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geer@stat.math.ethz.ch

Abstract: Subset selection regression is a frequently used statistical method. It waives
some of the predictor variables and the prediction equation is based on the remaining set of
variables. Subset selection is simple and it clearly reduces the variance. An other method
for reducing the variance is ridge regression. Usually, subset selection is not as accurate as
ridge. The problems with ridge regression are for example: 1) it is not scale invariant 2)
it does not give a simple equation. We need an intermediate method which selects subsets,
is stable and gains its accuracy by selective shrinking. Breiman (1995) proposed a new
method, called the nonnegative (nn) garrote. In this lecture, in a linear regression model,
we consider the nonnegative garrote estimator of the coefficients as introduced by Breiman
(1995). This estimator shrinks the least square estimator by a parameter λ in the orthogonal
case. In an especial case of λ, we prove the nn-garrote estimator is consistent and its MSE
converges to zero. We also obtain the rate of convergence.

1. Introduction.

Subset selection regression is a frequently used statistical method. Suppose we are
given data of the form {(yn, x1n, ..., xMn), n = 1, ..., N}. Subset selection waives
some of the predictor variables x1, ..., xM and then the prediction equation for y
is based on the remaining set of variables. Subset selection is simple and it clearly
reduces the variance if M is large. An other method for reducing the variance is ridge
regression. In this method we assume λ to be a positive value (shrinkage parameter)
and the coefficients are estimated by (XT X + λI)−1XT Y . Let y =

∑
k βkxk + ε.

If a few of the {βk} are nearly zero and the rest are large, then subset selection
gives more accurate prediction than ridge regression. If it is not the case, then ridge
regression acts better. Thus usually, subset selection is not as accurate as ridge.
The problems with ridge regression are for example: 1) it is not scale invariant 2) it
does not give a simple equation. As it is known, we need an intermediate method
which selects subsets, is stable and gains its accuracy by selective shrinking.

Breiman (1995) proposed a new method, called the nonnegative (nn) garrote.
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Consider the regression model

yi =
m∑

j=1

βjxij + εi, i = 1, ..., n,

where ε1, ..., εn are independent with mean zero. The nn-garrote estimator for βj is
β̂j,G = cj β̂j where β̂j is the OLS (ordinary least square) estimator for βj and where
cj is a shrinkage parameter selected by minimizing

n∑

i=1

ε̂2i =
n∑

i=1

(yi −
m∑

j=1

cj β̂jxij)2

under constraints cj ≥ 0 and
∑m

j=1 cj ≤ s. Clearly when s decreases, more of the
{cj} become zero and the remaining nonzero {cj} are shrunken. The nn-garrote
eliminates some variables, shrinks others, and is stable and scale invariant.

Breiman experimented subset selection and nn-garrote on two well-known data
sets. These experiments showed nn-garrote has the mean prediction error and mean
model error less than subset selection. In experiments on real and simulated data,
the nn-garrote produces lower prediction error than ordinary subset selection. It
is also comparable to ridge regression. The tests showed that subset selection is
unstable, ridge is very stable and the nn-garrote is intermediate.

Now consider the regression model

yi =
m∑

j=1

βjxij + εi, εi ∼ N(0, 1), i = 1, ..., n, (1)

where ε1, ..., εn are independent and where {xij} are orthogonal.
In nn-garrote the expression

∑n
i=1(yi −

∑m
j=1 cj β̂jxij)2 is minimized under the

constraints cj ≥ 0, for all j, and
∑m

j=1 cj = s. The solution is easily obtained by
cj = (1− λ2

β̂2
j

)+, where λ is determined from s by the condition
∑m

j=1 cj = s and where

a+ indicates the positive part of a. Therefore, in this case, nn-garrote coefficients
are

β̂j,G = (1− λ2

β̂2
j

)+β̂j , λ > 0.

