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Abstract

We present an explicit closed form solution of the problem of min-
imizing the root of a quadratic functional subject to a system of affine
constraints. The result generalizes [10], where the optimization prob-
lem was solved under only one linear constraint. This is of interest
for solving significant problems pertaining to financial economics as
well as some classes of feasibility and optimization problems which
frequently occur in tomography and other fields. The particular case
when the expected return of finance portfolio is certain is discussed as
well as some other examples.
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1 Introduction

In this paper we generalize the result of [10], where the problem of minimiza-
tion of square root functional

f(x)= µTx+ λ
√
xTΣx, λ > 0, (1)

subject to one linear constraint

bTx = c, c �= 0, (2)

was considered, to the case of a number of linear constraints. Here µ,b are
n × 1 vectors and Σ = (σij)

n
i,j=1 is n × n positive definite matrix. More

precisely, let B = (bij)
m,n
i,j=1 be m× n, m < n, rectangular matrix of the full

rank and c be somem×1 vector. In this paper we obtain the conditions under
which the problem of minimization of function (1) subject to the system of
affine constraints

Bx = c, c �= 0, (3)

where 0 is a vector-column of m zeros, has the solution, and find its exact
closed form. The problem of minimization of the function f : Rn → R subject
to a system of linear equality constraints has many applications, among which
are those related to risk management in financial economics. In this note, we
obtain the conditions under which the solution of this problem exists, and
for that case we show how the solution can be effectively computed. First,
let us notice that function f(x) is convex as a sum of the linear functional
and a convex function. The convexity of the square root of the quadratic
term follows from the observation that for any u,v ∈ Rn and t ∈ R,√

(u+ tv)TΣ(u+ tv) =
√
vTΣvt2 + 2vTΣut+ uTΣu (4)

is a strictly convex function of t (the square root of a quadratic univariate
polynom with a positive leading coefficient is strictly convex), and conse-
quently

√
xTΣx is strictly convex and so is function f(x).

Let us notice that in the special case when matrix B is of 2×n dimension
and equals

B =

(
1 · · · · · 1
µ
1

· · · · · µn

)
(5)
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and vector cT = (1, R) the solution of problem (1), (3) coincides with the
solution of the problem of minimization of function

q(x) = xTΣx (6)

under constraints

1Tx = 1, (7)

µTx = R, (8)

where 1 is the vector-column of n ones. This is directly related to the
Markowitz optimal portfolio solution under a certain expected portfolio re-
turn, which is well documented (see, for example, [15], Section 6, [2], Section
8.2.1, [1], Section 4.4). Here vector x is interpreted as a weight of the portfo-
lio of risk returns P = xTX, where X = (X1, ...,Xn)

T is a vector of random
variables-returns with expectations EX = (EX1, ..., EXn)

T = µ and covari-
ation matrix

cov(X) = E(X− EX)(X− EX)T = Σ,

and function (6) is simply

q(x) = V ar(P ), (9)

where V ar(P ) is variance of P, which is called the variance premium (see
[6], Sect: Premium principles). Then function (1) has a special meaning in
the Actuarial sciences: it is the standard deviation premium because it can
be rewritten as follows

f(x) = E(P ) + λ
√
V ar(P ),

([6], Sect: Premium principles). We provide a closed form solution of the
problem (1), (3) and show that for the special case of constraints (7) and (8)
the solution coincides with the Markowitz mean-variance solution.

Let us notice that the solution of the problem of the minimization function
(1) with constraints (3) provides the optimal portfolio management under all
positive homogeneous and translation invariant risk measures for the class
of multivariate elliptical distributions of risks ( see [14], Section 6.1, [9],
[7], [8]). These measures are of significant interest in financial economics.
The important examples of such measures are short fall (or value-at-risk)
and expected short fall (or tail conditional expectation) among others ([12]).
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The details of these applications are actually beyond the scope of this paper,
and are considered separately ([11]).

