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Abstract: We analyse an ALOHA type access protocol where users have local interactions. We establish
that the fluid model of the system workload satisfies a differential equation. We exhibit a sufficient
condition on the stability of this differential equation and deduce a sufficient condition for the stability
of the protocol. We discuss the necessary condition.
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1 Introduction and Stability Result

1.1 A Spatial ALOHA

We consider a random spatial service system governed by an ALOHA-type algorithm. More precisely,
time is slotted, during each time slot n a random number ξn of users arrive in the system, and at each
slot every user in the system requires service (transmission) with a certain probability (transmission
probability) independently of all others. Usually a sequence {ξn} is assumed to be i.i.d.

The ALOHA multi-access algorithm was first proposed by Abramson [1]. The slotted scheme was
introduced by Roberts [15]. We consider the latter setting. In the conventional slotted ALOHA model,
there is one server. If, at the beginning of a time slot n, a total number Wn of users in the system is

known, each of them asks for service (transmission) with probability
1

Wn
independently of the other

users. If two or more users require transmissions simultaneously, then transmissions collide, the users
stay in the system and try to transmit later. All service times are equal to 1, and the server is always
free at the beginning of any time slot. It is easy to show that for this system the maximum throughput
is equal to e−1. Further, the Markov chain {Wn} is positive recurrent if Eξ1 < e−1 and transient if
Eξ1 > e−1.

When information on the numbers Wn of users is unavailable, various decentralised adaptive algo-
rithms have been introduced and studied. Algorithms of this type use information on what occurred in
the previous time slot: either conflict or successful service or an empty session. More precisely, let Bn

be the number of users trying to transmit at time n. In decentralised algorithms, there are only values
of min{Bn, 2} available at time n + 1. For such a system, under independence and exponential moment
assumptions for ξn, Hajek [11] proved that Eξn < e−1 ≈ 0.37 is necessary and sufficient for the exis-
tence of a stable algorithm. Mikhailov [14] generalised this result by weakening the exponential moment
assumption to the requirement that only the second moment needs to exist, while Foss [9] generalised
it further by dropping this as well as the independence assumption. We also refer to Ephremides and
Hajek [6] for a survey which includes, in particular, results in this direction.

These analysis ignore the network’s spatial diversity and, in particular, the fact that there may
be only partial interaction between users, depending on the distance between them. A development
of random access protocols for wireless networks has created a new need of theoretical results on the
stability and performance of such protocols when spatial interaction between the sources is taken into
account.

In this work, a new model is presented, which captures the main feature of wireless networks: the
spatial reuse of a common communication channel. This feature brings a new conceptual difficulty
into the analysis of the stability of random access protocols. Here we consider only spatial centralised
schemes, the study of decentralised ones is a subject of our future research.

The remainder of this paper is organised as follows. The end of this introduction is devoted to the
description of the model and the statement of our main stability result. In Section 2 we prove that fluid

∗University of California at Berkeley
†Heriot-Watt University and Sobolev Institute of Mathematics
‡EURANDOM

1



limits of the workload in the system satisfy a differential equation. Section 3 is devoted to the behavior
of the fluid limits on the boundary of the positive orthant. In Section 4 we present the proof of our main
stability result and formulate one of its possible generalisations. In Section 5 we present a result on rates
of convergence to the stable regime of the system. Sections 6 and 7 contain some interesting results
on behaviour of the solutions to the differential equation satisfied by fluid limits. Finally, in Section 8
we conclude with some extensions of our model, which are in a certain sense more applicable to real
systems. These extensions include, in particular, the system that captures the fact that various changes
in environment conditions may result in changes in the radius and/or direction of interference between
the message transmissions.

1.2 Model Description

Let G = (V, E) be a non-directed graph with a finite set of vertices, say V = {1, ...,K}. We suppose that
G is connected. For the graph G we use the standard notion of the graph distance. Denote by D the
maximum graph distance in G (the diameter of G). For i ∈ V, let Vi = {i}∪{j ∈ V : such that (i, j) ∈ E},
that is the set of vertices at a maximum distance of 1 from the point i in the graph.

We introduce the following service system with spatial (neighborhood) interactions associated with
the graph G. We assume that time is slotted, i.e., arrivals and services may occur only at times n =
1, 2, . . .. Suppose that there are service stations at each point of G. The arrival process is denoted by
A = (A(n))n∈N, where A(n) ∈ NK is the number of users arriving at time n at each vertex. For t > s,
denote by A(t, s) =

∑dse−1
n=dteA(n) the number of users arriving between time t and s−. We suppose that

(A(n)) is an i.i.d. sequence. We also suppose that EAi(n) = λi > 0 for every i = 1, . . . , K.
Let W (n) ∈ RK

+ be the workload at time n in the system, that is, Wi(n) is the number of users
at vertex i at time n. At time n, a user at vertex i requires service independently of the others with
probability 1/

∑
j∈Vi

Wj(n). This user receives service if he is the only user requiring service in Vi at
time n. We suppose that all service times are equal to 1 and that any user leaves the system immediately
upon service completion. Let Ni(n) be the number of users requiring service at time n at vertex i. Ni(n)

is a binomial random variable with parameters

(
Wi(n),

1∑
j∈Vi

Wj(n)

)
and (Ni(n)), 1 ≤ i ≤ K are

independent variables conditioned on W (n). W is clearly an irreducible Markov chain on NK . We have
the following relation on the values of the workload at subsequent time instances:

Wi(n) = Wi(n− 1) + Ai(n)− 11(Ni(n− 1) = 1)
∏

j∈Vi\{i}
11(Nj(n− 1) = 0). (1)

To explicitly show the dependence of W (n) on the initial condition W (0) = x, we may sometimes
write W x(n).

If xi > 0, the i-th component of drift vector is given by the following expression:

E
[

Wi(1)−Wi(0)|W (0) = x
]
= λi− xi∑

k∈Vi
xk

(
1− 1∑

k∈Vi
xk

)xi−1 ∏

j∈Vi\{i}

(
1− 1∑

k∈Vj
xk

)xj

, (2)

and if xi = 0, then E
[

Wi(1)−Wi(0)|W (0) = x
]
= λi.

We re-write the expression for the drift vector in the following way:

E
[

W (1)−W (0)|W (0) = x
]
= λ−G(x).

Here λ is the K-dimensional vector with it’s i-th component equal to λi and G is a function from RK

to RK defined by

Gi(x) =





xiP
k∈Vi

xk

(
1− 1P

k∈Vi
xk

)xi−1 ∏
j∈Vi\{i}

(
1− 1P

k∈Vj
xk

)xj

, if xi > 0,

0, if xi = 0.

For x ∈ RK , we define φi(x) = xiP
j∈Vj

xj
. Let φ(x) = (φ1(x), ..., φK(x))′. Note that Gi is bounded by 1

and if
∑

k∈Vi
xk > 0 then

lim
t→+∞

Gi(tx) = G̃i(x) = φi(x)e−
P

j∈Vi
φi(x).
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In particular G̃i is homogeneous of order 0, i.e. G̃i(cx) = G̃i(x) for any c > 0.
We now make some comments on the model. In this paper, we mostly consider the so-called symmetric

case, i.e. when λi = λ for all i = 1, . . . ,K and the graph G is V − 1 regular: the cardinal of Vi is equal
to V for all i. First notice that even in this case, the graph G is not necessarily completely symmetric.
Figure 1 shows an example of a 3-regular graph which is not completely symmetric.

