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Abstract. In this paper we investigate an M/M/∞ queue whose pa-
rameters depend on an external random environment that we assume to
be a quasi-Markovian process with finite state space. For this model we
show a recursive formula that allows to compute all the factorial mo-
ments for the number of customers in the system in steady state. The
used technique is based on the calculation of the row moments of the
area of a bidimensional random set. Finally some examples where it
is possible to get explicit formulas are given together with comparisons
with previous known results.

1. Introduction

The M/M/∞ queue is one of the simplest model in queueing theory.
This is due to the joint situation to have a memory-less arrival process
and an infinite set of servers that allows customers to behave independently
from each other. This suddenly stops to be true after introducing some
correlation between customers. In this paper we achieve that by introducing
an independent random environment that modulates the system parameters,
i.e. the arrival rate and the server speeds. A similar study was already
initiated by O’Cinneide and Purdue (1986) where the authors looked at the
case when the environment is given by a finite state Markov process. For
this case they showed how to compute the factorial moments for the number
of customers in the system in steady state. Here we extend their analysis to
the case of a quasi-Markovian random environment.

This extension is interesting both for exploiting the technique previously
developed in D’Auria (2005) and for making the model more attractive for
application purposes. Indeed, despite its simplicity, the M/M/∞ system is
often used to model pure delay systems, such as highways, satellite links or
long communication cables, or to approximate the behavior of multi server
systems. When these kinds of systems are subject to external influences,
such as day time changing rates, it is then helpful to look at extended models,
such as the one proposed in this work, in order to analyze or predict their
behaviors.
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2. Model description

To start, we define the random environment {Γ(t), t ∈ R} with values in
the finite state space E = {1, . . . ,K}. We assume that the sojourn time in
the state i ∈ E, let Ti, is an independent positive random variable whose
distribution function has Laplace transform denoted by τi(s) := E[e−sTi ]. In
the following we show that the Laplace transform is the only information we
need to compute the moments. When the sojourn time in state i ∈ E expires,
the environment jumps to state j ∈ E with probability pij . Denoting by
P := {pij}i,j∈E the routing matrix, we can define the reverse routing matrix

(2.1) Q := Π−1 Pt Π,

where Π := diag(~π) and ~π is the stationary distribution of the Markov
chain generated by P (see Brémaud, 1999).

We assume that when the environment is in state i ∈ E customers arrive
according to a Poisson rate λi ≥ 0. Each of them brings an independent
request of service, σ, that is exponentially distributed with rate µ. All
servers work at constant speed βi = µi/µ ≤ 1. To avoid trivial cases we
assume that µ, λ > 0 where λ := maxi∈E λi. By the results in D’Auria
(2005) the system is stable and we are allowed to study its stationary regime.

We then look at the system at time 0 and we count the number of cus-
tomers still in the system. We order them according to their arrival time
{un}n∈Z with un < un+1 and u−1 < 0 ≤ u0, and we denote by G(σ) the
common exponential distribution function of the {σn}n∈Z.

The n-th customer, n < 0, will be in the system at time 0 iff its service
time, σn, is bigger than the work done by the server it has occupied dur-
ing the time interval [un, 0). We denote this quantity by FΓ(un) and, as
the subscript shows, it is a random quantity that depends on the random
environment Γ. Its value can be computed in the following way,

(2.2) FΓ(t) :=
∫ 0

t
βΓ(u)du.

Denoting by N the number of customers in stationary regime we have
that it can be given by

(2.3) N =
∑
n<0

1{σn > FΓ(un)},

where 1{·} is the indicator function of the set {·}.
An equivalent and more powerful form to write equation (2.3) is obtained

by introducing the arrival point process

(2.4) NΓ :=
∑
n∈Z

δ(un,σn),

that is a Random Point Process (RPP) (see Daley and Vere-Jones, 1988)
which locates one Dirac delta measure to each arrival point {(un, σn)}n∈Z.
The subscript Γ stays to denote thatNΓ depends on the random environment
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by the arrival times {un}n∈Z, such that given a realization of Γ the sequence
belongs to an inhomogeneous Poisson process. More precisely, if we look at
the conditional intensity rate λΓ(A) := E[NΓ(A)|Γ], it is given by

(2.5) λΓ(A) =
∫

A
λΓ(u)duG(dσ).