Under the model (1), the prediction error (see Breiman (1995)) of any estimator
β̃ is

PE(β̃) = n +
n∑

i=1

(
m∑

j=1

(βj − β̃j)xij)2 = n + MSE(β̃),

where MSE(β̃) means the mean square error of β̃. This component is the prediction
error due to lack of fit to the underlying model and also called model error.
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In this paper we consider the model (1) and study the behavior of the nn-garrote
estimator when λ = λn → 0. For example, we consider the case λ = c

√
log n/n,

c >
√

8. We eventually prove in the orthogonal case XT X = nI, the nn-garrote
estimator is consistent and its model error tends to zero as n → ∞ and we obtain
the rate of convergence.

2. Consistency of the nonnegative garrote estimator.

Convergence in probability - and hence consistency - can be defined in any metric
space. Let {Xn} be a sequence of random variables taking values in a metric space
(M,d), where d(x, y) denotes the distance between points x and y. Let x be a
point in M , then we say that Xn converges in probability to x if d(Xn, x) converges
in probability to 0, that is if P (d(Xn, x) > ε) → 0 for every positive ε. In the
simple case where (M, d) is two-dimensional Euclidean space R2 with the Euclidean
distance, a sequence of random vectors Xn = (Yn, Zn) converges to a point (y, z) in
R2, if and only if Yn converges in probability to y and Zn converges in probability
to z. Consistency of an estimator (in any metric space) means that the sequence of
estimators converges in probability to the parameter it is supposed to be estimated.
We shall write →P for convergence of probability.

There is an old result that used to be called Slutsky’s lemma, which says:

Slutsky’s lemma. If Xn →P x in a metric space (M,d) and f is a function from
(M,d) into another metric space (M ′, d′) which is continuous at x, then f(Xn) →P

f(x) in (M ′, d′).

Proof. A function f : (M,d) → (M ′, d′) is continuous at the point x ∈ M if for
any ε > 0 there exists δ > 0 such that d′(f(x), f(y)) < ε for every y ∈ M with
d(x, y) < δ. So

0 ≤ P (d′(f(Xn), f(x)) ≥ ε) ≤ P (d(Xn, x) ≥ δ) → 0

because Xn →P x.2

First consider the simple case

yi = βxi + εi, εi ∼ N(0, 1), i = 1, ..., n,
n∑

i=1

x2
i = n, (2)

where ε1, ..., εn are independent. Now we have just a parameter β and the nn-garrote
estimator for β is defined by

β̂G = (1− λ2

β̂2
)+β̂, λ > 0,
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where β̂ is the OLS estimator, i.e.,

β̂ = Tn =
∑n

i=1 xiyi∑n
i=1 x2

i

=
1
n

n∑

i=1

xiyi.

The first lemma considers the case λ = λn → 0 and proves the consistency of β̂G

when β is fixed.

Lemma 1. Let β be fixed (independent of n) and λ = λn → 0 as n →∞. Then β̂G

is consistent for β.

Proof. If we view λn as a (degenerate) random variable, λn → 0 means that
λn →P 0. In view of the consistency of the least squares estimator we have Tn →P

β. If β 6= 0, the function f(t, λ) = (1 − (λ/t)2)+ · t is continuous at the point
(t, λ) = (β, 0), so consistency follows from Slutsky’s lemma. If β = 0, consistency
follows from Tn →P β, because |β̂G| ≤ |Tn|. 2

It is easy to extend Lemma 1 immediately to the case where m and β =
(β1, ..., βm) are fixed (independent of n) and the columns of the matrix X are not nec-
essarily orthogonal. In fact the orthogonality only plays a role in that it ensures that
there is an explicit expression for β̂G which involves a number λ = λn and the lemma
can then be formulated by requiring that λn → 0 as n →∞. But for any fixed m and
β 6= 0, this condition is equivalent to the assumption that s = sn → m as n → ∞.
To prove this note that the function g(u1, ..., um) =

∑n
i=1(yi −

∑m
j=1 uj β̂jxij)2 is

a quadratic function of uj and if s =
∑m

j=1 uj is fixed, it has a unique mini-
mizer (say c = (c1, ..., cm)). The minimizer c is a continuous function of s. If
s =

∑m
j=1 uj = m, then c = (1, ..., 1), because (1,...,1) is the unique minimizer of g

in Rm. So c = cn →P (1, ..., 1) as n →∞.

