
Scheduling in polling systems

Adam Wierman,∗ Erik M.M. Winands,†‡ and Onno J. Boxma‡§

Abstract: We present a simple mean value analysis (MVA) framework for analyzing the effect of scheduling

within queues in classical asymmetric polling systems with gated or exhaustive service. Scheduling in polling

systems finds many applications in computer and communication systems. Our framework leads not only to

unification but also to extension of the literature studying scheduling in polling systems. It illustrates that a

large class of scheduling policies behaves similarly in the exhaustive polling model and the standard M/GI/1

model, whereas scheduling policies in the gated polling model behave very differently than in an M/GI/1.

1 Introduction

Scheduling is a common mechanism for improving system performance without purchasing additional re-

sources. Traditionally, simple scheduling policies such as First-Come-First-Served (FCFS) and Processor-

Sharing (PS), which shares the service capacity equally among all jobs in the system, have been applied

most frequently, and thus dominate the queueing literature. However, recently, system designs in a variety

of application domains have begun to use policies that give priority to jobs with small service demands in

order to reduce the mean response time (sojourn time) and mean queue length. For instance, variants of

Shortest-Remaining-Processing-Time (SRPT) and Foreground-Background (FB) have been applied in many

computer applications, e.g. web servers [8, 17] and routers [14, 15]. This growing focus on priority-based

policies has led to an increasing number of theoretical studies of such policies as well, e.g. [1, 27, 28] and the

references therein. However, almost all theoretical studies of priority-based policies are performed in simple

settings such as the M/GI/1 and G/GI/1. Our goal is to explore the impact of priority-based scheduling in

a more complex queueing model: polling systems.

A polling system consists of a single server that polls a number of queues in a fixed order. Polling systems

were first introduced in the late 1950s by Mack et al. [12, 13] to model a patrolling repairman. Since the

1950s, polling systems have been used to model a wide range of applications in computer, communication,

production, transportation, and maintenance systems. The ubiquitous nature of polling systems has meant

that they have received an enormous amount of attention in the queueing community. Extensive surveys on

polling systems and their applications may be found in [11, 20, 21, 22, 25].

Within a polling system there are a number of design decisions that the system operator needs to make.

The system operator must decide (i) the order in which to serve the queues, (ii) how many customers to

serve during each visit to a queue, and (iii) the order in which customers within each queue are served. The

first decision can either be static, i.e. the polling order remains unchanged in the course of operation (see,

∗Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue Pittsburgh, PA, USA. Much of this paper

was completed during a visit to the EURANDOM institute with support provided by an STW grant.
†Department of Technology Management, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The

Netherlands
‡Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven,

The Netherlands
§EURANDOM, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

1

e.g., [3, 4]), or dynamic, i.e. the polling order changes over time (see, e.g., [9, 31]). For the second decision a

plethora of strategies has been proposed and analyzed, with most work focusing on the exhaustive and gated

disciplines. Exhaustive service means that a queue must be empty before the server moves on, whereas in

case of gated service only those customers in the queue at the polling start are served. The focus of the

current paper is on the third scheduling decision: how to schedule jobs within each queue. As a result, we

will limit discussion to the most common configurations for the first two decisions: cyclic service order and

exhaustive/gated service.

Although both the number of papers analyzing polling systems and the number of papers analyzing

scheduling policies are impressive, the combination of the two has received very little attention. There are

only a few exceptions where the effect of priority-based policies is studied in polling systems, for example,

[6, 19, 23, 24]. However, the results attained for such priority-based policies are mostly limited to pseudo-

conservation laws and approximations that are exact only in special cases, e.g. symmetric polling systems.

Despite the lack of work analyzing scheduling in polling systems, there are many real-world examples

where applications may benefit from scheduling in a non-FCFS manner. For example, in the computer science

community polling models have recently been used to study the Bluetooth and 802.11 protocols as well as

scheduling policies at routers and i/o subsystems in web servers. In many of these settings, the workloads

are known to have high variability, and thus using a policy other than FCFS within the queues is appealing.

Further, in these applications it is often desirable to give different requests different priority levels in order to

provide differentiated service. Outside of computer systems, non-FCFS scheduling is used in polling systems

in the area of production-inventory control. Specifically, it is used in the stochastic economic lot scheduling

problem (SELSP), where multiple standardized products have to be produced on a single machine with

significant setup times (see [29] for a survey on SELSP). In the SELSP, scheduling within the queues is

necessary due to orders for the same product being placed by customers with different priority levels.

Thus, the lack of research on scheduling in polling systems is not due to a paucity of applications. Instead,

we believe it is mainly due to the following factors:

1. It is natural to believe that the impact of within-queue scheduling in a polling system is small because

it only influences the system performance locally, leaving the amount of time spent outside the targeted

queue unaffected.

2. The analysis of polling systems is difficult even in the simple case of FCFS scheduling: for FCFS

explicit closed-form expressions for the mean delays are in general not known. Instead, the mean delay

is expressed as the solution of a set of linear equations.

In this paper, we illustrate that the impact on mean response time from scheduling within a queue of a

polling system can be dramatic. Further, in order to illustrate the impact of scheduling, we provide a unified

analytic framework for studying scheduling in polling systems. This mean value analysis (MVA) framework

allows the analysis of a variety of scheduling policies (many for the first time) in classical asymmetric polling

systems with either gated or exhaustive service. Further, our framework illustrates a striking dichotomy

between the impact of scheduling policies in exhaustive polling systems and gated polling systems. This

reveals itself in the fact that a large class of scheduling policies behaves the same in exhaustive polling

models as they do in the standard M/GI/1, whereas scheduling in gated polling models has a different effect

than in the M/GI/1.

The rest of the paper is structured as follows. In Section 2 we present a detailed model description.

Sections 3 and 4 deal with the analysis of scheduling policies in polling systems with gated and exhaustive

service, respectively. Finally, Section 5 contains some remarks and suggestions for future research.

2

FB Foreground-Background preemptively shares the server evenly among those jobs that have received

the least amount of service so far.

FCFS First Come First Served serves jobs in the order they arrive.

LCFS Last Come First Served non-preemptively serves the job that arrived the most recently.

PLCFS Preemptive Last Come First Served preemptively serves the most recent arrival.

PS Processor Sharing serves all customers simultaneously, at the same rate.

SJF Shortest Job First non-preemptively serves the job in the system with the smallest original size.

SRPT Shortest Remaining Processing Time preemptively serves the job with the shortest remaining size.

Table 1: A brief description of the scheduling policies discussed in this paper.

2 Model description and notation

Throughout, we consider a polling system with one single server for N ≥ 1 queues, in which there is infinite

buffer capacity for each queue. The server visits and serves the queues in a fixed cyclic order. We index

the queues by i, i = 1, 2, . . . , N , in the order of the server movement. For compactness of presentation, all

references to queue indices greater than N or less than 1 are implicitly assumed to be modulo N , e.g., queue

N + 1 actually refers to queue 1.

The number of jobs served during a visit to a queue is determined by either exhaustive or gated service,

as we described in Section 1. Then, during the visit to each queue, we allow jobs to be scheduled for service

according to a variety of scheduling policies, summarized in Table 1. However, we limit the discussion to

work-conserving disciplines, i.e. the server never idles while at queue i if there is work in queue i.

Customers arrive at all queues according to independent Poisson processes with rates λi, i = 1, 2, . . . , N .

The service requirements at queue i are independent, identically distributed random variables with distribu-

tion function Fi(x), density fi(x), mean E[Xi], and second moment E[X2
i] < ∞, i = 1, 2, . . . , N . We denote

F i(x) = 1 − Fi(x). When the server starts service at queue i, a setup time is incurred of which the first

and second moment are denoted by E[Si] and E[S2
i] < ∞ respectively. These setup times are identically

distributed random variables, independent of any other event involved. The total setup time in a cycle is

denoted by S with mean E[S] =
∑N

i=1 E[Si].
1 Two other important quantities are the mean residual service

requirement and the mean residual setup time for queue i, which can be expressed as follows, respectively,

E[RXi
] =

E[X2
i]

2E[Xi]
, E[RSi

] =
E[S2

i]

2E[Si]
, i = 1, 2, . . . , N.

The occupation rate (utilization) ρi at queue i (excluding setups) is defined by ρi = λiE[Xi] and the

total occupation rate ρ is given by ρ =
∑N

i=1 ρi. A necessary and sufficient condition for the stability of this

polling system is ρ < 1 (see, e.g., [20]). We will always assume the queues are stable.

