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Abstract

In this paper, we consider various queueing models in which the server can work
at two different service speeds. The speed of the server depends on either the number
of customers, or the workload. Our main interest is in the model in which service
speed adaptations can only take place at the arrival instants of an external Poisson
observer. Using insightful probabilistic arguments we give the structure of the steady-
state queue length and workload distributions in the various models.

Also, in case the service speed can only be adapted right after departure instants
based on the number of customers, we provide explicit and intuitively appealing
expressions for the steady-state distribution of the number of customers present.

1 Introduction

In this paper we consider queueing models in which the server can work at two differ-
ent service speeds. The speed at which the server works depends either on the number
of customers in the system or on the workload (i.e., the amount of work) in the system.



Models with service speed depending on queue length or workload arise naturally as rep-
resentation of (congestion) phenomena in, e.g., manufacturing and healthcare processes.
Our main interest is in the model in which service speed adaptations can only take place
at the arrival instants of an external observer. We assume that these arrival instants occur
according to a Poisson process and in the sequel we call this model the model with service
speed adaptations at external Poisson instants. However, we also want to compare the
performance of this model with the performance of other models, studied before, in which
the server can work at two different service speeds. Therefore, we will also discuss the
model with instantaneous service speed adaptations (see Cohen [6] and Gaver and Miller
[10]) and the model with service speed adaptations at arrival instants (see Bekker [1] and
Bekker and Boxma [2]).

The paper is organised as follows. In Section 2, we study a simple M/M/1 queue in
which the speed of the server depends on the number of customers in the system. In this
model the steady-state distribution of the number of customers in the system is a mixture
of one or more geometric distributions. The number of geometric terms depends on the
instants at which service speed adaptations can take place and on the part of the state
space (few/many customers, high/low service speed).

In Section 3, we will consider the M/M/1 model in which the speed of the server
depends on the workload. It turns out that in this model we get similar results. Now,
the steady-state distribution of the workload in the system is a mixture of one or more
exponential distributions. The number of exponential terms again depends on the variant
and on the part of the state space (high/low workload, high/low service speed).

Section 4 is devoted to situations in which service speed adaptations can only take
place at departure instants. In this case, the analysis of the system in which the service
speed depends on the workload seems very difficult. Therefore, we restrict our attention
to the model in which the service speed depends on the number of customers. We will
give explicit and intuitively appealing expressions for the steady-state distribution of the
number of customers in the system. Instead of restricting our attention only to the M /M /1
queue, here we present the results for the M/G/1 queue. This model and some extensions
have been studied by others, see e.g. [5, 9, 14, 15]. In [5, 14] the authors consider Laplace-
Stieltjes transforms, while in [9, 15] the authors focus on computational aspects. We also
refer to Dshalalow [8] for an extensive survey, with 277 references, on queueing models
with state-dependent parameters.

In the paper, we always try to use probabilistic arguments to find steady-state dis-
tributions (instead of, e.g., directly solving balance equations). Although we restrict our
attention to models in which the server can work at only two different service speeds, we
expect that our probabilistic approach will also be helpful to understand models in which
the server can work at more than two service speeds. The ultimate goal of a performance
analysis of queueing models like those described above is to optimise and control the sys-
tem behaviour. While such optimisation and control is not part of the present paper, the
analysis presented here does prepare the ground for it.



2 Service speed based on number of customers

In this section we consider an M /M /1 queue in which the server can work at two different
speeds, 1 and 75. The service speed is based on the number of customers. If the number
of customers in the system is smaller than or equal to K, then the server should work at
speed ry. If on the other hand the number of customers in the system is bigger than K,
the server should work at speed r;. However, because service adaptations can only take
place at special points in time, in some of the models it can happen that the server still
works at speed 7o (resp. 1) although the number of customers has dropped at or below
level K (resp. has increased above level K).

Customers arrive to the system according to a Poisson process with rate \. Service
requirements of customers are independent, exponentially distributed random variables
with parameter pu. Define p; := \/(p;) with u; := pr;, i = 1,2. In the sequel we assume
that po < 1 to assure that the system is stable. Let X (¢) denote the number of customers
in the system at time t. Furthermore, Y () represents the state of the server at time ¢.
More specifically, Y (t) = i if the speed of the server at time ¢ equals r;,i = 1,2. With
(X,Y) we denote a random vector having the steady-state distribution of the continuous-
time Markov process { (X (¢), Y (t)) }+>0. With m(k, ) we denote the steady-state probability
P((X,Y) = (k,1)).