At the same time, we point out another interpretation and application
of the presented result which are related to relative projections onto closed
convex sets. We denote, as usual, < x,y > = xTy the Euclidean inner
product in Rn. Let

h(x) = λ
√
xTΣx (10)

and for ξ ∈ Rn

h∗(ξ) = sup
z∈Rn

(< ξ, z > −h(z))

be the Fenchel conjugate of h. Then function

W h(ξ,x) = h(x)− < ξ,x >+ h∗(ξ)

is called the generalized distance in Rn. For any ξ ∈ Rn and for any closed
convex nonempty set C in Rn, there exists a unique minimizer of the function
W h(ξ, ·) over C (see [4], Section 4.2). This vector is denoted by P h

C
(ξ) and

is called the projection of ξ on C relative to the function h (or the proximal
projection of ξ relative to h). Then the purpose of the present paper is, in
fact, equivalent to that of determining the minimum of W h(−µ, ·) over the
closed set

C = {x|Bx = c}, c �= 0. (11)

Since µ which we are considering is an arbitrary vector in Rn, solving the
problem which we pose above is equivalent to exactly solving the prob-
lem of computing P h

C
(ξ) for any ξ. Notice that the function h is a norm in

Rn when Σ is positive definite, which is the case here. Moreover, h satisfies
the requirements of Theorem 4.8 in the [4] (when placed in the specific con-
text of the space Rn). Therefore, Theorem 4.8 applies and gives the formula
for computing the vector P h

C
(ξ) with C as above. However, calculability of

P h

C
(ξ) by that formula depends on the calculability of the gradient of the

Fenchel dual of h. Our result shows an explicit way of determining P h

C
(ξ)

when h and C are as above (see (10) and (11)). This is important because
it may help solve numerically feasibility and optimization problems such as
those discussed in the book [5]. In fact, once computation of P h

C
(ξ) is numer-

ically doable in an efficient way, many feasibility and optimization algorithms
become practically implementable. This is one of the merits of the present
paper: it makes some sophisticated algorithms, such as those for solving the
optimization and equilibrium problems discussed in [3], applicable to a larger
class of the problems than previously known.
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2 Main result

Choosing the first n − m variables we have the natural partition of vector
xT= (xT

1
,xT

2
), x1 = (x1, ..., xn−m)

T ,x2 = (xn−m+1, ..., xn)
T and the corre-

sponding partition of vectors µT = (µT
1
,µT

2
), 1T = (1T

1
, 1T

2
) (1 is vector of n

ones), matrix Σ,

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
(12)

and matrix
B =

(
B21 B22

)
where matrices B21 and B22 are of dimensions m × (m − n) and m × m,
respectively. As matrix B is of full rank suppose without loss of generality
that matrix B22 is non singular. Definem×(n−m) and (n−m)×m matrices

D21 = B−1
22
B21, D12 = DT

21
(13)

and (n−m)× (n−m) matrix

Q = Σ11 − Σ12D21 −D12Σ21 +D12Σ22D21 = (qij)
n−m
i,j=1. (14)

Lemma 1 As Σ is positive definite, Q is also positive definite.

Proof. We give the probabilistic proof of the Lemma. Along with positive
definite matrix Σ, one may consider an n−variate normally distributed vector
Z with vector - expectation 0 and covariance matrix Σ (see [16], Section
1.2.1), and so we say Z � Nn(0,Σ). Then vector Z1 = (Z1, ..., Zn−m)

T
�

Nn−m(01,Σ11), vector Z2 = (Zn−m+1, ..., Zn)
T
� Nm(02,Σ22) and Y = Z1−

D12Z2 � Nn−m(01, Q), because

cov(Y) = E(Z1 −D12Z2)(Z1 −D12Z2)
T

= EZ1Z
T

1
−D12E(Z2Z

T

1
)−E(Z1Z

T

2
)D21 +D12E(Z2Z

T

2
)D21 = Q,

and the linear transformation of Z has maximal rank.
Denote by

∆ = D12µ2
− µ

1
. (15)

Theorem 1 If
λ >

√
∆TQ−1∆, (16)
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the problem of the minimization of function (1) subject to (3) has the finite
solution

x∗ = Σ−1BT (BΣ−1BT )−1c

+

√
cT (BΣ−1BT )−1c

(λ2 −∆TQ−1∆)
(∆TQ−1,−∆TQ−1D12)

T (17)