The cycle length of queue i, i = 1, 2, . . . , N , is defined as the time between two successive arrivals (in

case of the gated discipline) or departures (in case of the exhaustive discipline) of the server at this queue.

It is well-known that the mean cycle length is independent of the queue involved (and the service discipline)

and is given by (see, e.g., [20]) E[C] = E[S]
1−ρ

. We note that although the first moments of the cycle lengths

are identical for all queues, higher moments generally differ.

1Throughout, we focus on the case E[S] > 0. When the total setup time is equal to zero, some subtleties appear due to

the fact that the number of cycles with zero length tends to infinity. However, with some minor adjustments MVA can still be

applied (see [30]).

3

The visit time θi of queue i, i = 1, 2, . . . , N , is composed of the service period of queue i, i.e., the time

the server spends serving customers at queue i, plus the preceding setup time in case of exhaustive service or

plus the succeeding setup time in case of gated service. By virtue of these two different definitions, a queue

is empty exactly at the end of its visit time in case of exhaustive service, while the queue before the gate

is empty at the beginning of a visit time in case of gated service (all customers waiting for service are then

placed behind the gate). Since the server is working a fraction ρi of the time on queue i, the mean of a visit

period of queue i reads, for exhaustive service,

E[θi] = ρiE[C] + E[Si], i = 1, 2, . . . , N,

and, for gated service,

E[θi] = ρiE[C] + E[Si+1], i = 1, 2, . . . , N.

We define an (i, j)-period θi,j as the sum of j consecutive visit times starting in queue i, j = 1, 2, . . . , N .

The corresponding mean is given by

E[θi,j] =

i+j−1∑

n=i

E[θn], i = 1, 2, . . . , N, j = 1, 2, . . . , N.

Notice that in case j = 1 and j = N , E[θi,j] is equal to the mean visit period E[θi] of queue i and the

mean cycle length E[C], respectively. The fraction of the time qi,j the system is in an (i, j)-period equals

qi,j =
E[θi,j]
E[C] , i = 1, 2, . . . , N , j = 1, 2, . . . , N , where qi,N equals 1 by definition. Moreover, the mean of a

residual (i, j)-period is given by

E[Rθi,j
] =

E[θ2
i,j]

2E[θi,j]
, i = 1, 2, . . . , N, j = 1, 2, . . . , N, (1)

with the remark that the second moments E[θ2
i,j] are still unknown at this stage. Notice that since for each

fixed (i, j) the successive (i, j)-periods are not independent, they do not form a renewal process. This means,

among others, that Equation (1) does not directly follow from the theory of regenerative processes. For a

proof why this result is nevertheless still valid see, e.g., [7].

Our main interest is in the mean response time (sojourn time) E[Ti] of a type-i customer, i = 1, 2, . . . , N ,

which is defined as the time in steady state from a customer’s arrival at queue i until the completion of his

service. Often, it will be more convenient to study the mean delay, E[Di], which is defined as E[Ti]− E[Xi].

By Little’s Law, under non-preemptive policies, these mean delays can be related to the mean queue

lengths (excluding the customer possibly in service) E[Li], i = 1, 2, . . . , N . The analysis of the present paper

is oriented towards the determination of E[Li,n], the mean queue length at queue i at an arbitrary epoch

within a visit time of queue n, i, n = 1, 2, . . . , N . The corresponding unconditional mean queue length E[Li]

can be expressed in terms of E[Li,n] as follows

E[Li] =

N∑

n=1

qn,1E[Li,n], i = 1, 2, . . . , N. (2)

3 Gated polling systems

We will now develop a simple analytic framework for analyzing scheduling policies in gated polling systems.

This framework allows simple arguments to be used to obtain results for the mean delay of a wide variety of

4

scheduling policies and illustrates that the comparison between scheduling policies in gated polling systems

is remarkably simple – it is far less complex than in the M/GI/1 model. This is perhaps surprising due

to the complexity of the underlying polling system. We first derive expressions for the mean delay of a

variety of scheduling policies in terms of the mean residual cycle length in Section 3.1. The policies we

consider are FCFS, LCFS, SJF, FB, and PS. In addition, we discuss m-class priority queues, which are of

particular practical importance. After deriving the performance of these scheduling policies in terms of the

mean residual cycle length, we analyze this quantity in detail in Section 3.2. Finally, we present numerical

experiments in Section 3.3.

3.1 The effect of scheduling on mean delay

To begin our study of scheduling in polling systems, we consider the mean delay of a tagged arrival of

size x, jx, to queue i. First note that because we are considering a gated polling system, job jx will not

receive service during the cycle into which it arrives (where we have to recall that a cycle is defined as the

time between two successive arrivals of the server at queue i). Further, the length of time remaining in the

cycle is simply the residual cycle length, RCi
. Note that the age of the cycle at the arrival of jx is equal

in distribution to the residual of the cycle. The delay of jx is made up of three components: the residual

cycle length, the amount of service given to arrivals after jx (and during the same cycle), and the amount

of service given to arrivals before jx (and during the same cycle). To simplify the computation of the latter

two components, we notice that all common scheduling policies obey the following two properties:

Property 1 The contributions to the delay of jx from each job that arrives before jx and during the same

cycle as jx, denoted c1(X), are i.i.d.

Property 2 The contributions to the delay of jx from each job that arrives after jx and during the same

cycle as jx, denoted c2(X), are i.i.d.

Now, we have the following simple representation for the mean delay for a job of size x, E[Di(x)], under

any policy that obeys Properties 1 and 2:

E[Di(x)] = E[RCi
] + E




NA(RCi
)∑

j=1

c1(X
(j)
i)


 + E




NA(RCi
)∑

j=1

c2(X
(j)
i)




= E[RCi
] (1 + λiE[c1(Xi)] + λiE[c2(Xi)]) , (3)

where NA(Y) is the number of arrivals during time Y , and X
(j)
i is the job size of the jth arrival.

Using (3), we can now easily obtain formulas for the mean delay of a handful of common scheduling

policies under gated polling models. Further, (3) immediately gives bounds on the attainable mean delay

under any work conserving policy in gated polling systems. For instance, we see that

E[RCi
] ≤ E[Di(x)] ≤ E[RCi

](1 + 2ρi).

Both of these bounds are in fact tight. With a little work, it is possible to prove that the lower bound can be

attained by a policy that preemptively gives jobs of size x highest priority, and the upper bound is attained

for all job sizes under a policy that gives priority to the job with the longest remaining size. In addition, this

gives us a tight upper bound on the overall mean delay, but a tight lower bound on E[Di] does not follow

5

immediately. Later, we will derive a tight lower bound by analyzing SJF, which optimizes E[Di], in Section

3.1.3. The resulting bounds on the attainable mean delay are

E[RCi
](1 + λE[Mi]) ≤ E[Di] ≤ E[RCi

](1 + 2ρi),

where Mi is the minimum of two independent job sizes.

It is already evident that the formulas we derive in this section will be quite different than the results for

scheduling policies in the M/GI/1 setting. Further, they are very different than the results we will derive

for exhaustive polling systems. The results in the gated polling setting are much simpler and more elegant.

Finally, before moving to the analysis, it is important to note that there is no distinction between

preemptive and non-preemptive policies in this setting since new arrivals must wait until after the next cycle

for service. Thus, for instance, PLCFS and LCFS are equivalent, as are SJF and SRPT.

3.1.1 FCFS

We start with the simplest, most common scheduling policy: FCFS. The mean delay of FCFS in gated polling

systems is well known, but it is useful to note how easily it follows from (3). In the case of FCFS, only

arrivals before the tagged job will contribute to the delay of the tagged job. Thus, E[c1(Xi)] = E[Xi] and

E[c2(Xi)] = 0, which gives the well-known result that

E[Di(x)]FCFS = E[RCi
] (1 + ρi) , (4)

which we refer to as the so-called arrival relation.

Note that this is not an explicit formula since E[RCi
] is unknown. However, it is important to note that

(since we are considering only work-conserving policies) E[RCi
] is independent of the scheduling policy used

at each queue. In the remainder of this section, we derive for each individual scheduling discipline an arrival

relation in terms of E[RCi
]. We will describe how to calculate E[RCi

] later in Section 3.2.

3.1.2 LCFS

Another simple, common policy is LCFS. Again, obtaining the mean delay of LCFS from (3) is simple. Since

only arrivals after the tagged job contribute to the delay of the tagged job, we have E[c1(Xi)] = 0, and

E[c2(Xi)] = E[Xi], which gives

E[Di(x)]LCFS = E[RCi
] (1 + ρi) . (5)

Notice that this is the same mean delay we obtained for FCFS. In fact, the same result can easily be

shown to hold for all blind, list based policies, i.e. all policies that serve individual jobs to completion using

an ordering (list) that is determined without using job sizes.

