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Abstract

In this paper we present a martingale formula for Markov processes
and their integrated process. This formula allows us to derive some
new as well as some well-known martingales. We give some examples
of their application in stochastic process theory.

1 Introduction

In applied probability nowadays martingales are considered to be very useful
tools for studying stochastic processes. In particular the martingale conver-
gence results, the martingale inequalities and last but not least the very
useful optional stopping theorem can be applied once an appropriate mar-
tingale has been found. In this paper we consider martingales for the two
dimensional process Z; = (X¢,Y;), where X; is a continuous time homo-
geneous Markov process, Y; = fg &(Xs)ds and £ is some suitable function.
By applying Dynkin’s formula to the full generator of Z; and a special class
of functions in its domain we derive a quite general martingale My, which
can be used to derive not only new martingales but also some well-known
martingales. Among these are the Wald martingale and a special variant of
the Kella-Whitt martingale for Lévy processes (section 3.4, see Asmussen
and Kella [4], Kella and Whitt [25]), the exponential martingale used for ex-
ponential change of measure (section 3.2, see Palmowski and Rolski [36]) and
a sum of powers resembling a stochastic Taylor series (section 3.3). We will
give some examples of applications in the respective sections and refer for
now to the tremendously rich literature about martingales and its applica-
tions. An introduction to martingales can be found in various textbooks of
probability, e.g. in the book of Ross [43] or more elaborately in the book of
Ethier and Kurtz [15]. The books of Asmussen [3] and Rolski et al. [41] pro-
vide many applications of martingale theory to applied probability models,
including the calculation of expected stopping times, existence of stationary
distributions, change of probability measure, evaluation of ruin probabilities.
Further applications can be found in Kella and Stadje [24], Boxma et al. [9],
Kinateder and Lee [27] and Rosenkrantz [42], the latter using a somewhat
related approach to ours.

'P.O. Box 513 - 5600 MB Eindhoven, The Netherlands.
Email address: lopker@eurandom.tue.nl
Most of the results originate from the author’s PhD thesis at the Department of Mathe-
matics and Computer Science, University of Osnabriick, Germany. The author would like
to thank Wolfgang Stadje and Onno Boxma for their assistance and support.



Integrals of Markov processes are of interest in different areas of proba-
bility theory. In the special case of X; being a Brownian motion process, Z;
is called a Kolmogorov diffusion (due to an early paper of Kolmogorov [28]).
This process has attracted much interest (Goldman [16], Groeneboom et
al. [17], Kendall and Price [26],McKean [34], Lachal [31],[30], Dufresne [13],
Hesse [21], Lefebvre and Léonard [32]). Patie [37] investigates the integral of
a generalized Ornstein-Uhlenbeck process.

If X; is a Lévy process and £(z) = e~ * then Yi(x) = fg e~Xs ds is called
the exponential functional of X;. This process is of special importance e.g. in
mathematical finance and much research has been done about on this topic
in recent years (see Carmona, Petit and Yor [10], Bertoin and Yor [8], Maulik
and Zwart [33], Guillemin et al.[18]). Some results concerning exponential
functionals are given in section 3.4.

Our paper is organized as follows. We will, after a short introduction
to the underlying concepts, present the main result, namely our formula
for the martingale M;. The third section then contains special cases of
this martingale together with some applications and references to related
literature. We close with an appendix containing a lemma which is used for
the proof of the main result.

2 The main result

Let (X¢)i>0 be a homogeneous continuous time Markov process on a proba-
bility space (€2, F, P) adapted to a filtration (F;);>0 € F and with values in
a state space (E,E), where £ is the Borel o-field of E. We will assume that
E C R? for some d € N and that X; has right-continuous paths, though the
results should also hold for more general cases. Let .#(FE) denote the set
of measurable functions £ — R. The full generator A is defined to be the
operator assigning to some f € .#(F) a function g € .#(E), such that

F(X0) - /0 9(X,) ds (1)

becomes a martingale, the so called Dynkin martingale. If such a function
exists then f belongs to the domain Z(A) of the full generator A and we
set Af = g. The full generator is not necessarily uniquely defined, but
all functions g € #(F) for which the defining equation (1) holds differ
only on a set B € £ of so called potential zero, which means that almost
surely the total occupation time fooo lix,epy ds vanishes (see Palmowski
and Rolski [36]).