Proof. Define vector d2 = B−1

22
c. Then from the system of constraints (3)

and from (13) it follows that xT= (xT
1
,dT

2
− xT

1
D12)

T and then straightfor-
wardly

xTΣx = xT
1
Qx1 + 2dT

2
(Σ21 − Σ22D21)x1 + dT

2
Σ22d2. (18)

Then the goal-function

f(x) = g(x1) = µT
2
d2 + (µ

1
−D12µ2

)Tx1

+λ
√
xT
1
Qx1 + 2dT

2
(Σ21 − Σ22D21)x1 + dT

2
Σ22d2

is a function of n−m variables x1 = (x1, ..., xn−m)
T and the problem reduces

to the problem of finding the unconditional minimum

min
x1∈R

n−m

g(x1).

As a corollary of the well known solution of the quadratic programming
problem

x0 = arg min
Bx=c

xTΣx =Σ−1BT (BΣ−1BT )−1c, (19)

and

xT
1
Qx1 + 2dT

2
(Σ21 − Σ22D21)x1 + dT

2
Σ22d2 ≥ x0

T

Σx0 (20)

= cT (BΣ−1BT )−1c > 0,

x1 ∈ Rn−m,

as matrix BΣ−1BT > 0 and c �= 0 (see, for example, [13], Chapter 14.1).
This means that function√
xT
1
Qx1 + 2dT

2
(Σ21 − Σ22D21)x1 + dT

2
Σ22d2 is differentiable for any x1 ∈

Rn−m. For the same reasons as given in (4), taking into account the last
inequality, one may conclude that this function, and together with it the
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function g(x1), is strictly convex on Rn−m. Denote by d
T

dx1
= ( d

dx1
.... d

dxn−m
)-

vector row of the first n−m derivatives and let

x∗ = (x∗T

1
,dT

2
− x∗T

1
D12)

T (21)

and x0 = (x0T

1
,dT

2
− x0T

1
D12)

T be partitions of the vector-solution of the
problem x∗ and vector x0 represented by (19), respectively. Then the vector
x∗

1
is the unique solution of the vector-equations

d

dx1
g(x1) = (µ

1
−D12µ2

)+
λ(Qx1 + (Σ12 −D12Σ22)d2)√

xT
1
Qx1 + 2dT

2
(Σ21 − Σ22D21)x1 + dT

2
Σ22d2

= 01,

where 01 is vector-column of (n − m) zeros, which can be rewritten in the
form

(Qx1+(Σ12−D12Σ22)d2) = τ

√
xT
1
Qx1 + 2dT

2
(Σ21 −Σ22D21)x1 + dT

2
Σ22d2,

where
τ = (τ 1, ..., τn−m)

T = (D12µ2
−µ

1
)/λ. (22)

Consider x∗
1
in the form x∗

1
= x0

1
+ y∗, where y∗T = (y1, ..., yn−m) is (n−m)

dimension vector. Then, as x0 is a solution of problem (19), it follows that

Qx0
1
+ (Σ12 −D12Σ22)d2 = 01 (23)

and y∗ is the unique solution of the vector-equations

y∗ = Q−1τ

√
xT
1
Qx1 + 2dT

2
(Σ21 −Σ22D21)x1 + dT

2
Σ22d2. (24)

As τ = 01 (meansµ
1
= B12B

−1

22
µ
2
), it results trivially that y∗ = 01. Suppose

vector τ �= 0, then as matrixQ−1 = (δij)
n−m
i,j=1 is nonsingular (positive definite)

there exists row δTi = (δi1, ...., δin−m) of Q−1 such that δTi τ �= 0. Suppose
for convenience and without loss of generality that i = 1. Then, using the
following partition of matrix Q−1 into the 2 matrices Q−1

1
and Q−1

2

Q−1 =

(
Q−1

1

Q−1

2

)
, (25)

where Q−1

1
is simply the first row of Q−1 (i.e., Q−1

1
= δT

1
) and Q−1

2
consists

of other (n−m− 1) rows of Q−1, from (24) we have

y∗ = y∗
1
(1, aT )T , (26)
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where
a = Q−1

2
τ/Q−1

1
τ . (27)