2.1 Instantaneous service speed adaptations

In the model with instantaneous service speed adaptations, the speed of the server instan-
taneously changes from ry to ro if the number of customers in the system increases from
K to K + 1. Similarly, the speed of the server instantaneously changes from 75 to ry if the
number of customers in the system decreases from K + 1 to K. Hence, in this case the
state space of the continuous-time Markov process {(X (t), Y (¢)) }+>0 equals

S ={(0,1),...,(K,)}U{(K +1,2),(K +2,2),...}.

Clearly, at and below level K the system behaves as an M/M/1/K queue with service
speed 1, while above level K the system behaves as an M /M /1 queue with service speed
ro. Hence, the steady-state probabilities are given by

(k1) = Cpf, k=0,...,K,
(K +k+1,2) = Oy, k=0,1,....

The constants C and C5 follow from the normalisation equation and the balance equation
(K1) = por(K +1,2).

So we see that the steady-state distribution has geometric behaviour with parameter p;
on the part of the state space {(0,1),..., (K, 1)} and geometric behaviour with parameter
p2 on the part of the state space {(K + 1,2), (K +2,2),...}.



2.2 Service speed adaptations at arrival instants

In the model with service speed adaptations at arrival instants, the speed of the server
is based on the number of customers in the system just after the arrival instant. If the
number of customers in the system increases from K to K + 1, the speed of the server
instantaneously becomes ry (because there is an arrival). However, if the number of cus-
tomers in the system decreases from K 4 1 to K, the server continues to work at speed 7
until the next arrival instant (and even longer if the next arrival brings the system back
into state K'+1). Hence, in this case the state space of the continuous-time Markov process

{(X(t),Y(t))}+>0 equals
S={(0,1),....(K, 1)} U{(0,2),..., (K2} U{(K +1,2), (K +2,2),...}.

As before, above level K the system behaves as an ordinary M /M /1 queue with service
speed rs, leading to
(K +k+1,2)=Cip5, k=0,1,....

At an arbitrary instant at which the number of customers in the system is at or below level
K and the server works at speed ry, we have

(X|X <K, Y =2) L max(K — Z,0),

where Z is geometrically distributed with parameter /\_’ﬁg, leading to

k

7k +1,2) = Cy (A+“2> L k=0,... K —1.
M2

Remark that we only give here the expressions for 7(1,2),...,7(K,2). The expression for

7(0,2) is slightly different.

At an arbitrary instant at which the number of customers is at or below K and the
server works at speed 71, the system behaves as an M/M/1/K model with service speed
r1, but with the special feature that after each overflow, the number of customers is first
instantaneously decreased to the steady-state situation of the system when the number of
customers is at or below K and the service speed equals ry and, after that, instantaneously
increased by 1 (due to the arrival). By using an up- and downcrossing argument for this
system we obtain

K—k
2
Am(k,1) = E+1,1)+ A K1), k=1,...,K -1,
k1) =+ 1) 40 (22 ) )

from which we can show that

A+ o\ "
W(k+1,1)=03plf+04( IUQ) s k’ZO,...,K—l.
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Again, we only give here the expressions for 7(1,1),...,7(K,1). The expression for 7(0, 1)
is slightly different.



Hence, the steady-state distribution has geometric behaviour with parameter p, on the
part of the state space {(K+1,2), (K+2,2),...}, geometric behaviour with parameter %
on the part of the state space {(1,2),...,(K,2)} and a mixture of geometric behaviour
with parameter p; and geometric behaviour with parameter 242 on the part of the state

space {(1,1),...,(K,1)}. "

2.3 Service speed adaptations at external Poisson instants

In the model with service speed adaptations at external Poisson instants, we assume that
these instants occur according to a Poisson process with rate v. When the number of
customers at an external Poisson instant is above level K, then the server works at speed
ro until the next external Poisson instant. Similarly, if the number of customers at an
external Poisson instant is at or below level K, then the server works at speed r; until
the next external Poisson instant. Because the server can adapt its speed only at external
Poisson instants, the state space of the continuous-time Markov process {(X(t),Y ())}i>o0
in this case equals

S =1{(0,1),...,(K,)}U{(K+1,1),.. }U{(0,2),....(K,2)} U{(K +1,2),...}.

