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1 Introduction

It generally poses a challenge to find the exact asymptotics for probabilities that tend to zero. However,
due to the vast set of available tools, relatively much is known about probabilities arising from a one-
dimensional random walk {Sn}. For instance, under Cramér’s condition on the step-size distribution, the
famous Bahadur-Ranga Rao theorem describes the deviations of Sn/n from its mean; see for instance
Höglund [21]. Other random walks with well-studied (large) deviation behavior include those with step-
size distributions for which Cramér’s condition fails to hold.

Large deviations under subexponentiality

The present paper studies large deviations for random walks with subexponential step-size distributions
on the real line. These constitute a large class of remarkably tractable distributions for which Cramér’s
condition does not hold. The resulting random walks have the property that there exists some sequence
{xn} (depending on the step-size distribution) for which [8]

lim
n→∞

sup
x≥xn

∣∣∣∣ P{Sn > x}
nP{S1 > x}

− 1
∣∣∣∣ = 0. (1)

The intuition behind the factor n is that a single big jump causes Sn to become large; this jump may occur at
each of the n epochs. Given a subexponential step-size distribution, it is our aim to characterize sequences
{xn} for which (1) holds. In other words, we are interested in (the boundary of) the big-jump domain.

The big-jump domain has been well-studied for special classes of subexponential distributions, see the
surveys by Embrechts et al. [13, Sec. 8.6], S. Nagaev [31], and Mikosch and A. Nagaev [29]. Due to its
importance for applications (e.g., [9]), there has been a continuing interest in this topic; work published
after 2003 includes Baltrūnas et al. [2], Hult et al. [22], Jelenković and Momčilović [24], Konstantinides
and Mikosch [26], and Ng et al. [33]. Finally, we mention Rozovskii’s important articles [36, 37]; part of
our motivation to start this work was to understand his contributions better.

Novelties

Although the sequences for which (1) holds have been characterized for certain subclasses of subexponen-
tial distributions, the novelty of our work is twofold:

• we present a unified theory within the framework of subexponentiality, which fits well within classical
results on domains of (partial) attraction and local limit theory, and

∗EURANDOM, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
†University College Cork, 17 South Bank, Crosses Green, Cork, Ireland

1



• we also study the local analogue of (1), i.e., for a given T > 0, we study the x-domain for which
P{Sn ∈ (x, x + T ]} is uniformly approximated by nP{S1 ∈ (x, x + T ]}.

When specialized to the classes of subexponential distributions studied in the literature, our theory repro-
duces the sharpest known results with short proofs. Moreover, importantly, in some cases it allows to
improve upon the best-known boundaries by several orders of magnitude, as well as to derive entirely new
results.

By presenting a unified large-deviation theory for subexponential distributions in the big-jump domain,
we reveal a remarkable structure. Indeed, our main result shows that two effects play an equally important
role. The first effect ensures that having many ‘small’ steps is unlikely to lead to the rare event {Sn > x},
and the second effect requires that the step-size distribution be insensitive to shifts around typical values of
Sn; the latter is known to play a role in the finite-variance case [24]. Since one of these effects typically
dominates, this explains the inherently different nature of some of the big-jump boundaries found in the
literature.

It is instructive to see how these two effects heuristically solve the large-deviation problem for centered
subexponential distributions with unit variance. In this context, the many-small-steps-effect requires that
x ≥ Jn, where Jn satisfies J2

n ∼ −2n log [nP{S1 > Jn}] as n → ∞ (here f(x) ∼ g(x) stands for
limx f(x)/g(x) = 1). In fact, Jn usually needs to be chosen slightly larger. On the other hand, the
insensitivity-effect requires that x ≥ In, where In satisfies P{S1 > In −

√
n} ∼ P{S1 > In}. After

overcoming some technicalities, our theory allows to show that (1) holds for xn = In + Jn. We stress,
however, that our results not only apply to the finite-variance case; seemingly ‘exotic’ step-size distributions
with infinite mean fit seamlessly into the framework.

The second novelty of our work, the investigation of local asymptotics, also has important conse-
quences. A significant amount of additional arguments are needed to prove our results in the local case,
but local large deviation theorems are much stronger than their global counterparts. Let us illustrate this
by showing that our local results under subexponentiality immediately yield interesting and new theorems
within the context of light tails. Indeed, given γ > 0 and a subexponential distribution function F for which
L(γ) =

∫
e−γyF (dy) < ∞, consider the random walk under the measure P∗ determined by

P∗{S1 ∈ dx} =
e−γxF (dx)∫
R e−γyF (dy)

.

Distributions of this form constitute an important subclass of the class which is usually called S(γ) (but
S(γ) is larger; see [12]). Suppose that for any T > 0, we have P{Sn ∈ (x, x+T ]} ∼ nP{S1 ∈ (x, x+T ]}
uniformly for x ≥ xn, where {Sn} is a P-random walk with step-size distribution F and {xn} does not
depend on T . Using our local large-deviation results and an elementary approximation argument, we readily
obtain that

lim
n→∞

sup
x≥xn

∣∣∣∣ P∗{Sn > x}
nL(γ)1−nP∗{S1 > x}

− 1
∣∣∣∣ = 0.

Apart from the one-dimensional random-walk setting, our techniques seem to be suitable to deal with
a variety of problems outside the scope of the present paper. For instance, our arguments may unify the
results on large deviations for multidimensional random walks [4, 22, 30]. Stochastic recurrences form
another challenging area; see [26].

Outline

This paper is organized as follows. In Section 2, we introduce four sequences that facilitate our analysis.
We also state our main result and outline the idea of the proof. Sections 3–6 contain the proofs of the claims
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made in Section 2. Two sequences are typically hardest to find, and we derive a series of useful tools to
find these sequences in Sections 7 and 8. As a corollary, we obtain a large-deviation result which allows
one to conclude that (1) holds with xn = an for some a > 0. In Sections 9 and 10, we work out the most
important special cases of our theory. Two appendices treat a few useful notions used in the body of the
paper. Appendix A focuses on Karamata theory, while Appendix B discusses the class of subexponential
densities.

2 Main result and idea of the proof

We first introduce some notation. Throughout, we study the random walk {Sn ≡ ξ1 + . . . + ξn} with
generic step ξ. Let F be the step-size distribution, i.e., the distribution of ξ. We also fix some T ∈ (0,∞],
and write F (x + ∆) for P{x < ξ ≤ x + T}, which is interpreted as F (x) ≡ P{ξ > x} if T = ∞. Apart
from these notions, an important role in the present paper is also played by G(x) ≡ P{|ξ| > x}, and the
truncated moments µ1(x) ≡

∫
|y|≤x yF (dy) and µ2(x) ≡

∫
|y|≤x y2F (dy).

We say that F is (locally) long-tailed, written as F ∈ L∆, if F (x + ∆) > 0 for sufficiently large x and
F (x + y + ∆) ∼ F (x + ∆) for all y ∈ R. Since this implies that x 7→ F (log x + ∆) is slowly varying,
the convergence holds locally uniformly in y. The distribution F is (locally) subexponential, written as
F ∈ S∆, if F ∈ L∆ and F (2)(x + ∆) ∼ 2F (x + ∆) as x → ∞. Here F (2) is the twofold convolution of
F . In the local case, for F supported on [0,∞), the class S∆ has been introduced by Asmussen et al. [1].

With the only exception of our main theorem, Theorem 2.1, all proofs for this section are deferred to
Section 3 (the global case) and Section 4 (the local case). The proof of Theorem 2.1 is given in Section 5
(global case) and Section 6 (local case).

2.1 Four sequences; main result

Our approach relies on four sequences associated to F .

Natural scale

We say that a sequence {bn} is a natural-scale sequence if {Sn/bn} is tight. Recall that this means that
for any ε > 0, there is some K > 0 such that P{Sn/bn ∈ [−K, K]} > 1 − ε. An equivalent definition is
that any subsequence contains a subsequence which converges in distribution. Hence, if Sn/bn converges
in distribution, then {bn} is a natural-scale sequence. For instance, if E{ξ} = 0 and E{ξ2} < ∞, then
b ≡ {

√
n} is a natural-scale sequence by the central limit theorem.

Due to their prominent role in relation to domain of partial attractions, natural-scale sequences have
been widely studied and are well-understood; necessary and sufficient conditions for {bn} to be a natural-
scale sequence can be found in Section IX.7 of Feller [16]. We stress, however, that we allow for the
possibility that Sn/bn converges in distribution to a degenerate limit; this is typically ruled out in much of
the literature. To give an example, suppose that E{ξ} = 0 and that E{|ξ|r} < ∞ for some r ∈ [1, 2). Then
b ≡ {n1/r} is a natural-scale sequence since Sn/n1/r converges to zero by the Kolmogorov-Marcinkiewicz-
Zygmund law of large numbers.

We now collect some important facts on natural-scale sequences. First, by the lemma in Section IX.7
of [16] (see also Jain and Orey [23]), we have

lim
K→∞

sup
n

nG(Kbn) = 0 (2)

for any natural-scale sequence. The next exponential bound lies at the heart of the present paper.
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Lemma 2.1. For any natural-scale sequence {bn}, there exists a constant C ∈ (0,∞) such that for any
n ≥ 1, c ≥ 1, and x ≥ 0,

P{Sn > x, ξ1 ≤ cbn, . . . , ξn ≤ cbn} ≤ C exp
{
− x

cbn

}
and

P{|Sn| > x, |ξ1| ≤ cbn, . . . , |ξn| ≤ cbn} ≤ C exp
{
− x

cbn

}
.

Insensitivity

Given a sequence b ≡ {bn}, we say that {In} is a b-insensitivity sequence if In � bn and

sup
x≥In

sup
0≤t≤bn

∣∣∣∣F (x− t + ∆)
F (x + ∆)

− 1
∣∣∣∣→ 0. (3)

The next lemma shows that such a sequence can always be found if F is a (locally) long-tailed distri-
bution.

Lemma 2.2. Let {bn} be a given sequence for which bn →∞. We have F ∈ L∆ if and only if there exists
a b-insensitivity sequence for F .

Truncation

Motivated by the relationship between insensitivity and the class L∆, our next goal is to find a convenient
way to think about the class of (locally) subexponential distributions S∆.

Given a sequence {bn}, we call {hn} a b-truncation sequence for F if

lim
K→∞

lim sup
n→∞

sup
x≥hn

nP{S2 ∈ x + ∆, ξ1, ξ2 ∈ (−∞,−Kbn) ∪ (hn,∞)}
F (x + ∆)

= 0. (4)

It is not hard to see that nF (hn) = o(1) for any b-truncation sequence. We will see in Lemma 2.3(ii)
below that a b-truncation sequence is often independent of {bn}, in which case we simply say that {hn} is
a truncation sequence.

At first sight, this definition may raise several questions. The following lemma therefore provides moti-
vation for the definition, and also shows that it can often be simplified. In Section 7, we present some tools
to find good truncation sequences. For instance, as we show in Lemma 7.3, finding a truncation sequence
is often not much different from checking a subexponentiality property; for this, standard techniques can
be used.

Recall that a function f is almost decreasing if f(x) � supy≥x f(y).

Lemma 2.3. Let {bn} be a natural-scale sequence.

(i) F ∈ S∆ if and only if F ∈ L∆ and there exists a b-truncation sequence for F .

(ii) If x 7→ F (x + ∆) is almost decreasing, then {hn} can be chosen independently of b. Moreover, in
that case, {hn} is a truncation sequence if and only if

lim
n→∞

sup
x≥hn

nP{S2 ∈ x + ∆, ξ1 > hn, ξ2 > hn}
F (x + ∆)

= 0.
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Small steps

We next introduce the fourth and last sequence that plays a central role in this paper. For a given sequence
h ≡ {hn}, we call the sequence {Jn} an h-small-steps sequence if

lim
n→∞

sup
x≥Jn

sup
z≥x

P{Sn ∈ z + ∆, ξ1 ≤ hn, . . . , ξn ≤ hn}
nF (x + ∆)

= 0. (5)

Note that the second supremum is always attained for z = x if T = ∞. Moreover, in conjunction with
the existence of a sequence for which (1) holds, (6) below shows that it is always possible to find a small-
steps sequence for a subexponential distribution. Since it is often nontrivial to find a good h-small-steps
sequence, Section 8 is entirely devoted to this problem.