3.1.3 SJF

We now move beyond simple policies to size-based policies. It is easy to see that SJF optimizes the mean

delay (and queue length) under gated polling systems since it is equivalent to SRPT in this setting, which

has long been known to optimize queue length and mean delay [18].

Though SJF is a more complex policy than FCFS and LCFS , the mean delay of SJF can still be derived

very easily from (3). In particular, if we consider the contribution of an arrival to the delay of a tagged job,

the moment when the arrival occurred during the cycle is irrelevant – the arrival will contribute to the delay

6

of the tagged job only if its size is smaller. Thus, we have E[c1(Xi)] = E[c2(Xi)] = E[Xi1[Xi<x]]. Defining

ρi(x) = λiE[Xi1[Xi<x]] then gives

E[Di(x)]SJF = E[RCi
] (1 + 2ρi(x)) . (6)

Comparing (6) with (4), we can immediately see that small job sizes perform better under SJF than FCFS,

but that larger job sizes perform worse. In fact, the largest job sizes have E[Di(x)]SJF ≈ E[RCi
](1 + 2ρi),

which (3) shows is the worst possible mean delay.

To obtain the overall mean delay under SJF, we need to integrate (6). The result gives us a simple

characterization of the optimal mean delay:

E[Di]
SJF = E[RCi

]

(
1 + 2λi

∫ ∞

0

fi(x)

∫ x

0

tfi(t)dtdx

)

= E[RCi
]

(
1 + λi

∫ ∞

0

t(2fi(t)F i(t))dt

)

= E[RCi
] (1 + λiE[Mi]) , (7)

where Mi is the minimum of two i.i.d. job sizes and the second line follows from the first by interchanging

the integrals. Comparing (4) for FCFS and (7) for SJF shows:

E[Di]
SJF ≤ E[Di]

FCFS ⇔ E[Mi] ≤ E[Xi].

It is easy to see that under deterministic job sizes E[Di]
SJF = E[Di]

FCFS, but as the service distribution

variability increases SJF provides more and more improvement over FCFS. For example, under an exponential

distribution E[Di]
SJF = E[RCi

] (1 + ρi/2), and under distributions that have a decreasing failure rate (DFR)

the improvement is even greater, since it is easily shown that under such distributions E[Mi] ≤ E[Xi]/2.

3.1.4 FB

It is often the case that applications do not know job sizes, and therefore cannot use SJF to attain the

optimal mean delay. In such cases, the age (attained service) of a job can often serve as an indication of the

remaining size of the job. For instance, if job sizes have a DFR (IFR) service requirement distribution, then

jobs with larger ages are likely to have larger (smaller) remaining sizes. Thus, FB (FCFS) is a “poor man’s

SRPT” in the case of DFR (IFR) job sizes. In fact, FB and FCFS have been shown to optimize (among

policies ‘blind’ to job sizes) the queue length distribution and the mean delay in G/GI/1 queues when job

sizes are DFR and IFR respectively [16]. Further, since these optimality results hold even when busy periods

begin with an arbitrary batch arrival, they also hold in polling systems.

In this section, we focus on FB, with the motivation that DFR service distributions are common in

computer and telecommunication applications. The mean delay under FB again follows easily from (3).

Again, we consider a tagged job of size x, jx. The key observation is that any job that arrives during the

same cycle will contribute min(Xi, x) work to the mean delay of the tagged job, because the server will give

an equal service rate to all jobs in the system throughout the visit period (since all new arrivals stay behind

the gate). Thus, E[c1(Xi)] = E[c2(Xi)] = E[min(Xi, x)]. Defining ρ̂i(x) = λiE[min(Xi, x)] then gives

E[Di(x)]FB = E[RCi
] (1 + 2ρ̂i(x)) . (8)

Like under SJF, FB clearly benefits small job sizes (compared to FCFS) while hurting large job sizes. In

fact, it is again true that large job sizes are treated as badly as possible under any work conserving policy.

7

Comparing (8) and (6) illustrates that FB behaves very similarly to SJF, though FB clearly pays a price for

not using job sizes since ρi(x) ≤ ρ̂i(x). This difference is accentuated when we look at E[Di]:

E[Di]
FB = E[RCi

]

(
1 + 2λi

∫ ∞

0

fi(x)

∫ x

0

F i(t)dtdx

)

= E[RCi
]

(
1 + 2λi

∫ ∞

0

F i(t)
2dt

)

= E[RCi
] (1 + 2λiE[Mi]) , (9)

where Mi is again the minimum of two i.i.d. job sizes and the second line follows from the first by interchanging

the integrals.

The comparison between (9) and (7) gives a clear picture of the price FB pays for not using job sizes. In

addition, (9) gives a very simple comparison between FCFS and FB:

E[Di]
FB ≤ E[Di]

FCFS ⇔ E[Mi] ≤ E[Xi]/2.

Notice that equality holds under the exponential distribution. Further FB will be better under DFR distri-

butions and worse under IFR distributions, as expected.

3.1.5 PS

PS is a policy that is widely used in computer systems due to its fairness properties and its simplicity, so it is

important that we spend a moment on it here. However, in gated polling systems, PS is actually equivalent

to FB, which we just discussed. In particular, because all jobs that arrive during a visit period will not

receive service until the next visit, FB will always end up sharing the server evenly among all jobs in the

queue, which is exactly what PS does. Thus, all the results we described for FB also hold for PS, including

the fact that FB is optimal among blind policies for queue length and mean delay when job sizes are DFR.

3.1.6 m-class priority queues

The last policy we consider is probably the most important from a practical perspective, so we will spend the

most time exploring its behavior. In an m-class priority queue, arrivals are tagged by their class, 1, . . . ,m,

and then jobs from class i are given preemptive priority over jobs from classes > i. Within each class, jobs

are served in FCFS order. These policies are often used in practical settings instead of idealized policies like

SJF, e.g. [8, 17].

The mean delay of a class j job, E[D
(j)
i], is (again) easily derived from (3). Throughout, we use a

superscript (j) to specify class j. For a tagged job of class j, all arrivals during the cycle from classes < j

and all earlier arrivals from class j will be served before the tagged job. Thus, we have that E[c1(X
(k)
i)] =

E[X
(k)
i 1[k≤j]] and E[c2(X

(k)
i)] = E[X

(j)
i 1[k<j]]. Defining ρ

(j)
i = λ

(j)
i E[X

(j)
i] then gives

E[D
(j)
i] = E[RCi

](1 + 2
∑

k<j

ρ
(k)
i + ρ

(j)
i). (10)

Notice that the mean delay of SJF can be obtained by taking the appropriate limit of this formula. From

(10) the overall mean delay can be calculated using

E[Di] =
∑

j

λ
(j)
i

λ
E[D

(j)
i].

8

Though this formula is easy to write, it hides the answer to important questions such as how the distri-

butions of the job sizes in each priority class affect the overall mean delay. In the remainder of the section

we will develop a better understanding of this behavior. We will start by studying the case when there are

only 2 priority classes, and then we will use the ideas illustrated by this simple case to study the general

case of m priority classes.

m = 2: Two priority classes

Let us now look at this in the case of two priority classes to see how prioritization affects the overall response

time. With two priority classes, we have that

E[Di]

E[RCi
]

=
λ

(1)
i

λi

(1 + ρ
(1)
i) +

λ
(2)
i

λi

(1 + 2ρ
(1)
i + ρ

(2)
i)

= 1 + ρi −
λ

(1)
i

λi

ρ
(2)
i +

λ
(2)
i

λi

ρ
(1)
i

= 1 + ρi −
λ

(1)
i λ

(2)
i

λi

(
E[X

(2)
i] − E[X

(1)
i]

)
, (11)

from which it follows that E[Di] ≤ E[Di]
FCFS ⇔ E[X

(1)
i] ≤ E[X

(2)
i].