Figure 1: A regular graph which is not completely symmetric.

Note also that the system is not monotone. Indeed, x ≤ y (component-wise) does not imply that
W x(1) is dominated stochastically by W y(1) (check this by coupling). The system is neither monotone
with respect to the graph structure. If G1 is embedded into G2, this does not imply that the workload
process built on graph G1 is dominated stochastically by the workload built on graph G2.

In this work, we also present some results on the non-symmetric case. In particular, using methods
suggested recently in [18], in Remark 4.2 we give sufficient conditions for the stability of the system with
space-inhomogeneous input (not necessarily identical λ’s). Some other generalisations of the model are
described in Section 8.

1.3 Stability Result

We first explain the intuition hidden behind the result.
The access protocol favours an equilibrium of the workload in the network: assume that the workload

at node i is much larger than the workload in its neighbouring nodes, Vi. Then φi(x) will be close to
1, whereas for all the nodes j in Vi, φj(x) will be close to 0. Thus the workload at node j in Vi

will tend to get closer to the workload at node i. This balance mechanism hints that the diagonal
∆ = {x ∈ RK : x1 = x2... = xK} is attractive.

If the workload is on the diagonal: W (0) = c11 where c ∈ N∗, we obtain:

E(W (1)−W (0)|W (0) = c11) =

(
λ− 1

V

(
1− 1

V c

)V c−1
)

11.

Hence, as c tends to infinity, the drift vector converges to (λ− e−1/V )11.
So finally, we end up with the conjecture that if λ < e−1/V , the Markov chain W is ergodic. This

conjecture is clearly true for the fully isolated graph and the complete graphs.
The reasons that led to this conjecture appear to be wrong (as will follow from the results of Sections

6 and 7, in general the diagonal is not attractive). However, the conjecture itself is true and we can
formulate our main stability result that will be proved in Section 4.

Theorem 1.1. If λ < e−1/V , the Markov chain W is ergodic.

A classical strategy to analyse the positive recurrence of this type of Markov chain is via the fluid
approximation. We will prove that the fluid approximation satisfies an ordinary differential equation.

Our heuristics suggest also that if λ > e−1/V then W is transient. Corollary 6.3 in Section 6 is
a partial result which corroborates this intuition. In this paper, the transience of W is stated as a
conjecture.

2 Fluid Approximation Method

This section deals with a general (not necessarily symmetric) case.
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2.1 General Properties

In what follows, we endow RK with the L1-norm: |x| =
∑K

k=1 |xk|. Let (xn), n ∈ N, be a sequence in
NK such that limn |xn| = ∞. For t ∈ [0, T ], we define:

Xn(t) =
W xn

(d|xn|te)
|xn| .

To simplify the notation, for t ∈ R+, we set W (t) = W (dte).
Let D([0, T ],RK) denote the space of càdlàg functions from [0, T ] to RK endowed with the usual

Skorokhod topology, i.e. the distance between the functions f1 and f2 is given by the following expression:

dT (f1, f2) = inf sup
t∈[0,T ]

{|g(t)− t|+ ρ(f1(g(t)), f2(t))},

where ρ is the L1-metric in RK and the outer infimum is taken over all monotone continuous functions
g : [0, T ] → [0, T ] such that g(0) = 0 and g(T ) = T . Denote by D([0,∞)) the space of RK–valued càdlàg
functions on [0,∞) with the metric

d(f1, f2) =
∞∑
1

2−T dT (f1, f2)
1 + dT (f1, f2

.

Note that Xn ∈ D([0, T ],RK) for all n.

Lemma 2.1. (i) For any sequence xn such that |xn| → ∞, a.s. the family {(Xn), n ∈ N} has a compact
closure in the Skorokhod topology, and any accumulation point z of A is almost surely continuous.

(ii) Function z is Lipschitz with the constant K max{λ, 1} where λ =
∑K

i=1 λi

K
.

Proof of Lemma 2.1
(i) One can obtain the proof of this assertion by following the lines of the proof of [3], Theorem 4.1

or [17], Theorem 7.1. Formally, the proofs of the mentioned theorems are given for multi-class networks.
However, as pointed out in [10], the tightness of such families holds under weaker conditions (see [10],
Assumption 2.19).

(ii) Since Gi is bounded by 1:

|Xn(t)−Xn
i (s)| ≤ max

{ |A(s|xn|, t|xn|)|
|xn| ,

K|xn|(t− s)
|xn|

}

≤ max





1
|xn|

b|xn|tc∑

k=d|xn|se
Vk,K(t− s)



 ,

where Vk is the total number of arrivals at time k. Sequence {Vk}k∈N consists of i.i.d. random variables
with EVk = Kλ. By the law of large numbers, the result now follows if we let n →∞.

Definition 2.2. Any accumulation (in the Skorokhod topology) point z of the sequence Xn is called fluid
limit. The collection of all fluid limits is called the fluid model.

Note that it follows from the definition of Xn and z that zi(t) ≥ 0 for all i = 1, . . . , K and for all t.

Corollary 2.3. The trajectories of fluid limits are self-similar. More precisely, for any fluid limit z and
for any u > 0 such that P(|z(u)| > 0) > 0, the random process {z̃(t), t ≥ 0} with conditional distribution

P(z̃(t) ∈· ) = P

(
z(u + t)
|z(u)| ∈· ∣∣z(u)

)

is also a fluid limit on the set |z(u)| > 0.

This result may be obtained by following the lines of the proof of Stolyar [17], Lemma 6.1. However,
the same remark as the one given in the proof of Lemma 2.1, (i) applies here.

Definition 2.4. We say that the fluid model is stable if there exists a deterministic time t0 and ε ≥ 0,
such that for all fluid limits z satisfying |z(0)| = 1, |z(t)| ≤ ε for t ≥ t0 a.s.

The definition of fluid stability is standard and appears in most papers dealing with the fluid ap-
proximation method.
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2.2 Fluid Model Criterion for Stability

Theorem 1.1 can be restated via the fluid approximation method.

Lemma 2.5. If the fluid model is stable then W is ergodic.

Proof. (i) One can again obtain a proof of this assertion by following the lines of the proofs of Dai [3] or
Stolyar [17] which are given for multi-class networks.

(ii) Theorem 3.2 of Meyn [12] contains the statement (ii) for multi-class queueing networks. Here
again, Meyn’s proof also applies to our framework without major changes.

¤
By Lemma 2.5, Theorem 1.1 can be restated as:

Theorem 2.6. If λ < e−1/V , the fluid model is stable.

2.3 Fluid Limit Evolution Equation

In what follows we write ϕi(t) = φi(z(t)) =
zi(t)∑

j∈Vi

zj(t)
.

Theorem 2.7. Take any fluid limit z. Assume for all i,
∑

j∈Vi
zj(t) > 0. If t > 0, zi has a derivative

at point t and a right derivative at 0 if t = 0. Moreover, for t > 0:

z
′
i(t) = λi − ϕi(t)e

− P
j∈Vi

ϕj(t)

= λi − G̃i(zi(t)). (3)

For t = 0 this equation holds with the right derivative.