Main theorem

The aim of this paper is to prove the following theorem and to present some of its corollaries. The assump-
tion hn ≤ Jn sometimes follows from hn = O(bn), see Lemma 7.1.

Theorem 2.1. Let {bn} be a natural-scale sequence, {In} be a b-insensitivity sequence, {hn} be a b-
truncation sequence, and {Jn} be an h-small-steps sequence. If hn = O(bn) and hn ≤ Jn, we have

lim
n→∞

sup
x≥In+Jn

∣∣∣∣P{Sn ∈ x + ∆}
nF (x + ∆)

− 1
∣∣∣∣ = 0.

We first provide an outline of the proof of this theorem; the full proof is given in Sections 5 and 6.

2.2 Outline and idea of the proof

The first ingredient in the proof Theorem 2.1 is the representation

P{Sn ∈ x + ∆} = P{Sn ∈ x + ∆, B1, . . . , Bn}+ nP{Sn ∈ x + ∆, B̄1, B2, . . . , Bn}

+
n∑

k=2

(
n

k

)
P{Sn ∈ x + ∆, B̄1, . . . , B̄k, Bk+1, . . . , Bn}, (6)

where we set Bi = {ξi ≤ hn}.
To control the last term in this expression, we use a special exponential bound. Note that this bound is

intrinsically different from Kesten’s exponential bound, for which ramifications can be found in [38].

Lemma 2.4. For k ≥ 2, set

ε∆,k(n) ≡ sup
x≥hn

P{Sk ∈ x + ∆, ξ1 > hn, ξ2 > hn, . . . , ξk > hn}
F (x + ∆)

and

η∆,k(n, K) ≡ sup
x≥hn

P{Sk ∈ x + ∆, ξ2 < −Kbn, . . . , ξk < −Kbn}
F (x + ∆)

.

Then we have ε∆,k(n) ≤ ε∆,2(n)k−1 and η∆,k(n, K) ≤ η∆,2(n, K)k−1.

The next lemma relies on this exponential bound, and shows that the sum in (6) is negligible when {hn}
is a truncation sequence. It is inspired by Lemma 4 of Rozovskii [36].
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Lemma 2.5. If F ∈ L∆ and nε∆,2(n) = o(1) for some sequence {hn}, then we have as n →∞, uniformly
for x ∈ R,

P{Sn ∈ x + ∆} = P{Sn ∈ x + ∆, ξ1 ≤ hn, . . . , ξn ≤ hn}
+ nP{Sn ∈ x + ∆, ξ1 > hn, ξ2 ≤ hn, . . . , ξn ≤ hn}(1 + o(1)). (7)

If x is in the ‘small-steps domain’, i.e., if x ≥ Jn, then the first term is small compared to nF (x + ∆).
Therefore, proving Theorem 2.1 amounts to showing that the last term in (7) behaves like nF (x + ∆).

This is where insensitivity plays a crucial role. Intuitively, on the event B2, . . . , Bn, Sn−ξ1 stays on its
natural scale: |Sn − ξ1| = O(bn). Therefore, Sn ∈ x + ∆ is roughly equivalent with ξ1 ∈ x±O(bn) + ∆
on this event. In the ‘insensitive’ domain (x ≥ In), we know that F (x±O(bn)+∆) ≈ F (x+∆), showing
that the last term in (7) is approximately nF (x + ∆).

3 Proofs for Section 2: the global case

This is the first of four sections devoted to proofs of the claims in Section 2. Throughout many of the proofs,
for convenience, we omit the mutual dependence of the four sequences. For instance, an insensitivity
sequence should be understood as a b-insensitivity sequence for some given natural-scale sequence {bn}.

The present section focuses on all claims for the ‘global’ case T = ∞; the only exception is the main
result, Theorem 2.1, which is proved in Section 5.

Throughout the next two sections, we use the notation of Lemma 2.4, and abbreviate ε∆,k(n) by εk(n)
if T = ∞. This is shortened further if k = 2; we then simply write ε(n).

Proof of Lemma 2.1. We derive a bound on P{Sn > x, |ξ1| ≤ cbn, . . . , |ξn| ≤ cbn}, which implies (by
symmetry) the second estimate. A simple variant of the argument yields the first estimate.

Suppose that {Sn/bn} is tight. The first step in the proof is to show that

lim
K→∞

lim inf
n→∞

P{Sn ∈ [−K2bn,K2bn], |ξ1| ≤ Kbn, . . . , |ξn| ≤ Kbn} = 1. (8)

To see this, we observe that

P{Sn ∈ [−K2bn,K2bn], |ξ1| ≤ Kbn, . . . , |ξn| ≤ Kbn}
≥ P{Sn ∈ [−K2bn,K2bn]} − [1− P{|ξ1| ≤ Kbn, . . . , |ξn| ≤ Kbn}] .

By first letting n tend to infinity and then K, we see that the first term tends to 1 by the tightness assumption,
and the second term tends to zero by (2).

We next use a symmetrization argument. Let S′
n be an independent copy of the random walk Sn. By

(8), there exists a constant K > 0 such that P{S′
n ≤ K2bn, |ξ′1| ≤ Kbn, . . . , |ξ′n| ≤ Kbn} ≥ 1/2. On

putting S̃n = Sn − S′
n, we obtain

P{Sn > x, |ξ1| ≤ cbn, . . . , |ξn| ≤ cbn}
≤ 2P{Sn > x, |ξ1| ≤ cbn, . . . , |ξn| ≤ cbn, S′

n ≤ K2bn, |ξ′1| ≤ Kbn, . . . , |ξ′n| ≤ Kbn}
≤ 2P{S̃n > x−K2bn, |ξ̃1| ≤ (c + K)bn, . . . , |ξ̃n| ≤ (c + K)bn}.

By the Chebyshev inequality, this is further bounded by

2 exp

{
−sx + sK2bn + n log

∫ (c+K)bn

−(c+K)bn

eszF̃ (dz)

}
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for all s ≥ 0. Here, F̃ denotes the distribution of ξ1 − ξ2. We use this inequality for s = 1/(cbn), implying
that sK2bn is uniformly bounded in n and c ≥ 1. It remains to show that the same holds true for the last
term in the exponent.

The key ingredient to bound this term is the assumption that {Sn/bn}, and hence its symmetrized
version {S′

n/bn}, is tight. In the proof of the lemma in Section IX.7 of [16], Feller shows that there then
exists some c0 such that

A0 ≡ sup
n

n
E{min(ξ̃2, (c0bn)2)}

b2
n

< ∞.

It is convenient to also introduce B0 ≡ supy≤K+1(ey − 1 − y)/y2. In conjunction with the symmetry of
F̃ , this immediately yields, for any c ≥ 1,

n log
∫ (c+K)bn

−(c+K)bn

eszF̃ (dz) ≤ n

∫ (c+K)bn

−(c+K)bn

eszF̃ (dz)− n

≤ n

∫ (c+K)bn

−(c+K)bn

[esz − 1− sz] F̃ (dz)

≤ B0n

∫ (c+K)bn

−(c+K)bn
z2F̃ (dz)

c2b2
n

.

Now, if 1 ≤ c < c0 −K, we bound this by B0nb−2
n

∫ c0bn

−c0bn
z2F̃ (dz) ≤ A0B0. In the complementary case

c ≥ c0 −K, we use the monotonicity of the function x 7→ x−2E{min(ξ̃2, x2)} to see that

n

∫ (c+K)bn

−(c+K)bn
z2F̃ (dz)

c2b2
n

≤ (c + K)2

c2
n

E{min(ξ̃2, (c + K)2b2
n)}

(c + K)2b2
n

≤ (1 + K)2n
E{min(ξ̃2, c2

0b
2
n)}

c2
0b

2
n

,

which is bounded by A0(1 + K)2/c2
0. 2

Proof of Lemma 2.2. First note that, in the global case, the supremum over t in (3) is always attained at
t = bn.

Fix some y ≥ 0 and suppose that {In} is an insensitivity sequence. Since bn → ∞, we have F (x) ≤
F (x− y) ≤ F (x− bn) for n large enough. This shows that for n →∞,

sup
x≥In

∣∣∣∣F (x− y)
F (x)

− 1
∣∣∣∣→ 0,

so that limx→∞ F (x− y)/F (x) = 1 for y ≥ 0. This equality then automatically also holds for y ≤ 0.
Conversely, if F ∈ L, then there exists some function A, which increases to +∞, such that for z →∞,

sup
x≥z

∣∣∣∣F (x−A(z))
F (x)

− 1
∣∣∣∣→ 0.

Now choose {In} = {A−1(bn)} as an insensitivity sequence. 2

Proof of Lemma 2.3. It is convenient to first prove (ii).
The proof of (ii) is given for both T < ∞ and T = ∞ simultaneously. It is clearly sufficient to prove

lim
K→∞

lim sup
n→∞

nη∆,2(n) = 0.

Since F (·+ ∆) is almost decreasing, there exists some constant C < ∞ such that for large x,

nP{S2 ∈ x + ∆, ξ2 < −Kbn} = n

∫ −Kbn

−∞
F (dy)F (x− y + ∆)

≤ nF (−Kbn) sup
y≥x

F (y + ∆)

≤ CnF (−Kbn)F (x + ∆).
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We know from (2) that the prefactor vanishes as n →∞ and then K →∞.
It remains to prove (i). Since we assume T = ∞, by (ii) we need to prove that F ∈ S is equivalent to

F ∈ L and ε(n) = o(1/n) for some {hn}. We first suppose that F ∈ S. For any L > 0, we can consider
L ≤ x < 2L and x ≥ 2L separately to see that

sup
x≥L

P{S2 > x, ξ1 > L, ξ2 > L}
F (x)

= sup
x≥2L

[
P{S2 > x}

F (x)
− 2

P{S2 > x, ξ2 ≤ L}
F (x)

]
. (9)

Let ε > 0 be given. Since F ∈ L, there exists some xL = xL(ε) such that for any x ≥ xL, we have

sup
y∈[−L,L]

∣∣∣∣F (x + y)
F (x)

− 1
∣∣∣∣ < ε.

We may suppose without loss of generality that xL increases to infinity in L and that xL ≥ 2L. Let us write
s = sε for its inverse; note that s(2L) ≤ L. Therefore, for x ≥ xs(2L) = 2L,

P{S2 > x, ξ2 ≤ L} ≥ P{S2 > x, |ξ2| ≤ s(2L)} =
∫ s(2L)

−s(2L)
F (dy)F (x− y)

≥ (1− ε)P{|ξ| ≤ s(2L)}F (x).

We conclude that the left-hand side of (9) can be made arbitrarily small by choosing L large enough and ε

small enough.
Let us now suppose that ε(n) = o(1/n) and F ∈ L. The latter assumption implies that for x ≥

xhn(1/n),

P{S2 > x, ξ2 ≤ hn}
F (x)

≤ F (x− hn)
F (x)

≤ 1 +
1
n

,

while, again for x ≥ xhn(1/n),

P{S2 > x, ξ2 ≤ hn}
F (x)

≥ F (x + hn)P{|ξ| ≤ hn}
F (x)

≥
(

1− 1
n

)
P{|ξ| ≤ hn}.

Now note that for x ≥ max(xhn(1/n), 2hn),∣∣∣∣P{S2 > x}
F (x)

− 2
∣∣∣∣ ≤ ε(n) + 2

∣∣∣∣P{S2 > x, ξ1 ≤ hn}
F (x)

− 1
∣∣∣∣ ,

which can be made arbitrarily small. 2

Proof of Lemma 2.4. We only show that the first inequality holds; the second is simpler to derive and uses
essentially the same idea.

