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We test the property of ultrametricity for the spin glass three-dimensional Edwards-Anderson
model in zero magnetic field with numerical simulations up to 203 spins. We find an excellent
agreement with the prediction of the mean field theory. Since ultrametricity is not compatible with
a trivial structure of the overlap distribution our result contradicts the droplet theory.

῾Ο ἄναξ οὗ τὸ μαντεῖόν ἐστι τὸ ἐν Δελφοῖς
οὔτε λέγει οὔτε κρύπτει ἀλλὰ σημαίνει

Heraclitus Fragment 93,
from Plutarch, On the Pythian Oracle, 404E. [1]

Ultrametricity is a widely accepted property of the mean field spin glass theory: it is a crucial ingredient in the field
theoretical computations of the Sherrington Kirkpatrick model [2–4] as well as a guiding principle for the rigorous
proof of its free energy density formula [5, 6]. Its relevance in finite dimensional systems is nonetheless still an
open matter, subject of intense investigations and debates in the theoretical and mathematical physics communities.
Ultrametricity states a very striking property for a physical system: sampling three configurations independently with
respect to their common Boltzmann-Gibbs state and averaging over the disorder, the distribution of the distances
among them is supported, in the limit of very large systems, only on equilateral and isosceles triangles with no scalenus
contribution. The relative weight of equilateral and isosceles triangles is then fixed by the so called stochastic stability
property introduced for the infinite range spin glass model in [7, 8] and later proved also for the realistic short ranged
models in finite dimensions [9, 10].

The property of ultrametricity and the non-trivial structure of the overlap distribution are the characterizing
features of the mean field picture and are mutually intertwined: a trivial (delta-like) overlap distribution, like the
one predicted in the droplet theory [11], is not compatible in fact with the previous ultrametric structure because it
predicts only equilateral triangles.

In this letter we study the Edwards-Anderson model [12] for the spin glasses in the three-dimensional cubic lattice
with ±J random interactions (for a numerical study in four dimensions see [13]). With a multi-spin coding and a
parallel-tempering algorithm we numerically investigate the distribution of overlaps for systems whose number of spins
ranges from 103 to 203 at different temperatures. All the parameters used in the simulations are reported in Tab.I.

We find very strong indication in favor of ultrametricity which turns out to be reached at large volumes with exactly
the form predicted by the mean field theory and, by consequence, a robust signal against droplet theory (for a study
of dynamical ultrametricity and for the relation between statics and dynamics in spin glasses see [14, 15]).

From a mathematical point of view the triple (c1,2, c2,3, c31), with 0 ≤ ci,j ≤ 1, representing the overlaps among
three copies of the system, is called stochastically stable and ultrametric when, defining χ(c) =

∫ c

0
P (c′)dc′, its joint

L Sweeps Nreal nβ Tmin Tmax

10 1047552 1280 25 0.7 2.1

12 1047552 896 25 0.7 2.1

16 1047552 704 25 0.7 2.1

18 2096128 768 49 0.7 2.1

20 2096128 512 103 0.7 2.1

Table I: Parameters of the simulations: system size, number of sweeps, number of disorder realizations, number of temperature
values allowed in the parallel tempering procedure, minimum and maximum temperature values.
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probability distribution function has the following structure:

P (c1,2, c2,3, c3,1) =
1
2
P (c1,2)χ(c1,2)δ(c1,2 − c2,3)δ(c2,3 − c3,1) (1)

+
1
2
P (c1,2)P (c2,3)θ(c1,2 − c2,3)δ(c2,3 − c3,1)

+
1
2
P (c2,3)P (c3,1)θ(c2,3 − c3,1)δ(c3,1 − c1,2)

+
1
2
P (c3,1)P (c1,2)θ(c3,1 − c1,2)δ(c1,2 − c2,3) .