During periods in which the number of customers in the system is above level K and
the server works at speed 71, the system behaves as an ordinary M /M /1 queue with service
speed r; and with disasters occurring with rate v. For this system it is well-known that
the steady-state distribution is geometric with parameter x;, where x; is the root in (0, 1)
of the equation

ma® — A+ +v)z+ A =0. (1)

Hence, we have
n(K+k+1,1)=Cua¥, k=0,1,....

During periods in which the number of customers in the system is above level K and
the server works at speed 79, the system behaves as an ordinary M /M /1 queue with service
speed r5 and with the special feature that, whenever the system is empty, additional batches
of customers arrive according to a Poisson process with rate u5. The batch size distribution
of these batches is geometric with parameter x;. For this system an up- and downcrossing
argument yields

M(K 4 k,2) + poain(K +1,2) = pom(K + k+1,2), k=1,2,...,
from which we can show that
(K +k+1,2) = Coph + Cya, k=0,1,....

During periods in which the number of customers in the system is at or below level
K and the server works at speed 19, the system behaves as an ordinary M /M /1/K queue
with service speed ro and with the special feature that, in every state, additional batches



of customers arrive according to a Poisson process with rate v. The arrival of such a batch
immediately brings the number of customers in the system into state K. For this part of
the state space, the balance equations are given by

A+ pe+v)n(k+1,2) = An(k,2) + por(k+2,2), k=0,...,K—1,
which immediately leads to
m(k,2) = Cyxk + Csat, k=0,... K,
where x5 and x3 are the roots of the equation
por? — (A + o+ v)z + A = 0. (2)

Finally, during periods in which the number of customers in the system is at or below
level K and the server works at speed r;, the system behaves as an ordinary M/M/1/K
queue with service speed r; and with the special feature that, every time an overflow occurs,
the number of customers in the system is instantaneously decreased to the steady-state of
the system when the number of customers in the system is at or below level K and the
server works at speed 5. An up- and downcrossing argument for this system yields, for
some constants D; and Ds,

Mk, 1) = pum(k + 1,1) + A (K, 1) (Dyas + Dozb)

which leads to
m(k,1) = Ceph + Crah + Csak, k=0,... K.

To summarize, the steady-state distribution has geometric behaviour with parameter
x1 on the part of the state space So; = {(K +1,1), (K +2,1),...}, a mixture of geometric
behaviour with parameter p, and geometric behaviour with parameter x; on the part
of the state space Syo = {(K + 1,2), (K + 2,2),...}, a mixture of geometric behaviour
with parameter xo and geometric behaviour with parameter x3 on the part of the state
space S12 = {(0,2),...,(K,2)}, and a mixture of geometric behaviour with parameter py,
geometric behaviour with parameter zo and geometric behaviour with parameter x3 on the
part of the state space S1; = {(0,1),...,(K,1)}.

3 Service speed based on workload

In this section we consider again an M/M /1 queue in which the server can work at two
different speeds, r; and ro. However, the service speed is now based on the workload instead
of on the number of customers. If the workload in the system is smaller than or equal to
level K, then the server should work at speed r;. If on the other hand the workload in the
system is bigger than K, the server should work at speed r,. As before, because service
speed adaptations can only take place at special points in time, it can happen that the
server still works at 7 (resp. 71) although in the meantime, the workload is below (resp.

6



above) level K. Notation is as in Section 2 and we assume again that po < 1. Let V(¢)
denote the workload in the system at time ¢. As before, Y'(¢) represents the state of the
server at time ¢, i.e., Y (t) = 7 if the speed of the server at time ¢ equals r;,7 = 1,2. With
(V,Y) we denote a random vector having the steady-state distribution of the continuous-
time Markov process {(V (¢),Y (t)) }+>0. With f;(x) we denote, for i = 1,2, the steady-state
conditional density of V', given Y =i, i.e., fi(x)de =P(V € (x,x +dz) |Y =1).

3.1 Instantaneous service speed adaptations

In the model with instantaneous service speed adaptations, the speed of the server instan-
taneously changes from ry to 79 if an upcrossing of level K of the workload process occurs.
Similarly, the speed of the server instantaneously changes from ro to r; if a downcross-
ing of level K of the workload process occurs. Hence, in this case the state space of the
continuous-time Markov process {(V (¢),Y ())}+>0 equals

S={(z,1):0< 2 < K}U{(x,2) : x> K}.