We prove the inequality by induction. For k = 2, the inequality is an equality. We now assume that the
assertion holds for k − 1 and we prove it for k. Recall that Bj = {ξj ≤ hn}. First, for x < khn,

P{Sk > x, B̄1, . . . , B̄k} = F (hn)k ≤ εk−1(n)F ((k − 1)hn)F (hn)

≤ εk−1(n)ε(n)F (khn) ≤ ε(n)k−1F (x).

Second, for x ≥ khn,

P{Sk > x, B̄1, . . . , B̄k}
= P{ξk > x− hn}P{Sk−1 > hn, B̄1, . . . , B̄k−1}

+
∫ x−hn

hn

F (dz)P{Sk−1 > x− z, B̄1, . . . , B̄k−1}

≤ εk−1(n)
(

F (x− hn)F (hn) +
∫ x−hn

hn

F (dz)F (x− z)
)

≤ εk−1(n)ε(n)F (x) ≤ ε(n)k−1F (x).
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This proves the assertion. 2

Proof of Lemma 2.5. The assumption F ∈ L is not needed in the global case. For k ≥ 2, we have

P{Sn > x, B̄1, . . . , B̄k, Bk+1, . . . , Bn}
= P{B̄1, . . . , B̄k}P{Sn − Sk > x− hn, Bk+1, . . . , Bn}

+ P{Sn > x, Sn − Sk ≤ x− hn, B̄1, . . . , B̄k, Bk+1, . . . , Bn}.

We write P1 and P2 for the first and second summand respectively. Since F (hn) ≤ ε(n), the first term is
estimated as follows:

P1 ≤ ε(n)k−1P{Sn − Sk > x− hn, B̄1, Bk+1, . . . , Bn}.

Lemma 2.4 is used to bound the second term:

P2 =
∫ x−hn

−∞
P{Sn − Sk ∈ dz,Bk+1, . . . , Bn}P{Sk > x− z, B̄1, . . . , B̄k}

≤ ε(n)k−1

∫ x−hn

−∞
P{Sn − Sk ∈ dz,Bk+1, . . . , Bn}F (x− z)

= ε(n)k−1P{ξ1 + Sn − Sk > x, Sn − Sk ≤ x− hn, B̄1, Bk+1, . . . , Bn}.

By combining these two estimates, we obtain that

P{Sn > x, B̄1, . . . , B̄k, Bk+1 . . . , Bn} ≤ ε(n)k−1P{ξ1 + Sn − Sk > x, B̄1, Bk+1, . . . , Bn}.

Further,

P{Sn > x, B̄1, B2, . . . , Bn} ≥ P{Sn > x, B̄1, B2, . . . , Bn, ξ2 ≥ 0, . . . ξk ≥ 0}
≥ P{ξ1 + Sn − Sk > x, B̄1, B2, . . . , Bn, ξ2 ≥ 0, . . . ξk ≥ 0}
= P{ξ1 + Sn − Sk > x, B̄1, Bk+1, . . . , Bn}P{0 ≤ ξ2 ≤ hn}k−1.

If n is large enough, then P{0 ≤ ξ2 ≤ hn} ≥ P{ξ1 ≥ 0}/2 ≡ β. Therefore, it follows from the above
inequalities that

P{ξ1 + Sn − Sk > x, B̄1, Bk+1, . . . , Bn} ≤ P{Sn > x, B̄1, B2, . . . , Bn}
(

1
β

)k−1

.

As a result, we have, for sufficiently large n,
n∑

k=2

(
n

k

)
P{Sn > x, B̄1, . . . , B̄k, Bk+1, . . . , Bn}

≤ P{Sn > x, B̄1, B2, . . . , Bn}
n∑

k=2

(
n

k

)(
ε(n)
β

)k−1

= o(n)P{Sn > x, B̄1, B2, . . . , Bn},

as desired. 2

4 Proofs for Section 2: the local case

This section contains the proofs for Section 2 in case T < ∞. As in the global case, the proof of the main
result (Theorem 2.1) is given later, in Section 6. A proof for Lemma 2.1 has already been given, so we start
with Lemma 2.2.
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Proof of Lemma 2.2. If there exists some insensitivity sequence for F , it follows readily that F ∈ L∆ as
in the global case.

For the converse, we exploit the fact that x 7→ F (log x+∆) is slowly varying. The uniform convergence
theorem for slowly varying functions (see for instance Bingham et al. [3, Thm. 1.2.1]) implies that there
exists some function A, increasing to +∞, such that for z →∞,

sup
x≥z

sup
0≤y≤A(z)

∣∣∣∣F (x− y + ∆)
F (x + ∆)

− 1
∣∣∣∣→ 0.

As in the global case, choose In = A−1(bn). 2

Proof of Lemma 2.3. We have proved (ii) already in the preceding section, so we only prove (i). Let
F ∈ S∆. As in the global case, the assumption F ∈ L∆ shows that for any ε > 0 and L > 0, there exists
some xL = xL(ε) such that

sup
x≥xL

sup
y∈[−L,L]

∣∣∣∣F (x + y + ∆)
F (x + ∆)

− 1
∣∣∣∣ < ε. (10)

It can be proved along the lines of the ‘global’ proof that this implies

lim
L→∞

sup
x≥2L−T

P{S2 ∈ x + ∆, ξ1 > L, ξ2 > L}
F (x + ∆)

= 0. (11)

Since P{S2 ∈ x + ∆, ξ2 ≤ L} ≤ P{S2 ∈ x + ∆}/2 for x ≥ 2L, we may pick a sequence {fn} such that
for large n,

sup
x≥2fn

P{S2 ∈ x + ∆, ξ2 ≤ fn}
F (x + ∆)

≤ 1 + 1/n2.

We may assume without loss of generality that fn � bn. Our next argument relies on the observation

P{S2 ∈ x + ∆, ξ2 < −Kbn} ≤ P{S2 ∈ x + ∆, ξ2 ≤ fn} − P{S2 ∈ x + ∆, |ξ2| ≤ Kbn}.

Recalling the definition of xL in (10), we have for x ≥ xfn(1/n2), provided n is large,

P{S2 ∈ x + ∆, |ξ2| ≤ Kbn} =
∫ Kbn

−Kbn

F (dy)F (x− y + ∆)

≥ (1− 1/n2)P{|ξ| ≤ Kbn}F (x + ∆).

Conclude that uniformly for x ≥ max(xfn(1/n2), 2fn),

nP{S2 ∈ x + ∆, ξ2 < −Kbn} ≤
[
nG(Kbn) + 2/n

]
F (x + ∆),

and the prefactor vanishes if first n → ∞ and then K → ∞, see (2). Equation (11) in conjunction with
the trivial observation P{ξ > L} → 0 shows that there must exist a sequence {hn} with the required
properties.

We proceed to the proof of the converse. Let F ∈ L∆, and suppose that we are given some {hn} such
that (4) holds.

For x ≥ 2hn, we have

P{S2 ∈ x + ∆} = P{S2 ∈ x + ∆, ξ1 > hn, ξ2 > hn}+ 2P{S2 ∈ x + ∆, ξ1 ≤ hn}
≤ ε∆(n)F (x + ∆) + 2P{S2 ∈ x + ∆, ξ1 ≤ hn}.
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Choose some fn � max(bn, hn) and note that, uniformly for x ≥ xfn(1/n2),

P{S2 ∈ x + ∆,−Kbn ≤ ξ2 ≤ hn} ≤ (1 + 1/n2)F (x + ∆),

so that, for any fixed K and n large, uniformly for x ≥ max(xfn(1/n2), hn),

P{S2 ∈ x + ∆}
F (x + ∆)

≤ ε∆(n) + 2
(

1 +
1
n2

)
+ 2 sup

x≥hn

P{S2 ∈ x + ∆, ξ2 < −Kbn}
F (x + ∆)

.

Now first let n →∞ in this upper bound and then K →∞.
The corresponding lower bound is proved similarly; simply note that P{S2 ∈ x + ∆, ξ1 ≤ hn} ≥

P{S2 ∈ x + ∆,−Kbn ≤ ξ2 ≤ hn}. 2

Proof of Lemma 2.4. Again, we use induction to only prove the first inequality. We may suppose that
hn > T . For k = 2, the claim is trivial. Assume now that it holds for k − 1 and prove the inequality for k.
First, for x < khn − T, it is clear that P{ξ1 > hn, ξ2 > hn, . . . , ξk > hn, Sk ∈ x + ∆} = 0. Second, for
x ≥ khn − T ,

P{Sk ∈ x + ∆, ξ1 > hn, ξ2 > hn, . . . , ξk > hn}

≤
∫ x−(k−1)hn+T

hn

F (dy)P{Sk−1 ∈ x− y + ∆, ξ1 > hn, ξ2 > hn, . . . , ξk−1 > hn}

≤ ε∆(n)k−2

∫ x−(k−1)hn+T

hn

F (dy)F (x− y + ∆)

≤ ε∆(n)k−2

∫ x−hn

hn

F (dy)F (x− y + ∆),

where the latter inequality follows from the fact that (k − 1)hn − T ≥ hn for k > 2. Now note that∫ x−hn

hn

F (dy)F (x− y + ∆) ≤ P{S2 ∈ x + ∆, ξ1 > hn, ξ2 > hn} ≤ ε∆(n)F (x + ∆),

and the claim follows. 2

Proof of Lemma 2.5. We may again assume that hn > T without loss of generality. The exponential
bound of Lemma 2.4 shows that, for k ≥ 2,

P{Sn ∈ x + ∆, B̄1, . . . , B̄k, Bk+1, . . . , Bn}
= P{Sn ∈ x + ∆, Sn − Sk ≤ x− hn, B̄1, . . . , B̄k, Bk+1, . . . , Bn}

=
∫ x−hn

−∞
P{Sn − Sk ∈ dz,Bk+1, . . . , Bn}P{Sk ∈ x− z + ∆, B̄1, . . . , B̄k}

≤ ε∆(n)k−1

∫ x−hn

−∞
P{Sn − Sk ∈ dz, Bk+1, . . . , Bn}F (x− z + ∆)

≤ ε∆(n)k−1P{ξ1 + Sn − Sk ∈ x + ∆, B̄1, Bk+1, . . . , Bn}.

Let x1 > 0 be a constant such that F (0, x1] ≡ β > 0. Then, for n large enough so that hn > x1,

P{ξ1 + Sn − Sk ∈ x + ∆, B̄1, Bk+1, . . . , Bn}
= β1−kP{ξ1 + Sn − Sk ∈ x + ∆, B̄1, Bk+1, . . . , Bn, 0 < ξ2, . . . , ξk ≤ x1}
≤ β1−kP{Sn ∈ (x, x + (k − 1)x1 + T ], B̄1, Bk+1, . . . , Bn, 0 < ξ2, . . . , ξk ≤ x1}
≤ β1−kP{Sn ∈ (x, x + (k − 1)x1 + T ], B̄1, B2, . . . , Bn}.
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Furthermore, we have

P{Sn ∈ (x, x + (k − 1)x1 + T ], B̄1, B2, . . . , Bn}

=
∫ x−hn+(k−1)x1+T

−∞
P{ξ1 > hn, ξ1 ∈ (x− y, x− y + (k − 1)x1 + T ]}

P{Sn − ξ1 ∈ dy,B2, . . . , Bn}.

The condition F ∈ L∆ ensures that we can find some x0 such that for any x ≥ x0, the inequality F (x +
T + ∆) ≤ 2F (x + ∆) holds. Assuming without loss of generality that x1/T is an integer, this implies that
for y ≤ x− hn + (k − 1)x1 + T and n large enough so that hn ≥ x0,

P{ξ1 > hn, ξ1 ∈ (x− y, x− y + (k − 1)x1 + T ]}
= P{ξ1 ∈ (max(hn, x− y), x− y + (k − 1)x1 + T ]}

≤
(k−1)x1/T∑

j=0

F (max(hn, x− y) + jT + ∆)

≤
(k−1)x1/T∑

j=0

2jF (max(hn, x− y) + ∆)

≤ 2(k−1)x1/T+1F (max(hn, x− y) + ∆).

