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Abstract

We study asymptotic properties of the Green metric associated to transient
random walks on countable groups. We prove that the rate of escape of the
random walk computed in the Green metric equals its asymptotic entropy. The
proof relies on integral representations of both quantities with the extended
Martin kernel. In the case of finitely generated groups, where this result is
known (Benjamini & Peres [3]), we give an alternative proof relying on a
version of the so-called fundamental inequality (relating the rate of escape,
the entropy and the logarithmic volume growth) extended to random walks
with unbounded support.

1 Introduction

Let Γ be an infinite countable group and let (Zn) be a transient random walk on Γ.
In order to study asymptotic properties of the random walk, we define the Green

(or hitting) metric:
dG(x, y) = − ln Px[τy < ∞] ,

where τy is the hitting time of the element y by the random walk started at x.
Looking at the random walk through the Green metric leads to nice geometrical

interpretation of probabilistic quantities describing the long time behaviour of the
walk. We illustrate this claim by showing that the rate of escape computed in dG

coincides with the asymptotic entropy of the random walk, see Theorem 1.1. As
another example of interest in the Green metric, we also explain how the Martin
compactification of Γ can be interpreted as the Busemann compactification of Γ
equiped with dG. In a forthcoming paper [5] we use the Green metric to study fine
geometric properties of the harmonic measure on boundaries of hyperbolic groups.
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Before stating our theorem, let us first recall some definitions. The rate of escape
of the random walk computed in the Green metric (in short the Green speed) is
defined by the almost sure limit

`G
def.
= lim

n→∞

dG(e, Zn)

n
.

The asymptotic entropy of the random walk is defined by

h
def.
= lim

n→∞

− ln µn(Zn)

n

where µ is the law of the increment of the random walk (i.e. the law of Z1) and
µn is the n-th convolution power of µ (i.e. the law of Zn). This limit almost surely
exists and is finite if the entropy of µ

H(µ)
def.
= −

∑
x∈Γ

µ(x) ln µ(x)

is finite. The asymptotic entropy h plays a very important role in the description
of the large time behaviour of the random walk as illustrated in Derriennic [9, 10],
Guivarc’h [15], Kaimanovich [17], Kaimanovich & Vershik [18], or Vershik [24] among
others. For instance it is known that h = 0 if and only if the Poisson boundary of
the random walk is trivial.

Our main result is the following

Theorem 1.1 For any transient random walk on a countable group such that H(µ) <
∞, the asymptotic entropy h and the Green speed `G are equal.

In part 2 we prove this result using an integral representation of h on the Martin
boundary of Γ (Lemma 2.6) and interpreting the Green speed of the random walk as
a limit of a Martin kernel (Proposition 2.4). This proof does not use any quantitative
bound on the transition probabilities of the random walk and therefore applies to
transient random walks on any countable groups even non-finitely generated ones.

In part 3 we consider the case of a finitely generated group Γ and we discuss
the connection of Theorem 1.1 with the so-called ’fundamental inequality’ h ≤ ` · v
where ` and v denote the rate of escape and the logarithmic volume growth in some
left invariant metric on the group with a finite first moment. We first derive a new
general version of the fundamental inequality for any random walk (with bounded
or unbounded support) and any (geodesic or non-geodesic) left invariant metric on
the group with a finite first moment, see Proposition 3.4. Then we use heat kernel
estimates to get bounds on the logarithmic volume growth in the Green metric, see
Proposition 3.1. Thus we finally obtain another proof of Theorem 1.1, valid for
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finitely generated groups of superpolynomial volume growth. In the case of groups
with polynomial volume growth, h and `G are both zero.

For finitely generated groups, Benjamini & Peres [3] gave a different proof of the
equality h = `. Even if their proof is written for finitely supported random walks,
their method also works for random walks with infinite support (see the proof of
Proposition 3.1).

2 Countable groups

2.1 The Green metric

We will give the definition of the Green metric associated to transient random walks
and recall some of its properties from Blachère & Brofferio [4].

Let µ be a probability measure on Γ whose support generates the whole group
Γ. (We will always make this generating hypothesis). We do not assume that µ is
symmetric nor that it is finitely supported. Let (Xk) be a sequence of i.i.d. random
variables whose common law is µ. The process

Zk
def.
= xX1X2 · · ·Xk,

with Z0 = x ∈ Γ, is an irreducible random walk on Γ starting at x with law µ. We
denote Px and Ex, respectively, the probability and expectation related to a random
walk starting at x. When x = e (the identity of the group), the exponent will be
omitted.