So, prioritizing small job sizes is an effective heuristic. In fact, we can see from (11) that the optimal

mean response time for a 2-class priority system will occur when there is a threshold t such that jobs with

size ≤ t have high priority and jobs with size > t have low priority. The natural question, then, is “what is

the optimal such t?” We can determine it as follows:

E[Di]

E[RCi
]

= 1 + ρi − λiFi(t)F i(t)

(∫ ∞

t

s
fi(s)

F i(t)
ds −

∫ t

0

s
fi(s)

Fi(t)
ds

)

= 1 + ρi − λi

(
Fi(t)

∫ ∞

t

sfi(s)ds − F i(t)

∫ t

0

sfi(s)ds

)

= 1 + ρi + λi

(
F i(t)E[Xi] −

∫ ∞

t

sfi(s)ds

)
,

which is minimized when the final term is minimized. Taking derivatives, we see that −fi(t)E[Xi]+tfi(t) = 0

only when E[Xi] = t, assuming that fi(x) > 0 for all x. It is easy to see that this is a minimum, so the

optimal threshold is t = E[Xi].

The fact that the optimal threshold is simply E[Xi] in this setting regardless of the shape of the distri-

bution is quite special. In the M/GI/1 setting the optimal threshold is far from insensitive to the shape of

the service requirement distribution. Similarly, in the case of exhaustive service the optimal threshold turns

out to be not insensitive.

m priority classes

We will now move beyond the 2-class priority setting and consider the behavior of an m-class system. In the

9

m-class case we have, cf. (10),

E[Di]

E[RCi
]

=
m∑

j=1

λ
(j)
i

λi

(
1 + ρ

(j)
i + 2

j−1∑

k=1

ρ
(k)
i

)

= 1 + ρi +

m∑

j=1

λ
(j)
i

λi




j−1∑

k=1

ρ
(k)
i −

m∑

k=j+1

ρ
(k)
i




= 1 + ρi − λi

m∑

j=1

m∑

k=j+1

λ
(j)
i λ

(k)
i

λ2
i

(
E[X

(k)
i] − E[X

(j)
i]

)
, (12)

where the last line comes from grouping terms having the same λ
(j)
i λ

(k)
i multiplier. Equation (12) is the

extension of (11). It shows that the improvement of the mean delay of the priority queue over FCFS is

directly related to the differences between the means of the priority classes. In fact, this form implies that

the m-class policy which optimizes E[Di] will be a threshold based policy since the mean delay of any non-

threshold based policy can be improved by interchanging mass between two priority classes that overlap so

as to separate their means but not change their arrival rates.

Thus, our goal in the remainder of the section is to determine the optimal threshold values for an m-class

threshold based policy. Consider an m-class policy with thresholds t(s) such that 0 = t(0) < t(1) < . . . <

t(m) = ∞ that assigns jobs with size x ∈ [t(s−1), t(s)) priority s. We will prove that the optimal thresholds

are defined by

t(j) =
1

F i(t(j−1)) − F i(t(j+1))

∫ t(j+1)

t(j−1)

ufi(u)du. (13)

Notice the intuition behind the form of this relation: the threshold dividing classes j and j + 1 is defined as

the mean of the total distribution for jobs of classes j plus j + 1, i.e. the mean of the distribution of jobs

that the threshold is dividing.

To prove that (13) defines the optimal thresholds, we start by combining the terms in (13) that have the

same E[X
(s)
i] in order to obtain

E[Di]

E[RCi
]

= 1 + ρi − λi

m∑

s=1

λ
(s)
i

λi

E[X
(s)
i]




s−1∑

j=1

λ
(j)
i

λi

−
m∑

j=s+1

λ
(j)
i

λi


 . (14)

Looking at this term by term, we notice that

s−1∑

j=1

λ
(j)
i

λi

= Fi(t
(s−1)),

m∑

j=s+1

λ
(j)
i

λi

= F i(t
(s)) and

λ
(s)
i

λi

EX
(s)
i =

∫ t(s)

t(s−1)

ufi(u)du.

Returning to (14) we have that

E[Di]

E[RCi
]

= 1 + ρi − λi

m∑

s=1

(
Fi(t

(s−1)) − F i(t
(s))

) ∫ t(s)

t(s−1)

ufi(u)du. (15)

Next, we observe that Fi(t
(s−1))−F i(t

(s)) = −F i(t
(s−1))+Fi(t

(s)). Using this, we can write the odd s terms

in (15) as the LHS and the even s terms as the RHS and see that adjacent terms telescope leaving

E[Di]

E[RCi
]

= 1 + ρi + λi

m−1∑

s=1

(
1[s odd] − Fi(t

(s))
) ∫ t(s+1)

t(s−1)

ufi(u)du. (16)

10

To find the optimal cutoffs we look at the partial derivatives of (16) with respect to t(s) for 0 < s < m:

d

dt(s)

(
E[Di]

E[RCi
]

)
= −λi

d

dt(s)

{(
−1[s + 1 odd] + Fi(t

(s+1))
) ∫ t(s+2)

t(s)

ufi(u)du

+
(
−1[s odd] + Fi(t

(s))
) ∫ t(s+1)

t(s−1)

ufi(u)dt

+
(
−1[s − 1 odd] + Fi(t

(s−1))
) ∫ t(s)

t(s−2)

ufi(u)dt

}

= −λi

{(
1[s + 1 odd] − Fi(t

(s+1))
)

t(s)fi(t
(s)) + fi(t

(s))

∫ t(s+1)

t(s−1)

ufi(u)du

+
(
−1[s − 1 odd] + Fi(t

(s−1))
)

t(s)fi(t
(s))

}

= −λifi(t
(s))

{∫ t(s+1)

t(s−1)

ufi(u)du −
(
Fi(t

(s+1)) − Fi(t
(s−1))

)
t(s)

}
, (17)

from which we can see that (when fi(x) > 0 for all x) the only critical point occurs when

t(s) =
1

Fi(t(s+1)) − Fi(t(s−1))

∫ t(s+1)

t(s−1)

ufi(u)du. (18)

It is easy to see that this is the global minimum.

Choosing the optimal threshold: Discussion and examples

We have seen that in the case of m = 2, the optimal cutoff is t(1) = E[Xi] regardless of the service requirement

distribution. This insensitivity to the shape of the distribution is quite surprising, and very different from

what occurs in the standard M/GI/1 model and from what we will see in the case of exhaustive polling

systems. However, when m > 2 the shape of the service requirement distribution plays a role in the choice of

the optimal thresholds. We will illustrate this with two examples: the exponential and Pareto distributions.

Example 3.1 In the case of the exponential distribution with rate µ and m = 3, we can solve for t(1) and

t(2) very easily. Let F i(u) = e−µu. Then, using (18) we get that the optimal thresholds satisfy

t(2) = eµt(1)
∫ ∞

t(1)
uµe−µudu = t(1) + 1/µ and t(1) =

1

1 − e−µt(2)

∫ t(2)

0

uµe−µudu, (19)

which gives µt(1) = 1 − µt(2)e−µt(2)/(1 − e−µt(2)), yielding (1 − µt(1)) = 2e−(1+µt(1)).

Clearly there is only one solution where both t(1) and t(2) are positive. Further, notice that the solution

will always have t(1) < E[Xi] and t(2) > E[Xi]. As an example of what the thresholds will be, in the case of

an exponential with mean 1, we obtain t(1) = 0.59 and t(2) = 1.59.

Example 3.2 In the case of the Pareto distribution, we have F i(u) = (k/u)α with α > 1. Then, using (18)

we get that the optimal thresholds satisfy

t(2) =

(
t(1)

k

)α ∫ ∞

t(1)
u

αkα

uα+1
du =

α

α − 1
t(1), and t(1) =

1

1 −
(
k/t(2)

)α

∫ t(2)

k

u
αkα

uα+1
du,

which gives
(
1 −

(
k

t(2)

)α
)

=
(

α
α−1

)2 (
k

t(2)

) (
1 −

(
k

t(2)

)α−1
)

.

11

Clearly t(2) = k is always a solution, but we are only interested in t(2) > k. As an example of solving

this, we can look at the case of α = 2. Letting z = k/t(2) gives 1− z2 = 4z(1− z), which has roots z = 1/3, 1.

This gives t(2) = 3k and t(1) = 1.5k. Specializing further to the case when E[Xi] = 1 gives k = 0.5 from

which we obtain t(2) = 0.75 and t(2) = 1.5. Notice that these thresholds are more concentrated around the

mean than in the case when job sizes are exponential.

3.2 Residual cycles

Throughout the last section, we derived formulas for the mean delay of scheduling policies in terms of the

mean residual cycle length. Thus, we have isolated the effects of the setup times and the dependencies

between visit times into one quantity, which is independent of the scheduling discipline (as long as the

scheduling discipline is work-conserving). This allowed us to perform very simple comparisons of the mean

delays across all the scheduling disciplines we have considered. Unfortunately though, no general explicit

closed-form expression for the mean residual cycle lengths is known. However, in order to calculate these

mean residual cycle lengths numerically, we can make use of the recently developed mean value analysis

(MVA) for FCFS polling systems [30]. Although [30] studies only FCFS polling systems, it also provides – as

a by-product – the mean residual visit time, and thus the mean residual cycle lengths, which are independent

of the service discipline.