Upon combining all inequalities that we have derived in the proof, we conclude that for large n, uniformly
in x ∈ R,

P{Sn ∈ x + ∆, B̄1, . . . , B̄k, Bk+1, . . . , Bn}

≤ 2ε∆(n)k−1P{Sn ∈ x + ∆, B̄1, B2, . . . , Bn}

(
2x1/T

β

)k−1

.

The proof is completed in exactly the same way as for the global case. 2

5 Proof of Theorem 2.1: the global case

We separately prove the upper and lower bounds in Theorem 2.1, starting with the lower bound.

Proof of Theorem 2.1: lower bound. For any K > 0 and x ≥ 0, we have

P{Sn > x}
≥ nP{Sn > x, ξ1 > Kbn, |ξ2| ≤

√
Kbn, . . . , |ξn| ≤

√
Kbn}

≥ nP{ξ > x + Kbn}P{Sn−1 > −Kbn, |ξ1| ≤
√

Kbn, . . . , |ξn−1| ≤
√

Kbn}.

Now let ε > 0 be arbitrary, and fix some (large) K such that

lim inf
n→∞

P{Sn−1 ∈ [−Kbn,Kbn], |ξ1| ≤
√

Kbn, . . . , |ξn−1| ≤
√

Kbn} ≥ 1− ε/2, (12)

which is possible by (8). Since {In} is an insensitivity sequence, provided n is large enough, we have
F (x − bn) ≤ (1 + ε)1/KF (x) for any x ≥ In. In particular, F (x + Kbn) ≥ (1 + ε)−1F (x) for x ≥ In.
Conclude that for any x ≥ In,

P{Sn > x}
nP{ξ > x}

≥ (1 + ε)−1P{Sn−1 > −Kbn, |ξ1| ≤
√

Kbn, . . . , |ξn−1| ≤
√

Kbn},

which must exceed (1 + ε)−1(1− ε) for large enough n. 2
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Proof of Theorem 2.1: upper bound. Since {Jn} is a small-steps sequence, it suffices to focus on the
second term on the right-hand side of (7).

Fix some (large) K, and suppose throughout that x ≥ In + Jn. Recall that Bi = {ξi ≤ hn}. Since
In � bn and hn = O(bn), we must have x− Jn ≥ hn for large n. We may therefore write

P{Sn > x, B̄1, B2, . . . , Bn} =
∫ x−Jn

hn

+
∫ ∞

x−Jn

F (du)P{Sn − ξ1 > x− u, B2, . . . , Bn}. (13)

For u in the first integration interval, we clearly have x−u ≥ Jn, so that by construction of {Jn} and {hn},
for large n,∫ x−Jn

hn

F (du)P (Sn−1 > x− u, B1, . . . , Bn−1)

≤ e−Kn

∫ x−Jn

hn

F (du)F (x− u) ≤ e−Kn

∫ x−hn

hn

F (du)F (x− u)

≤ e−KnP{S2 > x, ξ1 > hn, ξ2 > hn} ≤ e−KF (x),

where we also used the assumption Jn ≥ hn.
In order to handle the second integral in (13), we rely on the following fact. As {In} is an insensitivity

sequence, we have for large n,

sup
u≥In

F (u)
F (u + bn)

≤ e1/K2
. (14)

We next distinguish between two cases: Jn ≤ Kbn and Jn > Kbn. In the first case, since x−Jn ≥ In,
(14) can be applied iteratively to see that

F (x− Jn) ≤ eJn/bn/K2
F (x) ≤ e1/KF (x). (15)

Now note that the second integral in (13) is majorized by P{ξ > x− Jn} and hence by e1/KF (x).
Slightly more work is needed if Jn > Kbn. First write the last integral in (13) as

∫ x−Kbn

x−Jn
+
∫∞
x−Kbn

.
Since x−Kbn > x− Jn ≥ In, the argument of the preceding paragraph shows that P{ξ > x−Kbn} ≤
e1/KF (x). This must also be an upper bound for the integral

∫∞
x−Kbn

, so it remains to investigate the

integral
∫ x−Kbn

x−Jn
, which is bounded from above by

P{ξ > x− Jn}P{Sn−1 > Jn, B1, . . . , Bn−1}+
∫ Jn

Kbn

P{Sn−1 ∈ dy,B1, . . . , Bn−1}F (x− y).

First, using hn = O(bn), select some c < ∞ such that hn ≤ cbn. Without loss of generality, we may
suppose that K2 > c. Using the first inequality in (15) and Lemma 2.1, we see that the first term is
bounded by O(1)eJn/bn/K2−Jn/bn/cF (x) = o(1)F (x) as n → ∞. As x − Jn ≥ In, the second term is
bounded by

bJn/bnc∑
k=K

P{Sn−1/bn ∈ (k, k + 1], ξ1 ≤ hn, . . . , ξn−1 ≤ hn}F (x− kbn)

≤
bJn/bnc∑

k=K

P{Sn−1 > kbn, ξ1 ≤ cbn, . . . , ξn−1 ≤ cbn}F (x− kbn)

≤ C

bJn/bnc∑
k=K

e−k/cek/K2
F (x) ≤ C

e−K/c+1/K

1− e−1/c+1/K2 F (x),

where we have used (14) and (the first inequality of) Lemma 2.1. Since K is arbitrary, this proves the upper
bound. 2
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6 Proof of Theorem 2.1: the local case

We use the following notation throughout this section: set CK
i ≡ {−

√
Kbn ≤ ξi ≤ hn} and DK

i ≡ {ξi <

−
√

Kbn} for any K > 0. Recall that Bi = {ξi ≤ hn}. As in Section 5, we start with the lower bound.

Proof of Theorem 2.1: lower bound. The proof is similar to its global analogue, again using (12) and
insensitivity. First fix some ε > 0, then choose K (fixed) as in the ‘global’ proof. For later use, by (2) we
may assume without loss of generality that K satisfies supn nG(Kbn) < ε and that e−1/K ≥ 1− ε.

Repeated application of ‘insensitivity’ shows that for any y ≥ 0, provided n is large,

inf
x≥In

F (x + y + ∆)
F (x + ∆)

≥ exp
{
− y

K2bn

}
, sup

x≥In

F (x + y + ∆)
F (x + ∆)

≤ exp
{

y

K2bn

}
.

We next distinguish between the cases Jn ≥ Kbn and Jn < Kbn. In the first case, since we consider
x ≥ In + Jn, we have x−Kbn ≥ In for large n, so that

P{Sn ∈ x + ∆}

≥ n

∫ Kbn

−Kbn

P{Sn−1 ∈ dy, |ξ1| ≤
√

Kbn, . . . , |ξn−1| ≤
√

Kbn}F (x− y + ∆)

≥ ne−1/KP{Sn−1 ∈ [−Kbn,Kbn], |ξ1| ≤
√

Kbn, . . . , |ξn−1| ≤
√

Kbn}F (x + ∆)

≥ ne−1/K(1− ε)F (x + ∆),

where the second inequality uses the above insensitivity relations (distinguish between positive and negative
y). Since e−1/K ≥ 1− ε, this proves the claim if Jn ≥ Kbn.

We next suppose that Jn < Kbn. Observe that then, for x ≥ In + Jn,

inf
−Jn≤y≤0

F (x + y + ∆)
F (x + ∆)

≥ exp
{
− Jn

K2bn

}
≥ e−1/K .

Since hn = O(bn) and In � bn, the events CK
1 and {ξ1 > x − Jn} are disjoint for x ≥ In + Jn, so that

with the preceding display,

P{Sn ∈ x + ∆}

≥ n

∫ Jn

−Kbn

P{Sn−1 ∈ dy, CK
1 , . . . , CK

n−1}F (x− y + ∆)

≥ ne−1/KF (x + ∆)P{Sn−1 ∈ [−Kbn, Jn], CK
1 , . . . , CK

n−1}
≥ n(1− ε)F (x + ∆)P{Sn−1 ∈ [−Kbn, Jn], CK

1 , . . . , CK
n−1}.

We need two auxiliary observations before proceeding. First, by construction of K, we have

P{Sn−1 < −Kbn, CK
1 , . . . , CK

n−1}
≤ P{|Sn−1| > Kbn, |ξ1| ≤

√
Kbn, . . . , |ξn−1| ≤

√
Kbn} ≤ ε.

Furthermore, by definition of Jn, we have for large n,

P{Sn−1 > Jn, CK
1 , . . . , CK

n−1}
≤ P{Sn−1 > Jn, ξ1 ≤ hn, . . . , ξn−1 ≤ hn}

=
∞∑

k=0

P{Sn−1 ∈ Jn + kT + ∆, ξ1 ≤ hn, . . . , ξn−1 ≤ hn}

≤ εn

∞∑
k=0

F (Jn + kT + ∆) = εnF (Jn) ≤ εnF (hn) ≤ ε,
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since nF (hn) = o(1).
The inequalities in the preceding two displays show that

P{Sn−1 ∈ [−Kbn, Jn], CK
1 , . . . , CK

n−1} ≥ P{CK
1 }n−1 − 2ε,

and by construction of K we may infer that P{CK
1 } ≥ 1−F (hn)−G(Kbn) ≥ 1−2ε/n, so that P{CK

1 }n−1

must exceed e−3ε if n is large. 2

The proof of the upper bound is split into two lemmas, Lemma 6.1 and Lemma 6.2. First note that by
Lemma 2.5 and the definition of Jn, it suffices to show that

lim sup
n→∞

sup
x≥In+Jn

P{Sn ∈ x + ∆, ξ1 > hn, ξ2 ≤ hn, . . . , ξn ≤ hn}
F (x + ∆)

≤ 1.

We prove this by truncation from below. The numerator in the preceding display can be rewritten as

P{Sn ∈ x + ∆, B̄1, C
K
2 , . . . , CK

n }

+
n∑

k=2

(
n− 1
k − 1

)
P{Sn ∈ x + ∆, B̄1, D

K
2 , . . . , DK

k , CK
k+1, . . . , C

K
n }. (16)

The first probability in this expression is taken care of by the next lemma.

Lemma 6.1. Under the assumptions of Theorem 2.1, we have

lim sup
K→∞

lim sup
n→∞

sup
x≥In+Jn

P{Sn ∈ x + ∆, B̄1, C
K
2 , . . . , CK

n }
F (x + ∆)

≤ 1.

Proof. This is similar to the ‘global’ proof of Theorem 2.1, but some new arguments are needed. We follow
the lines of the proof given in Section 5.