Using NΓ, equation (2.3) reduces to the following

(2.6) N = NΓ(AΓ),

that is the measure of the random set

(2.7) AΓ := {(u, σ) ∈ R− × R+ : σ > FΓ(u)},

by the random point measure NΓ. Since, given Γ, the point measure NΓ

is a Poisson measure we get that, given Γ, N is a Poisson random variable
with parameter |A|Γ := λΓ(AΓ). Therefore N can be finally written in the
following simplified way

(2.8) N = Po(|A|Γ).

Remark 2.1. A more correct but clumsy notation for |A|Γ would have been
|AΓ|Γ since both the set and the intensity measure are functions of the
environment.

Figure 1. Example of realization.

Figure 1 shows an example of realization where the random environment
has 5 states: the dots are the centers of the Dirac deltas of the RPP NΓ,
while the piecewise linear function FΓ(u) denotes the lower bound of the set
of integration AΓ. The customers present in the system at time 0 are then
the ones whose dots fall in the set AΓ; in the shown example N = 3.
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3. Computing the factorial moments

Before beginning to compute the factorial moments of the random variable
N , it is worthwhile to review some basic results about the different kinds
of moments and their relations with the various generating functions. A
good reference about the following relations especially in connection with
Random Point Processes is Daley and Vere-Jones (1988), Chapter 5.

Given a random variable X, we denote by ψX(s) := E[esX ] its moment
generating function and by φX(z) := E[zX ] its probability generating func-
tion.

The factorial moment of order i of X, f (i)
X is defined as

f
(i)
X := E [(X)i] =

∞∑
n=0

(n)ipn,

where pn = Pr{X = n} and (n)i := n(n − 1) · · · (n − i + 1) is the falling
factorial. It can be directly computed by the i-th derivative of the proba-
bility generating function, i.e. f (i)

X = limz→1 φ
(i)
X (z). Knowing the factorial

moments it is then easy to compute the raw moments. Indeed, by taking the
expectations to both sides of the following known equivalence (Abramowitz
and Stegun, 1964)

Xn =
n∑

i=0

S(i)
n (X)i,

where S
(i)
n is a Stirling Number of the Second Kind, we obtain the following

relation between the n-th moment of X, m(n)
X := E [Xn], and the factorial

moments of order i ≤ n,

(3.1) m
(n)
X =

n∑
i=0

S(i)
n f

(i)
X .

The reverse relation is obtained by using the Stirling Numbers of the First
Kind, s

(n)
i (see Abramowitz and Stegun, 1964), that satisfy the following

known relation

(X)i =
i∑

n=0

s
(n)
i Xn,

so that, taking the expectations of both sides, finally we get

(3.2) f
(i)
X =

i∑
n=0

s
(n)
i m

(n)
X .

It is interesting to notice that relation (3.1) comes directly from using the
fact that ψX(s) = φX(es) and that m(n)

X = lims→0 ψ
(n)
X (s). Indeed,

lim
s→0

ψ
(n)
X (s) = lim

s→0

dn

dsn
φX(es) =

n∑
i=0

S(i)
n φ

(i)
X (1),



M/M/∞ QUEUES IN QUASI-MARKOVIAN RE 5

where in the last equation we used Faá di Bruno’s formula for the expansion
of derivatives of order n for composition of functions (see Abramowitz and
Stegun, 1964) and the fact that lims→0

dn

dsn es = 1.
If X turns out to be a randomized Poisson random variable, i.e. X =

Po(Y ) with Y an additional random variable, we have that

φX(z) = ψY (z − 1),

so that taking the derivatives of order n, we get

lim
z→1

φ
(n)
X (z) = lim

z→1
ψ

(n)
Y (z − 1) = lim

s→0
ψ

(n)
Y (s),

or, in other words, that the factorial moments of X are directly the raw
moments of Y ,

f
(n)
X = m

(n)
Y ,

and the latter often is easier to compute.
This is exactly what happens in our case where, as shown by relation

(2.8), N is a randomized Poisson and that is why we are interested into its
factorial moments rather then directly its raw moments. Indeed we have
that the following relation holds

(3.3) f
(n)
N = m

(n)
|A|Γ ,

and our task reduces to the computation of the raw moments of the area of
the random set AΓ.