Before we can start the analysis, we have to introduce some additional notation. That is, in case of

gated service, all customers waiting in queue at the start of a visit time of this queue are placed behind a

gate meaning that they are served in the current cycle. However, customers arriving during a visit time of

their queue are placed before this gate and are, thus, only served in the next cycle. With this difference

understood, it is clear that, in case i = j, Li,j is the sum of two auxiliary variables, Li,i = Li,i + L̃i,i, where

Li,i and L̃i,i represent the queue length behind and before the gate, respectively. Recall that the customer

in service is excluded. In case i 6= j, all customers in queue i are obviously located before the gate, i.e.,

Li,j = L̃i,j , i 6= j = 1, 2, . . . , N. The corresponding unconditional queue length Li has mean

E[Li] =

N∑

n=1

qn,1E[L̃i,n] + qi,1E[Li,i]. (20)

For i = 1, 2, . . . , N and j = 1, 2, . . . , N , under FCFS scheduling, we have the following set of equations

N∑

n=1

qn,1E[L̃i,n] + qi,1E[Li,i] = λiE[RCi
] (1 + ρi) , (21)

i+j−1∑

n=i

qn,1

qi,j

E[L̃i,n] = λiE[Rθi,j
], (22)

E[Rθi,1
] = E[Li,i]E[Xi] +

E[Si+1]

E[θi,1]
E[RSi+1

] +
ρiE[C]

E[θi,1]
(E[RXi

] + E[Si+1]), (23)

E[Rθi,j
] =

qi,1

qi,j

(
E[Rθi,1

]

j−1∏

n=1

(1 + ρi+n) +

j−1∑

n=1

(E[Si+n+1] + E[L̃i+n,i]E[Xi+n])

j−1∏

m=n+1

(1 + ρi+m)

)

+(1 − qi,1

qi,j

)E[Rθi+1,j−1
]. (24)

Elimination of E[Rθi,j
] from (21) and (22) with the help of (23) and (24) yields a set of N(N + 1) linear

equations for equally many unknowns E[Li,i] and E[L̃i,n]. The solution to these equations yields the mean

12

0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

ρ
E

[D
]

FCFS
2−class
SJF

Figure 1: Impact of scheduling in symmetric

gated polling systems for exponential service times

with E[X] = 1.

0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

ρ

E
[D

]

FCFS
2−class
SJF

Figure 2: Impact of scheduling in symmetric

gated polling systems for Weibull service times

with E[X] = 1 and E[X2] = 20.

residual cycle length E[RCi
] = E[Rθi,N

], from with we can easily obtain the mean delays for all the scheduling

disciplines under consideration.

3.3 Numerical evaluation

We now present some simple numerical experiments illustrating the performance of scheduling policies in

gated polling systems. Of course, a wide variety of cases can be studied: different number of queues, choice

of service requirement distributions and their parameters, choice of setup distributions and their parameters,

etcetera. However, the aim of the present section is to provide some simple illustrative cases which show the

potential of scheduling in polling systems, so we will only present a few small examples.

For the first case, we consider a symmetric two-queue polling system with gated service. Suppose that the

service and setup times follow exponential distributions with means equal to 1. In this system, we compare

three scheduling disciplines, i.e., the optimal policy SJF , the most important one from a practical perspective

m-class priority and the standard one FCFS, where we take for the m-class priority systems the number of

priority classes equal to 2. Recall that in Section 3.1 we have proven that in the case of two priority classes

the optimal threshold is independent of the service requirement distribution and is given by E[Xi] = 1. It

goes without saying that the other policies analyzed in the present paper can be evaluated just as easily, but

we have omitted them for reasons of presentation.

Figure 1 shows the mean delay of an arbitrary customer as a function of the total load ρ for these three

scheduling disciplines under an exponential service distribution. The order of the policies is not surprising,

but what is surprising is the fact that the performance of the two-class priority discipline is so close to

optimal, i.e. SJF, even though we have distinguished only two priority classes. Furthermore, it is important

to observe that, on average, the mean delay for SJF policy is 15% lower than that of FCFS; a gain system

operators can achieve without the need of purchasing additional resources. For the second case, all input

parameters are taken the same as in the first case, but now the service requirement distribution follows a

highly variable Weibull distribution with E[X] = 1 and E[X2] = 20. Under this more variable distribution

E[M] = 1/8, thus the improvement of SJF over FCFS is even more pronounced.

4 Exhaustive service discipline

We now move to the case of exhaustive polling systems. We again develop a framework that allows simple

arguments to be used to obtain results for the mean delay of a variety of scheduling policies. The framework

13

will illustrate that the effectiveness of scheduling within queues in exhaustive polling systems is comparable

to the effectiveness of scheduling in the M/GI/1 model. In fact, we will see many parallels between the

M/GI/1 model and exhaustive polling systems. This is in contrast to the results we just explored for gated

polling systems which illustrate that scheduling performs very differently than in the M/GI/1 model. Again,

we first derive expressions for the mean delay of a variety of scheduling policies in terms of the mean residual

cycle length in Section 4.1, and then we analyze the mean residual cycle length in Section 4.2. The policies

we consider in this section include FCFS, LCFS, PLCFS, SJF, SRPT, and m-class priority queues. The case of

m-class priority queues will be particularly illustrative of the contrast between gated and exhaustive polling

systems.

4.1 The effect of scheduling on mean delay

To begin our study of scheduling in exhaustive polling systems, we consider the mean delay of a tagged

arrival of size x, jx, to queue i. First note that because we are considering an exhaustive polling system,

job jx will complete during the cycle into which it arrives (unlike in the gated case). We recall that, for

the exhaustive discipline, a cycle is defined as the time between two successive departures of the server from

queue i. When the tagged job arrives, it will need to wait at least until the server returns to queue i. With

probability E[Si]
E[C] it arrives during the setup of queue i and must wait E[RSi

] before the server returns to

queue i. Further, with probability (1−qi,1), the tagged job arrives during an intervisit period and must wait

E[Rθi+1,N−1
] + E[Si] time before the server returns to queue i. Let us define

E[Vi] =
E[Si]

E[C]
E[RSi

] + (1 − qi,1)(E[Rθi+1,N−1
] + E[Si]),

as the expected time until the server returns to queue i.

In addition to waiting E[Vi] time before receiving service and the job size x itself, depending on the

scheduling policy, the response time of jx may include time devoted to serving (i) jobs that arrive after jx

begins service, (ii) jobs that arrived before jx, (iii) jobs that arrived after jx and before jx receives service.

We denote the contribution of the first piece as c1(x) and the second piece as c2(Wi), where Wi represents

the stationary work at queue i. To simplify the computation of the third component, we notice that many

common scheduling policies obey the following property:

Property 3 The contribution to the delay of jx from each job that arrives after jx and before jx receives

service, denoted c3(Xi), is i.i.d. Further, once jx receives service, no service is given to any other jobs that

arrived before jx.

Many common policies obey Property 3, e.g. FCFS, LCFS, PLCFS, SRPT, and SJF. However, Property 3

does not hold under PS. We will discuss this further in Section 4.1.8. Any policy which obeys Property 3

will have the following representation for the mean response time of a job of size x:

E[Di(x)] = E[c1(x)] + E[Vi] + E




NA(Vi)∑

j=1

B
c3(X

(j)
i)

(c3(X
(j)
i))


 + E[Bc3(Xi)(c2(Wi))]

= E[c1(x)] + E[Vi]

(
1 +

λiE[c3(Xi)]

1 − λiE[c3(Xi)]

)
+

E[c2(Wi)]

1 − λiE[c3(Xi)]

= E[c1(x)] +
E[Vi] + E[c2(Wi)]

1 − λiE[c3(Xi)]
, (25)

14

where NA(Y) is the number of arrivals during time Y , X
(j)
i is the job size of the jth arrival, and BXi

(Y) is

the length of a busy period started by Y work where service requirements of arrivals have i.i.d. sizes Xi.

Using (25), we can now easily obtain formulas for the mean delay of a handful of common scheduling

policies under exhaustive polling models.

4.1.1 FCFS

We start with the simplest policy, FCFS. The mean delay of FCFS in exhaustive polling systems is well-known,

but it serves as a useful example of applying (25).

In the case of FCFS, only arrivals before the tagged job will contribute to the delay of the tagged job.