Fix some (large) K > 1. Suppose that n is large enough such that

sup
x≥In

F (x + bn + ∆)
F (x + ∆)

≤ e1/K2
. (17)

In order to bound the probability

P{Sn ∈ x + ∆, hn < ξ1 ≤ x−min(Jn,Kbn), CK
2 , . . . , CK

n }
≤ P{Sn ∈ x + ∆, hn < ξ1 ≤ x−min(Jn,Kbn), B2, . . . , Bn},

exactly the same arguments work as for the global case.
Moreover, after distinguishing between Jn > Kbn and Jn ≤ Kbn, it is not hard to see with (17) that

for x ≥ In + Jn and n large,

P{Sn ∈ x + ∆, x−min(Jn,Kbn) < ξ1 ≤ x + Kbn, CK
2 , . . . , CK

n }

=
∫ min(Jn,Kbn)+T

−Kbn

P{Sn−1 ∈ dy, CK
1 , . . . , CK

n−1}F (x− y + ∆)

≤ e1/KP{Sn−1 ∈ [−Kbn,min(Jn,Kbn) + T ], CK
1 , . . . , CK

n−1}F (x + ∆),

which is majorized by e1/KF (x + ∆).
It remains to investigate the regime ξ1 > x + Kbn. Since hn = O(bn), we may assume without loss

of generality that hn ≤
√

Kbn. Exploiting the insensitivity inequality (17) and the second inequality of
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Lemma 2.1, we see that for x ≥ In and n large enough,

P{Sn ∈ x + ∆, ξ1 > x + Kbn, CK
2 , . . . , CK

n }

≤
∫ T−Kbn

−∞
P{Sn−1 ∈ dy, |ξ1| ≤

√
Kbn, . . . , |ξn−1| ≤

√
Kbn}F (x− y + ∆)

≤ e1/K2
∞∑

k=K−1

P{|Sn−1| > kbn, |ξ1| ≤
√

Kbn, . . . , |ξn−1| ≤
√

Kbn}F (x + kbn + ∆)

≤ Ce1/K2
∞∑

k=K−1

e−k/
√

Kek/K2
F (x + ∆)

= Ce1/K2 e−(K−1)/
√

K+(K−1)/K2

1− e−1/
√

K+1/K2
F (x + ∆).

It is not hard to see (e.g., with l’Hôpital’s rule) that the prefactor can be made arbitrarily small. 2

The next lemma deals with the sum over k in (16). Together with Lemma 6.1, it completes the proof of
Theorem 2.1 in the local case.

Lemma 6.2. Under the assumptions of Theorem 2.1, we have

lim
K→∞

lim sup
n→∞

sup
x≥In+Jn

∑n
k=2

(
n−1
k−1

)
P{Sn ∈ x + ∆, B̄1, D

K
2 , . . . , DK

k , CK
k+1, . . . , C

K
n }

F (x + ∆)
= 0.

Proof. The k-th term in the sum can be written as

P{Sn ∈ x + ∆, B̄1, D
K
2 , . . . , DK

k , CK
k+1, . . . , C

K
n }

= P{Sn ∈ x + ∆, B̄1, D
K
2 , . . . , DK

k , CK
k+1, . . . , C

K
n , Sn − Sk ≤ x− hn}

+ P{Sn ∈ x + ∆, B̄1, D
K
2 , . . . , DK

k , CK
k+1, . . . , C

K
n , Sn − Sk > x− hn}. (18)

As for the first term, we know that by definition of η∆,k,

P{Sn ∈ x + ∆, Sn − Sk ≤ x− hn, B̄1, D
K
2 , . . . , DK

k , CK
k+1, . . . , C

K
n }

=
∫ x−hn

−∞
P{Sn − Sk ∈ dy, CK

k+1, . . . , C
K
n }P{Sk ∈ x− y + ∆, B̄1, D

K
2 , . . . , DK

k }

≤ η∆,k(n,
√

K)P{ξ1 + Sn − Sk ∈ x + ∆, B̄1, C
K
k+1, . . . , C

K
n }.

The arguments of the proof of Lemma 2.5 in Section 4 can be repeated to see that there exists some γ > 0
independent of K, n and x, such that for any x,

P{ξ1 + Sn − Sk ∈ x + ∆, B̄1, C
K
k+1, . . . , C

K
n } ≤ 2γk−1P{Sn ∈ x + ∆, B̄1, C

K
2 , . . . , CK

n }.

As n → ∞ and then K → ∞, the probability on the right-hand side is bounded by F (x + ∆) in view
of Lemma 6.1. We use the assumption on η∆,2(n, K) to study the prefactor: with Lemma 2.4 and some
elementary estimates, we obtain

lim
K→∞

lim sup
n→∞

n∑
k=2

(
n− 1
k − 1

)
γk−1η∆,k(n,

√
K) = 0.

We now proceed to the second term on the right-hand side of (18):

P{Sn ∈ x + ∆, Sn − Sk > x− hn, B̄1, D
K
2 , . . . , DK

k , CK
k+1, . . . , C

K
n }

≤
∫ hn+T

−∞
P{Sk ∈ dy, B̄1, D

K
2 , . . . , DK

k }P{Sn − Sk ∈ x− y + ∆, CK
k+1, . . . , C

K
n }

≤ P{B̄1, D
K
2 , . . . , DK

k } sup
z>x−hn−T

P{Sn − Sk ∈ z + ∆, CK
k+1, . . . , C

K
n }.
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Since {bn} and {hn} are natural-scale and truncation sequences respectively, the first probability is readily
seen to be o(n−k) as first n →∞ and then K →∞.

In order to investigate the supremum in the preceding display, we choose x0 > 0 such that F (x0+∆) ≡
β > 0. Without loss of generality, we may assume that hn > x0. Then we have

P{Sn − Sk ∈ z + ∆, CK
k+1, . . . , C

K
n }

= β−kP{Sn − Sk ∈ z + ∆, CK
k+1, . . . , C

K
n , ξ1 ∈ x0 + ∆, . . . , ξk ∈ x0 + ∆}

≤ β−kP{Sn ∈ z + kx0 + (k + 1)∆, CK
k+1, . . . , C

K
n , ξ1 ∈ x0 + ∆, . . . , ξk ∈ x0 + ∆}

≤ β−k
k∑

j=0

P{Sn ∈ z + kx0 + jT + ∆, CK
1 , . . . , CK

n }

≤ 2kβ−k sup
u>z

P{Sn ∈ u + ∆, CK
1 , . . . , CK

n },

showing that

sup
z>x−hn−T

P{Sn − Sk ∈ z + ∆, CK
k+1, . . . , C

K
n }

≤ 2kβ−k sup
z>x−hn−T

P{Sn ∈ z + ∆, CK
1 , . . . , CK

n }.

This implies that, uniformly for x ≥ In + Jn, as n →∞ and then K →∞,
n∑

k=2

(
n− 1
k − 1

)
P{Sn ∈ x + ∆, B̄1, D2, . . . , Dk, C

K
k+1, . . . , C

K
n , Sn − Sk > x− hn}

=
n∑

k=2

(
n− 1
k − 1

)
o(n−k)kβ−k sup

z>x−hn−T
P{Sn ∈ z + ∆, CK

1 , . . . , CK
n }

= o(1/n) sup
z>x−hn−T

P{Sn ∈ z + ∆, CK
1 , . . . , CK

n }

≤ o(1/n) sup
z>x−hn−T

P{Sn ∈ z + ∆, ξ1 ≤ hn, . . . , ξn ≤ hn}

≤ o(1)F (x− hn − T + ∆),

where we have used the definition of the small-steps sequence {Jn}, in conjunction with the assumptions
that hn = O(bn) and In � bn.

Since Jn ≥ hn, we clearly have x−hn ≥ In in the regime x ≥ In +Jn. Therefore, insensitivity shows
that F (x− hn − T + ∆) = O(1)F (x + ∆), and the claim follows. 2

7 On truncation sequences

It is typically nontrivial to choose good truncation and small-steps sequences. Therefore, we devote the
next two sections to present some techniques which are useful for selecting {hn} and {Jn}. This section
focuses on truncation sequences {hn}. As a corollary of our analysis, we also obtain a large-deviation
result for Sn/n under minimal conditions.

We start with an elementary observation regarding the relation between Jn and hn: the condition Jn ≥
hn in Theorem 2.1 is sometimes a consequence of the assumption hn = O(bn).

Lemma 7.1. Suppose that Sn/bn converges weakly to an α-stable law with α ∈ (0, 2].

• In case α ∈ [1, 2], we have Jn � bn.

• In case α ∈ (0, 1), we have Jn � bn provided limn→∞ F (bn)/G(bn) > 0.
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Proof. It suffices to prove the claim in the global case. Let c > 0 be arbitrary; we prove that Jn ≥ cbn. For
this, we show that the supremum over any interval I ⊂ (−∞, cbn) in (5) cannot tend to zero.

Observe that for x ≤ cbn, we have

P{Sn > x, ξ1 ≤ hn, . . . , ξn ≤ hn} ≥ P{Sn ≥ cbn, ξ1 ≤ hn, . . . , ξn ≤ hn}
≥ P{Sn ≥ cbn} − nF (hn),

and nF (hn) ≤ nε∆,2(n) = o(1), as one can choose x = hn in the definition of ε∆,2(n) as given in
Lemma 2.4. The claim follows from the facts that infx≤cbn nF (x) = nF (cbn) = O(1) and lim infn→∞ P{Sn ≥
cbn} > 0. The latter follows from the fact that the weak limit of Sn/bn may assume any positive value
under the above assumptions, see Section XVII.5 of Feller [16]. 2

We next investigate how to choose a truncation sequence in the presence of O-regular variation. The
definition of O-regular variation is recalled in Appendix A; further details can be found in Chapter 2 of
Bingham et al. [3].

Lemma 7.2. If x 7→ F (x + ∆) is almost decreasing and O-regularly varying, then {hn} is a truncation
sequence if nF (hn) = o(1).

Proof. Let us first suppose that T = ∞. Using Lemma 2.3(ii), the claim is proved once we have shown
that ε∆,2(n) = o(1/n) if nF (hn) = o(1). To this end, we write

P{S2 > x, ξ1 > hn, ξ2 > hn} ≤ 2P{ξ1 > x/2, ξ2 > hn} = 2F (hn)F (x/2),

and note that for x ≥ hn, F (x/2) = O(F (x)) as a result of the assumption that F is O-regularly varying.
For the local case, it suffices to prove that nε∆,2 = o(1) if nF (hn) = o(1). Since the mapping

x 7→ F (x + ∆) is O-regularly varying, the uniform convergence theorem for this class (Theorem 2.0.8 in
[3]) implies that supy∈[1/2,1] F (xy + ∆) ≤ CF (x + ∆) for some constant C < ∞ (for large enough x).
Therefore, if n is large, we have for x ≥ hn,

P{S2 ∈ x + ∆, ξ1 > hn, ξ2 > hn} ≤ 2P{S2 ∈ x + ∆, hn < ξ1 ≤ x/2 + T, ξ2 > x/2}

≤ 2
∫ x/2+T

hn

F (dy)F (x− y + ∆)

≤ 2CF (hn)F (x + ∆),

and the claim follows. 2

The next lemma presents a useful tool for selecting a truncation sequence. It typically does not yield
the best possible truncation sequence, so that corresponding small-steps sequences cannot be optimal either.
However, as will be seen in Section 9, it is most useful in cases where an insensitivity sequence {In} is
already available and it allows to conclude that Jn � In. Even though the small-steps sequence may then
not be the best one, Theorem 2.1 immediately yields that In marks the big-jump domain.

For the definition of Sd, we refer to Appendix B.

Lemma 7.3. Let x 7→ F (x + ∆) be almost decreasing, and suppose that x 7→ xrF (x + ∆) belongs to Sd.
Then any {hn} with lim supn→∞ nh−r

n < ∞ is a truncation sequence.

Proof. Set H(x) ≡ xrF (x + ∆), and first consider T = ∞. It follows from F ∈ L that for large n∫ x/2

hn

F (x− y)F (dy) ≤
dx/2e∑

i=bhnc

F (x− i)F (i, i + 1] ≤
dx/2e∑

i=bhnc

F (x− i)F (i)

≤ 2
dx/2e∑

i=bhnc

∫ i+1

i
F (x− y)F (y)dy ≤ 2

∫ x/2

hn

F (x− y)F (y)dy.
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By Lemma 2.3(ii) and the above arguments, we obtain

ε∆,2(n) = sup
x≥2hn

F (x/2)2 + 2
∫ x/2
hn

F (x− y)F (dy)

F (x)

≤ 2 sup
x≥2hn

F (x/2)2 + 2
∫ x/2
hn

F (x− y)F (y)dy

F (x)

≤ 2r+1

hr
n

sup
x≥2hn

(
H(x/2)2 +

∫ x/2
hn

H(x− y)H(y)dy

H(x)

)
.