4. Computing the row moments of |A|Γ
In this section we compute the row moments of the measure of the set

AΓ, defined in (2.7), when measured by the random intensity measure λΓ,
defined in (2.5). We use a fixed point technique and to this aim we look at
a modified environment process, Γ0, that is the Palm version of the process
Γ, i.e. we assume that in 0 it has a transition. We denote by n ∈ E the first
state it has assumed before 0, i.e. n := Γ0(0−), and by Tn its corresponding
sojourn time. While, as depicted in Figure 1, for the process Γ the sojourn
time in the first state before 0 would be given by a residual sojourn time, for
the process Γ0 it is distributed as any other sojourn time corresponding to
the same state. We define by A0n := (AΓ0 |Γ0(0−) = n), n ∈ E, the set AΓ0

conditioned to the event that the first state occupied by the environment
before 0 is the state n, and we call |A0n| its measure.

Figure 2 shows as example the set A0n when n = 3, together with its
decomposition in the set C3 and the set Tβ3T3A05. To this we have defined
by Cn the restriction of the set A0n up the first transition of the process Γ0,
i.e.

(4.1) Cn := A0n ∩ {(x, y) ∈ R− × R+||x| < Tn},
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Figure 2. Decomposition of |A03| as |C3|+ |TzA05|.

and by TzA the z-translated version of the set A in the vertical direction,
i.e.

(4.2) TzA := {(x, y) ∈ R2|(x, y − z) ∈ A}.

We denote by j ∈ E the state of the environment before the first transition
before 0, i.e. j := Γ0(−T−n ), so that, −Tn being a regeneration point for
the process Γ0, we have the independence of the sets Cn and TβnTnA0j

conditioned to the values of the states before and after the transitions, i.e.
j and n. βnTn = FΓ0(−Tn) is the exact amount of work the non-empty
servers have done during the time interval [−Tn, 0) being in state n.

Thanks to this we can write down the following set of stochastic equations

(4.3) |A0n|
d= |Cn|+

K∑
j=1

1{n← j}|TβnTnA0j |,

where the indicator function 1{n← j} selects the backward state transition
of the environment from the state n to the state j; this would happen,
according to definition (2.1), with probability qnj .

Thanks to the fact that along the vertical axis the measure function is
given by G that is exponential we have that the following lemma holds:

Lemma 4.1. Given the transformation Tz, defined in (4.2), we have that

(4.4) |TzA| = e−µz|A|,

for any set A ⊂ R− × R+.
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Proof. By using definition (2.5) we have

λΓ0(TzA) =
∫
TzA

λΓ0(u)du e
−µσdσ

= e−µz

∫
TzA

λΓ0(u)du e
−µ(σ−z)dσ = e−µzλΓ0(A).

�

By using Lemma 4.1, equation (4.3) simplifies in the following

(4.5) |A0n|
d= |Cn|+ e−µβnTn

K∑
j=1

1{n← j}|A0j |,

that is the starting point to prove the following main result:

Theorem 4.2. Let us define ~m(i)
0 ∈ RK as the column vector whose j-th co-

ordinate is the i-th moment of the random variable |A0j |, i.e. m(i)
0j := m

(i)
|A0j |

then the following relation holds

(4.6)
n∑

j=0

(−1)j

(
n

j

)
Rn−jBn ~m

(j)
0 = 0,

where R := diag (ρi), ρi := λi/µi and the matrix Bn := diag
(
τ−1
i (nµi)

)
−Q.

It is then possible to express the n-th moment vector ~m
(n)
0 in terms of the

previous ones, ~m(j)
0 , j = 0, . . . , n− 1, in the following way

(4.7) ~m
(n)
0 =

n−1∑
j=0

(−1)n−1−j

(
n

j

)
B−1

n Rn−jBn ~m
(j)
0 .