Under the assumptions of the Theorem, this differential equation admits a unique solution, thus all
the converging subsequences of (Xn) converge toward the same deterministic limit.

When the assumption: for all i,
∑

j∈Vi
zj(0) > 0 is not fulfilled, some boundary effects arise. These

boundary conditions are discussed in Section 3.
Proof of Theorem 2.7
(i) We first suppose that zi(t) > 0. To treat this case, we need the following technical result.

Lemma 2.8. There exists C > 0 such that |Gi(x)− G̃i(x)| ≤ min(1, C/xi) if xi ≥ 2.

Proof of Lemma 2.8.
Using that |e−y1 − ey2 | ≤ |y1 − y2| for all y1, y2 ≥ 0, we obtain the following:

|Gi(x)− G̃i(x)| ≤
∣∣∣∣∣ln

(
1− 1∑

k∈Vi
xk

)∣∣∣∣∣ +

∣∣∣∣∣∣
∑

j∈Vi

(
xj ln

(
1− 1∑

k∈Vj
xk

)
+

xj∑
k∈Vj

xk

)∣∣∣∣∣∣
. (4)

For every j, denote yj =
1∑

k∈Vj
xk

. Then, using that | ln(1 − y) + y| ≤ y2

2(1− y)2
for y ∈ (0, 1) , we

obtain that

|Gi(x)− G̃i(x)| ≤ yi +
y2

i

2(1− yi)2
+

∑

j∈Vi

xjy
2
j

2(1− yj)2
.

The required bound now follows from the facts that

yj ≤ 1/xi, xjyj ≤ 1 and yj ≤ 1/2

for all j ∈ Vi.

Assume now that t = 0 (the result for an arbitrary t follows from the self-similarity of fluid limits).
Let x = z(0). Suppose that s < xi. Let k ≤ |xn|s, then W xn

i (k) ≥ xn
i − k ≥ |xn|(xn

i /|xn| − s). Hence,
W xn

i (k) ≥ 2 for k ≤ |xn|s for large enough n.
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We need to show that lims→0
zi(s)− zi(0)

s
= λi − G̃i(z(0)). Consider the following expression:

Xn
i (s)−Xn

i (0) =
1
|xn|

b|xn|sc−1∑

k=0

(
W xn

i (k + 1)−W xn

i (k)
)

=
1
|xn|

b|xn|sc−1∑

k=0

E

[
W xn

i (k + 1)−W xn

i (k)|W xn

(k)
]

+
1
|xn|

b|xn|sc−1∑

k=0

(
W xn

i (k + 1)− E[W xn

i (k + 1)|W xn

i (k)]
)

=
1
|xn|

b|xn|sc−1∑

k=0

(
λi −Gi(W xn

(k))
)

+
1
|xn|

b|xn|sc∑

k=1

Dn
k , (5)

where

Dn
k = W xn

i (k)− E
(
W xn

i (k)|W xn

(k − 1)
)

= Ai(k)− λi + qi(k)− E
(
qi(k)|W xn

(k − 1)
)

with qi(k) = I(Ni(k − 1) = 1)
∏

j∈Vi\{i} I(Nj(k − 1) = 0). We have
1
|xn|

∑b|xn|sc
k=1 (Ai(k) − λi) → 0 a.s.

when n → ∞ and we can use Theorem VII.3 of Feller [8] (applied to bk = 1/k) to deduce that almost
surely

1
|xn|

b|xn|sc∑

k=1

(
qi(k)− E

(
qi(k)|W xn

(k − 1)
))

→ 0 (6)

as n →∞.
It remains to find the limit of the first term in equation (5). We decompose this term as follows:

1
|xn|

b|xn|sc−1∑

k=0

(
λi −Gi(W xn

(k))
)

=
1
|xn|

b|xn|sc−1∑

k=0

(
λi − G̃i

(
Xn

(
k

|xn|
)))

+ ε(s, n),

where by Lemma 2.8

|ε(s, n)| ≤ C
1
|xn|

b|xn|sc−1∑

k=0

1
W xn

i (k)
≤ C

1
|xn|

b|xn|sc−1∑

k=0

1
xn

i − k
→ 0

as n →∞ uniformly in s ≤ xi. Further, from the uniform convergence of Xn to z and the continuity of
G̃ we deduce that

zi(s)− zi(0)
s

= λi − lim
n→∞

b|xn|sc−1∑
k=0

G̃i

(
z

(
k
|xn|

))

|xn|s .

Since 1
|xn|

∑b|xn|sc
k=1 G̃i(z(k−1

|xn| )) is a Riemann sum of a continuous bounded function, it converges to∫ s

0
G̃i(z(u))du and we have

lim
s→0

zi(s)− zi(0)
s

= λi − lim
s→0

∫ s

0
G̃i(z(u))du

s
= λi − G̃i(z(0)). (7)

(ii) it remains to treat the following case: zi(0) = 0 and
∑

j∈Vi
zj(0) > 0. Notice that G̃i(zi(0)) = 0.

In view of equations (5) and (6) it suffices to show that:

lim
s→0+

lim
n→∞

1
|xn|s

b|xn|sc−1∑

k=0

Gi(W xn

(k)) = 0. (8)

By assumption, there exists j ∈ Vi such that zj(0) = limn→∞ xn
j /|xn| > α > 0. Let ε > 0, in

particular, there exists n0 such that for all n ≥ n0, xn
j /|xn| > α and xn

i /|xn| < ε.
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Let n ≥ n0, pick 0 < s < α and fix ε < α, then for n large enough, W xn

i (k) ≤ ε|xn| + Ai(0, k),
W xn

j (k) ≥ α|xn| − k and:

Gi(W xn

(k)) ≤ W xn

i (k)
W xn

i (k) + W xn

j (k)

≤ ε|xn|+ Ai(0, k)
(α + ε)|xn| − k

By the strong law of large numbers, a.s. limt→+∞Ai(0, t)/t = λi. Let λ̃ > λi. It is clear that a.s. we
may find k0 such that for k0 ≤ k ≤ s|xn| (we may suppose that |xn| is large enough to be larger than
k0/s):

Gi(W xn

(k)) ≤ ε|xn|+ λ̃k

(α + ε)|xn| − k
,

and

1
|xn|

b|xn|sc−1∑

k=0

Gi(W xn

(k)) ≤ k0

|xn| +
ε

α + ε− s
+

1
|xn|

b|xn|sc−1∑

k=0

kλ̃

α|xn| − k

A direct computation shows that:

lim
n→∞

1
|xn|

b|xn|sc−1∑

k=0

kλ̃

α|xn| − k
= −λ̃(s + α ln(1− s

α
)).

We obtain, almost surely:

lim sup
n

1
|xn|

b|xn|sc−1∑

k=0

Gi(W xn

(k)) ≤ ε

α + ε− s
− λ̃(s + α ln(1− s

α
))

Since this last inequality holds for all ε > 0 and λ̃ > λi, we have:

lim sup
n

1
|xn|

b|xn|sc−1∑

k=0

Gi(W xn

(k)) ≤ −λi(s + α ln(1− s

α
)).