Let Y; = [J £(X,) ds where & € .#(E) is chosen in such a way that

Ef(f |£(Xs)| ds < co. We consider the two dimensional process (X¢, Yz)i>o0
which is again a homogeneous continuous time Markov process, but with
state space E x [0,00). In the special case when &(z) = 1 we encounter



the space-time process Z; = (X¢,t), which is known to have the generator
Azg(z,y) = Agy(z) + a%ggc(y). Since in our more general case Y; — Yy ~
t - &(X;) for small ¢ and the usual strong generator is defined as the limit
(Exf(Zy) — f(Zy)) /t as t tends to zero one might expect that the full gen-
erator A, of Z; is given by

Azg(w.9) = Agy (&) + £(0) - 5 0a(0) )
where g, : y — g(z,y) and g, : © — g(x,y). Special cases of equation (2)
can be found e.g. in Lachal [31, 30] for the Brownian motion case and in the
work [39] of Peskir for more general diffusions. In Davis[12] and Rolski et
al. [41] the £(z) = 1 case is discussed for so called Piecewise deterministic
Markov processes (see the section time variation in the book [12]). In this
paper we merely provide a proof of formula (2) for the special case where
g(z,y) = f(z)h(y), see Lemma 4.1 in the appendix. Actually, we will not
need equation (2) for more general functions g.

Next we define an operator R, : #(E) — .#(F) and its positive and
negative powers. First let R f(x) = f(z) for all f € 2(RY) := .#(E). For
k > 1 the set Z(RE) is then defined to comprise all functions f € 2(RE™1)
for which a function g € Z(A) exists such that

Ag(a) = &) (agla) ~RE (@) . Vo€ E. 3)

In this case we define RE f(x) := g(z). Moreover, to define negative powers,
we say that f is a member of Z2(R;*) if f € 2(RL7F), R f € 2(A) and
for some g € #(E)

ARLEf(2) = () (aRE f(2) - g(x)) (4)

Again we set R ¥f(z) = g(z) if this is true. Note that for £(z) = 1
and bounded f € .Z(FE) the operator R, is equal to the inverse opera-
tor of (« - id — A) and thus is just the resolvent operator of the process (see
Dynkin [14], Ethier and Kurtz [15], Kallenberg[22]). As before in the case
of the full generator, our definition of RE f is not unique. Thus we agree
that in any expression involving R (or R;*) these terms can be replaced
by any choice of functions for which (3) (or (4)) holds.

The following result, the introduction of the martingale M;, is our key
result and the starting point for an exploration of some useful martingales.
Let €™(E), n > 0 denote the set of functions f : E — R which are n
times continuously differentiable. If n < 0 then ™ (E) comprises the n
times integrable functions, in the sense that f € €™ (F) if g™ = f for some
gEC(E).



Theorem 2.1. Let m,n,l € Z with m < n. We assume that h € €"(E)N
" H-1(E) and that e=*Yh*) (y) is bounded on the range of Y; for m+1—1 <
k <n+1. Moreover let f € Z(R2) N Z(RT1). Then

_ 7aYt Z Rk k+lfl)(yz)

/ (X *aYs f(Xs)MH")(YS)—R;Hf(Xs)h(”m*”(%)) ds(5)

s a martingale.

