?

On the other hand, we have seen that FB can also perform far from optimal. For instance, under

deterministic service distributions, FB has mean response times that are as large as possible under

any work conserving policy, and under light-tailed service distributions, FB has a tail behavior that

matches the heaviest tail possible under work conserving policies. However, we have also seen that

FB can perform badly for distributions with high variability; thus, an important task that remains

is to better characterize under which classes of service distributions FB performs badly.

In addition to characterizing under which service distributions FB is appropriate,

another interesting set of open questions is related to the behavior of FB under heavy-

traffic. As we saw in Section 5.2, the behavior of FB as ρ → 1 is much more complicated

than that of PS and FCFS, and consequently results to this point have focused on the

behavior of EV FB and EQFB as ρ → 1 rather than the distributional behavior of V and

Q. Obtaining such distributional results is an important task, both practically and

theoretically.

Another set of open problems about FB is related to the topic of fairness. We have seen that

under FB there is a range of large, but not the largest jobs, that has unfairly large EV (x)FB and

V ar[V (x)]FB. However, there are a number of interesting questions that remain. For instance,

do higher cumulant moments of V (x)FB mimic the behavior of EV (x)FB/x and V ar[V (x)]FB?

And more broadly, the characterization of fairness in terms of V (x) is only one of many notions

of fairness, and the question of how FB performs under other fairness definitions, e.g., those in

[6, 44, 47, 48], has yet to be addressed.

A very practical open problem is the task of adjusting FB so as to improve its fairness while not

increasing response times and queue lengths too much. Two recent papers have begun to address
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this issue [23, 43], but many issues remain. Finally, it is also interesting to consider the behavior

of FB beyond the single sever setting. With the growing trend towards server-farm architectures in

computer systems, this is another important direction for future work; however to this point, there

have been only a few proposals, e.g., Wu and Down [19].
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