From now on, we will always assume the random walk to be transient i.e., with
positive probability, it never returns to its starting point. This assumption is always
satisfied if Γ is not a finite extension of Z or Z2 (see Woess [25, Sect. I.3.B]). On
a finite extension of Z or Z2, there exists a canonical projection ϕ onto an Abelian
subgroup ({e}, Z or Z2), see Alexopoulos [1]. We define the first moment of the
canonical projection of the random walk:

M1(µ)
def.
=

∑
x∈Γ

‖ϕ(x)‖µ(x) ,

where ‖ϕ(x)‖ is the norm of ϕ(x). When M1(µ) < ∞, the random walk is transient
if and only if it has a non-zero drift (

∑
x∈Γ ϕ(x)µ(x) 6= 0). But there are examples of

recurrent and transient random walks with M1(µ) = ∞. There are even examples of
transient symmetric random walks on Z. For these results and examples, see Spitzer
[23].

The Green function G(x, y) is defined as the expected number of visits at y
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for a random walk starting at x:

G(x, y)
def.
= Ex

[
∞∑

n=0

1I{Zn=y}

]
=

∞∑
n=0

Px[Zn = y] .

Since the random walk is chosen to be transient, the Green function is finite for
every x and y.

Let τy be the first hitting time of y by the random walk:

τy
def.
= inf{k ≥ 0 : Zk = y} .

When y is never attained, let τy = ∞. The hitting probability of y starting at x
is

F (x, y)
def.
= Px[τy < ∞] .

Note that F (x, y) is positive since the support of µ generates Γ, and that F and
G are invariant by left diagonal multiplication. In particular, G(y, y) = G(e, e).
A straightforward computation (using the strong Markov property) shows that the
functions F and G are proportional:

G(x, y) = G(y, y)F (x, y) = G(e, e)F (x, y) . (1)

The metric we will use is the Green metric (or Hitting metric, defined in [4]):

dG(x, y)
def.
= − ln F (x, y) = ln G(e, e)− ln G(x, y) .

Throughout the article, we will call (with some abuse of notation) metric any
non-negative real function d(·, ·) on Γ × Γ which satisfies the triangle inequality,
vanishes on the diagonal and satisfies

d(x, y) = 0 = d(y, x) =⇒ x = y . (2)

Lemma 2.1 ([4] Lemma 2.1) The function dG(·, ·) is a left invariant metric on
Γ.

Proof
As F (x, y) is bounded by 1, then dG(·, ·) is non-negative. It is also clear that
F (x, x) = 1 and therefore dG(x, x) = 0 for any x ∈ Γ.

The invariance of F (·, ·) by left diagonal multiplication implies the same property
for dG(·, ·). Also note that since the random walk is transient we have:

∀x 6= y, 1 > Px[τ ′x < ∞] ≥ Px[τy < ∞]Py[τx < ∞] = F (x, y)F (y, x) ,
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where τ ′x
def.
= inf{k ≥ 1 : Zk = x}. Thus

dG(x, y) = dG(y, x) = 0 ⇐⇒ F (x, y) = F (y, x) = 1 ⇐⇒ x = y .

Finally,
Px[τz < ∞] ≥ Px[τy < ∞]Py[τz < ∞]

leads to the triangular inequality: dG(x, z) ≤ dG(x, y) + dG(y, z). 2

Remark 2.2 The converse implication in (2) is true for the Green metric as soon
as Γ is not isomorphic to Z. Indeed, we can show that if there exist x 6= y ∈ Γ
such that dG(x, y) = 0 then Γ is isomorphic to Z. (one first proves that #{z ∈
Supp(µ)\{e} s.t. dG(e, z) = 0} ≤ 1).

Observe that, if µ is symmetric (µ(x) = µ(x−1) for all x ∈ Γ), then the Green
function G(·, ·) and the Green function dG are also symmetric and therefore dG

becomes a genuine distance on Γ.

2.2 Entropy and Green speed

The measure µ is now supposed to have finite entropy:

H(µ)
def.
= −

∑
x∈Γ

µ(x) ln µ(x) < ∞ .

The first moment of µ in the Green metric is, by definition, the expected Green
distance between e and Z1, which is also the expected Green distance between Zn

and Zn+1 for any n and has the following analytic expression:

E[dG(e, Z1)] =
∑
x∈Γ

µ(x) · dG(e, x) .

Lemma 2.3 The finiteness of the entropy H(µ) implies the finiteness of the first
moment of µ with respect to the Green metric.

Proof
By construction, the law of Z1 = X1 under P is µ. Since P[τx < ∞] ≥ P[Z1 = x] =
µ(x) holds, we have∑

x∈Γ

µ(x) · dG(e, x) = −
∑
x∈Γ

µ(x) · ln(P[τx < ∞]) ≤ −
∑
x∈Γ

µ(x) · ln(µ(x)) = H(µ) .