Thus, E[c1(x)] = 0, E[c2(Wi)] = E[Wi] and E[c3(Xi)] = 0, which gives

E[Di(x)]FCFS = E[Vi] + E[Wi].

To calculate E[Wi], we use Little’s Law to write E[Di(x)]FCFS in terms of the mean number in queue, E[Li]
FCFS:

E[Di(x)]FCFS = E[Vi] + ρiE[RXi
] + E[Li]

FCFS
E[Xi].

Recalling that E[Di(x)]FCFS = E[Vi] + E[Wi] gives

E[Wi] =
ρi(E[Vi] + E[RXi

])

1 − ρi

, and E[Di(x)]FCFS =
E[Vi] + ρiE[RXi

]

1 − ρi

.

In order to view this in terms of the mean residual cycle length, we use the well-known result that:

E[Di(x)]FCFS = E[RCi
](1 − ρi). (26)

It follows that

E[RCi
] =

E[Vi] + E[Wi]

1 − ρi

=
E[Vi] + ρiE[RXi

]

(1 − ρi)2
. (27)

This will be useful for other policies as well since all work conserving policies have the same mean residual

cycle lengths. The calculation of E[RCi
] is delayed until Section 4.2.

4.1.2 LCFS

Another simple, common policy is LCFS, for which E[c1(x)] = 0, E[c2(Wi)] = ρiE[RXi
], and E[c3(Xi)] = Xi

and, thus:

E[Di(x)]LCFS =
E[Vi] + ρiE[RXi

]

1 − ρi

= E[RCi
](1 − ρi) = E[Di(x)]FCFS. (28)

In fact, LCFS is not alone in having E[Di] the same as FCFS. As in the M/GI/1 queue, it is easy to see

that all non-preemptive policies that do not use size information have the same mean response time under

exhaustive polling systems.

4.1.3 PLCFS

Moving beyond non-preemptive policies, let us now consider PLCFS. Obtaining the mean response time of

PLCFS from (25) is simple. Since all arrivals after the tagged job contribute to the response time, we have

15

E[c1(x)] = ρix/(1 − ρi). Further, E[c2(Wi)] = 0 and E[c3(Xi)] = Xi, which gives:

E[Di(x)]PLCFS =
ρix + E[Vi]

1 − ρi

= E[RCi
](1 − ρi) +

ρi

1 − ρi

(x − E[RXi
]). (29)

Thus, we can see that E[Di(x)]PLCFS ≤ E[Di(x)]FCFS ⇔ x ≤ E[RXi
], which is the same relation as in the

M/GI/1 setting.

4.1.4 Extending the framework

Though we can handle simple policies using (25), in order to handle priority-based policies we need to extend

the framework because determining E[c2(Wi)] under such policies can be problematic.

To handle such policies we will view E[c2(Wi)] as the work in a “transformed” FCFS queue, which will

allow us to mimic the derivation in Section 4.1.1. In particular, we will see that the following property holds

under SJF, SRPT, and many other priority-based policies.

Property 4 The contribution c2(Wi) can be viewed as the work in a “transformed” FCFS system where jobs

arrive according to a Poisson process with rate λi having i.i.d. sizes c′2(Xi) and a different (maybe dependent)

stream of jobs may arrive while the server is idle following a general (maybe non-Poisson) process. The

resulting stationary amount of remaining work of the job receiving service is denoted c′′2(RXi
).2

As a simple example of Property 4, note that under FCFS the transformed system is the same as the

original system, which gives E[c′2(Xi)] = E[Xi] and E[c′′2(RXi
)] = ρiE[RXi

]. We will see other examples of

transformed systems in the next sections. However, let us first examine the implications of Property 4.

Denote the number of jobs in the queue of the “transformed” system as L′
i and the delay in the transformed

FCFS queue as DFCFS
′

i . Recall that the mean delay in a FCFS queue is simply the work in the system plus

E[Vi], thus E[Vi] + E[c2(Wi)] = E[DFCFS
′

i]. Given a policy obeys Property 4, we can write

E[Di]
FCFS

′

= E[Vi] + E[c′′2(RXi
)] + E[L′

i]E[c′2(Xi)],

which gives using Little‘s law

E[Di]
FCFS

′

=
E[Vi] + E[c′′2(RXi

)]

1 − λiE[c′2(Xi)]
.

Combining the above with (25) gives

E[Di(x)] = E[c1(x)] +
E[Vi] + E[c′′2(RXi

)]

(1 − λiE[c′2(Xi)])(1 − λiE[c3(Xi)])

= E[RCi
]

(
(1 − ρi)

2

(1 − λiE[c′2(Xi)])(1 − λiE[c3(Xi)])

)

+

(
E[c1(x)] − ρiE[RXi

] − E[c′′2(RXi
)]

(1 − λiE[c′2(Xi)])(1 − λiE[c3(Xi)])

)
. (30)

The form of (30) is quite illustrative. The first term captures the growth as a function of the mean

residual cycle length and the second term captures the tradeoff between giving priority to jobs that arrived

2Note that this quantity does not assume that there is a job at the server, and thus is a function of the load as well as the

service distribution.

16

earlier versus jobs that arrived later. In addition, (30) illustrates an important comparison between the

M/GI/1 model and exhaustive polling systems. Recalling that E[Di]
FCFS = E[RCi

](1 − ρi), we have that

E[Di(x)] = E[Di(x)]FCFS

(
(1 − ρi)

(1 − λiE[c′2(Xi)])(1 − λiE[c3(Xi)])

)

+

(
E[c1(x)] − ρiE[RXi

] − E[c′′2(RXi
)]

(1 − λiE[c′2(Xi)])(1 − λiE[c3(Xi)])

)
. (31)

The important point about the above is that the contribution functions ci[·] are independent of the polling

system. So, the only place the polling system impacts (31) is through E[Di(x)]FCFS. Thus, the qualitative

relationships between the mean delay of policies that satisfy Properties 3 and 4 are insensitive of the underlying

structure of the polling system and only depend on the fact that queues are served exhaustively. Note that the

quantitative differences between policies will depend on the structure of the polling systems though, since

the relative weights of the two terms in (31) depend on the magnitude of E[Di(x)]FCFS.

4.1.5 SJF

Now, let us consider a size-based policy in order to illustrate how to apply (30). SJF is an important policy

to consider because it optimizes the mean response time among all non-preemptive policies.

To analyze SJF, consider a transformed FCFS queue where jobs of size ≥ x are only allowed to arrive

at the moment they begin to receive service in the standard SJF queue. Thus, jobs of size < x still obey a

Poisson process but jobs with size ≥ x do not. The mean response time for the tagged job is the same in both

of these queues. Thus, for SJF, we have that E[c1(x)] = 0, E[c′2(Xi)] = E[Xi1[Xi<x]], E[c′′2(RXi
)] = ρiE[RXi

],

and E[c3(Xi)] = E[Xi1[Xi<x]]. Applying (30) gives:

E[Di(x)]SJF =
E[Vi] + ρiE[RXi

]

(1 − ρi(x))2

= E[RCi
]

(
1 − ρi

1 − ρi(x)

)2

, (32)

where ρi(x) = λiE[Xi1[Xi<x]]. Thus, we can see that E[Di(x)]SJF ≤ E[Di(x)]FCFS ⇔ ρi(x) ≤ 1 −
√

1 − ρi,

which also holds in the M/GI/1 setting.

To obtain the overall mean delay of SJF, we can simply integrate (32) as follows

E[Di]
SJF = E[RCi

]

∫ ∞

0

(
1 − ρi

1 − ρi(x)

)2

fi(x)dx.

Unfortunately though, no closed-form solution is available for this integral. It is easy to see however that
∫ ∞

0

(
1−ρi

1−ρi(x)

)2

fi(x)dx ≤ 1 − ρi and thus E[Di]
SJF ≤ E[Di]

FCFS as expected.

4.1.6 SRPT

As in the M/GI/1 setting, SRPT optimizes mean response time in exhaustive polling systems. However, the

mean delay of SRPT has not been derived in this setting. But, the analysis of SRPT follows easily from what

we have just described for SJF because SRPT also satisfies Property 4.