Substituting (26) into the first equation of (24), we get straightforwardly,

y∗
1
= Q−1

1
τ

√
x0TΣx0 + 2(x0T

1
Q+ dT

2
(Σ21 − Σ22))y∗ + y∗TQy∗

= Q−1

1
τ

√
cT (BΣ−1BT )−1c+ y∗2

1
(1, aT )Q(1, aT )T (28)

taking into account (23), (18) and the right hand side of (20). Squaring both
parts of the equation and using the partitions of matrices Q and Q−1 we get

y∗
2

1
=

(Q−1

1
τ )2 cT (BΣ−1BT )−1c

(1− (Q−1

1
τ )2(1, aT )Q(1,aT )T )

. (29)

In ( [10], eq. (29)) it was shown that

(1,aT )Q(1,aT )T =
1

(Q−1

1
τ )2

τ TQ−1τ . (30)

Substituting (30) into (29) and taking into account that from (28) it follows
that sign(y∗

1
) = sign(Q−1

1
τ ), we find that there exists the sole solution

y∗
1
= Q−1

1
τ

√
cT (BΣ−1BT )−1c

1− τ TQ−1τ
(31)

subject to condition (16). Substituting (31) into (26) we obtain, taking into
account (27), (22) and (25),

y∗ = Q−1∆

√
cT (BΣ−1BT )−1c

λ2 −∆TQ−1∆
.

The theorem follows, taking into account that from (21) and (19)

x∗ = ((x0
1
+ y∗)T , (d2 −D21x

0

1
−D21y

∗)T )T = x0 + (y∗T ,−y∗TD12)
T
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3 Illustrations

3.1 Only one linear constraint

In the case that the problem has only one constraint (2) we have that m = 1,
matrix B is a vector-row, B = bT , B21 = (b1, ..., bn−1) = bT

1
, B22 = bn, vector

c is simply a real number, c = c, µ
1
= (µ

1
, ..., µ

n−1
)T ,µ

2
= µ

n
. Then for

bn �= 0,

∆ =
µ
n

bn
b1 − µ

1
.

The partition of matrix Σ is of the form

Σ =

(
Σ11 σ

σT σnn

)
,

where Σ11 is matrix of dimension (n− 1)× (n− 1), and matrix

Q = Σ11 − 11σ
T − σ1T

1
+ σnn111

T

1
.

Then from Theorem 1 it follows that

x∗ =
c

(bTΣ−1b)
Σ−1b+

|c|√
(λ2 −∆TQ−1∆)(bTΣ−1b)

(∆TQ−1,− 1

bn
bT
1
Q−1∆)T

(32)
In the case of constraint (7), b = 1,b1 = D12 = 11, where 11 is the

vector-column of n− 1 ones, c = 1 and ∆ = (µ
n
− µ

1
, ..., µ

n
− µ

n−1
)T . Then

from 32 it follows that

x∗ =
1

(1TΣ−11)
Σ−11+

1√
(λ2 −∆TQ−1∆)(1TΣ−11)

(∆TQ−1,−1T
1
Q−1∆)T ,

which conforms well with Theorem 1 [10].

3.2 Optimal portfolio under certain expected return

Suppose now that together with constraint (7) we have also constraint (8).
This means that the expected portfolio return is certain and equal to R.
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Then m = 2, matrix B has the form given in (5), and the partition of B is
of the form

B21 =

(
1 · · · · · 1
µ
1

· · · · · µ
n−2

)
, B22 =

(
1 1

µ
n−1

µ
n

)
.

Vectors cT = (1, R),d2 = B−1
22
c = 1

µ
n
−µ

n−1

((µn − R), (R − µn−1))
T . By

straightforward calculations one obtains

D21 = B−1
22
B21 =

1

µn − µn−1

(
µn − µ

1
· · · · · µn − µn−2

µ1 − µn−1 · · · · · µn−2 − µn−1

)
.

and
D12µ2

= (µ
1
, · · ·, µn−2)T = µ

1

Then ∆ = D12µ2
− µ

1
= 0 and consequently

x∗ = x0 = arg min
Bx=c

xTΣx =Σ−1BT (BΣ−1BT )−1c,

i.e., the solutions of the problem of minimization of a square root functional
(1) and a quadratic functional (6) coincide under constraints (7), (8) and
presented solution is the Markowitz mean-variance optimal portfolio solution
under certain expected portfolio return.