So that: H(µ) < ∞ =⇒ E[dG(e,X1)] < ∞.
2
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Let `G be the rate of escape of the random walk Zn in the Green metric dG(e, .):

`G = `G(µ)
def.
= lim

n→∞

dG(e, Zn)

n
= lim

n→∞

− ln F (e, Zn)

n
= lim

n→∞

− ln G(e, Zn)

n
,

since the functions F (·, ·) and G(·, ·) differ only by a multiplicative constant. We
call `G the Green speed. Under the hypothesis that µ has finite entropy, by the
sub-additive ergodic Theorem (Kingman [22], Derriennic [9]), this limit exists almost
surely and in L1.

The sub-additive ergodic Theorem of Kingman also allows one to define the
asymptotic entropy as the almost sure and L1 limit:

h
def.
= lim

n→∞

− ln µn(Zn)

n
,

where µn is the nth convolution power of the measure µ.
Taking expectations, we deduce that h also satisfies

h = lim
n

H(µn)

n
.

The properties of the asymptotic entropy are studied in great generality in the
articles mentioned in the introduction. In particular, it turns out that h can also be
interpreted as a Fisher information. We shall use this fact to conclude the proof of
our Theorem, see Lemma 2.6.

2.3 Martin boundary and proof of Theorem 1.1

The Martin kernel is defined (using (1)) for all (x, y) ∈ Γ× Γ by

K(x, y)
def.
=

G(x, y)

G(e, y)
=

F (x, y)

F (e, y)
.

The Martin kernel continuously extends in a compactification of Γ called the Martin
compactification Γ ∪ ∂MΓ where ∂MΓ is the Martin boundary. Let us briefly
recall the construction of ∂MΓ: let Ψ : Γ → C(Γ) be defined by y 7−→ K(·, y).
Here C(Γ) is the space of real valued functions defined on Γ endowed with the
topology of pointwise convergence. It turns out that Ψ is injective and thus we may
identify Γ with its image. The closure of Ψ(Γ) is compact in C(Γ) and, by definition,
∂MΓ = Ψ(Γ) \ Ψ(Γ) is the Martin boundary. In the compact space Γ ∪ ∂MΓ, for
any initial point x, the random walk Zn almost surely converges to some random
variable Z∞ ∈ ∂MΓ (see for instance Dynkin [12] or Woess [25]).

We note that, by means of the Green metric, one can also consider the Martin
compactification as a special example of a Busemann compactification. We recall
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that the Busemann compactification of a proper metric space (X, d) is obtained
through the embedding Φ : X → C(X) defined by y 7−→ d(·, y) − d(e, y). (Here
e denotes an arbitrary base point.) In general, C(X) should be endowed with the
topology of uniform convergence on compact sets. The Busemann compactification
of X is the closure of the image Φ(X) in C(X). We refer to Ballmann, Gromov
& Schroeder [2] and to Karlsson & Ladrappier [20] and the references therein for
further details.

If one now chooses as X the group Γ itself and for the distance d the Green
metric, both constructions of the Martin and Busemann compactifications coincide
as it is straightforward from the relation:

dG(·, y)− dG(e, y) = − ln K(·, y) .

We first prove that the Green speed can be expressed in terms of the extended
Martin kernel. Theorem 1.1 will then be a direct consequence of the formulas in
Proposition 2.4 and Lemma 2.6. For that purpose we need to define the reversed
law µ̃:

∀x ∈ Γ , µ̃(x)
def.
= µ(x−1) .

Note that H(µ̃) = H(µ).

Proposition 2.4 Let µ be a probability measure on Γ with finite entropy H(µ) and
whose support generates Γ. Let (Zn) be a random walk on Γ of law µ (starting at e)
and let X̃1 be an independent random variable of law µ̃. Then

`G = EẼ[− ln K(X̃1, Z∞)] ,

where Ẽ refers to the integration with respect to the random variable X̃1 and E refers
to the integration with respect to the random walk (Zn).

Proof
As µ is supposed to have finite entropy, `G is well defined as an almost sure and L1

limit. We will prove that the sequence

E[dG(e, Zn+1)− dG(e, Zn)] = E[− ln G(e, Zn+1) + ln G(e, Zn)] ,

converges to EẼ[− ln K(X̃1, Z∞)]. Since its limit in the Cesaro sense is `G, it implies
the formula in Proposition 2.4.