Now, above level K the system behaves as an ordinary (non-empty) M /M /1 queue with
service speed 75. On the other hand, below level K the system behaves as a finite M /M /1
dam with service speed r;. Using the fact that the steady-state density of the workload
process in the finite M /M /1 dam is proportional to the steady-state density of the workload
process in the ordinary M/M/1 queue (see Hooghiemstra [11]), we conclude that

filz) = Cy- e tl=rz ()< g < K,
folz) = Cy-erl=pT 05 [
So we conclude that the steady-state density has exponential behaviour with exponent

—u(1—p2)x on the part of the state space So o = {(z,2) : # > K} and exponential behaviour
with exponent —u(1 — py)x on the part of the state space S11 = {(z,1): 0 <z < K}.

3.2 Service speed adaptations at arrival instants

In the model with service speed adaptations at arrival instants, the speed of the server
instantaneously changes from r; to ry if the workload upcrosses level K due to an arrival.
However, if the workload downcrosses level K, the server continues to work at speed 7
until the next arrival instant. Hence, in this case the state space of the continuous-time
Markov process {(V (), Y (t)) }+>o0 equals

S={(z,1):0<2 < K}U{(2,2):0<2 < K}U{(x,2): 2> K}.

As before, above level K the system behaves as an ordinary (non-empty) M /M /1 queue
with service speed 9, leading to

folz) = Cy-erlmr2e g5 [



However, below level K the system now behaves as a finite M /M /1 dam with service speed
r1 but with the special feature that after each overflow the service speed equals ry until
the next arrival instant. At an arbitrary instant at which the workload is below K and the
server works at speed ry, we have

V|V < K,Y =2) £ max(K — r,A,0),
where A is exponentially distributed with parameter A, leading to
falz) =Cy - etWmle g« p < K.

At an arbitrary instant at which the workload is below K and the server works at speed
r1, the system behaves as a finite M /M /1 dam with service speed r1, but with the special
feature that after each overflow, the workload is first instantaneously decreased to the
steady-state situation of the system when the workload is below K and the service speed
equals ry and, after that, instantaneously increased by an exponentially distributed amount
with parameter p. The instantaneous decrease plus increase is repeated until after the
increase no overflow occurs anymore. Let Z be the level of the workload after these
successive decreases and increases. We then have

z4 (max(K —1A,0) + B|max(K —rA,0) + B < K),

where A is exponentially distributed with parameter A and B is exponentially distributed
with parameter p. For the distribution function Z(-) of Z, we have

A

er2’ — gThT
Z(x) = —5——

, 0<z < K.
=K
er2 e~ kK

By using an up- and downcrossing argument we will show in Lemma A.1 in the appendix
that in this situation

fi(z) =Cs - e~ri=r)z L O Lot Om2)e g < K

Alternatively, that result could have been obtained by using, e.g., the Kella-Whitt martin-
gale (see Kella and Whitt [13]).

Hence, the steady-state density has exponential behaviour with exponent —u(1 — po)z
on the part of the state space Sy2 = {(x,2) : © > K}, exponential behaviour with exponent
+(A/r2)x on the part of the state space S12 = {(x,2) : 0 < x < K} and a mixture of
exponential behaviour with exponent —p(1—p;)z and exponential behaviour with exponent
+(A/r2)z on the part of the state space S;1; = {(z,1): 0 <z < K}.

3.3 Service speed adaptations at external Poisson instants

In the model with service speed adaptations at external Poisson instants, we again assume
that these instants occur according to a Poisson process with rate v. If the workload in the



system upcrosses level K, the server continues to work at speed r; until the next external
Poisson instant. Similarly, if the workload in the system downcrosses level K, the server
continues to work at speed r, until the next external Poisson instant. Hence, in this case
the state space of the continuous-time Markov process {(V (t), Y ())}+>0 equals

S={(z,1):0<z < K}U{(z,1) ;x> K}U{(x,2): 0<z < K}U{(x,2): x> K}.