It then follows immediately that:

lim
s→0+

lim sup
n

1
|xn|s

b|xn|sc−1∑

k=0

Gi(W xn

(k)) = 0.

3 Properties of the Fluid Limit on the Boundary

Conjecture 3.1. We think that any fluid limit z has a right derivative at point 0 in all coordinates for
any vector z(0) (even if there exists i such that xj = zj(0) = 0 for all j ∈ Vi). We also believe that
z
′
(0) does not depend on the sequence xn and only depends on x = limn xn/|xn|. If it is so then all fluid

limits are deterministic functions.

In this Section, we will prove a weaker statement that will be sufficient to prove that the boundary
of the positive orthant does not play any role in the stability of the fluid model. Denote

τh = inf{t ≥ 0 : |z(t)| < h}.
Denote also λ∗ = min{λ1, . . . , λK} > 0. Assume that |z(0)| = 1 then maxi zi(0) ≥ 1/K. The fact that
z
′
i(t) ≥ λ∗ − 1 for all i and t also implies that

τ1−ε ≥ ε

K(1− λ∗)
. (9)
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Theorem 3.2. Assume that |z(0)| = 1. Then there exist positive constants b and ε0 such that for any
ε ∈ (0, ε0), mini zi(t) ≥ bε for any t ∈ [cε, τ1−ε) where c = 1/K(1− λ∗).

The following corollary is immediate:

Corollary 3.3. For any 0 < h < 1, zi(t) > 0 for all 0 < t < τh.

The forthcoming Lemma 6.1 and Corollary 3.3 imply:

Corollary 3.4. Assume that |z(0)| > 0, then either:

- there exists c such that z(c) = 0 and z(t) remains in H for all t ∈ (0, c) or

- z(t) remains in H for all t > 0.

The rest of this paragraph is devoted to the proof of Theorem 3.2. We begin with some technical
lemmas.

Lemma 3.5. There exist positive constants K1 > 1 and K2 such that, for any fluid limit z, if zi(t) >
K1zj(t) for two neighboring nodes i and j then z

′
j(t) > K2.

Proof of Lemma 3.5
Note that the existence of z

′
j(t) is guaranteed by Theorem 2.7. Indeed zi(t) > 0 and therefore∑

k∈Vj
zk(t) > 0. To prove Lemma 3.5, note that

z
′
j(t) > λ∗ − zj(t)∑

k∈Vj
zk(t)

≥ λ∗ − zj(t)
zi(t) + zj(t)

> λ∗ − 1
1 + K1

and we may take K1 = 2/λ∗ − 1 and K2 = λ∗/2.

Lemma 3.6. There exist constants C1 ≥ C2 > 0 such that for any h > 0 if |z(0)| ≥ h1 and mini zi(0) ≥
C1h then mini zi(t) ≥ C2h1 for all t ≤ τh.

Proof of Lemma 3.6

Let D be the maximum graph distance of G. Put C1 =
1

KKD+1
1

and put C2 =
C1

KD−1
1

. We may

prove Lemma 3.6 for h = 1. The result for arbitrary h follows from the self-similarity of fluid limits.
It is sufficient to show that for any t < τ1 if mini zi(t) ≥ C1 then there exists 0 < s < ∞ such that

min
i

zi(t + s) ≥ C1 (10)

and
min

i
zi(u) ≥ C2 for all t ≤ u ≤ t + s. (11)

Indeed, assume that the last statement holds and Lemma 3.6 is not valid. Then there exists t ≤ τ1

such that mini zi(t) < C2. It follows from the continuity of fluid limit that there exists the last moment
v < t when mini zi(v) ≥ C1. However, our last statement implies that there exists s > 0 such that
mini zi(v + s) ≥ C1 and mini zi(u) ≥ C2 for all v ≤ u ≤ v + s. Clearly, v + s < t, which contradicts our
assumption on v being the last moment before t when mini zi(v) ≥ C1.

Let now t be any time such that t < τ1 and mini zi(t) ≥ C1. Note that maxi zi(t) ≥ 1/N = C1K
D+1
1

since t < τ1. To simplify the notation, assume that z1(t) = maxi zi(t). Let T be such that z1(t + u) ≥
C1K

D
1 for all 0 ≤ u ≤ T . Note that z

′
i(u) ≥ λ∗ − 1 for all i and u. This implies that

T ≥ C1(KD+1
1 −KD

1 )
1− λ∗

=
C1K

D
1 (K1 − 1)
1− λ∗

. (12)

Let now d be the maximum distance in G from node 1. Clearly, d ≤ D. For j = 1, . . . , d, denote by Aj

the set of nodes at distance j from node 1.
We show that there exists 0 < s < T such that (10) and (11) hold. First, we show that min zi(u) ≥ C2

for all t ≤ u ≤ t + T . Note that zi(u) ≥ C1 for all i ∈ A1 and t ≤ u < t + T . Indeed, assume that
there exist i ∈ A1 and t ≤ u < t + T such that zi(u) < C1. Then, by continuity, there exists a last
moment t ≤ u1 < u such that zi(u1) ≥ C1. Lemma 3.5 implies that z

′
i(u1) ≥ K2 > 0 and hence, there

exists time u2 > u1 such that zi(u2) ≥ C1 that contradicts our assumption on u1. Using induction and
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following the same arguments, we can show that zi(u) ≥ C1/Kj−1
1 for all i ∈ Aj and t ≤ u ≤ t + T for

any j = 1, . . . , d. Hence, mini zi(u) ≥ C1/Kd−1
1 ≥ C1/KD−1

1 = C2 for all t ≤ u ≤ t + T .
Let us now show that there exists 0 < s < T such that (10) holds. For every j = 1, . . . , d, denote

by tj the time needed to achieve the level C1K
d−j
1 starting from the level C1/Kj−1

1 and moving with

the speed K2. Clearly, tj =
C1(Kd−1

1 − 1)
K2K

j−1
1

. Note that (10) and (11) hold with s =
d∑

j=1

tj if T ≥
d∑

j=1

tj .

Indeed, minj∈A1 zj will achieve the level C1K
d−1
1 no later than t + t1 and will not become smaller than

this level before time t + T , since all nodes in A1 are neighbours of node 1 and z1(u) ≥ KD
1 for all

t ≤ u ≤ t+T . Note also that minj∈A2 zj will become greater than C1K
d−2
1 no later than t+ t1 + t2 since

it cannot become smaller than C1/K1 before the time t + t1, and after this time it is either greater than
C1K

d−2
1 or it grows with at least the speed K2 (this follows from Lemma 3.5 and the fact that any node

in A2 has a neighbour in A1). We can continue these arguments to prove that minj∈Ad
zj will become

greater than C1 no later than t +
d∑

i=1

ti if T ≥
d∑

i=1

ti.

Note that

d∑

i=1

ti =
C1(Kd−1

1 − 1)(1 + K1 + . . . + Kd−1
1 )

K2K
d−1
1

=
C1(Kd−1

1 − 1)(Kd
1 − 1)

K2K
d−1
1 (K1 − 1)

≤ C1(Kd
1 − 1)

K2(K1 − 1)
≤ C1(KD

1 − 1)
K2(K1 − 1)

(13)

If we take K2 = λ∗/2 and K1 = 2/λ∗ − 1 then (1 − λ∗)/K2 = K1 − 1. Note also that in this case

K1 ≥ 2. It now follows from (12) and (13) that T ≥
d∑

i=1

ti.