Proof. We apply Lemma 4.1 from the appendix to the function
n
=D REf(a)- e VR (y),

Note that since f € 2(RE) N 2(REY),
ARG f(x) = of(@)REf(2) - E(=)Re™ (=),
according to the definition. Consequently

Asgley) = 3 (ab@)REf(@) — €@)RE f()) - e rnHD y)

k=m
n

+€(2) D RES(@) - e (D (y) — ahtHD(y))

k=m
Y E@RE f(a) - om0y
it

+ 3 E@RE () - eovntN )

k=m+1

Thus cancelling out the common summands we obtain
Azg(ey) = €)™ (REf @A (y) = RET @)D (y)).
Applying Dynkin’s formula to g(x,y) we find that

t
9(X0, Vi) — / (X, Y ds = M,
0

is a martingale. O



Some remarks are in order. First, the parameter [ is somewhat dispens-
able in that (5) can be obtained by replacing h by h(!) in the | = 0 formula.
However, we’ll see that our formulation leads to more readable expressions.
The variable o has been introduced because some frequently used martin-
gales contain an exponential term. For some applications the sum term in
(5) is superfluous and the choice of m = n will reduce the formula to a more
concise expression. We refer to section 3.1 for some simplified versions of
(5).

By canceling the boundedness condition on h the process M; becomes
merely a local martingale instead of a true martingale and all occuring mar-
tingales should be replaced by their local versions. This can be verified by
modifying Lemma 4.1 and observing that Y; is a predictable process w.r.t.
Fi.

Something similar is true for the conditions on f. We will not discuss
conditions for the membership of f to Z(R?)NZ(R™~!). In fact this could
be a formidable difficulty for some processes. For other processes, like the
Piecewise deterministic Markov processes (see Davis[12]) the domain of A
is exactly known, so that one can reformulate the conditions of Theorem
2.1 in terms of absolute continuity and some integrability condition. Also
the actual calculation of RE f(z) will be quite difficult in practice for most
models and the respective equations will become more and more involved as
k increases. Even for simple generators the calculations are not easy unless
e.g. a =0 or f(z) =0. However, dealing with such practical problems will
be the subject of subsequent work, where we will focus on specific models.
For now we emphasize the existence of the martingale M; under suitable
conditions and invite researchers to apply it to their specific problem.

A final remark concerns the generator formula (2) for the two-dimensional
process Z;. As we mentioned before it is well-known that in the £(z) = 1
case, when Y; = ¢, the generator is given by A,g(x,y) = Agy(z) + %gx(y).
If £(7) is strictly positive then Y; defines an additive functional and we can
define a random time change by Z; = Z;+, where t* = inf{s > 0|Y; > t}. The
generator of the new process is then obtained by dividing the generator of
the original process by the function & (see Dynkin [14], Ethier and Kurtz [15],
Gzyl [19]). With this information in mind we can give an alternative proof
of formula (5) for the case of a strictly positive £&. We start with our Markov
process X;. A time change yields the transformed process X/} with gener-
ator acting on functions f according to A*f(x) = Af(z)/&(x), where A is
as before the generator of X;. Next we concentrate our attention to the
two dimensional Markov process Z; = (X},t). Its generator is given by

A fy(z) + 8% f=(y), which equals %;)(x) + 8% fz(y). The desired formula

Afy(z) +&(z) - a%fx (y) now follows by reverting the time change, causing a
multiplication of the generator by &(x). It follows from Y« = ¢ that the de-
terministic process ¢ is re-transformed into Y;, so that Z;(X*,t) is changed



to our process Z; = (X¢, Yy).

3 Applications, prominent examples

At first glance formula (5) looks a bit awkward, but it reveals its qualities
as soon as the appropriate functions and parameters are inserted. We will
do this in the upcoming section.

3.1 Some simplifications of the martingale formula

The structure of M; becomes more clear if we simplify it. For example if
m = n then the sum in (5) vanishes and

— e aYtRnf(X )h(nJrl*l)(Yt)
/ (X ,ays R"f( S)h(lJrn) (Y,) — Rg’lf(Xs)h(lJ“”’l)(}/s)) ds (6)
remains. Letting e.g. [ =1 we get
- e*“’”fR”f( X)h"(1))
/ E(Xo)e ™ (RAF(XR DY) = RE (XA ds (7)

Further simplification can be achieved by letting £(x) = 1. This means that
Y; =t, so that

My = =Ry f(X)h (1)
t
- [ e (RPN I(s) ~ REFHIN(s)) do.
0
If we choose a = 0 in (7) then we arrive at
Rof(Xt)h( ><Yt>
/ 6(X,) (REF(XN(Y,) — Ry F(X)RO(YL)) ds.
The £(x) = 1 case is now given by
= RESXORM (1) = [5 (REF(XRHD(s) = R F(X )R (s) ds.
This formula can be used to obtain the simple martingale

M; = — o (f s) + Af(Xs)h(s)) ds.