Proof. We first compute the values of the variable |Cn| in the following way

Cn = λn

∫ Tn

0
e−µnxdx = ρn(1− e−µnTn).

Then substituting its value in equation (4.5), it gives

(4.8) |A0n|
d= ρn(1− e−µnTn) + e−µnTn

K∑
j=1

1{n← j}|A0j |,

that can be rewritten as

(4.9) |A0n| − ρn
d=

K∑
j=1

1{n← j}(|A0j | − ρn)e−µnTn .

We denote by ψ0n(s) := E
[
es|A0n|

]
the moment generating function of |A0n|

so that applying the exponential function to both members of equation (4.9)
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previously multiplied by s and then taking the expectation, we obtain

ψ0n(s)e−sρn = E

 K∑
j=1

qnje
s(A0j−ρn)e−µnTn


= E

 K∑
j=1

qnjψ0j(se−µnTn)e−sρne−µnTn

 .
Last expression can be written in matrix form in the following way

(4.10) e−sR ~ψ0(s) = E
[
e−sRT(Q~ψ0)(sT)

]
,

where T := diag(e−µnTn) and where with notation ~v(W), with W a diag-
onal matrix, we denote a vector whose j-th component is vj(wjj). We use
then the following matrix formulas for derivatives

(4.11) D(n)[e−sW~v(s)] =
n∑

j=0

(−1)n−j

(
n

j

)
e−sWWn−jD(j)[~v(s)],

and

(4.12) D(n)[~v(sW)] = Wn~v(n)(sW),

to compute the n-th derivative of both sides of equation (4.10) so that
n∑

j=0

(−1)n−j

(
n

j

)
e−sRRn−j ~ψ

(j)
0 (s) =

= E

 n∑
j=0

(−1)n−j

(
n

j

)
e−sRTRn−jTn−jD(j)[Q~ψ0(sT)]


= E

 n∑
j=0

(−1)n−j

(
n

j

)
e−sRTRn−jTn(Q~ψ

(j)
0 )(sT)

 .
Remembering that ~m

(n)
0 = lims→0 ψ

(n)
0 (s) and taking the limit of last ex-

pression as s→ 0, we get

(4.13)
n∑

j=0

(−1)n−j

(
n

j

)
Rn−j ~m(j) = E

 n∑
j=0

(−1)n−j

(
n

j

)
Rn−jTnQ~m

(j)
0

 .
Multiplying on the left side by (−1)−nE[Tn]−1, the last expression can be
easily rearranged in

(4.14)
n∑

j=0

(−1)−j

(
n

j

)
Rn−j [E [Tn]−1 −Q]~m(j)

0 = 0,

that gives the result. �
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It is remarkable that it is possible to express equation (4.6) in terms of
the forward transition chain P. The result is contained in the following
corollary.

Corollary 4.3. A result similar to equation (4.6) is valid for the row vector

~m
,(i)
0 :=

(
~m

(i)
0

)t
, that involves the matrix P instead of the matrix Q, i.e.

(4.15)
n∑

j=0

(−1)j

(
n

j

)
~m

,(j)
0 ΠB′

n Rn−j = 0,

where the matrix B′
n := diag

(
τ−1
i (nµi)

)
−P

Proof. After taking the transposition of both sides of equation (4.14) we get

0 =
n∑

j=0

(−1)j

(
n

j

)
~m

,(j)
0 [E [Tn]−1 −Qt]Rn−j

and multiplying on the right by Π

=
n∑

j=0

(−1)j

(
n

j

)
~m

,(j)
0 ΠΠ−1 [E [Tn]−1 −Qt]ΠRn−j

=
n∑

j=0

(−1)j

(
n

j

)
~m

,(j)
0 Π [E [Tn]−1 −Π−1QtΠ]Rn−j

that gives the proof taking into account equation (2.1). �

Given the raw moments of the area |AΓ0 |, we can successively compute
the moments of the areas of the sets Aj := (AΓ|Γ(0) = j), j ∈ E. Following
previous definitions we define m(i)