One can see from the proof of Lemma 3.6 that the following (stronger) result holds.

Lemma 3.7. For any h1 > 0 there exists ĥ2 > 0 such that for any h2 ≤ ĥ2 there exists 0 < h3 ≤ h2

such that if |z(0)| ≥ h1 and mini zi(0) ≥ h2 then mini zi(t) ≥ h3 for all t ≤ τh1 .

Remark 3.8. Lemma 3.7 is valid with ĥ2 =
h1

KKD+1
1

.

Proof of Theorem 3.2
The proof of Theorem 3.2 is similar to that of Lemma 3.6.

Take ε0 such that
K2(K1 − 1)ε

(KD
1 − 1)

≤ 1− ε

KKD+1
1

for all ε ≤ ε0 and take a =
K2(K1 − 1)
(KD

1 − 1)
. In this case

aε ≤ 1− ε

KKD+1
1

, and in view of Lemma 3.7 and Remark 3.8, it is enough to prove that mini zi(cε) ≥ aε.

Let D be the graph distance of G. Note that maxi zi(0) ≥ 1/K. Assume that z1(0) = maxi zi(0).
Let T be such that z1(u) ≥ aεKD

1 for all 0 ≤ u ≤ T . Note that z
′
i(t) ≥ λ∗ − 1 for all i and t. This

implies that

T ≥ 1/K − aεKD
1

1− λ∗
=

1−KaεKD
1

K(1− λ∗)
. (14)

Now let d be the maximum distance in G from node 1. Clearly, d ≤ D. For j = 1, . . . , d, denote by
Aj the set of nodes at distance j from node 1. For every j = 1, . . . , d, denote by tj the time needed to

achieve the level aεKd−j
1 starting from the level 0 and moving with the speed K2. Clearly, tj =

aεKd−j
1

K2
.

Denote T1 =
D∑

j=1

tj . Note that

T1 =
aε(KD

1 − 1)
K2(K1 − 1)

=
ε

K(1− λ∗)
= cε. (15)

Following the same arguments as in the proof of Lemma 3.6, we can show that mini zi(cε) =
mini zi(T1) ≥ aε if T1 ≤ T .

It remains to prove that T1 ≤ T . This is so due to (14), (15) and the fact that aε ≤ 1− ε

KKD+1
1

.
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Remark 3.9. Denote by ν(z, h, b) = inf{t ≥ z : |z(t)| < h or mini zi(t) < b} the time (after moment
z) of the first exit from the set {|z| ≥ h}∩ {mini zi ≥ b}. Theorem 3.2 implies that there exist b > 0 and
z ≥ 0 such that τ1−ε = ν(zε, 1− ε, bε) for any initial condition z(0) with |z(0)| = 1.

4 Proof of Theorem 1.1

In this Section we first present the proof of our main stability result and then formulate its generalisation.
Recall that here we deal with the symmetric case. We start with the proof of the stability. Due to
Theorem 2.6 it is enough to prove that there exists a deterministic time t0 such that for all fluid limits
z satisfying |z(0)| = 1, z(t) = 0 for t ≥ t0 a.s.

Lemma 4.1. If zi(t) > 0 for all i = 1, . . . , K then
(∑

i

z2
i (t)

)′

≤
(

λ− e−1

V

) ∑

i

zi(t)

and hence, if λ < e−1

V , (∑

i

z2
i (t)

)′

≤ −ε
∑

i

zi(t)

for some ε > 0.

Proof of Lemma 4.1.
Clearly, it is sufficient to prove the following inequality

∑
i

ziϕi exp

{
− ∑

j∈Vi

ϕj

}

∑
k

zk
≥ e−1

V
(16)

where we slightly abuse the notation by writing zi instead of zi(t). We can write the LHS of the previous
inequality in the following form: ∑

i

pif(yi)

where pi =
zi∑

k

zk
, yi = − ∑

j∈Vi

ϕj − ln
1
ϕi

and f(z) = ez. Function f is convex and
∑
i

pi = 1,

hence,
∑
i

pif(yi) ≥ f(
∑
i

piyi) and

∑
i

ziϕi exp

{
− ∑

j∈Vi

ϕj

}

∑
k

zk
≥ exp



−

∑

i

zi∑
k

zk

∑

j∈Vi

ϕj −
∑

i

zi∑
k

zk
ln

1
ϕi



 . (17)

Now consider
∑
i

zi∑
k

zk

∑
j∈Vi

ϕj and
∑
i

zi∑
k

zk
ln

1
ϕi

separately:

∑

i

zi∑
k

zk

∑

j∈Vi

ϕj =

∑
i

zi

∑
j∈Vi

ϕj

∑
k

zk
=

∑
j

ϕj

∑
i∈Vj

zi

∑
k

zk
=

∑
j

zj

∑
k

zk
= 1. (18)

(we used the facts that j ∈ Vi if and only if i ∈ Vj and that ϕj

∑
i∈Vj

zi = zj .)

Note that the function ln is concave, hence,

∑

i

zi∑
k

zk
ln

1
ϕi
≤ ln


∑

i

zi∑
k

zk

1
ϕi


 = ln




∑
i

zi

ϕi

∑
k

zk


 = ln




∑
i

∑
j∈Vi

zj

∑
k

zk


 = ln V. (19)
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Inequality (16) follows now from (17), (18) and (19).

Proof of Theorem 1.1.
Corollary 3.3 implies that if |z(0)| = 1, then zi(t) > 0 for all i = 1, . . . ,K and all t > 0. Then we

can use Lemma 4.1. Note also that for any positive values of {xi} it holds that
∑
i

xi ≥
√∑

i

x2
i . Hence,

Lemma 4.1 implies that (∑

i

z2
i (t)

)′

≤ −ε

√∑

i

z2
i (t)

and hence, 


√∑

i

z2
i (t)



′

≤ −ε/2

and the result follows.

Remark 4.2. By applying methods used in [18], we can get a similar (but less explicit) stability result
in a more general situation. Assume now that the system is not symmetric, in general, i.e. that values
of λi may differ for different i and the graph G may be irregular.

Let

M = {µ : µi = pie
−Pj∈Vi

pj , i = 1, . . . ,K, for some p = (p1, . . . , pK) with pi ≥ 0}.

One can show that the vector (ϕ1, . . . , ϕK) with ϕi =
zi∑

j∈Vi
zj

maximises the function
K∑

i=1

zi ln µi

over all vectors µ ∈ M . Based on that, one can obtain the following.

Theorem 4.3. Assume that there exists a vector µ ∈ M such that λ < µ component-wise. Then the
Markov chain Wn is recurrent.

A proof of Theorem 4.3 follows the lines of the proof of Theorem 4 in [18].

5 Rates of Convergence

In this section, we again consider the symmetric case. We will obtain rates of convergence of Wn to its
stationary distribution in the total variation norm.

Define the total variation distance between measures π1 and π2 by

||π1(· )− π2(· )|| = sup
|g|≤1

∣∣∣∣
∫

g(y)π1(dy)−
∫

g(y)π2(dy)
∣∣∣∣ .