We now exploit the assumption that H ∈ Sd. First observe that
∫ x/2
x/2−T H(y)H(x − y)dy = o(H(x)) if

H ∈ Sd, implying H(x/2)2 = o(H(x)) in conjunction with H ∈ L. We deduce that for any M > 0,

ε∆,2(n) ≤ o(h−r
n ) + O(h−r

n ) sup
x≥2hn

∫ x/2
M H(y)H(x− y)dy

H(x)
,

so that ε∆,2(n) = o(h−r
n ).

Let us now turn to the case T < ∞. Note that by Lemma 2.3(ii), we exploit the long-tailedness of
x 7→ F (x + ∆) to obtain, for large n,

ε∆,2(n) ≤ sup
x≥2hn−T

2
∫ (x+T )/2
hn

F (x− y + ∆)F (dy)
F (x + ∆)

≤ 4 sup
x≥2hn

∫ x/2
hn

F (x− y + ∆)F (dy)
F (x + ∆)

.

An elementary approximation argument, again relying on the long-tailedness assumption, shows that uni-
formly for x ≥ 2hn,∫ x/2

hn

F (x− y + ∆)F (dy) ∼ 1
T

∫ x/2

hn

F (y + ∆)F (x− y + ∆)dy.

The rest of the proof parallels the global case. 2

The preceding lemma is a key ingredient for proving a general large-deviation theorem.

A general large-deviation result

In a variety of applications with E{ξ} = 0, one wishes to conclude that P{Sn ∈ na + ∆} ∼ nP{ξ1 ∈
na + ∆} for a > 0. As noted for instance by Doney [10] and S. Nagaev [32], it is thus of interest whether
na lies in the big-jump domain. Our next result shows that this can be concluded under minimal and
readily-verified conditions.

Corollary 7.1. Assume that E{ξ} = 0 and E{|ξ|κ} < ∞ for some 1 < κ ≤ 2. Assume also that F (x + ∆)
is almost decreasing and that x 7→ xκF (x + ∆) belongs to Sd. If furthermore

lim
x→∞

sup
0≤t≤x1/κ

∣∣∣∣F (x− t + ∆)
F (x + ∆)

− 1
∣∣∣∣ = 0, (19)

then for any a > 0,

lim
n→∞

sup
x≥a

∣∣∣∣ P{Sn ∈ nx + ∆}
nP{ξ1 ∈ nx + ∆}

− 1
∣∣∣∣ = 0.
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Proof. By the Kolmogorov-Marcinkiewicz-Zygmund law of large numbers or the central limit theorem we
can take bn = n1/κ.

Let a > 0 be arbitrary. We first show that {In ≡ an} is an insensitivity sequence. By (19), we have

sup
x≥an

sup
0≤t≤n1/κ

∣∣∣∣F (x− t + ∆)
F (x + ∆)

− 1
∣∣∣∣ ≤ sup

x≥an
sup

0≤t≤(x/a)1/κ

∣∣∣∣F (x− t + ∆)
F (x + ∆)

− 1
∣∣∣∣→ 0.

We next show that {Jn ≡ an} is a small-steps sequence. Observe that we may set hn = n1/κ by
Lemma 7.3. Therefore, we conclude with Lemma 2.1 that

sup
x≥an

sup
z≥x

P(Sn ∈ z + ∆, ξ1 ≤ n1/κ, . . . , ξn ≤ n1/κ)
F (x + ∆)

= O(1) sup
x≥an

e−x/n1/κ

F (x + ∆)
.

Now we exploit the insensitivity condition (19) to prove that this upper bound vanishes. It implies that
for any δ > 0, there exists some x0 = x0(δ) > 0 such that

inf
x≥x0

F (x + ∆)
F (x− x1/κ + ∆)

≥ 1− δ.

In particular, F (x + ∆) ≥ (1− δ)x1−1/κ
F (x/2 + ∆) for x/2 ≥ x0. Iterating, we obtain,

F (x + ∆)
F (x0 + ∆)

≥ (1− δ)x1−1/κ+(x/2)1−1/κ+(x/4)1−1/κ+... = e
x1−1/κ ln(1−δ)

1−2−(1−1/κ) .

Since δ is arbitrary, this yields e−xn−1/κ
= o(F (x + ∆)) uniformly for x ≥ an. It remains to apply

Theorem 2.1. 2

8 On small-steps sequences

In this section, we investigate techniques that are often useful for selecting small-steps sequences {Jn}.
This culminates in a rule of thumb for distributions with finite variance.

In order to find suitable small-steps sequences, we start by deriving good bounds on P{Sn ∈ x+∆, ξ1 ≤
hn, . . . , ξn ≤ hn} under a variety of assumptions. We first need some more notation.

Write ϕn = E{eξ/hn ; ξ ≤ hn}, and let {ξ(n)
i }∞i=1 be a sequence of ‘twisted’ (or ‘tilted’) i.i.d. random

variables with distribution function

P{ξ(n) ≤ y} =
E{eξ/hn ; ξ ≤ hn, ξ ≤ y}

ϕn
.

We also put S
(n)
k = ξ

(n)
1 + · · ·+ ξ

(n)
k ; note that {S(n)

k } is a random walk for any n.
Next we introduce a sequence {an} which plays an important role in the theory of domains of (partial)

attraction. First define Q(x) ≡ x−2µ2(x) + G(x). It is not hard to see that Q is continuous, ultimately
decreasing and that Q(x) → 0 as x → ∞. Therefore, the solution to the equation Q(x) = n−1, which we
call an, is well-defined and unique for large n.

Lemma 8.1. We have the following exponential bounds.

(i) If E{ξ} = 0 and E{ξ2} = 1, then for any ε > 0 there exists some n0 such that for any n ≥ n0 and
any x ≥ 0,

P{Sn ∈ x + ∆, ξ1 ≤ hn, . . . , ξn ≤ hn}

≤ exp
{
− x

hn
+
(

1
2

+ ε

)
n

h2
n

}
P{S(n)

n ∈ x + ∆}.
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(ii) If hn ≥ an and n|µ1(an)| = O(an), then there exists some C < ∞ such that for any n ≥ 1 and any
x ≥ 0,

P{Sn ∈ x + ∆, ξ1 ≤ hn, . . . , ξn ≤ hn} ≤ C exp
{
− x

hn

}
P{S(n)

n ∈ x + ∆}.

(iii) If E{ξ} = 0 and x 7→ F (−x) is regularly varying at infinity with index −α for some α ∈ (1, 2), then
for any ε > 0 there exists some n0 such that for any n ≥ n0 and any x ≥ 0,

P{Sn ∈ x + ∆, ξ1 ≤ hn, . . . , ξn ≤ hn}

≤ exp
{
− x

hn
+

n

h2
n

∫ hn

0
u2F (du) + (1 + ε)

Γ(2− α)
α− 1

nF (−hn)
}

P{S(n)
n ∈ x + ∆}.

(iv) If x 7→ F (−x) is regularly varying at infinity with index −α for some α ∈ (0, 1), then for any ε > 0
there exists some n0 such that for any n ≥ n0 and any x ≥ 0,

P{Sn ∈ x + ∆, ξ1 ≤ hn, . . . , ξn ≤ hn}

≤ exp
{
− x

hn
+

n

hn

∫ hn

0
uF (du) +

n

h2
n

∫ hn

0
u2F (du)− (1− ε)Γ(1− α)nF (−hn)

}
×P{S(n)

n ∈ x + ∆}.

Proof. First observe that

P{Sn ∈ x + ∆, ξ1 ≤ hn, . . . , ξn ≤ hn} = ϕn
nE{e−S

(n)
n /hn ;S(n)

n ∈ x + ∆}
≤ e−x/hn+n log ϕnP{S(n)

n ∈ x + ∆}.

Therefore, we need to investigate n log ϕn under the four sets of assumptions of the lemma. We start
with the first.

Since ey ≤ 1 + y + y2/2 + |y|3 for y ≤ 1, some elementary bounds in the spirit of the proof of
Lemma 2.1 show that

n log ϕn ≤ n

∫ hn

−hn

[
ez/hn − 1

]
F (dz) ≤ nµ1(hn)

hn
+

nµ2(hn)
2h2

n

+
nµ3(hn)

h3
n

,

where µ3(hn) =
∫ hn

−hn
|z|3F (dz). It follows from E{ξ2} = 1 that µ3(hn) = o(hn). Indeed, if E{ξ2} < ∞

then E{ξ2f(|ξ|)} < ∞ for some function f(x) ↑ ∞, x/f(x) ↑ ∞, so that

µ3(hn) =
∫ hn

−hn

|z|3F (dz) ≤ hn

f(hn)

∫ hn

−hn

z2f(z)F (dz) = O(1)
hn

f(hn)
= o(hn).

One similarly gets µ1(hn) = o(1/hn), relying on E{ξ} = 0. This proves the first claim.
For (ii), we use similar arguments and the inequality ey − 1 ≤ y + y2 for y ≤ 1. ¿From hn ≥ an it

follows that

nµ1(hn)
hn

+
nµ2(hn)

h2
n

≤
n|µ1(an)|+ n

∫ hn

an
yF (dy)

hn
+ nQ(hn) ≤ n|µ1(an)|

an
+ nF (an) + nQ(hn).

The first term is bounded by assumption and the other two are both bounded by nQ(an) = 1.
To prove the third claim, we use E{ξ} = 0 to write

n log ϕn ≤ n

∫ hn

−∞
(eu/hn − 1− u/hn)F (du) = n

(∫ 0

−∞
+
∫ hn

0

)
(eu/hn − 1− u/hn)F (du).
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After integrating the first integral by parts twice, we see that∫ 0

−∞
(eu/hn − 1− u/hn)F (du) = h−2

n

∫ 0

−∞
eu/hn

(∫ u

−∞
F (t)dt

)
du.

By Karamata’s theorem, u 7→
∫ −u
−∞ F (t)dt is regularly varying at infinity with index −α + 1. We can thus

apply a Tauberian theorem (e.g., [3, Thm 1.7.1]) to obtain for n →∞,

h−2
n

∫ 0

−∞
eu/hn

(∫ u

−∞
F (t)dt

)
du ∼ h−1

n Γ(2− α)
∫ −hn

−∞
F (t)dt ∼ Γ(2− α)

α− 1
F (−hn).

We finish the proof of the third claim by observing that∫ hn

0
(eu/hn − 1− u/hn)F (du) ≤ h−2

n

∫ hn

0
u2F (du).

Part (iv) is proved similarly, relying on the estimate

n log ϕn ≤ n

(∫ 0

−∞
+
∫ hn

0

)
(eu/hn − 1)F (du).

After integrating the first integral by parts and applying a Tauberian theorem, we obtain

n

∫ 0

−∞
(eu/hn − 1)F (du) = −nh−1

n

∫ 0

−∞
eu/hnF (u)du ∼ −Γ(1− α)nF (−hn).

The integral over [0, hn] can be bounded using the inequality ey − 1 ≤ y + y2 for y ≤ 1. 2

In order to apply the estimates of the preceding lemma, we need to study P{S(n)
n ∈ x + ∆}. If T = ∞

it is generally sufficient to bound this by one, but in the local case we need to study our ‘truncated’ and
‘twisted’ random walk {S(n)

k } in more detail. Therefore, we next give a concentration result in the spirit
of Gnedenko’s local limit theorem. However, we do not restrict ourselves to distributions belonging to
a domain of attraction. Instead, we work within the more general framework of Griffin et al. [17] and
Hall [18]. Our proof is highly inspired by these works, as well as by ideas of Esseen [14], Feller [15], and
Petrov [34].

We need the following condition introduced by Feller [15]:

lim sup
x→∞

x2G(x)
µ2(x)

< ∞, (20)

which also facilitates the analysis in [17, 18]. This condition is discussed in more detail in Section 10.1.