(compare with equation (9) in Athreya and Kurtz[5]). Clearly the h(z) =1
case is the Dynkin martingale (1).



A reasonable choice for the function h in (6) is an exponential function,
since it is unchanged by differentiation. We choose h(z) = ¢’*, 8 € R and
obtain the martingale

A VA )YtR”f( Xy)
/ E(X,)eBY (BREF(X,) — REF(X,)) ds (8)

if gnt=1 £ 0. We will see in the next section, that this martingale has an
important application in the theory of stochastic processes. The particular
choice of I =1 —n and 8 = 0 leads to

t
M= ORI+ [ (X PRI (X ds (9)
0
This martingale appears in a less general form, namely as

M, = eatf(Xt)—i—/O e (af(Xs) — Af(Xy)) ds,

in the book of Ethier and Kurtz [15], Lemma 3.2. See also the papers of
Stockbridge [45], Novikov et al. [35], Kou and Wang [29].
3.2 The exponential martingale, change of measure

Another martingale, also appearing in Lemma 3.2 of [15], is the exponential
martingale

M, = (X)) - exp (— A1) ds) (10)

for functions f in the domain which are bounded away from zero. The
martingale property follows directly from (8) by insertingn =0, =a —1
and &(x) = Af(x)/f(z). Then Y; = ft Af XS ds and R f(z) = (a —
1)f(z). It follows that

Af

BIM = eTR(X

- *th(

The technique of exponential change of measure (see Palmowski and Rolski [36])
is based on this martingale. More precisely, by setting P,(A) = E(M;|A) for
every t > 0 new probabilty measures P, are defined. It can be shown that
under certain conditions there is a probability measure P with P, = ]5\ F
having some nice properties, e.g. P(A) = E(M|A) if 7 is a finite stopping
time (see also section 10.2.6. of Rolski et al. [41] for a general treatment).
The Wald martingale is a special case of the exponential martingale (see the
section 3.4 below).

e (o — 1) f(X,) — RS F(X,)) ds



3.3 A martingale resembling Taylor’s formula

So far we haven not take any advantage of the sum term in (5). We will now
derive some formulas which lead for example to a nice recursion formula for
the moments of first hitting times.

In what follows let pg(z) = 2*/k! for k > 0 and pg(x) = 0 for k < 0.
In particular pg(z) =1 and p1(z) = z. In addition let p(z) = 0 denote the
zero function. Negative derivatives h(=k) symbolize successive primitives,
i.e. solutions of gt = h.

Since higher derivatives of p; vanish it is tempting to insert these func-
tions in place of h into our martingale (5). Doing so and letting | = 1 we
obtain

Y: k Y]_k
M; = e " Raof X
S SRR
k=m
YJ+“*1 Y] m

§(Xs)e " (RLf — R (X)) dfl1
- (X.) () ) 41D
for j+n—1 > 0. We will apply this formula later in the context of ex-
ponential functionals of Lévy processes. For now we let n = j = 0 and

N = —m > 0. Then our martingale is given by

(j+n-—1)!

YN
M, = —aYtZR FE( Xt /5 —OéYsR;(N“)f(Xs)ﬁ ds.(12)

In particular if we let £(x) = 1 and o = 0 we obtain from R *f(z) =
(—1)* A* f () that

N _ SN
St G - [ e oy
k=0

which can be found in a recent article of Barrieu and Schoutens [6] (see
also Chaumont and Yor[11]). Similar formulas have been present in the
literature for a while; we mention a derivation of an equation akin to (13)
for diffusion processes in the book of Karlin and Taylor [23], page 312, and
for general Markov processes in the paper Athreya and Kurtz [5]. Stochastic
Taylor-like formulas related to (12) also appear in Airault and Follmer [2]
and Helms [20].