Theorem 5.1. Assume that λ < e−1/V and EAi(n)p+1 < ∞ for some p ≥ 1 and for all i = 1, . . . , K
and n. Then

lim
n→∞

np||Pn(x, · )− π(· )|| = 0, x ∈ NK ,

where Pn(x, · ) — distribution of W x(n) and π(· ) — stationary measure for W .

Proof of Theorem 5.1
The proof of Theorem 5.1 is based on the following lemma which is an analogue of Proposition 5.3

of Dai and Meyn [4].

Lemma 5.2. Assume that the conditions of Theorem 5.1 are satisfied. Then, for some constants c < ∞,
δ > 0 and a finite set C,

E




τC(δ)∑
n=0

|W x(n)|p

 ≤ c|x|p+1

for any x ∈ NK , where τC(δ) = min(n ≥ δ : W (n) ∈ C).
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Proof of Lemma 5.2
The proof of Lemma 5.2 follows the lines of the proof of Proposition 5.3 of [4].
It follows from Theorem 2.6 that there exists t0 such that

lim
|x|→∞

W x(|x|t0)
|x| = 0

a.s. Note also that the family of random variables

{
|W x(|x|t0)|p+1

|x|p+1

}
is uniformly integrable, since

|W x(|x|t0)|p+1

|x|p+1
≤

(∑|x|t0
m=0

∑K
i=1 Ai(m)

)p+1

|x|p+1
≤ tp+1

0

∑|x|t0
m=0

(∑K
i=1 Ai(m)

)p+1

|x|t0

and the family





∑|x|t0
m=0

(∑K
i=1 Ai(m)

)p+1

|x|t0





is uniformly integrable. The latter is guaranteed by the

existence of EAi(m)p+1 for all i = 1, . . . ,K and for all m. Hence,

lim
|x|→∞

E
[|W x(|x|t0)|p+1

]

|x|p+1
= 0.

Choose L such that
E

[|W x(|x|t0)|p+1
] ≤ 1

2
|x|p+1 (20)

for |x| ≥ L. Define, as in the proof of Proposition 5.3 of [4], the sequence of stopping times σ0 = 0, σ1 =
t(x), and σk+1 = σk + θσk

σ1, k ≥ 1, where t(x) = t0 max(L, |x|), θ — shift operator on the sample space.
We assume that t0 is integer. The stochastic process Ŵk = W (σk) is a Markov chain with the transition
kernel

P̂ (x, A) = P(W x(t(x)) ∈ A).

Now (20) implies that

E
{
|Ŵ1|p+1 − |Ŵ0|p+1|Ŵ0 = x

}
≤ −1

2
|x|p+1 + bIC(x),

where set C = {x : |x| ≤ L} and b is some constant. The Comparison Theorem (Meyn and Tweedie
[13], p. 337) yields that

E

[
k∗−1∑
n=0

|W x(σk)|p+1

]
= E

[
k∗−1∑
n=0

|Ŵ (k)|p+1

]
≤ 2

{|x|p+1 + bIC(x)
}

(21)

where k∗ = min(k ≥ 1 : Ŵ (k) ∈ C}. To prove Lemma 5.2 , we first show that for some constant c0

E

[
σk+1∑
n=σk

|W x(n)|p|Fσk

]
≤ c0W

x(σk)p+1 (22)

which by the strong Markov property amounts to

E

t(x)∑
n=0

|W x(n)|p ≤ c0|x|p+1

This follows from the fact that

t(x)∑
n=0

|W x(n)|p ≤
t(x)∑
n=0

(
n∑

m=0

K∑

i=1

Ai(m)

)p

≤
t(x)∑
n=0




t(x)∑
m=0

K∑

i=1

Ai(m)




p

a.s. and from our assumption that EAi(m) < ∞ for all i = 1, . . . , K and for all m. Substituting (22)
into (21), we have

E

[ ∞∑

k=0

E

[
σk+1∑
n=σk

|W x(n)|p|Fσk

]
Ik < k∗

]
≤ c|x|p+1.
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By the Fubini theorem and the smoothing property of the conditional expectation, the LHS is precisely
E

[∑σk∗
n=0(1 + |W x(n)|p)]. The proposition now follows from the fact that σk∗ ≥ τC(t0L).

We now use Proposition 5.4 of [4] with t = 1. Applied to our case, it gives the following bound:

E {V (W (1))− V (W (0))|W (0) = x} ≤ −f(x) + κ (23)

with V (x) = E
(∑τC(δ)

n=0 |W x(n)|p
)

and f(x) = |x|p.
Note that Lemma 5.2 implies that V (x) ≤ c|x|p+1. Now (23) yields that

E {V (W (1))− V (W (0))|W (0) = x} ≤ V (x)
p

p+1 + bIC

for the set C = {x : |x| ≤ L} and for some constant b. The result now follows from Theorem 2.5 of Douc
et al. [5].

6 Local Stability of Fluid Limits on the Positive Orthant

In this Section we investigate the behaviour of the solution to the differential equation satisfied by fluid
limits. In particular, we show that if the input rate λ is sufficiently small, then the diagonal is locally
unstable.

6.1 Orbits of the Fluid Limits

Denote H = {x ∈ RK : xi > 0 for all i = 1, . . . , K} and 11 = (1, ..., 1)′. For z(t) in H, the differential
equation (3) is restated in closed form as:

ż(t) = F (φ(z(t))), (24)

with F (x)i = λ−xie
−Pj∈Vi

xj . Let ∆ = {x ∈ H : x1 = x2... = xK} and Cu = {x ∈ H : |x/|x| − 11/K| ≤
u}, u > 0, Cu is a cone with direction ∆. We note that the diagonal is an orbit of the differential
equation: F (φ(c11)) = (λ− e−1/V )11. We are going to prove that the diagonal is also locally attractive.

Lemma 6.1. Assume that z(0) ∈ H, then:

- there either exists c such that z(c) = 0 and z(t) remains in H for all t ∈ (0, c) or

- z(t) remains in H for all t > 0.

Proof of Lemma 6.1.
Restricted on the open set H, F ◦ φ is C∞(Rn). Therefore, the solutions of equation (24) are locally

uniquely defined as long as z(t) remains in H. Now, suppose the contrary: that t 7→ z(t) leaves H at
time c at y = limt→c− z(t) ∈ ∂H\{0}.

Let ai = lim supt→c− φ(z(t)), ai ∈ [0, 1]. Since y 6= 0, there exist i1 and i2 such that yi1 = 0 and
yi2 > 0. Note also that G is connected, this implies that there exists k such that yk = 0 and

∑
j∈Vk

yk > 0
(consider the path from i1 to i2). Hence, ak = 0 and limt→c− Fk(φ(z(t))) = λ > 0, this implies that
t 7→ xk(t) increases on a left neighbourhood of c, which is contradictory with yk = limt→c− z(t) = 0.

Lemma 6.1 implies that for an initial condition in H the fluid limit z(t) remains in H or finally
reaches 0 at time c. By convention, we set that φ(0) = 11/V , thus after time c, the orbit of z remains
on the diagonal: for t ≥ 0, z(t + c) = (λ − e−1/V )11t. Notice also that if x ∈ H, then F (φ(z)) ≤ λ11
(component-wise). In view of Lemma 6.1 this immediately implies that if z(0) is in H then the maximal
solution of equation (24) is defined on R+. Lemma 6.1 also implies that if z(0) = limn xn/|xn| ∈ H then
the fluid limit is deterministic.