Proposition 8.1. Suppose that we have either

1. E{ξ2} < ∞ and E{ξ} = 0, or

2. E{ξ2} = ∞ and (20) holds.

Let T < ∞. There exist finite constants C,C ′ such that, for all large n,

sup
x∈R

P{S(n)
n ∈ x + ∆} ≤ C

hn
+

C ′

an
.
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Proof. Throughout, C and C ′ denote strictly positive, finite constants that may vary from line to line.
Let ξ

(n)
s denote the symmetrized version of ξ(n), i.e., ξ(n)

s = ξ
(n)
1 −ξ

(n)
2 , where the ξ

(n)
i are independent.

For any ε > 0, we have the Esseen bound (see Petrov [34, Lem. 1.16] for a ramification)

sup
x∈R

P{S(n)
n ∈ x + ∆} ≤ Cε−1

∫ ε

−ε

∣∣∣E{eitξ(n)
}∣∣∣n dt.

Since x ≤ exp[−(1− x2)/2] for 0 ≤ x ≤ 1 and |E{eitξ(n)}|2 = E{cos tξ
(n)
s }, this is further bounded by

Cε−1a−1
n

∫ εan

−εan

∣∣∣E{eitξ(n)/an

}∣∣∣n dt

≤ Cε−1a−1
n

∫ εan

0
exp

[
−(n/2)E{1− cos(tξ(n)

s /an)}
]
dt

≤ Cε−1h−1
n + Cε−1a−1

n

∫ εan

an/hn

exp
[
−(n/2)E{1− cos(tξ(n)

s /an)}
]
dt.

Now note that for h−1
n ≤ t ≤ ε, provided ε is chosen small enough,

E{1− cos(tξ(n)
s )} ≥ Ct2E

{(
ξ(n)
s

)2
; |ξ(n)

s | ≤ t−1

}
≥ Cϕ−2

n t2
∫

x,y≤hn

|x−y|≤t−1

(x− y)2e(x+y)/hnF (dx)F (dy)

≥ Cϕ−2
n t2

∫
|x|≤t−1/2,|y|≤t−1/2

(x− y)2e(x+y)/hnF (dx)F (dy)

≥ Ct2e−t−1/hn
[
µ2(t−1/2)− µ1(t−1/2)2

]
≥ Ct2µ2(t−1/2)− Ct2µ1(t−1/2)2.

If limx→∞ µ2(x) < ∞ and limx→∞ µ1(x) = 0, then it is clear that we can select ε so that, uniformly for
t ≤ ε,

µ2(t−1/2)− µ1(t−1/2)2 ≥ µ2(t−1/2)/2.

The same can be done if µ2(x) → ∞. Indeed, let a > 0 satisfy G(a) ≤ 1/8. Application of the
Cauchy-Schwarz inequality yields for t < 1/(2a),

µ1(t−1/2)2 = (µ1(t−1/2)− µ1(a) + µ1(a))2 ≤ 2(µ1(t−1/2)− µ1(a))2 + 2µ1(a)2

≤ 2µ2(t−1/2)G(a) + 2µ1(a)2 ≤ µ2(t−1/2)/4 + 2µ1(a),

and the assumption µ2(x) → ∞ shows that we can select ε small enough so that this is dominated by
µ2(t−1/2)/2 for t ≤ ε.

Having seen that E{1−cos(tξ(n)
s )} ≥ Ct2µ2(t−1/2), we next investigate the truncated second moment.

To this end, we use (20), which always holds if E{ξ2} < ∞, to see that there exists some C ′ such that
t2µ2(t−1/2)/2 ≥ C ′Q(t−1/2).

We conclude that there exist some ε, C,C ′ ∈ (0,∞) such that

sup
x∈R

P{S(n)
n ∈ x + ∆} ≤ Cε−1h−1

n + Cε−1a−1
n

∫ 2εan

2an/hn

exp
[
−C ′nQ(ant−1)

]
dt.

In order to bound the integral, we use the following result due to Hall [18]. Under (20), there exists some
k ≥ 1 such that for large enough n,∫ 2εan

k
exp

[
−C ′nQ(ant−1)

]
dt ≤ C.
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If 2an/hn ≥ k, this immediately proves the claim. In the complementary case, we bound the integral over
[2an/hn, k] simply by k. 2

To illustrate how the theory developed in this section can be applied, we next present a lemma which
greatly simplifies the selection process of the sequences {hn} and {Jn} for step-size distributions with a
finite variance. At the heart of this simplification lies a function g which dominates − log

[
x2F (x + ∆)

]
.

Observe that the finite-variance assumption implies x2F (x + ∆) → 0 as x →∞, so that g(x) →∞.

Lemma 8.2. Consider F for which E{ξ} = 0 and E{ξ2} = 1. Let g satisfy − log
[
x2F (x + ∆)

]
≤ g(x)

for large x and suppose that g(x)/x is eventually nonincreasing.
Let a sequence {Jn} be given.

(i) If T = ∞, suppose that

lim sup
n→∞

g(Jn)
J2

n/n
<

1
2
. (21)

(ii) If T < ∞, suppose that

lim sup
n→∞

g(Jn)
J2

n/n + log n
<

1
2
.

If {hn = n/Jn} is a truncation sequence, then {Jn} is a corresponding small-steps sequence.

Proof. Let ε > 0 be given. First consider the case T = ∞. By Lemma 8.1(i), we have to show that the
given hn and Jn satisfy

sup
x≥Jn

(
− x

hn
+
(

1
2

+ ε

)
n

h2
n

− log F (x)− log n

)
→ −∞. (22)

Next observe that Jn �
√

n, for otherwise g(Jn) would be bounded; this is impossible in view of the
assumption on Jn. Therefore, not only g(x)/x is nondecreasing for x ≥ Jn, but the same holds true for
log[x2/n]/x. This yields, on substituting hn = n/Jn,

sup
x≥Jn

(
− x

hn
− log F (x)− log n

)
= sup

x≥Jn

x

(
−Jn

n
+

g(x)
x

+
log
[
x2/n

]
x

)

≤ sup
x≥Jn

x

(
−Jn

n
+

g(Jn)
Jn

+
log[J2

n/n]
Jn

)
,

and the supremum is attained at Jn since the expression between brackets is negative as a result of our
assumption on Jn. Conclude that the left-hand side of (22) does not exceed

−1− ε

2
J2

n

n
+ g(Jn)− log

J2
n

n
,

which tends to −∞ if ε is chosen appropriately.
The local case T < ∞ is similar. By Proposition 8.1 and Lemma 8.1(i), it now suffices to show

sup
x≥Jn

(
− x

hn
+
(

1
2

+ ε

)
n

h2
n

− log F (x + ∆)− log n− log hn

)
→ −∞.

With the above arguments and the identity 2 log hn = log n− log(J2
n/n), it follows that the expression on

the left-hand side is bounded by

−1− ε

2

[
J2

n

n
+ log n

]
+ g(Jn)− 1

2
log

J2
n

n
,
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and the statement thus follows from the assumption on Jn as before. 2

Importantly, the idea of the above proof allows to heuristically find the best possible small-steps se-
quence in the finite-variance case. Let us work this out for T = ∞. Use (22) to observe that Jn is
necessarily larger or equal than(

1
2

+ ε

)
n

hn
− hn log n− hn log F (Jn).

Set ε = 0 for simplicity, and then minimize the right-hand side with respect to hn. We find that the
minimizing value (i.e., the best possible truncation sequence) is

hn =

√
n

−2 log
[
nF (Jn)

] .
Since hn = n/Jn according to the above lemma, this suggests that the following asymptotic relation holds
for the best small-steps sequence:

Jn ∼
√
−2n log[nF (Jn)]. (23)

We stress that a number of technicalities need to be resolved before concluding that any Jn satisfying this
relation constitutes a small-steps sequence; the heuristic should be treated with care. In fact, one typically
needs that Jn is slightly bigger than suggested by (23). Still, we encourage the reader to compare the
heuristic big-jump domain with the big-jump domain that we find for the examples in the next section.

9 Examples with finite variance

In this section, we apply our main result (Theorem 2.1) to random walks with step-size distributions satis-
fying E{ξ} = 0 and E{ξ2} = 1. Then, by the central limit theorem, {Sn/

√
n} is tight and thus one can

always take bn =
√

n as a natural-scale sequence.
It is not only our goal to show that our theory recovers many known large-deviation results, but also

that it fills gaps in the literature and that new examples can be worked out straightforwardly. In fact, finding
big-jump domains with our theory often essentially amounts to verifying whether the underlying step-size
distribution is subexponential.

9.1 O-regularly varying tails

In this subsection, it is our aim to recover A. Nagaev’s classical boundary for regularly varying tails from
Theorem 2.1. In fact, we work in the more general setting of O-regular variation.

Proposition 9.1. Suppose that E{ξ} = 0 and E{ξ2} = 1. Moreover, let x 7→ F (x + ∆) be O-regularly
varying with upper Matuszewska index αF and lower Matuszewska index βF .

1. If T = ∞, suppose that αF < −2, and let t > −βF − 2.

2. If T < ∞, suppose that αF < −3, and let t > −βF − 3.

The sequence {hn ≡
√

n/(t log n)} is a truncation sequence. Moreover, for this choice of h, {Jn ≡√
tn log n} is an h-small-steps sequence.
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Proof. We first show that {hn} is a truncation sequence, for which we use the third part of Lemma 2.3. In
the global case, Theorem 2.2.7 in [3] implies that for any ε > 0, we have F (x) ≤ xαF +ε for large x. By
choosing ε small enough, we get nF (hn) = o(1) since αF < −2. For the local case, we first need to apply
Theorem 2.6.3(a) in [3] and then the preceding argument; this yields that for any ε > 0, F (x) ≤ x1+αF +ε

provided x is large. Then we use αF < −3 to choose ε appropriately.
Our next aim is to show that {Jn} is a small-steps sequence. We only do this for T = ∞; the comple-

mentary case is similar. Fix some ε > 0 to be determined later. Again by Theorem 2.2.7 in [3], we know
that F (x) ≥ xβF−ε for large x. In other words,− log[x2F (x)] is dominated by (−2−βF + ε) log x, which
is eventually nonincreasing on division by x. Application of Lemma 8.2 shows that it suffices to choose an
ε > 0 satisfying

lim sup
n→∞

(−2− βF + ε) log Jn

J2
n/n

<
1
2
,

and it is readily checked that this can be done for the Jn given in the proposition. 2

With the preceding proposition at hand, we next derive the Nagaev boundary from Theorem 2.1. Indeed,
as soon as an insensitivity sequence {In} is determined, we can conclude that P{Sn ∈ x+∆} ∼ nF (x+∆)
uniformly for x ≥ In + Jn, where the sequence {Jn} is given in Proposition 9.1. Since Jn depends on
some t which can be chosen appropriately, the above asymptotic equivalence holds uniformly for x ≥ Jn

if Jn � In.
An important class of distributions for which we can immediately conclude that Jn � In is constituted

by the requirement that x 7→ F (x + ∆) is intermediate regularly varying (see Appendix A). Then any
In � bn can be chosen as an insensitivity sequence, see Corollary 2.2I in [7].

The next theorem is due to A. Nagaev in the global case with regularly varying F , see also Ng et
al. [33]. In the local regularly-varying case, it goes at least back to Pinelis [35].

Theorem 9.1. Let the assumptions of Proposition 9.1 hold, and suppose that x 7→ F (x+∆) is intermediate
regularly varying at infinity.

With t chosen as in Proposition 9.1, we have P{Sn ∈ x + ∆} ∼ nF (x + ∆) uniformly for x ≥√
tn log n.

9.2 Logarithmic hazard function

In this subsection, we consider step-size distributions with

F (x + ∆) = p(x)e−c logβ x,

where β > 1, c > 0 and p is O-regularly varying with p ∈ L. Note that lognormal distributions as well as
Benktander Type I step-size distributions fit into this framework. Lemma B.1 with R(x) = z(x) = c logβ x

shows that x 7→ F (x + ∆) belongs to the class Sd of subexponential densities.
We first select a small-steps sequence.