By definition of the reversed law µ̃, X̃−1
1 has the same law as X1 the first in-

crement of the random walk (Zn). Note also that X2 · · ·Xn+1 has the same law as
Zn = X1 · · ·Xn. Since we have assumed that X̃1 is independent of the sequence
(Zn), Zn+1 = X1 ·X2 · · ·Xn+1 has the same law as X̃−1

1 ·Zn and therefore, using the
translation invariance, G(e, Zn+1) has the same law as G(X̃1, Zn). Thus

E[− ln G(e, Zn+1) + ln G(e, Zn)] = EẼ[− ln G(X̃1, Zn) + ln G(e, Zn)]

= EẼ[− ln K(X̃1, Zn)] .
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By continuity of the Martin kernel up to the Martin boundary, for every x ∈ Γ,
the sequence K(x, Zn) almost surely converges to K(x, Z∞). We need an integrable
bound for − ln K(X̃1, Zn) (uniformly in n) to justify the convergence of the expec-
tation.

To prove that − ln K(X̃1, Zn) cannot go too far in the negative direction, we first
prove a maximal inequality for the sequence (K(X̃1, Zn))n following Dynkin [12].

Lemma 2.5 For any a > 0,

PP̃[sup
n

K(X̃1, Zn) ≥ a] ≤ 1

a
.

where P̃ refers to the measure associated to the random variable X̃1 and P refers to
the measure associated to the random walk (Zn).

Proof
We fix an integer R. Let σR be the time of the last visit to the ball BG(e,R) for
the random walk (Zn). (We will only consider this random time for starting points
within BG(e,R). Since the random walk is transient, σR is well defined and almost
surely finite.) Let us define the sequence (ZσR−k) (k ∈ N). As this sequence (in Γ)
is only defined for k ≤ σR, we take the following convention for negative indices:

{k > σR} =⇒ {ZσR−k
def.
= ?} ,

so that the sequence (ZσR−k)k∈N is well defined and takes its values in Γ∪{?}. Note
that ZσR

takes its value in BG(e,R).
Let us call Fk the σ-algebra generated by (ZσR

, . . . , ZσR−k) and observe that

1I{k≤σR} ∈ Fk ,

since {k ≤ σR} means that none of ZσR
, . . . , ZσR−k equals ?. With the convention

that, for any x ∈ Γ, K(x, ?) = 0, we can define, for any x in Γ, the non-negative
sequence (K(x, ZσR−k)) (k ∈ N). This sequence is adapted to the filtration (Fk) and
we will prove, following Dynkin [12, §6,7], that it is a supermartingale with respect
to (Fk).

For this purpose, let us check that for any positive integer k and any sequence
z0, z1, . . . , zk−1 in Γ ∪ {?} (with z0 ∈ BG(e,R)),

E

[
K(x, ZσR−k)

k−1∏
j=0

1I{ZσR−j=zj}

]

=
(
K(x, zk−1)− δx(zk−1)G(e, x)−1

)
· E

[
k−1∏
j=0

1I{ZσR−j=zj}

]
. (3)
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We first compute the left-hand side of (3) in the case where none of z0, z1, . . . , zk−1

equals ?. Using first that K(x, ?) = 0,∑
zk∈Γ∪{?}

P[ZσR
= z0, . . . , ZσR−(k−1) = zk−1, ZσR−k = zk] ·K(x, zk)

=
∑
zk∈Γ

P[ZσR
= z0, . . . , ZσR−k = zk] ·K(x, zk)

=
∑
zk∈Γ

P[k ≤ σR, ZσR
= z0, . . . , ZσR−k = zk] ·K(x, zk) ,

since the fact that none of z0, . . . , zk equals ? means in particular

k⋂
j=0

{ZσR−j = zj} ⊂ {k ≤ σR} .

Then∑
zk∈Γ∪{?}

P[ZσR
= z0, . . . , ZσR−(k−1) = zk−1, ZσR−k = zk] ·K(x, zk)

=
∑
zk∈Γ

∞∑
m=k

P[σR = m, Zm = z0, . . . , Zm−k = zk] ·K(x, zk)

=
∑
zk∈Γ

∞∑
m=k

P[Zm−k = zk]µ(z−1
k zk−1) · · ·µ(z−1

1 z0)Pz0 [σR = 0] ·K(x, zk)

= µ(z−1
k−1zk−2) · · ·µ(z−1

1 z0)Pz0 [σR = 0]
∑
zk∈Γ

G(e, zk)µ(z−1
k zk−1) ·K(x, zk)

= µ(z−1
k−1zk−2) · · ·µ(z−1

1 z0)Pz0 [σR = 0]
∑
zk∈Γ

G(x, zk)µ(z−1
k zk−1)

= µ(z−1
k−1zk−2) · · ·µ(z−1

1 z0)Pz0 [σR = 0] (G(x, zk−1)− δx(zk−1)) .