To examine a further special case welet [ = —m, n = N +m with N > 0
and h(x) = py—1(x) in (5). Then

thN—k
(N — k)!

¢ —aYspm—1 YN
+ [ e R 0T (14

N
My = e @My REFTI(X)




Thus by inserting m = 1, () = 1 and f(x) = 1 we arrive at

N i1 tN*k
M, = e_atZRa—'— @O(Xt)m‘*'FN,a(t)’ (15)
k=0 '

where the remainder function I'y , is given by

t i
r g 1=t EN G (N4 1) - T(N +1,ta)
Na NI - alN+1 - aN+1(N+1)'
0
Here I'(n,z) :=e - (n—1)1-> 7, ! 2% /k! is the incomplete gamma function.

Note that I'Y (t) — pn+1(t) as o — 0, so the a = 0 case of (15) is the nice
martingale

N N HN—k
M, = ZROPO(Xt)m- (16)
k=0

We demonstrate an application of (16) to the evaluation of expected hitting
times. To this end let 7 = inf{t > 0|X; = a} be the first hitting time of
some point a € E. If optional stopping can be applied and the functions
RE 0o exist we can recursively evaluate the higher moments of 7. For N = 1
we conclude from (16) that M; =t + R!o(X;) is a martingale. Letting £,
denote the expectation w.r.t. the probability measure P, concentrated on
{Xo = z} we obtain the simple formula

E, 7 = Rlpo(z) —RLipo(a),

Rl o being some solution f € Z(A) of Af(x) = 1. Note that applicability
of optional stopping has to be justified, for example by showing that 7 is
finite or that M; is actually uniformly integrable.

For N = 2 equation (16) yields M; = t?/2 + tRL p0(X;) + R2p0(Xy),
thus

E,r? = 2(R2po(x) — REo(a) — (Rigo(x) — Rhpo(a)) - Rbpo(a)).

For general N we obtain the recursion formula

BN = N1 [ RY po(z) — RY po(a) an Ewk

for the higher moments of 7. Furthermore a closed formula can be obtained
from this recursion. Alas, the expression is not easy to evaluate and involves
terms from partition theory:

N
= NS RY o) 3 T (R (@) (17)
k=0

C AeC



where C runs through all partitions of a set with k elements and |A| denotes
the number of elements in A.

Returning to the martingale (14) and letting f(x) = p(x) = 0 we obtain
the martingale

N—k

N
- Y,
M, = e oY% ZRﬁJrlp(Xt)i(Nt_k)'. (18)
k=0 '

The N = 0 case is well-known. Remember that R.p(z) is a solution of
Af(xz) = &(x)af(x). Equation (18) then states that

M; = e “MRLo(X))

is a martingale. Applying optional stopping leads to a nice formula for the
Laplace transform of the first hitting time, namely

_ Rip(z)

Epe ™ = .
‘ RLo(a)

This method has been utilized e.g. in Kella and Stadje [24], see also Boxma
et al.[9], and Pitman and Yor [40].

3.4 Lévy processes, exponential functionals

For Lévy processes in dimension one with no negative jumps and generating
triplet (A,~,v) the infinitesimal generator is given by

Ad%f

Afw) = @ s @+ [ (et ) - @) - s @) duly)

(0,00)

(see (31.11) of Sato[44], also Bertoin [7], we use the Sato-notation). By
inserting the functions f,(z) = e, u € R it is easily seen that Af,(z) =
o(u) - fu(x), in other words each f, is an eigenfunction of A, the eigenvalue
being just the Laplace exponent

u? u
o(u) = A? —yu + /(0 | (e v_1+4 1{|y‘§1}yu) dv(y).

Utilizing formula (10) and letting ¢ = 1 we discover the celebrated Wald
martingale given by

Mt — equtfqﬁ(u)t
(see e.g. Asmussen [3] or Perry and Stadje [38] for applications). It follows

immediately that E e %Xt = exp(—t¢(u)), which is normally used as a
definition for the Laplace exponent.