j := m
(i)
|Aj |. Similarly to equation (4.3) we

have the following equation

(4.16) |An|
d= |C∗n|+

K∑
j=1

1{n← j}|TβnT ∗nA0j |,

with |C∗n| = ρn(1 − e−µnT ∗n ). T ∗n refers to a residual sojourn time of the
environment in state n ∈ E; this means that the Laplace transform of its
distribution is given by τ∗n(s) = τ̄n(1− τn(s))/s, with τ̄n := E[Tn]−1. For the
vector of row moments ~m(n) the following theorem holds.

Theorem 4.4. The vector ~m(n) satisfies the following relation with the vec-
tor ~m(n)

0

(4.17)
n∑

j=0

(−1)j

(
n

j

)
Rn−j [~m(j) −En ~m

(j)
0 ] = 0,
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with En := diag(τ∗i (nµi)/τi(nµi)). Therefore the vector ~m(n) can be com-
puted from the previous moments {~m(j)}j<n and the corresponding vectors
{~m(j)

0 }j≤n in the following way

(4.18) ~m(n) = En ~m
(n)
0 +

n−1∑
j=0

(−1)n−1−j

(
n

j

)
Rn−j [~m(j) −En ~m

(j)
0 ],

finally

(4.19) m(n) := m
(n)
AΓ

= ~m(n)~π.

Proof. Starting by equation (4.16) and following the same calculations that
brought us from equation (4.3) to equation (4.14), we get

(4.20)
n∑

j=0

(−1)j

(
n

j

)
Rn−j [E [T∗n]−1 ~m(j) −Q~m

(j)
0 ] = 0,

that after subtracting equation (4.14) gives

(4.21)
n∑

j=0

(−1)j

(
n

j

)
Rn−j [E [T∗n]−1 ~m(j) − E [Tn]−1 ~m

(j)
0 ] = 0,

and by multiplying on the right by E [T∗n] we finally get the result. �

In order to check our results we compare equation (4.15) for the expo-
nential case with results in O’Cinneide and Purdue (1986) here repeated in
formula (4.22). For this case since T ∗i ∼ Ti, we have that ~m(n) = ~m

(n)
0 .

Remark 4.5. It is worth to notice that in O’Cinneide and Purdue (1986),
they actually computed the factorial moments of the random row vector
(N 1{Γ0 = i})i∈E while here we compute the factorial moments of the row
vector (N |Γ0 = i)i∈E . This explains the presence, in formula (4.22), of the
additional factor given by matrix Π.

Corollary 4.6. In case the sojourn times Tj are exponentially distributed
with parameters τ̄j we have that with n > 0

(4.22) ~m′(n)Π (nM−G) = n ~m′(n−1) Λ

where M := diag(µi), Λ := diag(λi) and G := T̄(I−P), with T̄ := diag(τ̄j),
is the generator of the Environment that turns out to be a Markov Process.

Proof. When the sojourn times Tj are exponentially distributed we have
that

T−n = nMT̄−1 + I.

In equation (4.7) we have that

B−1
n Rn−jBn = [T̄Bn]−1Rn−j [T̄Bn]
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and by defining the generator of the reverse-time Markov process H := T̄(Q− I)

= [nM−H]−1Rn−j [nM−H],

so that we can rewrite equation (4.6) as

(4.23)
n∑

j=0

(−1)n−j

(
n

j

)
Rn−j [nM−H] ~m(j) = 0.

Since ~m(0) = ~1 we have H~m(0) = 0, and therefore equation (4.23) coincides
with equation (A.3) when ~v (k) := ~m(k) and Hk = H. This implies that
the assumption expressed in (A.1) gives the only possible solution for the
{~m(k)}k∈N.