During periods that the workload is above level K and the service speed is equal to 7y,
the system behaves as an M/M/1 queue with service speed r and with disasters. Here
the instants of the disasters correspond to the external Poisson instants and hence occur
with rate v. For this model it is known (see for example Boucherie and Boxma [4] or Jain
and Sigman [12]) that the steady-state workload density has exponential behaviour with
exponent —u(1 — 1)z where z; is the root in (0,1) of pyz? — (A + 1 +v)z + A =0, see
also Equation (1).

During periods that the workload is above level K and the service speed is equal to
9, the system behaves as an M/M/1 queue with service speed ry and with special first
service time in a busy period. Here the special first service time is hyperexponentially
distributed. With some probability it is exponentially distributed with parameter p and
with some probability it is exponentially distributed with parameter p(1 — 7). The first
case corresponds to the situation that the set {(z,2) : > K} is entered due to the arrival
of a customer. The second case corresponds to the situation that the set {(z,2) : z > K}
is entered due to the occurrence of an external Poisson instant. For this model it is
straightforward to show (using, e.g., Formula (2.35) of Takagi [16] for the LST of the
steady-state waiting time in an M/G/1 queue with exceptional first service time) that
the steady-state workload density has a mixture of exponential behaviour with exponent
—u(1 — po)x and exponential behaviour with exponent —pu(1 — xq)z.

During periods that the workload is below level K and the service speed is equal to rs,
the system behaves as a finite M/G/1 dam with arrival rate A + v, service speed 75 and
service time ' N \

B { exp(u), with probability 2
00, with probability .

Remark that an external Poisson instant is modelled here as an arrival of a customer
with infinite service time (implying that after the arrival of such a customer the workload
in the dam is always equal to K). For this system we can show that the steady-state
workload density has a mixture of exponential behaviour with exponent —pu(1 — z5)x and
exponential behaviour with exponent —pu(1 — xz3)x, where xo and x3 are the roots of the
equation pox® — (A + g +v)z+ A = 0, see also Equation (2). This will be shown in Lemma
A.2 in the appendix by using an up- and downcrossing argument.

During periods that the workload is below level K and the service speed is equal to
r1, the system behaves as a finite M/M/1 dam with service speed r; in which, after each
overflow, the workload is instantaneously decreased to the steady-state situation of the
system when the workload is below K and the service speed is equal to 5. The situation is
similar to the situation discussed in Section 3.2. Again by using an up- and downcrossings



argument we will show in Lemma A.3 in the appendix that the steady-state workload
density has a mixture of exponential behaviour with exponent —u(1 — p1)x, exponential
behaviour with exponent —u(1—x5)x and exponential behavour with exponent —pu(1—x3)x.

4 Service speed adaptations at departure instants

In this section we consider an M/G/1 queue with two different service speeds, r; and rs,
which can only be adapted at departure instants. Again, denote the arrival rate by A
and let B(-), B(-), and 3, be the distribution, LST, and mean, respectively, of a generic
service requirement. Also, p; := A3/r; represents the traffic load in case of service speed
ri, 1 =1,2.

The model with service speed adaptations at departure instants is especially relevant
when the number of customers in the system is considered. In that case, we may choose a
convenient one-dimensional Markov chain {X,, },>0, by embedding the system at departure
instants, i.e., X,, represents the number of customers immediately after the n-th departure
epoch. It is easy to see that the steady-state distribution of this embedded process is
equal to the distribution of the number of customers at an arbitrary instant. The analysis
of these distributions in the M/G/1 queue with speed adaptations at departure instants
based on the number of customers constitutes the main subject of this section.

We note that the model with service speed adaptations at departure instants based on
workload seems very difficult to analyse. The reason for this is that, in order to determine
future departure instants of customers, it is necessary to keep track of the individual
workloads of the customers in the system and not only of the total workload. This will
lead to a complicated state description. '

Now, consider the embedded process {X,,},>o and let Y, be the number of arrivals
between the n-th and (n+1)-th departure instant given that the service speed is r;, i = 1, 2.
Then,

3
max (X, —1,0) + V2, for X, > K. ()

{ max(X, — 1,0) + Y, for 0 < X, < K,
Xn+1 =
Clearly, the distribution of JARET independent of n. We thus have, for alln = 0,1, ...,

. ) o0 Nk o0 k _
ol =Py = k) = /O %e—“mdmx) = /0 %e‘”d&(:p), (4)

with B;(z) := B(r:z). Also,

Bi(z) = B[] = B((1 — 2)M/ry). (5)

From (4), we observe that the model with two different service speeds may be equivalently
interpreted as a model with two different service requirement distributions B;(-) (see also
the remark lateron in this section). Hence, this model is in fact a special case of the
general model considered in, e.g., [5, 14]. These papers focus on results in terms of LST.
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(See [9, 15] for computational algorithms and [8] for various related models.) In this section,
however, we give explicit and intuitively appealing expressions for the steady-state number
of customers present.