Suppose now that the expected sum of last n − k portfolio returns is
certain. That reduces to the following system of constraints{

1Tx = 1,∑n

i=k+1 µixi = R.
(33)

Then

B =

(
1 · · · 1 1 · · · 1
0 · · · 0 µk+1 · · · µn

)
,

and for k ≤ n− 2,

B21 =

(
1 · · · 1 1 · · · 1
0 · · · 0 µk+1 · · · µn−2

)
, B22 =

(
1 1

µn−1 µn

)
.

Straightforward calculation shows that

D21 =
1

µn − µn−1

(
µn · · · µn µn − µk+1 · · · µn − µn−2

−µn−1 · · · −µn−1 µk+1 − µn−1 · · · µn−2 − µn−1

)
.

(34)
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Consider partition of vector µ1 = (µT

1̃
,µT

2̃
)T , µ

1̃
= (µ1, ..., µk)

T ,µ
2̃

=

(µk+1, ..., µn−2)
T and the corresponding partition of null-vector 01 = (0T

1̃
, 0T

2̃
)T

and (n− 2)× (n− 2) matrix

Q−1 =

⎛
⎝ Q−1

1̃1̃
Q−1
1̃2̃

Q−1
2̃1̃

Q−1
2̃2̃

⎞
⎠ .

Then from (34) it follows that

D12µ2 = (0T
1̃
,µT

2̃
)T ,

and from (15) ∆ reduces to ∆ = −(µT

1̃
,0T

2̃
)T . Finally, from Theorem 1 it

follows that for λ >
√
µT

1̃
Q−1
1̃1̃
µ
1̃
,

x∗ = Σ−1BT (BΣ−1BT )−1c (35)

−
√

cT (BΣ−1BT )−1c

(λ2 −µT

1̃
Q−1

1̃1̃
µ
1̃
)

(
µT

1̃
Q−1

1̃1̃
,µT

1̃
Q−1

1̃2̃
,−µT

1̃
(Q−1

1̃1̃
D
1̃2

+Q−1

1̃2̃
D
2̃2
)
)T

,

where 2 × k and 2 × (n − 2 − k) matrices D
21̃

and D
22̃

are of the form,
respectively,

D
21̃

=
1

µn − µn−1

(
µn · · · µn

−µn−1 · · · −µn−1

)
,

D
22̃

=
1

µn − µn−1

(
µn − µk+1 · · · µn − µn−2

µk+1 − µn−1 · · · µn−2 − µn−1

)
,

andD
1̃2

= DT

21̃
, D

2̃2
= DT

22̃
. Since k ≥ 1, this solution does not now coincide

with that of minimization of quadratic functional.

3.3 Numerical Example

We illustrate the results in the problem of optimal portfolio selection. We
consider a portfolio of 10 stocks from NASDAQ/Computers (ADOBE Sys.
Inc., Compuware Corp., NVIDIA Corp., Starles Inc., Verisign Inc., Sandisk
Corp., Microsoft Corp., Symantec Corp., Citrix Sys Inc., Intuit Inc.) for
the year 2005, and denote by X = (X1, ..., Xn)

T with n = 10 stock weekly
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Table 1: Expected returns

Stock ADOBE Compuware NVIDIA Staples VeriSign
Mean -0.0061 0.0081 0.0096 -0.0058 -0.0064

Stock Sandisk Microsoft Citrix Intuit Symantec
Mean 0.0198 -0.0002 0.0038 0.0041 -0.0061

Table 2: Covariance matrix of returns

ADOBE Compuware NVIDIA Staples VeriSign
ADOBE 0.006102 0.001173 0.000118 0.000513 0.000121
Compuware 0.001173 0.003310 0.001047 0.000498 0.000847
NVIDIA 0.000118 0.001047 0.002145 0.000122 0.000772
Staples 0.000513 0.000498 0.000122 0.002940 -0.000547
VeriSign 0.000121 0.000847 0.000772 -0.000547 0.003486

Sandisk Microsoft Citrix Intuit Symantec
Sandisk 0.004013 -0.000033 0.000844 0.000131 0.000083
Microsoft -0.000033 0.000485 0.000220 0.000167 0.000062
Citrix 0.000844 0.000220 0.001365 0.000397 0.000445
Intuit 0.000131 0.000167 0.000397 0.000876 0.000027
Symantec 0.000083 0.000062 0.000445 0.000027 0.002542
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returns. The vector of means and covariance matrix weekly return are given
in Tables 1 and 2.