In the case of SRPT, the transformed system that we use has jobs with original size < x arrive at the

same instants as normal, but has jobs with original size ≥ x arrive to the server at the moment they obtain

remaining size x. Thus, they always arrive when the transformed system is idle. Thus, we obtain E[c′2(Xi)] =

17

E[Xi1[Xi<x]] and E[c′′2(RXi
)] = ρ̂i(x)E[Rmin(Xi,x)], where ρ̂i(x) = λiE[min(Xi, x)]. Further, noting that new

arrivals contribute to the response time of the tagged job only when they are smaller than the remaining size

of the tagged job, we have E[c3(x)] = E[Xi1[Xi<x]] and E[c1(x)] =
∫ x

0
(1
1−ρi(t)

− 1)dt =
∫ x

0
ρi(t)

1−ρi(t)
dt, where

dt
1−ρi(t)

should be interpreted as the length of a busy period started by dt work including all new arrivals of

size < t. Applying (30) then gives:

E[Di(x)]SRPT =

∫ x

0

ρi(t)

1 − ρi(t)
dt +

E[Vi] + ρ̂i(x)E[Rmin(Xi,x)]

(1 − ρi(x))2

= E[RCi
]

(
1 − ρi

1 − ρi(x)

)2

+

∫ x

0

ρi(t)

1 − ρi(t)
dt −

ρiE[RXi
] − ρ̂i(x)E[Rmin(Xi,x)]

(1 − ρi(x))2
. (33)

As with SJF, we can obtain the overall mean delay of SRPT by integrating (33); however, such integration

must be done numerically. But, without resorting to numerics, it is already evident that SRPT can provide

significant reductions in mean delay when compared to FCFS and even SJF.

4.1.7 m-class priority queues

We now move to m-class priority queues. We will limit our discussion to non-preemptive priority queues so

that the results can be contrasted with the results from the gated polling systems in Section 3.1.6.

The mean delay of a class j job, E[D
(j)
i], is again easily derived from (30). Forgoing the details since they

parallel the analysis of SJF, we have that E[c1(Xi)] = 0, E[c′2(Xi)] = E[X
(k)
i 1[k≤j]], E[c′′2(Xi)] = ρiE[RXi

],

and E[c3(Xi)] = E[X
(k)
i 1[k<j]]. Thus, (30) gives:

E[D
(j)
i] = E[RCi

]

(
(1 − ρi)

2

(1 −
∑

k<j ρ
(k)
i)(1 −

∑
k≤j ρ

(k)
i)

)
, (34)

where ρ
(j)
i = λ

(j)
i E[X

(j)
i]. Notice that the mean delay of SJF can be obtained by taking the appropriate

limits. From (34) we can calculate the overall mean delay using

E[Di] =
∑

j

λ
(j)
i

λi

E[D
(j)
i].

As with the gated case, this formula is easy to write but it hides the behavior of the mean delay as a function

of the job sizes of each class. As in the gated case, it is straightforward to show that the mean delay will be

minimized when priority is given to the classes that have small service requirements. Thus, it again makes

sense to consider threshold based policies. However, unlike the gated case, we cannot derive a closed form

expression for the optimal threshold. This is not surprising since such an expression does not exist for the

M/GI/1 setting either. However, in the case of 2 priority classes, we can determine the optimal threshold

and contrast it with our results for gated polling systems in Section 3.1.6.

m = 2: The optimal threshold

In the case of two priority classes, we can simplify the expression for the mean delay. In particular, letting

t be the threshold used by the policy, we have

E[Di]

E[Di]FCFS
=

λ
(1)
i

λi

1 − ρi

1 − ρ
(1)
i

+
λ

(2)
i

λi

1

1 − ρ
(1)
i

=
1 − ρiFi(t)

1 − ρ
(1)
i

.

18

Differentiating this expression, we find

d

dt

(
E[Di]

E[Di]FCFS

)
=

−ρifi(t)(1 − ρ
(1)
i) + λitfi(t)(1 − ρiFi(t))

(1 − ρ
(1)
i)2

,

which gives that the mean delay is minimized when the threshold satisfies

t

E[Xi]
=

1 − λi

∫ t

0
sfi(s)ds

1 − ρiFi(t)
.

Though this is not explicit, it can be solved easily in the case of many common service distributions. For

instance, if job sizes are chosen uniformly from the range (0, a), then the optimal threshold is

t =
2

λi

(1 −
√

1 − ρi).

Further, if job sizes are exponential with mean 1/µi, the optimal threshold satisfies

µi

λi

− e−µit

µit − 1
= 1.

Notice the difference between these results and what we found for gated polling systems. In the gated

case, the optimal threshold for 2 priority classes was E[X] regardless of the service distribution. In contrast,

here the optimal threshold is ≥ E[Xi] for all service distributions (note that the optimal threshold is an

increasing function of λi and as λi → 0, t → E[Xi]) and depends greatly on the shape of the distribution.

4.1.8 Policies that do not obey Properties 3 and 4

Though we have seen that many common policies obey Properties 3 and/or 4, there are also policies that

do not satisfy them. Foremost, PS does not satisfy either 3 or 4. Similarly, all PS-type policies such as

Discriminatory, Weighted, and Multi-level PS also violate these properties. Thus, our analytic framework

does not apply to these policies.

In fact, it is easy to see that these policies are fundamentally more difficult to analyze in exhaustive

polling systems than they are in the M/GI/1 model (and of course more difficult than in gated polling

systems). To see this, notice that an analysis of the mean delay of PS in exhaustive polling systems depends

on understanding the transient behavior of the queue length distribution under PS in the M/GI/1 model,

which is known to be a very difficult problem [10]. Thus, we leave the analysis of PS-type policies as an

open question and note that, unlike policies that satisfy Properties 3 and/or 4, the behavior of PS will be

very different than it is in the stationary M/GI/1 setting.

However, not every policy that violates Properties 3 and/or 4 is difficult to analyze in exhaustive polling

systems. In particular, FB violates these properties but can be analyzed directly. We do not include the

analysis due to lack of space.

4.2 Residual cycles

In Section 4.1 we have been able to express the mean delay of a variety of scheduling disciplines in terms of

the (unknown) mean residual cycle length E[RCi
], i = 1, 2, . . . , N , where this quantity is independent of the

specific scheduling discipline. To compute these unknowns we again make use of the MVA for FCFS polling

systems [30], which yields, as a spin-off, the mean residual cycle lengths under all work conserving policies.

19

0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

ρ
E

[D
]

FCFS
2−class
SRPT

Figure 3: Impact of scheduling in symmetric ex-

haustive polling systems for exponential service

times with E[X] = 1.

0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

ρ

E
[D

]

FCFS
SJF
PLCFS
SRPT

Figure 4: Impact of scheduling in exhaustive

polling systems for Weibull service times with

E[X] = 1 and E[X2] = 20.

To study E[RCi
], we shift attention to the MVA equations of [30], which derives the following set of

equations for i = 1, 2, . . . , N , and j = 1, 2, . . . , N − 1,

N∑

n=1

qn,1E[Li,n] =
λi

1 − ρi

(
ρiE[RBi

] +
E[Si]

E[C]
E[RSi

] + (1 − qi,1)(E[Rθi+1,N−1
] + E[Si])

)
, (35)

λiE[Rθi+1,j
] =

i+j∑

n=i+1

qn,1

qi+1,j

E[Li,n], (36)

E[Rθi,1
] =

1

1 − ρi

(
E[Li,i]E[Xi] +

ρiE[C]

E[θi,1]
E[RXi

] +
E[Si]

E[θi,1]
E[RSi

]

)
, (37)

and for j = 2, 3, . . . , N ,

E[Rθi,j
] =

qi,1

qi,j

(
E[Rθi,1

]
∏j−1

n=1(1 − ρi+n)
+

j−1∑

n=1

E[Si+n] + E[Li+n,i]E[Xi+n]
∏j−1

m=n(1 − ρi+m)

)
+ (1 − qi,1

qi,j

)E[Rθi+1,j−1
], (38)

with as unknowns the mean residual (i, j)-periods E[Rθi,j
] and the mean conditional queue lengths E[Li,n].

The set (35)-(38) can be solved numerically and the solution yields, among other things, the mean residual

cycle lengths E[RCi
] = E[Rθi+1,N

]. Subsequently, the unconditional mean queue lengths and the mean delays

can be computed for all scheduling disciplines.

4.3 Numerical evaluation

We will now move to illustrating the results for scheduling policies in exhaustive polling systems. Our numeric

examples use the same system as in the gated case, i.e. a symmetric two-queue system with exponentially

distributed setup times with mean 1. Figures 3 and 4 show the output as function of the total load ρ under

exponential and Weibull service distributions, respectively. In Figure 3, we compare FCFS, 2-class priority,

and SRPT in the case of an exponential service distribution. As in the gated case, we can conclude that the

simple 2-class priority discipline is close to optimal and that proper scheduling has a significant impact on

the system performance. However, the latter effect is much more pronounced in the exhaustive case than

in the gated case. The reason for this effect is that the exhaustive discipline takes advantage of preemption

implying that small jobs that arrive during a visit have really small response times since they can preempt.