Using the same kind of computation we get that the right-hand side of (3) equals

∞∑
m=k−1

P[σR = m,Zm = z0, . . . , Zm−(k−1) = zk−1]
(
K(x, zk−1)− δx(zk−1)G(e, x)−1

)
=

∞∑
m=k−1

P[Zm−(k−1) = zk−1]µ(z−1
k−1zk−2) · · ·µ(z−1

1 z0)Pz0 [σR = 0]

×
(
K(x, zk−1)− δx(zk−1)G(e, x)−1

)
= µ(z−1

k−1zk−2) · · ·µ(z−1
1 z0)Pz0 [σR = 0] (G(x, zk−1)− δx(zk−1)) .
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So (3) is true as soon as z0, . . . , zk−1 take values in Γ. Now suppose that zj = ? for
some j ≤ k − 1, then

{ZσR−j = zj} =⇒ {ZσR−(k−1) = ?} =⇒ {ZσR−k = ?} .

Since K(x, ?) = 0, the left-hand side of (3) is zero. To check that the right-hand
side is also zero, observe that

zk−1 6= ? =⇒ 1I{ZσR−j=zj} · 1I{ZσR−(k−1)=z(k−1)} = 0 =⇒ E

[
k−1∏
j=0

1I{ZσR−j=zj}

]
= 0 ,

and, as x ∈ Γ,

zk−1 = ? =⇒ K(x, zk−1) = 0 and δx(zk−1) = 0 .

The proof of (3) is now complete. Since the Green function is positive, we deduce
from (3)

E

[
K(x, ZσR−k)

k−1∏
j=0

1I{ZσR−j=zj
}

]
≤ K(x, zk−1) · E

[
k−1∏
j=0

1I{ZσR−j=zj}

]
,

thus proving the supermartingale property of the sequence (K(x, ZσR−k)) (k ∈ N).
We use similar arguments to compute the expectation of the value of the super-

martingale at time k = 0: E[K(x, ZσR
)] which turns out not to depend on R.

E[K(x, ZσR
)] =

∞∑
m=0

∑
z∈BG(e,R)

P[σR = m, Zm = z] ·K(x, z)

=
∞∑

m=0

∑
z∈BG(e,R)

Pz[σR = 0] · P[Zm = z] ·K(x, z)

=
∑

z∈BG(e,R)

Pz[σR = 0] ·G(x, z)

=
∑

z∈BG(e,R)

Pz[σR = 0]
∞∑

m=0

Px[Zm = z]

=
∑

z∈BG(e,R)

∞∑
m=0

Px[σR = m, ZσR
= z]

= Px[σR < ∞] = 1 .

We can now use Doob’s maximal inequality for non-negative supermartingales, see
for instance Breiman [6, Prop. 5.13], to get that:

∀x ∈ Γ , P[sup
k

K(x, ZσR−k) ≥ a] ≤ 1

a
.
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So PP̃[supk K(X̃1, ZσR−k) ≥ a] ≤ 1
a
, and, letting R tend to infinity,

PP̃[sup
n

K(X̃1, Zn) ≥ a] ≤ 1

a
.

2

Let us go back to the proof of Proposition 2.4: Lemma 2.5 implies that, for any
b > 0,

PP̃[sup
n

ln K(X̃1, Zn) ≥ b] ≤ e−b ,

and therefore EẼ[supn ln K(X̃1, Zn) 1IK(X̃1,Zn)≥1] < ∞.

On the other hand, we have

K(x, Zn) =
Px[τZn < ∞]

Pe[τZn < ∞]
≥ Px[τe < ∞] · Pe[τZn < ∞]

Pe[τZn < ∞]
= Pe[τx−1 < ∞] ≥ µ̃(x) ,

and
Ẽ[− ln µ̃(X̃1)] = H(µ̃) = H(µ) < ∞ .

Writing that

| ln K(X̃1, Zn)| = ln K(X̃1, Zn) 1IK(X̃1,Zn)≥1 − ln K(X̃1, Zn) 1IK(X̃1,Zn)≤1

≤ ln K(X̃1, Zn) 1IK(X̃1,Zn)≥1 − ln µ̃(X̃1) ,

we conclude that the random variable supn | ln K(X̃1, Zn)| is integrable. We can
therefore apply the dominated convergence theorem to deduce that the sequence
E[− ln G(e, Zn+1) + ln G(e, Zn)] converges to

EẼ[− ln K(X̃1, Z∞)] .

2

Lemma 2.6 Let Γ be a countable group and µ be a probability measure on Γ whose
support generates Γ, with finite entropy H(µ). Then

h = EẼ[− ln K(X̃1, Z∞)] .