Thinking of the quantities c’s as 1 minus the sides of a triangle the previous formula says that only equilateral (first
term on the right hand side of eq. (1)) and isosceles (last three terms of eq. (1)) triangles are allowed, the scalenus
have zero probability. A standard computation allows to compute from (1) the distribution of the three random
variables u = min(c1,2, c2,3, c3,1), v = med(c1,2, c2,3, c3,1) and z = max(c1,2, c2,3, c3,1) which turns out to be

ρ(u, v, z) =
1
2
x(u)P (u)δ(v − u)δ(z − v) +

3
2
P (z)P (v)θ(z − v)δ(v − u) , (2)

and from that deduce the distribution of the two differences x = v − u, y = z − v

ρ̃(x, y) =
1
4
δ(x)δ(y) +

3
4

∫ 1

y

2P (a)P (a− y)θ(y)δ(x)da , (3)

whose marginals are

ρ̃(x) = δ(x) , (4)

ρ̃(y) =
1
4
δ(y) +

3
4

∫ 1

y

2P (a)P (a− y)θ(y)da . (5)

We recall that the Hamiltonian of the EA model [12] is given by

Hσ = −
∑

|i−j|=1

Ji,jσiσj (6)

with Ji,j = ±1 symmetrically distributed and Ising spins σi. Given two spin configurations σ and τ for a system of
linear size L, we consider the main observables: the link-overlap

Q(σ, τ) = (3L3)−1
∑

|i−j|=1

σiσjτiτj (7)

which is the normalized Hamiltonian covariance, and the standard overlap

q(σ, τ) = (L3)−1
∑

i

σiτi (8)

which is related to the Edwards-Anderson order parameter. For every function of two spin configurations c(σ, τ) (for
instance Q or q) the physical model induces a probability distribution by the formula

P(c1,2, c2,3, c3,1) = Av

(∑
σ,τ,γ δ(c1,2 − c(σ, τ))δ(c2,3 − c(τ, γ))δ(c3,1 − c(γ, σ)) exp−β[Hσ + Hτ + Hγ ]∑

σ,τ,γ exp−β[Hσ + Hτ + Hγ ]

)
, (9)

where Av represents the average over the disorder Ji,j . In the sequel the brackets 〈−〉 will denote the average with
respect to distribution (9).
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We find very strong evidences that for large volumes the link overlap has the ultrametric structure of eq. (1). Since
the standard overlap instead has a symmetric distribution in the interval [−1, 1] we find that formula (1) is verified
up to a global gauge transformation (see details below).

The results can be described as follows. We test numerically the structure of the distribution for the two random
variables X = Qmed −Qmin and Y = Qmax −Qmed where the Q’s represent the largest, medium, and smaller value
of the link-overlap among three copies of the system.

The numerical data are compared to the formulas (4) and (5) both from the point of view of the first and second
moment and also for the whole distribution.

• Figure 1: The two panels show the plot of < X > / < Q > (left) and < Y > / < Q > (right) as functions of
the temperature T . We see that the average value of the X variable is much closer to zero than that of the Y
variable. Nevertheless both averaged variables show some tendency toward zero. Since ultrametricity implies
that the first quantity goes to zero while the other doesn’t we perform the analysis of the second moments and
of the distributions in order to resolve the behavior of the two variables.

• Figure 2: We find that the variances of the two variables have a totally different behavior. The left panel
contains the plot of V ar(X)/V ar(Q) and the right panel of V ar(Y )/V ar(Q) both as a function of V ar(Q). We
find more convenient this parametrization with respect to the usual one using temperature because it allows to
extract more information on size dependence through scaling laws: this is due to the fact that both V ar(Y ) and
V ar(Q) have size dependence changing with T . In particular within the temperature range that we have taken
into account the quantity V ar(Q) decreases monotonically with the temperature. The figure clearly shows that
while the variance of X is shrinking to zero the variance of Y is growing with the volume. Moreover the variance
of X satisfy a scaling law with very good accuracy: V ar(X)/V ar(Q) scales like L−1.17 (see inset) while there is
no scaling law for the second variable.

• Figure 3: The figure displays for two system sizes of L = 12 and L = 20 the data histograms for X (in black)
and Y (in red) variable at T = 0.7. They show that P (X) is much more concentrated close to zero, while P (Y )
is spread on a larger scale. The function ρ(Y ) provides a test of consistency with formula (5). The plot of ρ(Y )
has been obtained using the data histograms for the function of X to represent the delta function (4) and the
experimental data for the distribution of Q inside the convolution. The two curves superimpose each other with
an excellent agreement. We have also tested that any different numerical weight other than 1/4 and 3/4 do not
yield such an agreement.