By taking the transposition of equation (A.1) we get

~m′(k)(ΠΠ−1)(kM−Ht) = k ~m′(k−1)Λ,

that after multiplying on the right side by Π and simplifying reduces to

~m′(k)Π(kM−Π−1HtΠ) = k ~m′(k−1)Λ,

that gives the result noticing that G = Π−1HtΠ. �

5. Some explicit formulas - Case K = 2

Formulas (4.7) and (4.18) show that generally to find the n-th moment
of the random number of users in the system involves in a complex way the
knowledge of all previous moments. Indeed, the exponential case, that was
already solved in O’Cinneide and Purdue (1986), is easier as the n-th vector
of moments is related only by a factor to the (n−1)-th one. That was anyway
hidden in a non-trivial way in formula (4.7) so that there could be some other
special cases where an easier expression holds. In this section we give a look
to the case when the environment has only two stages, i.e. K = 2. That
is a very special case; indeed, by assuming all sojourn times exponentially
distributed, it is known how to compute the complete distribution of the
number of customers in the system at steady state (see Keilson and Servi
(1993), Baykal-Gursoy and Xiao (2004) and D’Auria (2005)).

By expliciting equation (4.9) for the case K = 2 we get

|A01| − ρ1
d= (|A02| − ρ1)e−µ1T1(5.1)

|A02| − ρ2
d= (|A01| − ρ2)e−µ2T2 .(5.2)

We define m̃(k)
0i := E[(|A0i| − ρ1)k] and take the mean of the n-powers of

expression (5.1) so getting

(5.3) m̃
(n)
01 = m̃

(n)
02 τ1(nµ1).

By adding and subtracting ρ1 to both sides of equation (5.2) we get

(|A02| − ρ1)− ρ∗
d= (|A01| − ρ1)e−µ2T2 − ρ∗e−µ2T2 ,
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with ρ∗ = ρ2−ρ1. Then using equation (5.1) we obtain a recursive equation
involving only |A02| − ρ1,

(|A02| − ρ1)− ρ∗
d= (|A02| − ρ1)e−µ1T1e−µ2T2 − ρ∗e−µ2T2 .

Taking the n-th power and then the expectation of both sides we get
n∑

k=0

(−1)n−k

(
n

k

)
ρn−k
∗ m̃

(k)
02 = τ2(nµ2) E[(|A02| − ρ1)e−µ1T1 − ρ∗]

= τ2(nµ2)
n∑

k=0

(−1)n−k

(
n

k

)
ρn−k
∗ τ1(kµ1) m̃

(k)
02 ,

that, taking into account equation (5.3), can be rearranged to get the fol-
lowing

(5.4)
n∑

k=0

(−1)n−k

(
n

k

)
ρn−k
∗ (τ−1

2 (nµ2)τ−1
1 (kµ1)− 1) m̃(k)

01 = 0.

Theorem 5.1. Assuming that the sojourn times of state 2 are exponentially
distributed, i.e. T2 ∼ Exp(τ̄2), the solution of formula (5.4) is given by

(5.5) m̃
(n)
01 =

(
µ2 ρ∗
τ̄2

)n n∏
k=1

k τ−1
1 ((k − 1)µ1)

τ−1
1 (kµ1)τ−1

2 (kµ2)− 1
,

and therefore

(5.6) m̃
(n)
02 =

(
µ2 ρ∗
τ̄2

)n

τ−1
1 (nµ1)

n∏
k=1

k τ−1
1 ((k − 1)µ1)

τ−1
1 (kµ1)τ−1

2 (kµ2)− 1
.

Finally

(5.7) m
(n)
0i =

n∑
k=0

(
n

k

)
ρn−k
1 m̃

(k)
0i .

Proof. Substituting τ−1
2 (s) = 1 + s/τ̄2 in equation (5.4) and rearranging it,

we get

(5.8)
n∑

k=0

(−1)n−k

(
n

k

)
ρn−k
∗

(
n
µ2

τ̄2
− (τ1(kµ1)− 1)

)
m̃

(k)
01

τ1(kµ1)
= 0.