Lemma 2. Let m and β be fixed (independent of n) and s = sn → m as n → ∞.
If XT X is nonsingular for every n and the diagonal elements of (XT X)−1 tend to
infinity as n →∞, then β̂G is consistent for β.

Proof. As mentioned, s = sn → m means cn →P (1, ..., 1). The garrote estimator
of βj is obviously a continuous function of cj,n and the OLS estimator of βj is
consistent. So consistency will follow from Slutsky’s lemma. 2

We now show that |β̂G − β| = Op(n−q) where nqλ2
n → 0 and where q ∈ [0, 1/2].

Lemma 3. Let β > 0 be fixed and nqλ2
n → 0, where q ∈ [0, 1/2]. Then

lim
L→∞

lim sup
n→∞

P (nq|β̂G − β| > L) = 0. (3)
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Proof. Let L > 0 be large and fixed and n be so large that ε = L
nq < β and

0 < λ2
n < βε/4. So

λn <
√

βε/2 < β/2.

Let 0 < |t− β| < ε/2. Then we have λn < β/2 < β − ε/2 < t. Now

|(1− (λn/t)2)+ · t− β| = |t− λ2
n/t− β| < |t− β|+ λ2

n/t < ε,

because
λ2

n < βε/4 < (β − ε/2)ε/2 < tε/2.

Also Un = nq(Tn − β) ∼ N(0, n2q−1). Then

P (|Tn − β| > ε/2) = P (|Tn − β| > L

2nq
)

= P (|Un| > L

2
)

=
∫

|y|> L
2

1√
2πn2q−1

exp(− 1
2n2q−1

y2)dy

→ 0 as n →∞ & L →∞.

Now

P (nq|β̂G − β| > L) ≤ P (nq|Tn − β| > L/2) → 0 as n →∞ & L →∞.

2

The condition λ = λn → 0 is sufficient to have the consistency of β̂G. Now
suppose λn 6→ 0. Note that for n large, |Tn − β| ≈ 1√

n
. Then when Tn > λn and

β 6= 0,

β̂G = Tn − λ2

Tn
≈ β − λ2

β

and β̂G − β ≈ −λ2

β 6= 0. Hence intuitively, the consistency of β̂G needs λn → 0 for
β 6= 0. The next lemma ensures this.

Lemma 4. Let λn 6→ 0. Then β̂G is not consistent for all β.

Proof. There are η > 0 and a subsequence λnk
such that λnk

> η for all k. Let
β ∈ (0, η). Then

1
2

= P (Tn < β)

= P (Tnk
< β)

≤ P (Tnk
< η)

≤ P (Tnk
< λnk

).
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We also have

P (Tnk
< −λnk

) ≤ P (Tnk
< −η) =

∫ −√nη

−∞
1√
2π

exp(−1
2
y2)dy → 0.

So P (|Tn| < λn) 6→ 0. For ε < β,

P (|β̂G − β| > ε) ≥ P (|Tn| < λn).

Therefore β̂G is not consistent for β < η. 2

Remark 1. Note that β̂G is consistent for β = 0 even if λn 6→ 0 (see the proof of
Lemma 1 for β = 0).

Although we need λn → 0, this convergency does not need to be very fast. A
famous example for λn is c

√
log n/n, c > 0 (see van de Geer (2000) and Donoho and

Johnstone (1994)). In the rest of the paper we apply this case to λn.

Corollary 1. If λ = c
√

log n/n and c > 0, then nqλ2
n → 0, for q ∈ [0, 1/2]. Then

by Lemma 3
lim

L→∞
lim sup

n→∞
P (nq|β̂G − β| > L) = 0.

In particular it is true when q = 1/2.

Lemma 5 is the first step to prove the mean square error of β̂G tends to zero as
n →∞.