However, in the gated case, small jobs cannot have their response times improved nearly as much since

they will always include the residual of the cycle length. Next, in Figure 4, we compare FCFS, SJF, PLCFS,

20

and SRPT in the case of a highly variable Weibull service distribution. This figure illustrates the need to

use preemptive scheduling when the job size distribution is highly variable. Though 2-class priority policies

nearly matched SRPT in Figure 3, in this figure even SJF (which uses an infinite number of priority classes)

is far from SRPT, and is outperformed by PLCFS, which does not use job size information.

5 Discussion and extensions

In this paper we have studied the impact of scheduling within queues in polling systems. The vast prior liter-

ature studying polling systems has largely ignored this topic, however we find that the impact of scheduling

within queues can be dramatic. One could postulate the (perhaps intuitively appealing) claim that schedul-

ing within a queue has only a minor effect on overall system performance. Namely, one could argue that

such a local decision only influences a small part of the delay of a customer, since a major part consists of

the time until the server returns to the queue under consideration, which is unaffected by the scheduling

policy. The results in this paper refute this assertion. The explanation for this is that at polling instants

there is often a large batch of jobs waiting for service and, thus, the order in which these jobs are served

really matters.

In order to arrive at the above conclusion, we have developed a simple unified framework for analyzing

scheduling policies in classical asymmetric polling systems with either gated or exhaustive service. This

framework provides the first analysis of many scheduling policies in polling systems, e.g. SJF, SRPT, and

m-class priority queues. Further, this framework significantly extends the MVA for FCFS polling systems

developed in [30]. One of the most striking observations provided by this framework is the fact that a large

class of scheduling policies behaves the same in exhaustive polling models as in the standard M/GI/1 model,

whereas scheduling policies in gated polling models have a very different effect than in the M/GI/1 model.

This difference manifests itself not only in the complexity of the analysis, but also in the impact a scheduling

discipline has on the overall mean delay.

We have limited ourselves to relatively simple polling systems in this document. However, MVA for FCFS

polling systems has been shown to also apply to the following variants [30]: (i) systems with Poisson batch

arrivals, (ii) systems with fixed polling tables and (iii) discrete-time polling systems. Moreover, the analysis

can be extended without further complication to models with mixtures of gated and exhaustive service, i.e.,

where some of the queues are gated and some are exhaustive. In turn, this implies that our framework can

be readily extended in the same directions.

As stated in the introduction, the decision studied in the present paper - the order in which customers are

served – is only one of the three design decisions a system operator must make. In the present paper, we have

solved this issue to optimality. For the other two decisions – the order in which to serve the queues and how

many customers served during each visit to a queue - approximate optimal solutions are already available in

literature [3, 4, 5, 9, 26]. Thus, it would be interesting to study a polling system where every decision uses

the (approximate) optimal solution. In this way, one could investigate how much system performance can

be improved without purchasing additional resources.

References

[1] S. Borst, O. Boxma, R. Núñez Queija, and B. Zwart. The impact of the service discipline on delay asymptotics.
Performance Evaluation 54: 175–206, 2003.

[2] O. Boxma. Workloads and waiting times in single-server systems with multiple customer classes. Queueing
Systems 5: 185–214, 1989.

[3] O. Boxma, H. Levy, and J. Weststrate. Efficient visit frequencies for polling tables: minimization of waiting
cost. Queueing Systems 9(1–2): 133–162, 1991.

21

[4] O. Boxma, H. Levy, and J. Weststrate. Efficient visit orders for polling systems. Performance Evaluation 18:
103–123, 1993.

[5] O. Boxma, and D. Down. Dynamic server assignment in a two-queue model. European Journal of Operational
Research 103: 101–115, 1997.

[6] L. Fournier, and Z. Rosberg. Expected waiting times in polling systems under priority disciplines. Queueing
Systems 9: 419–440, 1991.

[7] P. Franken, D. Koenig, U. Arndt, and V. Schmidt. Queues and Point Processes. John Wiley & Sons, 1982.
[8] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal. Implementation of SRPT scheduling in web

servers. ACM Transactions on Computer Systems 21(2): 207-233, 2003.
[9] M. Hofri, and K. Ross. On the optimal control of two queues with server setup times and its analysis. SIAM

Journal on Computing 16(2): 399–420, 1987.
[10] M.Yu. Kitaev. The M/G/1 processor-sharing model: transient behavior. Queueing Systems 14: 239–273, 1993.
[11] H. Levy, and M. Sidi. Polling systems: applications, modeling and optimization. IEEE Transactions on Com-

munications 38(10): 1750–1760, 1990.
[12] C. Mack, T. Murphy, and N. Webb. The efficiency of N machines uni-directionally patrolled by one operative

when walking time and repair times are constants. Journal of the Royal Statistical Society Series B 19(1):
166–172, 1957.

[13] C. Mack. The efficiency of N machines uni-directionally patrolled by one operative when walking time is constant
and repair times are variable. Journal of the Royal Statistical Society Series B 19(1): 173–178, 1957.

[14] I. Rai, G. Urvoy-Keller, and E. Biersack. Analysis of LAS scheduling for job size distributions with high variance.
In Proceedings of ACM Sigmetrics, 2003.

[15] I. Rai, G. Urvoy-Keller, M. Vernon, and E. Biersack. Performance modeling of LAS based scheduling in packet
switched networks. In Proceedings of ACM Sigmetrics-Performance, 2004.

[16] R. Righter, J. Shanthikumar, and G. Yamazaki. On external service disciplines in single stage queueing systems.
Journal of Applied Probability 27: 409–416, 1990.

[17] M. Rawat, and A. Kshemkalyani. SWIFT: Scheduling in web servers for fast response time. In Symposium on
Network Computing and Applications, 2003.

[18] L. Schrage. A proof of the optimality of the shortest remaining processing time discipline. Operations Research
16: 687–690, 1968.

[19] S. Shimogawa, and Y. Takahashi. A note on the pseudo-conservation law for a multi-queue with local priority.
Queueing Systems 11(1-2): 145–151, 1992.

[20] H. Takagi. Queueing analysis of polling models: an update. In Stochastic Analysis of Computer and Communi-
cation Systems, H. Takagi (ed.), North-Holland, Amsterdam, 267–318, 1990.

[21] H. Takagi. Queueing analysis of polling models: progress in 1990-1994. In Frontiers in Queueing: Models,
Methods and Problems, J.H. Dshalalow (ed.), CRC Press, Boca Raton, 119–146, 1997.

[22] H. Takagi. Analysis and application of polling models. In Performance Evaluation: Origins and Directions, G.
Haring, C. Lindemann and M. Reiser (eds.), Lecture Notes in Computer Science, vol. 1769, Springer, Berlin,
423–442, 2000.

[23] Y. Takahashi, and B. K. Kumar. Pseudo-Conservation Law for a priority polling system with mixed service
strategies. Performance Evaluation 23(2): 107-120, 1995.

[24] Z. Tsai, and I. Rubin. Mean delay analysis of a message priority-based polling scheme. Queueing Systems 11:
223–240, 1992.

[25] V. Vishnevskii, and O. Semenova. Mathematical methods to study the polling systems. Automation and Remote
Control 67: 173–220, 2006.

[26] M. van Vuuren, and E. Winands. Iterative approximation of k-limited polling systems. To appear in Queueing
Systems, 2006.

[27] A. Wierman, and M. Harchol-Balter. Classifying scheduling policies with respect to unfairness in an M/GI/1.
In Proceedings of ACM Sigmetrics, 2003.

[28] A. Wierman, M. Harchol-Balter, and T. Osogami. Nearly insensitive bounds on SMART scheduling. In Pro-
ceedings of ACM Sigmetrics, 2005.

[29] E. Winands, I. Adan, and G.-J. van Houtum. The stochastic economic lot scheduling problem: a survey. BETA
WP-133, Beta Research School for Operations Management and Logistics, 2005.

[30] E. Winands, I. Adan, and G.-J. van Houtum. Mean value analysis for polling systems. Queueing Systems 54(1):
45–54, 2006.

[31] U. Yechiali. Optimal dynamic control of polling systems. In Proceedings 13th International Teletraffic Congress,
Workshop: Queueing, Performance and Control in ATM, J.W. Cohen and C.D. Pack (eds.), North-Holland
Publ. Cy., Amsterdam, 205–218, 1991.

22