Then applying Lemma A.1 in the scalar case, with M = (µ2/τ̄2), R = (ρ∗),
Hk = (τ1(kµ1) − 1) and ~v (k−1) = (m̃(k)

01 /τ1(kµ1)), we notice that a set of
solutions is given by

(5.9)
(
τ−1
2 (kµ2)− τ1(kµ1)

) m̃
(k)
01

τ1(kµ1)
= k ρ∗

µ2

τ̄2

m̃
(k−1)
01

τ1((k − 1)µ1)
,

that is then uniquely defined given that m̃(0)
01 = 1. Therefore equation (5.5)

holds. Equation (5.6) results by applying (5.3) to (5.5) and finally equation
(5.7) comes from the fact that m(n)

0i = E[((|A0i| − ρ1) + ρ1)k]. �
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Example 5.2. Case T1 ∼ Exp(γ̄1). In this special case equation (5.5) sim-
plifies in

m̃
(n)
01 = ρn

∗
(τ1/µ1)n

(τ1/µ1 + τ2/µ2)n
,

with (·)n being the falling factorial. Therefore the moment generating
function of |A01| − ρ1 is given by the Kummer function M(τ1/µ1, τ1/µ1 +
τ2/µ2, ρ∗s) (see Abramowitz and Stegun (1964)), in accordance to what is
shown in Baykal-Gursoy and Xiao (2004) and D’Auria (2005).

Example 5.3. Case T1 ∼ Gamma(κ, 1/γ̄1). For this case we have that
τ−1
1 (kµ1) = (1 + kµ1/τ̄1)κ. Therefore equation (5.5) simplifies in

m̃
(n)
01 =

ρn
∗ [(τ1/µ1)n]κ∏n

k=1 [(τ1/µ1 + k)κ(τ2/µ2 + k)− (τ2/µ2)(τ1/µ1)κ]
.

6. Conclusions

In this paper we showed that using a matrix-geometric approach it is
possible to solve the problem to find the factorial moments of the random
number of customers in an M/M/∞ system when its parameters are mod-
ulated by a quasi-markovian random environment. We showed that this
is possible by looking at this random variable as the random measure of a
bidimensional random set by a modulated Poisson random measure. Finally
the case when the environment has only 2 states is more deeply investigated
and it is shown that explicit formulas are obtainable given that one state
has exponential sojourn times. It is then plausible to believe that for this
last case it would be possible to get an explicit expression for the complete
characteristic function.

Appendix A. Technical Lemmas

Lemma A.1. If for k > 0

(A.1) (kM−Hk)~v (k) = kRM~v (k−1),

where M,R, {Hk}k≥0 are general matrices with H0v
(0) = 0, than the fol-

lowing relation holds for k ≤ n
(A.2)
k−1∑
j=0

(−1)n−1−j

(
n

j

)
Rn−j [nM−Hj ]~v (j) = (−1)n−k

(
n

k

)
Rn−k [kM−Hk]~v (k).

In particular for k = n we have

(A.3)
n∑

j=0

(−1)n−j

(
n

j

)
Rn−j [nM−Hj ]~v (j) = 0.
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Proof. As base of induction assume k = 1 then we have

(−1)n−1Rn[nM−H0]~v (0) = (−1)n−1Rn[nM]~v (0)

= (−1)n−1nRn−1RM~v (0)

= (−1)n−1

(
n

1

)
Rn−1(M−H1)~v (1)

Now assuming the relation valid for k < n we have for k + 1 that
k∑

j=0

(− 1)n−1−j

(
n

j

)
Rn−j [nM−Hj ]~v (j)

= (−1)n−k

(
n

k

)
Rn−k [kM−Hk]~v (k) + (−1)n−1−k

(
n

k

)
Rn−k[nM−Hk]~v (k)

= (−1)n−1−k

(
n

k

)
Rn−k(n− k)M~v (k)

= (−1)n−1−k

(
n

k

)
Rn−k−1(n− k)RM~v (k)

and by equation (A.1),

= (−1)n−1−k

(
n

k

)
n− k
k + 1

Rn−k−1((k + 1)M−Hk+1)~v (k+1)

= (−1)n−(k+1)

(
n

k + 1

)
Rn−(k+1)((k + 1)M−Hk+1)~v (k+1)

�
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