Let X be the steady-state random variable of X,,, and denote w(k) := P(X = k).
Next, we obtain 7(k) for k € {0,..., K} and then use that result to determine 7(k) for
k€ {K+1,K +2,...}. Finally the probability of a customer leaving behind an empty
system follows from normalization.

First, we derive (k) for k =0, ..., K. Consider the conditional process {X,|X, < K},
which is obtained by deleting the periods that the number of customers at departure
instants is larger than K and pasting together the remaining parts. It is easy to see that
the one-step transition matrix of this conditional process is equal to the transition matrix
of the M/G/1/K + 1 queue with service speed ry, or of an M/G/1 queue with speed r;
conditioned on the event that the number of customers upon departure does not exceed
K. Denote by X® i = 1,2, the steady-state number of customers in an M/G/1 queue
with service speed r;, i.e., the z-transform of X® reads

gjex0) = L2200 =)

Bi(z) — ’
with 3;(+), i = 1,2, given in (5). Hence, for £k =0,1,..., K, we have
w(k) = O p(x ) = ) ()
1-— P1

where the constant 7w(0)/(1 — p;) follows from k£ = 0. In general, we allow for p; > 1.
In that case, XM corresponds to the steady-state number of customers immediately after
departure instants of the M/G/1/K +1 queue, and 1—p; has to be replaced by P(X®) = 0).
However, in the presentation of the results below we have taken p; < 1.

For the distribution of X on {K + 1,K + 2,...}, we use the equivalence with the
M/G/1 queue with two service requirement distributions B;(-). In particular, rewriting [5,
Equation (4.19)] (where ¢ = po32(0)), we obtain

E[zX] _ (>52( —Zﬁl +Z k=1 Zﬁz )—251()

Bz Ba(2) -
- (o2t 1K oy (2L =20 _ (A= 2)(2
= 0750 +z§; ( A ) o

To obtain the distribution of X on {K + 1, K + 2,...} we invert each of the three terms
in the above equation separately. For the first term, we note that, upto a constant, this
corresponds to an M /G /1 queue with service speed 7 and an exceptional first service time
with distribution B(zre/r1), see [16, Equation (2.38)]. Denoting the steady-state number

of customers in such a queue by Xéﬁi, the inverse of the first term on the rhs of (7) reads

1
W(O)L

P(X2) =k).
L —p2

exc
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For the second and third term on the rhs of (7) we note that this involves a product
of two z-transforms corresponding to the sum of two independent random variables. It is
readily seen that S5 25~ (k) is the transform of X —1, with X restricted to {1,2,..., K}.
Hence, using (6) and the result for an M/G/1 queue with exceptional first service again,
the inverse of the second term equals

K
1 J—
—:pl P2 Z 7T(0) IP’(X(I) _ j)P<Xexc =k4+1-— j)
— p2 -
j=1

Similarly, applying (6) and the result for the standard M/G/1 queue with service speed 75
to the third term yields

L5 7)o a1 )

Summarizing, for k € {K +1, K 4+ 2,...}, we have

7(0) 1 T4 p1—p2 :
= 1 — o )P(X ) = § P(X P(X® = 1—
1 K
- § P(XM = )HP(XPD =k 41— j)). (8)
— P15
Jj=1

The first term clearly stems from scenarios in which the first customer in a busy cycle
leaves behind more than K new customers upon departure, resulting in an ordinary M/G/1
queue with exceptional first service (i.e., the service requirement multiplied by the ratio
r9/r1). The third term on the rhs of (8) is in fact a correction term. To give an intuitively
more appealing expression, we rewrite (7) as

K Y(l)_1

Note that we did not rewrite the intuitively appealing first term. The second term cor-
responds to a convolution of X (restricted to {1,..., K}) with a special type of M/G/1
queue with exceptional first customer. The special feature is the —1 in E[zy(l)_l] account-
ing for the fact that the number of arrivals in between two successive departure instants
has to be corrected for the actual departure of the customer in service. In case X = 0 this
correction is not required as represented in the first term. After the arrival of customers
during the first exceptional period in which the speed is r;, the queue continues as an
ordinary M/G/1 queue with service speed rs.