Proof
Recall that µ̃ is the law of X̃1. We have

EẼ[− ln K(X̃1, Z∞)] =

∫
Γ

∫
∂MΓ

− ln(K(x, ξ)) dν(ξ) dµ̃(x) ,
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where νy(·) is the harmonic measure on the Martin boundary ∂MΓ for a random
walk (of law µ) starting at y and ν(·) = νe(·). By the Martin boundary convergence
Theorem, see Hunt [16] or Woess [25, Th. 24.10], the Martin kernel K(x, ξ) is the
Radon-Nikodym derivative of νx by ν at ξ. Therefore

EẼ[− ln K(X̃1, Z∞)] =

∫
Γ

∫
∂MΓ

− ln

(
dνx(ξ)

dν(ξ)

)
dν(ξ) dµ(x−1) .

We will make the following changes of variables. As ∂MΓ is stable by left multiplica-
tion, the change of variables ξ 7−→ x−1ξ gives νx(ξ) 7−→ ν(ξ) and ν(ξ) 7−→ νx−1(ξ).
Hence, changing also x into x−1, gives

EẼ[− ln K(X̃1, Z∞)] =

∫
Γ

∫
∂MΓ

− ln

(
dν(ξ)

dνx(ξ)

)
dνx(ξ) dµ(x)

=

∫
Γ

∫
∂MΓ

ln

(
dνx(ξ)

dν(ξ)

)
dνx(ξ) dµ(x) . (4)

Observe that dνx(ξ)/dν(ξ) is the Radon-Nikodym derivative of the joint law of
(X̃−1

1 , Z∞) with respect to the product measure µ(·) ⊗ ν(·). Therefore (4) means
that EẼ[− ln K(X̃1, Z∞)] is the relative entropy of the joint law of (X̃−1

1 , Z∞) with
respect to µ(·) ⊗ ν(·), which equals the asymptotic entropy h (see Derriennic [11]
who actually takes the latter as the definition of the asymptotic entropy and proves
that both definitions coincide.) 2

3 Finitely generated groups
We now restrict ourselves to a finitely generated group Γ.

3.1 Volume growth in the Green metric

For a given finite generating set S, we define the associated word metric:

dw(x, y)
def.
= min{n s.t. x−1y = g1g2 · · · gn with gi ∈ S} .

This distance is the geodesic graph distance of the Cayley graph of Γ defined by S.
Different choices of the generating set lead to different word distances in the same
quasi-isometry class. When µ is symmetric and finitely supported, the two metrics
dG(·, ·) and dw(·, ·) can be compared (see [4, Lemma 2.2]). These two metrics are
equivalent for any non-amenable group and also for some amenable groups, e.g. the
Lamplighter group Z o Z2.

Throughout the article, the notion of growth of the group Γ always refers to
the function Vw(n)

def.
= #{x ∈ Γ s.t. dw(e, x) ≤ n} for some (equivalently any)

symmetric finite generating set. The group will be said to have
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• polynomial growth when Vw(n) = O(nD) for some constant D (the largest
integer D satisfying this condition is called the degree of the group);

• superpolynomial growth when Vw(n)/nD tends to infinity for every D;

• subexponential growth when Vw(n) = o(eCn) for every constant C > 0;

• exponential growth when Vw(n)/eCn tends to infinity for some C > 0.

We are now interested in the asymptotic behaviour of the volume of the balls for
the Green metric. Let us define BG(e, n)

def.
= {x ∈ Γ s.t. dG(e, x) ≤ n}, VG(n)

def.
=

#BG(e, n) and the corresponding logarithmic volume growth:

vG
def.
= lim sup

n→∞

ln(VG(n))

n
.

Proposition 3.1 Let us suppose that Γ is not a finite extension of Z or Z2. For
any random walk on Γ,

i. If Γ has superpolynomial growth, then vG ≤ 1;

ii. If Γ has polynomial growth of degree D, then vG ≤ D
D−2

.

Proof
Observe that Proposition 2.3 in [4] proves (i) when µ has finite support and is
symmetric.

We recall a classical result (e.g. see Woess [25]): let µ be a symmetric measure
with finite support and let Γ having at least polynomial growth of degree D (D ≥ 3),
then

∃Ce > 1 s.t. ∀x, y ∈ Γ and k ∈ N Px[Zk = y] ≤ Cek
−D/2 . (5)

The above estimate remains valid even without the symmetry and the finite support
hypotheses. Indeed Coulhon’s result [7, Prop. IV.4] (see also Coulhon & Saloff-Coste
[8]) allows one to extend upper bounds of the nth convolution power of a symmetric
probability measure µ1 to the nth convolution power of another probability measure
µ2 under the following condition:

∃c > 0 s.t. ∀x, µ1(x) ≤ cµ2(x) . (6)

For a general probability measure µ whose support generates Γ, there exists K such
that the support of µK contains any finite symmetric generating set S of Γ.