Let A be the adjacency matrix of G and {ν1, ..., νK} its eigenvalues with νi ≤ νi+1. The spectral gap
γ is defined by:

γ = min
i<K

(νK − νi) = νK − νK−1.

Note that since G is V − 1 regular, νK = V . The main result of this section is the following.
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Theorem 6.2. If λ > e−1

V (1 − γ2

V 2 ), there exists u > 0 such that for all solutions t → z(t) of equation
(24) with the initial condition in Cu,

lim
t→+∞

φ(z(t)) = 11/V.

If λ < e−1

V (1− γ2

V 2 ), the diagonal is locally unstable.

Corollary 6.3. If λ > e−1

V (1 − γ2

V 2 ), there exists u > 0 such that if z(t) is a solution of equation (24)
with an initial condition z(0) in Cu,

- if λ < e−1/V , then there exists c > 0 such that z(c) = 0.

- if λ > e−1/V , then z(t) ∼ (λ− e−1/V )t.

Proof of Corollary 6.3
Let z(t) be the maximal solution with z(0) ∈ H. From Theorem 6.2, lim φ(z(t)) = 11/V . Since F is

C∞(Rn) on a neighborhood of 11/V , limt→+∞ ż(t) = (λ− e−1/V )11. If λ 6= e−1/V , this implies that, as
t tends toward infinity:

z(t) ∼ (λ− e−1/V )t11. (25)

Suppose first that λ − e−1/V < 0 then from equation (25), z(t) leaves H in finite time. Lemma
6.1 implies in turn that there exists c > 0 such that z(c) = 0. The first assertion of Corollary 6.3 is
proved.

Remark 6.4. The first statement of Corollary 6.3 can be strengthened in the following way:

there exists δ > 0 and v > 0 such that for all z(0) ∈ Cv, z(δ|z(0)|) = 0.

Indeed, let δ such that 0 < δ−1 < e−1/V − λ. There exists ε > 0 such that for all i and z ∈ Cε,
φ(z)i < −δ. We then define v = min(u, ε).

6.2 Proof of Theorem 6.2

The proof of this theorem is an application of the stability theory for differential equations.

6.2.1 Spectral Analysis

We need to consider the eigenvalues of D(F ◦ φ)(x) for x ∈ ∆, where Df(x) is the differential of f at x.
F ◦ φ is homogeneous of order 0: for all c > 0, F (φ(cx)) = F (φ(x)). Hence:

D(F ◦ φ)(c11) = c−1D(F ◦ φ)(11).

Since ∆ is an orbit of equation (24), 11 is an eigenvector of D(F ◦φ)(11) associated with the eigenvalue 0.

Lemma 6.5. The eigenvalues of D(F ◦ φ)(11) are (0, η1, · · · , ηK−1) with ηi = − e−1

V 3 (V − νK−i)2 . In
particular, for all i ≥ 1, ηi < 0.

Proof of Lemma 6.1.
A direct computation leads to:

(D(F ◦ φ)(11))ij =





− e−1(V−1)
V 2 if j = i,

e−1

V 3 |Vi ∪ Vj | if j ∈ Vi\i
− e−1

V 3 |Vi ∩ Vj | if j 6∈ Vi

,

Not surprisingly, D(F ◦ φ)(11).11 = 0. Indeed, let M = −eV 3D(F ◦ φ)(11). Using the fact that
|Vi ∪ Vj | = 2V − |Vi ∩ Vj |, we deduce that:

(M1)i = V (V − 1)− 2V (V − 1) +
∑

j 6=i

|Vi ∩ Vj | =
K∑

j=1

|Vi ∩ Vj | − V 2 = 0.

Let E denote the identity matrix and A the adjacency matrix of G, since (A2)ij = |Vi ∩ Vj |, we have
the following decomposition:

M = V 2E − 2V A + A2 = (A− V E)2.
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The matrix A is irreducible by hypothesis (G is connected), thus (A − V E) is an ML-Matrix (refer
to Seneta [16]). In graph theory, this matrix is referred as the Laplacian matrix of G. From Corollary
1 of Theorem 1 in Seneta [16], the spectral radius of A is V , Theorem 2.6 (d) of [16] implies that
dim Ker(A − V E) = 1 and all the eigenvalues of (A − E)2 different from 0 are positive reals (remind
that the spectrum of A is real).

6.2.2 Orbit of ψ ◦ z

We define:

Σ = {x ∈ H :
K∑

i=1

xi = 1} = H ∩ 〈11, ·〉−1({1}) = ψ(H),

where ψ(x) = x/|x|. Σ is clearly a C∞-convex manifold of codimension 1. We define the following
differential equation on Σ:

ẏ = Dψ(y)F (φ(y)) = α(y) (26)

with an initial condition y(0) in Σ. α is a C∞(Σ) function and α(y) ∈ Ty(Σ) the tangent space of Σ at
y. The next step is to compare the orbits of equation (26) and equation (24). The next lemma asserts
that the orbits of the solution of ẏ = α(y) and ψ ◦ x where t 7→ z(t) is a solution of equation (24) are
indeed equal.

Lemma 6.6. Let z(0) be in H and let z(t) be the maximal solution of equation (24). Let y(t) be the
maximal solution of ẏ = G(y), with the initial condition y(0) = ψ(z(0)). Then it is defined on R+, and
there exists an increasing continuous bijective function µ : R+ → R+ such that:

y ◦ µ = ψ ◦ z

Proof of Lemma 6.6.
This lemma is a classical result. For an initial condition in H, we have F (z(t)) ≤ λ11. Indeed, while

z(t) ∈ H it is clear. If z(t) 6∈ H, from Lemma 6.1, z(t) ∈ ∆∩−H, thus F (z(t)) = (λ− 1/V e−1)11 ≤ λ11).
It follows that |z(t)| = ∑n

j=1 zj(t) ≤ Kλt +
∑n

j=1 zj(0).

Suppose now that for all t, z(t) ∈ H, then
∫ +∞
0

dsPn
j=1 zj(s)

diverges. By the intermediate value
theorem, we deduce that there exists an increasing continuous function ν such that:

for all t ≥ 0,

∫ ν(t)

0

ds∑K
j=1 zj(s)

= t. (27)

In particular:

ν̇(t) =
K∑

j=1

zj(ν(t)).

Let w = ψ ◦ z ◦ ν, w(0) = ψ(w(0)) = y(0). We have:

ẇ(t) = ν̇(t)
d

ds
ψ(z(s))

∣∣∣
s=ν(t)

=
( K∑

j=1

zj(ν(t))
)
Dψ(z(ν(t))).F (w(t)).

The function ψ is homogeneous of order 0 and thus Dψ(cz) = c−1Dψ(z) for all c > 0. It follows
that:

ẇ(t) = Dψ(
z(ν(t))∑n

j=1 zj(ν(t))
).F (w(t))

= G(w(t)).

The solution of the differential equation is unique, therefore w(t) = y(t). The lemma is proved with
µ = ν−1.