Finally, the probability of an empty system 7(0) can be found from normalization.
More specifically, letting 2 — 1 in (7) and using (6), we obtain



Remark We note that the results can be easily generalised. Consider the case in which, in
addition to the service rate, the service requirement distribution also depends on the number
of customers upon departure (having distribution B;(-)). Since the distribution of X,, only
depends on the ratio between \ and r;, we may choose X fixed without loss of generality
(however, special care is required for the distribution at arbitrary instants).

Now, similar to (4), observe that, fori=1,2,

. o0 Ak o0 Ak N
a(z) _ ()\[L‘/T,) G_Am/ridBZ'<Ji) _ ()\ZL’/T?,_Z) B_Ax/m_idBZ‘(I),
K 0 k! 0 k!

with By(x) = By(xr;/rs_;). Hence, it may be easily verified that the expressions (6) and (8)
for the steady-state distribution of X hold by obvious modifications of 3;(+) and definition
of the exceptional first service.

Finally, as an example, we consider the number of customers at an arbitrary instant in
the M/M/1 case. In that case, Equations (6) and (8) reduce to nice tractable expressions.
In particular, for £ =0,..., K, we have ordinary M /M /1 behaviour, yielding

m(k) = w(k, 1) = Oy pt.

For k € {K+1,K +2,...}, we consider the joint distribution of the service speed and
number of customers. First, on the part of the state space

Soq ={(K+1,1),(K+21),...},

we have geometric behavior with parameter A/(A + 1), since we consider the number of
arrivals before the first departure. On the part of the state space

Sop = {(K +1,2), (K +2,2),...}

we have an M /M /1 queue with service speed ry and an exceptional first service time which
is the result of the behavior on Sy ;. Summarizing, for £ =0, 1,2, ..., we have

A k
K 1,1) =
7T< +k+ 5 ) 02()\4—#1)

A k
T(K+k+272) = 03()\+M1) + Cyphk.

5 Conclusion and extensions to M/G/1

In this paper, we considered various queueing models in which the server can work at
two different service speeds. The speed of the server may depend on either the number
of customers present, or the workload. In the former case, we analysed the steady-state
number of customers, while in the latter case, we determined the workload density in steady
state. Our specific aim was to give insight into the structure of the steady-state results by

13



Table 1: Structure of the steady-state results in various M/M/1 queues (without con-

stants).
Model: service Number of customers Workload
adaptations | speed | w(k), k < K | w(k), k> K flz),z <K flx), x> K
Continuous 1 geo(p1) - exp(—pu(l — p1)z) -
ro - geo(p2) - exp(—p(1 — p2)x)
Arrival 1 geo(p1) - exp(—pu(l — p1)z) -
instants + geo(%) + exp(%x)
ry | geo(X2) geo(p2) exp(2 ) exp(—pu(1 — p2)7)
Poisson 1 geo(p1) geo(xy) exp(—u(l — p1)x) exp(—pu(l — xq)z)
instants + geo(z2) + exp(—pu(l — z9)x)
+ geo(xs) + exp(—p(l — x3)x)
ra geo(x2) geo(p2) exp(—u(l —x2)z) | exp(—p(l — p2)7)
+ geo(zs) | +geo(z) | + exp(—p(l — z)7) | + exp(—pu(l - 21)2)

using probabilistic arguments. The structure of the results, by neglecting the constants, is
summarised in Table 1, where z; is the root in (0, 1) of Equation (1) and zy and x3 are
the roots of (2).

We also considered the M /G /1 queue with two service rates depending on the number
of customers right after departure instants, yielding an intuitively appealing form for the
steady-state distribution of the number of customers present. The LST of the steady-state
number of customers has been analysed by other authors, see e.g. [5, 14]. However, to
the best of our knowledge, no explicit formula for its distribution has been given. Giving
M/G/1 analogs for the other models with adaptations based on the number of customers
(of Section 2) remains a significant challenge. The difficulty with these models is that a
more complex state description is required to obtain a Markov process.