The random return on the portfolio is P =
∑n

j=1 xjXj, where
∑n

j=1 xj =
1. The loss, being the negative of this, is given by

L = −
n∑

j=1

xjXj.

Consider the problem of minimization of the standard deviation premium of
L

s(x) = E(L) + λ
√
V ar(L) = −µTx+ λ

√
xTΣx, (36)

where vector µ is vector of expected returns and Σ is 10 × 10 covariance
matrix of returns presented in Tables 1 and 2, respectively, under system of
constraints (33) with k = 4. This means that the expected return of the sum
of the last 6 stocks (Verisign Inc., Sandisk Corp., Microsoft Corp., Symantec
Corp., Citrix Sys Inc., Intuit Inc) is certain and equaledR = 0.2. Then vector
c = (1, 0.2)T , matrix

B =

(
1 1 1 1 1 1 1 1 1 1
0 0 0 0 µ5 µ6 µ7 µ8 µ9 µ10

)
,

where µ
5
− µ

10
are taken from Table 1, matrix

Q−1
1̃1̃

=

⎛
⎜⎜⎝

182.743 −64.677 22.439 −13.337
−64.677 424.257 −148.572 −35.951
22.439 −148.572 611.705 −7.247
−13.337 −35.951 −7.247 386.601

⎞
⎟⎟⎠

and the lower boundary for λ is

B =
√
(µ

1
, µ

2
, µ

3
, µ

4
)Q−1

1̃1̃
(µ

1
, µ

2
, µ

3
, µ

4
)T = 0.2958.

Theorem 1 (formula (35)) provides the explicit solution for the s(x) -optimal
(minimal) portfolio reported in Table 3. For comparison, the first row of the
Table presents the solution when the expected return of the full portfolio is
certain. The last column of the second part of Table 3 provides the meanings
of the goal function for both solutions. One can see that the goal of the
solution provided by (35) is naturally lower.

13



Table 3: Optimal portfolio

ADOBE Compuware NVIDIA Staples VeriSign
x0 -0.8836 0.0994 -1.9063 -3.7878 -4.3503
x∗ -1.8755 2.0312 1.4352 -5.642 -5.4436

Sandisk Microsoft Citrix Intuit Symantec goal function s(·)
x0 6.4363 -0.1776 1.1217 9.2869 -0.2784 0.1168
x∗ 6.6337 -0.6448 0.3516 8.0707 0.2306 0.0862

In additional in Table 4 we give the solution of the problem of minimiza-
tion of functional s(x) under matrices of constraints

B1 =

(
1 1 1 1 1 1 1 1 1 1
3µ1 µ2 2µ3 2µ4 µ5 µ6 2µ7 µ8 µ9 3µ10

)
,

B2 =

⎛
⎝ 1 1 1 1 1 1 1 1 1 1

3µ1 µ2 2µ3 2µ4 µ5 µ6 2µ7 µ8 µ9 3µ10

5µ
1

4µ
2

6µ
3

2µ
4

3µ
5

µ
6

µ
7

8µ
8

7µ
9

µ
10

⎞
⎠

and vectors c1 = (1, 0.5)T and c2 = (1, 0.5.0.9)T , respectively. As in the case
of matrix B2 the problem has the additional constraint that the goal of the
B2-solution is greater than that of corresponding to B1.
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Table 4: Solution of the minimization problem under different systems of
constraints

System of constr. ADOBE Compuware NVIDIA Staples VeriSign
B1 -2.946 3.662 4.453 -7.124 —6.390
B2 -2.425 4.41 4.209 -5.213 -0.829

System of constr. Sandisk Microsoft Citrix Intuit Symant. goal f. s(·)
B1 7.179 -5.626 1.082 8.111 -1.400 0.103
B2 7.823 5.476 -3.925 -0.931 -7.596 0.194
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