The previous results clearly show that the link overlap has an ultrametric distribution. Our next investigation is
about the standard overlap for which we claim that it also obeys ultrametricity. Given the three standard overlaps
q1,2, q2,3, q1,3 their probability measure is a priori supported on [−1, 1]3. Gauge invariance (qi,j → αiqi,jαj , with
α = ±1) implies that it is a sum of two gauge orbits, one for S = sign(q1,2q2,3q1,3) > 0 and the other for S < 0.
To investigate the contribution of the frustrated couples (S < 0) we plotted the quantity (see tilded q’s below)
S(−) =

∫ 0

−1
dq̃1,3p(q̃1,3)q̃2

1,3/
∫ 1

−1
dq̃1,3p(q̃1,3)q̃2

1,3: the left panel of Fig. 4 clearly show that the distribution of q̃1,3 is
supported almost completely on the positive interval and that the negative values are concentrated near zero (for
similar quantities and also three-replicas observables see [16]). This implies that the contribution associated to the
frustrated orbit (S < 0) is very small at large volumes. These results can be summarized saying that the distribution
of the q is given by

P̄ (q1,2, q2,3, q3,1) =
1
4

[P (q1,2, q2,3, q3,1)θ(q1,2)θ(q2,3)θ(q3,1) + P (−q1,2,−q2,3, q3,1)θ(−q1,2)θ(−q2,3)θ(q3,1) (10)

+P (q1,2,−q2,3,−q3,1)θ(q1,2)θ(−q2,3)θ(−q3,1) + P (−q1,2, q2,3,−q3,1)θ(−q1,2)θ(q2,3)θ(−q3,1)]

and that to check ultrametricity for the standard overlap is equivalent to check that the P appearing on the right
hand side of (10) is given by (1). Equivalently that can be done defining the new random variables

q̃1,2 = max(|q1,2|, |q2,3|, |q1,3|) (11)

q̃2,3 = med(|q1,2|, |q2,3|, |q1,3|) (12)

q̃1,3 = sign(q1,2q2,3q1,3)min(|q1,2|, |q2,3|, |q1,3|) (13)
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and checking that they obey distribution (1). We have made simulation on those random variables and found results
(not shown for the sake of space) in total agreement with ultrametricity as those for the link overlap. This indeed
extends previous findings of [17, 18] where it was shown that link and standard overlaps are mutually non fluctuating
for the case of Gaussian coupling. In the right panel of Fig. 4 we show for the model with ±J investigated within
this work the analysis of the realtive fluctuation and functional dependence of the two overlaps. It is shown the
function G(q2) =< Q|q2 >, i.e. the expected value of the link-overlap for an assigned value of the standard overlap,
for different system sizes at T = 0.7, with a fit to the infinite volume limit g∞(q2). The conditional variance of Q
given q2, displayed in the inset, shows a trend toward a vanishing variance for infinite system sizes.

Numerical simulations, like the Delphi Oracle for Heraclitus, neither conceal or reveal the truth, but only hint at
it. In this work we have investigated the property of ultrametricity in a short-range spin-glass model. We have shown
that violations of ultrametricity in finite volumes have a clear tendency to vanish as the system size increases. We
verified moreover that the analytical predictions of the ultrametric replica simmetry breaking ansatz are correct up
to the tested sizes. Our results contradicts previous finding [19] done for much smaller volumes (up to 83) in which
lack of ultrametricity was claimed. We have shown instead strong numerical evidence that the spin glass in three
dimensions fulfills the property of ultrametricity for both the link and the standard overlap distributions. A detailed
account of the present investigation will appear elsewhere [20].
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Figure 1: Normalized first moments of the two random variables X = Qmed −Qmin and Y = Qmax −Qmed.
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Figure 2: Normalized variances of the two random variables X = Qmed−Qmin (left) and Y = Qmax−Qmed (right). The inset
(at left) shows the scaling law for α = 1.17, i.e. LαV ar(X)/V ar(Q) is L-indipendent.
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Figure 3: Histograms for X = Qmed−Qmin and Y = Qmax−Qmed for the two system sizes (L = 12 and L = 20) at temperature
T = 0.7. ρ(Y ) shows the distribution of Y computed from formula (5) using experimental data for P (Q) and approximating
the delta function with the histogram of X
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Figure 4: Left panel: the average value of S(−) (defined before Eq. (10) in the text) as a function of T . Right panel: Conditional
expectation and conditional variance (inset) of the random variable Q given q2, where Q is the link-overlap and q2 is the square
of the standard overlap, for different system sizes at temperature T = 0.7