In case the service speed is based on the workload, it is possible to generalise the models
of Section 3 to their M/G/1 variants. The model with continuous adaptations (based on
the workload) is the classical model, which is also often refered to as dam model, see
e.g. [6, 10], or [7], p. 556 for the results. In fact, its steady-state workload distribution
shows some similarities with the steady-state number of customers of the model with speed
adaptations at departure instants. For the M/G/1 case of the model with adaptations
at arrival instants, see [1]. The model with adaptations at Poisson instants is in fact
generalised to the more general case of Lévy processes without negative jumps, see [3].
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Appendix
Lemma A.1 Consider a finite M/M/1 dam with capacity K and with the special feature

that every time an overflow of the dam occurs, the workload is instantaneously, and inde-
pendently of the past, decreased to the random level Z, where Z has probability distribution

A

er2’ — ehT
Z()=—5——

. 0<z<K.
=K
er2 e—/J,K

The service times are exponentially distributed with parameter . Denote with \ the arrival
rate, m1 the service speed and let py := \/(ury). For the steady-state workload density we
then have N

v(z) = Cae #17PD% L Cuem® 0<z <K,

for some constants C3 and Clj.

Proof: Denote with V' (z) the steady-state workload distribution. An up- and downcrossing
argument for level x of the workload then yields

A /O:C v(y)e "V dy + AV (0)e ™ = rv(z) + A\Z(x) /0 v(y)e ME= gy, 9)

Now by multiplying (9) with e#* and by introducing f(x) := v(z)e** we obtain

A 1y 0 =g 22w [ ey (10)
After differentiation of (10) and using the distribution Z(-) we obtain
Af(x)::rlf%x)+-6%(%*“>? (11)
The solution of (11) is given by
flz) = Cyen® + 046(%+M>$.

and hence

A

(i) 4 oo — e som 4
v(r) = f(x)e " = Cse\n + Cyer2” = Cye P1=P1Z L Cema®,

Lemma A.2 Consider a finite M/G/1 dam with capacity K, arrival rate X + v, service
speed ro and service time

exp(p),  with probability /\L
B = ) LAY
0, with probability <7 .

The steady-state workload distribution is then given by

V(x) = Dye #7227 4 Dgemnll-aae (< g < K,
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for some constants Dy and D3, where xo and x3 are the roots of the equation

por? — (A + g + v)z + A = 0. (12)

Proof: An up- and downcrossings argument for level x of the buffer content yields
rov(z) = )\/ v(y)e MV dy + AV (0)e ™ + vV (z).
0
Using that V'(z) = v(x), we obtain after differentiation

V' (x) = A+v)V'(z)—p ()\ /9C V' (y)e M dy + /\V(O)e_’“”)
V) — (V@) — V()
The solution of this second-order differential equation is given by
V(z) = Dye®” + D3e®”
where & and &3 are zero’s of the characteristic polynomial of the differential equation, i.e.,
9% — (A +v — pry)é — pv = 0. (13)

It is straightforward to show that &; is a solution of (13) if and only if § = —pu(1 — ),
where z; is a solution of (12).

Remark We note that the model of Lemma A.2 shows some similarities with a finite
M/M/1 dam with clearings at exponential times. However, in this case, the clearing in-
stants do not remove all the work present, but instantaneously move the workload to the
upper boundary, K.

Lemma A.3 Consider the finite M/M/1 dam of Lemma A.1, but let the probability dis-
tribution of Z now be given by

Z(x) = Dye#=z2)z 4 Doemrll-mle (< p < K.
For the steady-state workload density we then have
v(x) = Cre#i=pz 4 O, p—nl—2)e 4 036_#(1_13)$, 0<zx< K,

for some constants Cy,Cy and Cj.

Proof: Like in the proof of Lemma A.1 we introduce f(x) := v(z)e"*, which satisfies (10).
After differentiation of (10) we now obtain

M (@) = 71 f/(2) + Dyel®2® 4 Dgets®, (14)

16



The solution of (14) is given by

A
f(x) = Cren™ + Coeh™® 4 Cyels”,

and hence

v(z) = f(x)e ™ = Cle—u(l—pl)x + 02€—u(1—x2)x + Cge—u(l—xs)x.

Remark We note that the model of Lemma’s A.1 and A.3 are related to a finite M/M/1
dam with exceptional first service time. However, in this case, a special period starts after
hitting the upper boundary, instead of an exceptional first service occuring due to an arrival
while the system is empty.
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