If z(t) leaves H, then due to Lemma 6.1 there exists c such that z(c) = 0 and z(t) = (λ−e−1/V )(t−c)11
for t ≥ c. Then the mapping ν is built on [0, c], as we did previously, and ν(t) = ν(c) + t− c for t ≥ c.
Then the same proof holds.
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6.2.3 Local Stability of ψ ◦ z.

Clearly, y0 = 11/K is an equilibrium point of equation (26). In the next lemma we prove that this
equilibrium is locally stable.

Lemma 6.7. If λ > e−1

V (1− γ2

V 2 ), there exists u > 0 such that for all solutions t 7→ y(t) of equation (26)
with |y(0)− y0| < u,

lim
t→+∞

sup
y(0)∈Σ:|y(0)−y0|<u

|y(t)− 11/V | = 0.

Proof of Lemma 6.7.
We denote by Dα(y)|Ty(Σ) the differential of α at y restricted to the K − 1 dimensional subspace

Ty(Σ). We examine if all the eigenvalues of Dα(y0)|Ty(Σ) have a negative real part, this will imply the
local stability (refer for example to Coddington and Levinson [2]). Let D2ψ(y)(·, ·) denote the second
differential of ψ at y, seen as a bilinear mapping. We have:

Dα(y) = D2ψ(y)(F (φ(y)), ·) + Dψ(y)D(F ◦ φ)(y). (28)

The first term in this last equation is a matrix and its entry (i, j) is equal to:

K∑

k=1

∂2ψ(y)i

∂yj∂yk
F (φ(y))k.

For y = y0, F (φ(y0)) = (λ− e−1/V )11, and a straightforward computation gives:

D2ψ(y0)(F (φ(y0)), ·) = (λ− e−1/V )(J −KE),

where E is the identity matrix and J is the matrix with all its entries equal to 1. We also have
Dψ(y0) = (KE − J)/K. Finally, equation (28) can be rewritten as:

Dα(y0) = 1/K(KE − J)
(

D(F ◦ φ)(y0)− (λ− e−1/V )E
)

.

(KE−J) commutes with all symmetric matrices and (KE−J) has two eigenvalues K (with multiplicity
K − 1) and 0 (with multiplicity 1, associated to the eigenvector 11). By Lemma 6.5, the eigenvalues of
D(F ◦ φ)(y0)− (λ− e−1/V )E are

0 ≤ i ≤ K − 1 : µi = −e−1(V − νK−i)2/V 3 − λ + e−1/V.

The eigenvector associated to µ0 = λ−e−1/V is 11. Thus we have proved that λ−e−1/V is an eigenvalue
of multiplicity 1 for Dα(y0) and that the other eigenvalues are (µi)i≥1. These eigenvalues have negative
real parts if and only if µ1 = −e−1γ2/V 3 − λ + e−1/V < 0, that is λ > e−1(1− γ2/V 2)/V . The vector
space generated by the associated eigenvectors is precisely the tangent hyperplane Ty0(Σ) = 11⊥, the
hyperplane orthogonal to 11.

We can then prove Theorem 6.2. Let |z(0)| ∈ Cu and y(0) = z(0)/|z(0)|, by Lemmas 6.6 and 6.7:

lim
t→+∞

ψ(z(t)) = lim
t→+∞

y(µ(t)) = 11/K.

In particular, φ(z(t)) tends towards 11/V as t tends toward infinity.

7 Absence of Attraction to the Diagonal in One Particular Case

As it has already been pointed out in Section 1.3 and in the previous Section, the diagonal may not be
locally stable for small enough values of λ. In this Section, we present an example of a graph for which
there are locally stable sets of parameters away from the main diagonal if λ is sufficiently small.

Consider a graph G with 4 vertices placed on a circle. Number the vertices 1, 2, 3, 4 clockwise and
assume that each vertex is linked with its 2 neighbours (so that, for example, vertex 1 has links with 2
and 4). In this case, K = 4 and V = 3 (see Figure 7).
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For a service system associated with this graph, consider the equation (26). It is clear that we can
write it in the form

ẏi(t) =
(
λ− ϕi(t)e

−Pj∈Vi
ϕj(t)

)
− yi

K∑

k=1

(
λ− ϕk(t)e−

P
j∈Vk

ϕj(t)
)

, i = 1, . . . ,K.

We are interested in the so-called stable points of the latter system of differential equations, i.e.
points for which all the RHS’s in the system above are identically 0 and so if y(0) is such a point, y(t)
stays at this point for all t ≥ 0. Clearly, one stable point is (1/K, . . . , 1/K), which corresponds to the

diagonal. However, if λ <
e−1

V

(
1− γ2

V 2

)
(= 5/27e−1 in our case), then there exist other stable points.

Take y1(0) = y2(0) and y3(0) = y4(0). Since y1(0) + y2(0) + y3(0) + y4(0) = 1, the equality y3(0) =
(1− 2y1(0))/2 holds, and the system of differential equations at time t = 0 reduces to just one (i.e. any)
of them. One can show that, for any λ < 5/27e−1, the RHS of this equation equals 0 at three different
points: at y(1) = (1/4, 1/4, 1/4, 1/4) and at two others, say y(2) and y(3). One can find approximate
values of these points numerically. For instance, if λ = 0.001, then y(2) ≈ (0.01, 0.01, 0.49, 0.49) and
y(3) ≈ (0.49, 0.49, 0.01, 0.01). Numerical results also show that these points are locally stable.

8 Extensions of the Model

8.1 Random Neighbourhood

In this Subsection we consider a possible extension of our model. Assume there is a fixed number of
points 1, . . . ,K and a set of non-directed graphs

{Gj
}L

j=1
each having points 1, . . . ,K as its vertices.

Assume that at each time n the neighbourhood relations are given by the graph Gηn where ηn are
independent identically distributed random variables taking the value j with probability pj . The need
to consider such a variability of neigbourhood relations may be justified by, for instance, the fact that a
change of environment conditions may lead to a change of the radius and/or direction of interactions.

Denote by Vj
i the neighbourhood of the point i in the graph Gj and by V j

i its cardinal. We assume
that the system is ”regular” in some sense: EV η1

i = V for all i.
Following the proof of Theorem 2.7, one can show that fluid limits of the model described above

satisfy the following differential equation

z
′
i(t) = λ−

L∑

k=1

pkϕk
i (t)e

− P
j∈V k

i

ϕk
j (t)

where ϕk
i (t) are defined in an obvious way. Using the same methods as those used in the proof of

Theorem 1.1, it can be shown that the system with random neighbourhood is stable if λ <
e−1

V
.

8.2 Non-Regular Graphs with Space-Inhomogeneous Input

Although Remark 4.2 provides sufficient conditions for stability in this case, they are not easy to verify.
Here we give some other conditions that are also sufficient for the stability of the system. Assume now
that EV η1

i = Vi, and Vi are not necessarily equal. Put V = max
i

Vi. Assume also that Eξn
i = λi, so that

the input is ”space-inhomogeneous”. Put λ = max
i

λi. Clearly, all the results concerning fluid limits also

hold in this case, and it is easy to see that one can prove the following result.

Theorem 8.1. The system described above is stable provided λ <
e−1

V
.
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