Hence, choosing µ2 = µK , c = (minx∈S µ2(x))−1 and µ1 = (1/#S) × δS(x), the
uniform distribution on S, we see that the measures µ1 and µ2 satisfy condition (6).
Therefore the estimate (5) remains valid for µ, with a possible different constant Ce.
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The same argument as in [4] shows that (5) implies

VG(n) ≤ Cexp

(
D

D − 2
· n

)
,

for some constant C. Thus vG ≤ D
D−2

. For groups with superpolynomial growth,
letting D going to infinity gives vG ≤ 1. 2

Remark 3.2 If the measure µ has a finite support, then it is already known that
vG ≥ 1 [4, Prop. 2.3]. From Lemma 3.3 and Proposition 3.4, we will also get that
vG ≥ 1 when µ has finite entropy and h > 0, but µ may have an infinite support. It
implies that vG = 1 for groups with superpolynomial growth and measures of finite
entropy such that h > 0.

3.2 The "fundamental" inequality

We now present a different proof of Theorem 1.1 in the case of finitely generated
groups. The interest of this proof comes from an extended version of the "funda-
mental" inequality relating the asymptotic entropy, the logarithmic volume growth
and the rate of escape.

There is a general obvious link between the Green speed and the asymptotic
entropy:

Lemma 3.3 For any random walk with finite entropy H(µ), we have `G ≤ h.

Proof
The sequence 1

n
dG(e, Zn) converges to `G in L1. Therefore

`G = lim
n→∞

−
∑

x∈Γ µn(x) ln
(∑∞

k=0 µk(x)
)

n
≤ lim

n→∞

−
∑

x∈Γ µn(x) ln µn(x)

n
= h .

2

Our aim is to prove the other inequality and deduce that h = `G.

Groups with polynomial volume growth. For groups with polynomial growth,
Lemma 3.3 gives the (trivial) equality since any random walk has a zero asymptotic
entropy. Indeed, these groups have a trivial Poisson boundary (Dynkin & Malyutov
[13]) which is equivalent to h = 0 for measures with finite entropy, Derriennic [10]
and Kaimanovich & Vershik [18], see also Kaimanovich [17, Th. 1.6.7].
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Groups with superpolynomial volume growth. We rely on the so-called fun-
damental inequality:

h ≤ `G · vG , (7)

which holds when µ has finite entropy. For groups with superpolynomial growth,
Proposition 3.1 gives vG ≤ 1 and therefore inequality (7) implies that h ≤ `G and
we conclude that h = `G. Thus all that remains to be done in order to complete the
proof of Theorem 1.1 in the case of groups with superpolynomial growth is justify
(7). This is the content of the next Proposition.

A version of inequality (7), when the speed and volume growth are computed
in a word metric, is proved by Guivarc’h [15] and is discussed in great details by
Vershik [24]. The same proofs as in [15] or [24] would apply to any invariant metric
on Γ, for instance the Green metric, provided µ has finite support. The fundamental
inequality is also known to hold for measures with unbounded support and a finite
first moment in a word metric. See for instance Erschler [14, Lem. 6] or Karlsson &
Ledrappier [21] but note that their argument seems to apply only to word metrics
and observe that the Green metric is not a word metric in general: as a matter of fact
it need not even be a geodesic metric. We shall derive the fundamental inequality
in the Green metric, under the mere assumption that the entropy of µ is finite.

We present our result in a general setting (for any invariant metric and group)
since it has its own interest.

Proposition 3.4 Let µ be the law of the increment of a random walk on a countable
group Γ, starting at a point e, and let d(·, ·) be a left invariant metric. Under the
following hypothesis

• The measure µ has finite entropy,

• The measure µ has finite first moment with respect to the metric d,

• The logarithmic volume growth v
def.
= lim supn→∞

ln(#B(e,n))
n

is finite,

the asymptotic entropy h, the rate of escape `
def.
= limn

d(e,Zn)
n

(limit both in L1 and
almost surely) and the logarithmic volume growth v satisfy the following inequality:

h ≤ ` · v .

Proof
The proof relies on the idea of Guivarc’h [15, Prop. C.2]. Fix ε > 0 and, for all
integer n, let Bn

ε
def.
= B(e, (` + ε)n) (here the balls are defined for the metric d(e, ·)).

We split Γ\Bn
ε into a sequence of annuli: choose K > ` + ε and define

Cn,K
ε

def.
= B(e,Kn)\Bn

ε

∀i ≥ 1 , Cn,K
i

def.
= B(e, 2iKn)\B(e, 2i−1Kn) .
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Define the conditional entropy

H(µ |A)
def.
= −

∑
x∈A

µ(x)

µ(A)
ln

µ(x)

µ(A)
.