Lemma 5. Let c >
√

8 and λ = c
√

log n/n. Then the functions

f1(n) = n

∫ ∞
√

nλ/2
x2 exp(−x2/2)dx

and

f2(n) =
n
√

n

log n

∫ λ

−λ
exp(−n

2
(x− β)2)dx

are bounded.

Proof. Note that

lim
n→∞ f1(n) = lim

n→∞

∫∞
c
√

log n/2
x2 exp(−x2/2)dx

1/n

= lim
n→∞

−(c2/4) log n exp(−c2 log n/8) 1/n

c
√

log n

−1/n2

= lim
n→∞

c
√

log n

4nc2/8−1
= 0.
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Since f1 is continuous and it tends to zero, then it is bounded. Also,

f2(n) =
n

log n

∫ c
√

log n−β
√

n

−c
√

log n−β
√

n
exp(−1

2
x2)dx

and

f ′2(n) =
log n− 1
log2 n

∫ c
√

log n−β
√

n

−c
√

log n−β
√

n
exp(−1

2
x2)dx

+
n

log n
[(

c

2n
√

log n
− β

2
√

n
) exp(−1

2
(c

√
log n− β

√
n)2)

+(
c

2n
√

log n
+

β

2
√

n
) exp(−1

2
(c

√
log n + β

√
n)2)]

=
√

n

log n
[
log n− 1√

n log n

∫ c
√

log n−β
√

n

−c
√

log n−β
√

n
exp(−1

2
x2)dx

+(
c

2
√

n log n
− β

2
) exp(−1

2
(c

√
log n− β

√
n)2)

+(
c

2
√

n log n
+

β

2
) exp(−1

2
(c

√
log n + β

√
n)2)]

=
√

n

log n
[I1 + I2 + I3],

where

I1 =
log n− 1√

n log n

∫ c
√

log n−β
√

n

−c
√

log n−β
√

n
exp(−1

2
x2)dx,

I2 = (
c

2
√

n log n
− β

2
) exp(−1

2
(c

√
log n− β

√
n)2)

and
I3 = (

c

2
√

n log n
+

β

2
) exp(−1

2
(c

√
log n + β

√
n)2).

I1 → 0 when n →∞. Also c

2
√

n log n
→ 0 when n →∞. If β > 0, then

−1
2
(c

√
log n + β

√
n)2 < −1

2
(c

√
log n− β

√
n)2

and therefore, I2 + I3 < 0, when n →∞. If β < 0, then

−1
2
(c

√
log n + β

√
n)2 > −1

2
(c

√
log n− β

√
n)2

and again, I2 + I3 < 0, when n →∞. Consequently, limn→∞ f ′2(n) < 0. Since f2 is
continuous in n, f2(2) < ∞ and it is decreasing when n → ∞, then it is bounded.
2
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In Lemma 6 we show that the MSE is bounded by a multiple of λ2 or 1
n2 .

Therefore it tends to zero.

Lemma 6. If λ = c
√

log n/n, c >
√

8, then

E((β̂G − β)2) ≤
{

c1λ
2 |β| > λ/2

c2β
2 + c3

1
n2 |β| ≤ λ/2,

(4)

for some finite and positive c1, c2 and c3.

Proof. Let T = Tn. Then

E((β̂G − β)2) = β2P (|T | < λ) + E((T − λ2

T
− β)21(|T | ≥ λ)). (5)

Let |β| ≤ λ/2. If T ≥ λ, then

(T − λ2

T
− β)2 ≤ (T − β)21(T − λ2

T
− β > 0) + β21(T − λ2

T
− β ≤ 0).