10



If we let n = 0 and a = w in equation (9) and if we assume that {(z) # 0
then it follows from

R;lfu(aj) = ufu(z) —

that our martingale is given by

M, = e "Vif(X,)+ /O tf(Xs)e’“YS fu(Xs)(u— () ) ds

€(Xs)
t t
_ e—u(Yt+Xt)+u/ o u(Yet X,) dys_gb(u)/ ou(YatX) gg
0 0

This is a version of the Kella-Whitt martingale; it is extensively used in the
literature (see e.g. Kella and Whitt [25], Asmussen and Kella [4], Adan et
al. [1]).
As we mentioned in the introduction, the so called exponential func-
tional of a Lévy process given by Y; = fg e "Xs ds has been studied a
uxr

lot. Obviously it corresponds to our {(z) = fyu(z) = e ™* case. Since
Afu(z) = ¢(u) - fu(z) one can show by induction that

RE fu(z) = a7 fu(z) + ka~FT Vg (w),

for all k € N (even for k € Z). Equation (11) with n =0, n = —m, j >0
then yields the martingale

VNS (et X gt v/t
My =e™ tZ(“ e ket ¢(U)> G+ k)
k=0
t . .
1 . Yj_l nyj+n
—aYs—uXs [ —uXs {i>1}1ts —uXs Qrg
0

This may be an interesting formula on its own, however, we let « =n =0
and obtain the martingale

. 1 ) t .
M = Y = oy [ ey s
0

It follows from the martingale property that
E, (e uXth] _ mqb(u)nﬁr _]/0 e 2quYSJ 1 dS) = Ex(Yoj) = 1{]-:0},

Consequently

: 1 . . ot '_
By = o(u) (1{j0} — (j+ D Ey (e MY/ —j/ e 2uksy il ds)> .(19)
w) 0

11



In particular, for j = 0 we deduce that the mean of Y; is given by

E,Y, Lo o (20)
t = T

’ o(u)

This equation can be validated for u = 1 by comparing it with the j = 1

case of the Laplace transform formula

/0 Y] AT = ) @+ 0]

on page 194 of Bertoin and Yor [8]. We can also find a, even though less
explicit, formula for the second moment. First note that the process Y; =
fg e~2uXs ds is the &(x)-integral with respect to the doubled process X; =

2X; which is easily seen to have the Laplace exponent (Z)(u) = ¢(2u). Thus

t _ —to(2u)
E, </ e~ 2uXs ds) _loe ™
0 #(2u)

according to equation (20). Consequently the j = 1 case of (19) is given by

1 — e~ té(2u) E —uXty,
Ex}/;fz - 9 ( € . x (e t) )

$(u)¢(2u) ¢(u)

As t — oo the known formula for the second moment of Yy, follows:
2

P (u)o(2u)

(see e.g. (2.4) in Maulik and Zwart [33]).

E,Y: =

4 Appendix

The following lemma is used to prove Theorem 2.1. It states that

Azg(z,y) = Agy(x) + £(x) - (%ggc(y) (21)

holds in the special case where g is a product of two functions, one depending
only on z, the other only on y.

Lemma 4.1. Let g(z,y) = f(x)h(y), f € 2(A) and h € A4 (E), absolutely

continuous and bounded on the range of Y;. Then

Azg(z,y) = h(y)Af () + f(z)é(x) (y),
i.e. (21) holds.

12



Proof. Since Wy = f(X;) — fg Af(Xs) ds is a €"(F) martingale it follows
that fg h(Ys) dWy is also a martingale (see [15], Problem 22 on page 92).
We have

[reaw, = [ he)arcn) - [ aras as

Using integration by parts we can write this as

B(Yi) f(X) — /0 F(Xs) dh(Ys) /0 h(Y2)AF(X,) ds

which is equal to

9(X0, V) — /0 (F(XEXN (V) + h(Y2)AF(XL)) ds.

Thus g € Z(Az) and Azg(x,y) = f(x)€(x)h'(y) + h(y) Af (z). H
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