The entropy of µn can then be written as

H(µn) = µn(Bn
ε ) ·H(µn |Bn

ε ) + µn(Cn,K
ε ) ·H(µn | Cn,K

ε )

+
∞∑
i=1

µn(Cn,K
i ) ·H(µn | Cn,K

i ) + H ′
n , (8)

where

H ′
n

def.
= −µn(Bn

ε ) · ln(µn(Bn
ε ))−µn(Cn,K

ε ) · ln(µn(Cn,K
ε ))−

∞∑
i=1

µn(Cn,K
i ) · ln(µn(Cn,K

i )) .

(9)
We will repeatedly use the fact that the entropy of any probability measure

supported by a finite set is maximal for the uniform measure and then equals the
logarithm of the volume. First observe that

H(µn |Bn
ε ) ≤ ln(#Bn

ε ) ≤ (` + ε) · v · n + o(n) ,

and thus the first term in (8) satisfies

lim
n

µn(Bn
ε ) ·H(µn |Bn

ε )

n
≤ (` + ε) · v .

For the second term in (8), we get that

H(µn | Cn,K
ε ) ≤ ln(#Cn,K

ε ) ≤ K · v · n + o(n) .

On the other hand, ` is also the limit in probability of d(e, Zn)/n, hence ∀ε > 0,
limn µn(Bn

ε ) = 1. Therefore limn µn(Cn,K
ε ) = 0 and the second term in (8) satisfies

lim
n

µn(Cn,K
ε ) ·H(µn | Cn,K

ε )

n
= 0 .

For the third term in (8), as before, we have

H(µn | Cn,K
i ) ≤ ln(#Cn,K

i ) ≤ 2iK · v · n + o(n) ,

and, by the definition of Cn,K
i ,

µn(Cn,K
i ) = E

[
1I{Zn∈Cn,K

i }

]
≤ E

[
d(e, Zn)

2i−1Kn
· 1I{Zn∈Cn,K

i }

]
. (10)
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So,

1

n

∞∑
i=1

µn(Cn,K
i ) ·H(µn | Cn,K

i ) ≤
(

2v

n
+ o

(
1

n

))
E

[
d(e, Zn)

∞∑
i=1

1I{Zn∈Cn,K
i }

]

=

(
2v

n
+ o

(
1

n

))
E

[
d(e, Zn) · 1I{d(e,Zn)>Kn}

]
.

As d(e, Zn) ≤
∑n

k=1 d(e, Xk),

1

n

∞∑
i=1

µn(Cn,K
i ) ·H(µn | Cn,K

i ) ≤
(

2v

n
+ o

(
1

n

))
×

n∑
j=1

E
[
d(e, Xj) · 1I{Pn

k=1 d(e,Xk)>Kn}
]

= (2v + o(1))E
[
d(e, X1) · 1I{Pn

k=1 d(e,Xk)>Kn}
]

,

since X1, . . . , Xn are i.i.d., so that the random variables

Yj
def.
= d(e,Xj) · 1I{Pn

k=1 d(e,Xk)>Kn} ,

have the same distribution.
By the strong law of large numbers, the sequence 1

n

∑n
k=1 d(e,Xk) almost surely

converges to E[d(e,X1)]
def.
= m < ∞. As a consequence, for any K > m, we have

d(e,X1) · 1I{Pn
k=1 d(e,Xk)>Kn}

a.s.−→ 0 . (11)

Moreover, as
d(e,X1) · 1I{Pn

k=1 d(e,Xk)>Kn} ≤ d(e,X1) ,

which is integrable, the limit in (11) occurs also in L1. Then

lim
n

1

n

∞∑
i=1

µn(Cn,K
i ) ·H(µn | Cn,K

i ) = 0 .

We are left with H ′
n. As limn µn(Bn

ε ) = 1 and limn µn(Cn,K
ε ) = 0,

lim
n

[−µn(Bn
ε ) · ln(µn(Bn

ε ))− µn(Cn,K
ε ) · ln(µn(Cn,K

ε ))] = 0 .

For the last term in (9), note that (10) gives

µn(Cn,K
i ) ≤ 1

2i−1Kn

n∑
k=1

E[d(e,Xk)] ≤
m

2i−1K
.
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Together with the inequality −a ln(a) ≤ 2e−1
√

a, we get

−
∞∑
i=1

µn(Cn,K
i ) · ln(µn(Cn,K

i )) ≤ 2e−1

∞∑
i=1

√
µn(Cn,K

i ) < ∞ .

So limn H ′
n/n = 0.

Finally, taking the limit n →∞, we deduce from (8) that h ≤ (` + ε) · v for any
ε, so h ≤ ` · v. 2

We conclude by a last remark.

Remark 3.5 The proof of Theorem 1.1 using the Martin boundary relies on the
translation invariance of Γ, but the hypothesis that the graph is a Cayley graph of a
countable group seems too strong. It would be interesting to extend this proof to the
case of space homogeneous Markov chains (see Kaimanovich & Woess [19]).
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