Similarly if T ≤ −λ, then

(T − λ2

T
− β)2 ≤ (T − β)21(T − λ2

T
− β ≤ 0) + β21(T − λ2

T
− β > 0)

and consequently

E(β̂G − β)2 ≤ c2β
2 + E((T − β)21(|T | ≥ λ))

≤ c2β
2 +

1
n2

(nE(X21(|X| ≥ √
nλ/2)))

where X =
√

n(T − β) ∼ N(0, 1). Now it is sufficient to show

nE(X21(|X| ≥ √
nλ/2)) < c3.

for some c3 ∈ (0,∞). It follows from Lemma 5. Lemma 5 also implies that

1
λ2

P (|T | < λ) < c4, (6)

for some 0 < c4 < ∞. Note also that if |β| > λ/2, then

E((T − λ2

T
− β)21(|T | ≥ λ))

≤ 2E((T − β)21(|T | ≥ λ)) + 2E(
λ4

T 2
1(|T | ≥ λ))

≤ 2E((T − β)2) + 2λ2

= 2/n + 2λ2 ≤ c5λ
2, ∀n ≥ 2
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for some 0 < c5 < ∞. Using this, (4) and (5), (6) holds. 2

Note that OLS β̂ is a linear estimator while β̂G is non-linear. There are certain
limits on the extent to which nonlinear estimators can improve on linear ones in
the worst case. For example, Donoho and Johnstone (1994) considered the model
yi = βi + εi with

∑n
i=1 |βi|ρ ≤ 1, where ρ > 0.

In fact they assume the parameter space Θρ = {β :
∑n

i=1 |βi|ρ ≤ 1} rather than
Θ = Rn.

They proved that in some function estimation problems of a linear nature, the
optimal rate of convergence over certain convex function classes is not attained by
any linear estimate. Loubes and van de Geer (2000) considered the limitation Θρ

in adaptive estimation using soft thresholding type penalties. We shall also assume
the model (1) with

∑n
i=1 |βi|ρ ≤ 1 in the following theorem.

Theorem 1. Consider the regression model

yi =
m∑

j=1

βjxij + εi, εi ∼ N(0, 1), i = 1, ..., n, XT X = nI,
m∑

i=1

|βi|ρ ≤ 1,

where ε1, ..., εn are independent and ρ ∈ (1, 2). If λ = c
√

log n/n, c >
√

8, then there
exists k < ∞, such that

E(
m∑

i=1

|β̂i,G − βi|2) ≤ kλ2−ρ,

where β̂i,G is the nn-garrote estimator of βi.

Proof. By Lemma 6,

E(
m∑

i=1

|β̂i,G − βi|2) ≤ c1

∑

i:|βi|>λ/2

λ2 + c2

∑

i:|βi|≤λ/2

|βi|2 + c3

∑

i:|βi|≤λ/2

1
n2

.

for some finite and positive c1, c2 and c3. But

λ2
∑

i:|βi|>λ/2

1 = λ2−ρ
∑

i:|βi|>λ/2

λρ ≤ λ2−ρ2ρ
∑

i:|βi|>λ/2

|βi|ρ ≤ λ2−ρ2ρ

and also
∑

i:|βi|≤λ
2

|βi|2 =
λ2

4

∑

i:|βi|≤λ
2

|βi
λ
2

|2 ≤ λ2

4

∑

i:|βi|≤λ
2

|βi
λ
2

|ρ =
λ2−ρ

22−ρ

∑

i:|βi|≤λ
2

|βi|ρ ≤ (λ/2)2−ρ.

If l ∈ (2− ρ, 1), then there exists N such that for any n ≥ N ,
∑

i:|βi|≤λ
2

1
n2

≤ 1
n
≤ λl ≤ λ2−ρ.
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Therefore,

E(
m∑

i=1

|β̂i,G − βi|2) ≤ kλ2−ρ,

for some finite k. 2

Corollary 2. By Theorem 1, we have

MSE(β̂i,G) = E(|β̂i,G − βi|2) ≤ E(
m∑

i=1

|β̂i,G − βi|2) ≤ kλ2−ρ

This not only shows MSE(β̂i,G) → 0 when n → ∞, but also shows the rate of
convergence. If ρ → 1, then this convergency is fast. Now by Markov’s inequality
for all ε > 0

P (|β̂i,G − βi| > ε) ≤ E(|β̂i,G − βi|)
ε

≤ E1/2(|β̂i,G − βi|2)
ε

→ 0

when n →∞. Therefore β̂i,G is consistent for βi.
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