Proposition 9.2. Suppose that E{ξ} = 0 and E{ξ2} = 1, and consider the above setup. Let t > 21−βc.

The sequence {hn ≡
√

n/(t logβ n)} is a truncation sequence, and {Jn ≡
√

tn logβ n} is a corre-
sponding small-steps sequence.

Proof. We only consider the global case, since the same arguments are used in the local case.
The family of distributions we consider is closed under multiplication by a polynomial. Moreover,

x 7→ F (x + ∆) is almost decreasing. To see this, write F (x + ∆) = p(x)xηx−ηe−c logβ x and choose
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η ∈ R so that p(x)xη is almost decreasing; this can be done since the upper Matuszewska index of p is
finite. Membership of Sd in conjunction with Lemma 7.3 shows that {hn} is a truncation sequence.

To show that {Jn} is a corresponding small-steps sequence, we note that p(x) ≤ xc′ for some c′ ∈ R
provided x is large [3, Thm. 2.2.7]. We next use Lemma 8.2 with g(x) = c′ log x + c logβ x. 2

Before we can apply Theorem 2.1, we need to choose an insensitivity sequence. To do so, note that

F (x−
√

n + ∆)
F (x + ∆)

=
p(x−

√
n)

p(x)
exp

(
c[logβ x− logβ(x−

√
n)]
)

.

Next observe that, by the uniform convergence theorem for regularly varying functions [3, Thm. 1.5.2],

logβ x− logβ(x−
√

n) ≤ β
√

n sup
x−

√
n≤y≤x

y−1 logβ−1 y ∼ βx−1√n logβ−1 x, x �
√

n,

and a matching lower bound is derived similarly. This shows that, although the ratio of the p-functions
converges uniformly to 1 in the domain x �

√
n, the analogous domain for the logβ-functions is smaller.

We conclude that any In with
√

n logβ−1 In = o(In) is an insensitivity sequence; in particular we may
choose any In satisfying In �

√
n log2β−2 n.

We have thus proved the following theorem, which is new in the local case. As noted in [29], the
‘global’ part (ii) can be deduced from Lemma 2A in Rozovskii [36]. On the other hand, the first part
improves on the domain found on applying Corollary 1 of [36].

Theorem 9.2. Let the assumptions of Proposition 9.2 hold, and choose t as in the proposition.
Then we have P{Sn ∈ x + ∆} ∼ nF (x + ∆),

(i) uniformly for x ≥
√

tn logβ n if 1 < β < 2, and

(ii) uniformly for x ≥ xn for any xn �
√

n log2β−2 n if β ≥ 2.

9.3 Regularly varying hazard function

In this subsection, we consider step-size distributions with

F (x + ∆) = p(x)e−R(x),

where R is differentiable. We suppose that p is O-regularly varying with p ∈ L, and that R′ is regularly
varying with index β − 1 for some β ∈ (0, 1). In particular, by Karamata’s theorem, R is regularly varying
with index β. Note that Weibull as well as Benktander Type II step-size distributions fit into this framework.
Moreover, Lemma B.1 with z(x) = xα for some α ∈ (β, 1) implies that x 7→ F (x + ∆) belongs to Sd.

Proposition 9.3. Suppose that E{ξ} = 0 and E{ξ2} = 1, and consider the above setup.
For any ε > 0, the sequence {hn ≡ n(1−β−ε)/(2−β)} is a truncation sequence, and {Jn ≡ n(1+ε)/(2−β)}

is a corresponding small-steps sequence.

Proof. Along the lines of the proof of Proposition 9.2. In Lemma 8.2, we use g(x) = xβ+ε2 . 2

In the above proposition, we have not given the best possible small-steps sequence, as any insensitivity
sequence is asymptotically larger than Jn. To see this, note that

F (x−
√

n + ∆)
F (x + ∆)

= eR(x)−R(x−
√

n) ≤ e
√

n supx−
√

n≤y≤x R′(y).

Since R′ is regularly varying, we have supx−
√

n≤y≤x R′(y) ∼ R′(x) if x �
√

n. A lower bound is proved
along the same lines. The observation R′(x) � x−1R(x) allows to show that In � Jn, and the next
theorem follows on applying Theorem 2.1.

Theorem 9.3. Let the assumptions of Proposition 9.3 hold.
For any {xn} with xn/R(xn) �

√
n, we have P{Sn ∈ x + ∆} ∼ nF (x + ∆) uniformly for x ≥ xn.
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9.4 ‘Light’ subexponential tails

In this subsection, we consider ‘light’ subexponential step-size distributions with

F (x + ∆) = p(x)e−cx log−β x,

where β > 0, c > 0 and p is O-regularly varying. On setting R(x) = cx log−β x and noting that yR′(y) =
R(y)− βR(y)/ log y, we find with Lemma B.2 that x 7→ F (x + ∆) belongs to Sd.

Proposition 9.4. Suppose that E{ξ} = 0 and E{ξ2} = 1, and consider the above setup.
The sequence {hn ≡

√
n} is a truncation sequence, and {Jn ≡ exp((c + ε)1/βn1/(2β))} is a corre-

sponding small-steps sequence for any ε > 0.

Proof. We only consider the global case, since the local case is similar. The arguments in the proof of
Proposition 9.2 yield that {hn} is a truncation sequence. To show that {Jn} is a corresponding small-steps
sequence, we note that with Lemma 8.1(i), for x ≥ exp((c + ε)1/βn1/(2β)),

P{Sn > x, ξ1 ≤
√

n, . . . , ξn ≤
√

n}
nF (x)

≤ O(n−1) exp(−n−1/2x− log F (x + ∆))

≤ O(n−1) exp
(
−x
[
n−1/2 − (c + ε/2) log−β x

])
,

which is o(1) since log−β(x) ≤ (c + ε)−1n−1/2. 2

We find an insensitivity sequence as in the previous two subsections, so that the next theorem follows
from Theorem 2.1. To the best of our knowledge, the theorem is the first large-deviation result for (special
cases of) the family under consideration.

Theorem 9.4. Let the assumptions of Proposition 9.4 hold.
For any {xn} with xn � n1/(2β), we have P{Sn ∈ x + ∆} ∼ nF (x + ∆) uniformly for x ≥ exp(xn).

10 Examples with infinite variance

It is the aim of this section to work out our main theorem for classes of step-size distributions with infi-
nite variance. Karamata’s theory of regular variation and its ramifications provide the required additional
structure.

10.1 Infinite variance and a heavy right tail

Having investigated the case where F is attracted to a normal distribution, it is natural to also study the
complementary case. We work within the framework of Karamata theory, see Appendix A.

We need three assumptions. Our main assumption is that

G(x) � x−2µ2(x). (24)

It is a well-known result due to Lévy that the ‘lower bound’ part ensures that F does not belong to the
domain of partial attraction of the normal distribution. For more details we refer to Maller [27, 28]. Note
that the ‘upper bound’ part is exactly (20); it is shown by Feller [15] that this is equivalent with the existence
of sequences {En} and {Fn} such that every subsequence of {Sn/En−Fn} contains a further subsequence,
say {nk}, for which Snk

/Enk
− Fnk

converges in distribution to a nondegenerate random variable. In that
case, {Sn/En − Fn} is called stochastically compact. Note that the required nondegeneracy is the only
difference with {Sn/En − Fn} being stochastically bounded; further details can for instance be found in
Jain and Orey [23].
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When interpreting (24), it is important to realize the following well-known fact. If F is attracted to a
stable law with index α ∈ (0, 2), then the tails must be regularly varying, and application of Karamata’s
theorem shows that αG(x) ∼ (2 − α)x−2µ2(x). Therefore, our assumption (24) is significantly more
general.

Our second assumption is that the left tail of F is not heavier than the right tail:

lim sup
x→∞

G(x)
F (x)

< ∞. (25)

In the next subsection, we investigate the complementary case with a heavier left tail.
Our third assumption, which is formulated in terms of the an defined in Section 8, ensures that F is

sufficiently centered:

lim sup
n→∞

n|µ1(an)|
an

< ∞. (26)

This assumption often follows from (24), as shown in the next lemma. The lemma also records other
important consequences of (24), and relies completely on the seminal work on O-regular variation by
Bingham et al. [3]. Item (i) is due to Feller [15], but the reader is advised to also refer to the extended and
corrected treatment in [3].

Lemma 10.1. Equation (24) is equivalent to the following two statements:

(i) µ2 is O-regularly varying with Matuszewska indices 0 ≤ βµ2 ≤ αµ2 < 2.

(ii) G is O-regularly varying with Matuszewska indices −2 < βG ≤ αG ≤ 0.

Moreover, under (24), we automatically have (26) if either βG > −1, or if αG < −1 and E{ξ} = 0.

Proof. All cited theorems in this proof refer to [3]. The equivalence of (24) and (i), (ii) follows from Theo-
rem 2.6.8(c) and Theorem 2.6.8(d). If βG > −1, then we have lim supx→∞ x−1

∫ x
0 yG(dy)/G(x) < ∞ by

Theorem 2.6.8(d). Similarly, if E{|ξ|} < ∞ and αG < −1, then lim supx→∞ x−1
∫∞
x yG(dy)/G(x) < ∞

by Theorem 2.6.7(a), (c). 2

The next proposition gives appropriate truncation and small-steps sequences.

Proposition 10.1. Suppose that (24), (25), and (26) hold. Moreover, if T < ∞, suppose that x 7→ F (x+∆)
is O-regularly varying with upper Matuszewska index strictly smaller than −1.

Given some {tn} with nG(tn) = o(1), there exists some γ > 0 such that, with

hn ≡
tn

−2γ log
[
nG(tn/2)

] ,
{hn} is a truncation sequence. Moreover, {Jn ≡ tn/2} is then an h-small-steps sequence.

Proof. We first show that {hn} is a truncation sequence. Our assumption on F (x + ∆) guarantees that it is
almost decreasing. In view of Lemmas 7.2 and 10.1, it suffices to show that nF (hn) = o(1). The first step
is to prove that hn → ∞, for which we use the bound G(x) ≥ x−2 for large x (see Theorem 2.2.7 in [3]):
we have that

hn ≥
tn

−2γ log
[
4nt−2

n

] ≥ tn
−2γ log(n) + 4γ log(tn/2)

≥ tn
4γ log(tn/2)

,

which exceeds any given number for large n. Relying on the fact that hn → ∞, the Potter-type bounds of
Proposition 2.2.1 in [3] yield that for some C ′ > 0, provided n is large,

G(tn/2)
G(hn)

≥ C ′
(

tn
2hn

)−2

.
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Hence, by definition of hn, as n →∞,

nG(hn) ≤ (C ′)−1
(
−2γ log

[
nG(tn/2)

])2
nG(tn/2) = o(1).

This proves in particular that nF (hn) = o(1), so that {hn} is a truncation sequence.
We now prove that {tn/2} is a small-steps sequence. The idea is to apply Lemma 8.1(ii), for which

we need hn ≥ an. In fact, we have hn � an; this follows from the fact that nG(an) is bounded away
from zero (note that G(x) � Q(x) by (24)) in conjunction with our observation that nG(hn) = o(1).
Throughout the proof, let C < ∞ be a generic constant which can change from line to line.

First consider the global case T = ∞. Lemma 8.1(ii) shows that for any x ≥ 0,

sup
z≥x

P{Sn > z, ξ1 ≤ hn, . . . , ξn ≤ hn} ≤ C exp(−x/hn).

This shows that for γ > 2, by (25), the aforementioned Potter-type bound and the definition of hn,

sup
x≥Jn

sup
z≥x

P{Sn > z, ξ1 ≤ hn, . . . , ξn ≤ hn}
nF (x)

≤ C sup
x≥1

e−
tn

2hn
x

nG(xtn/2)
≤ C sup

x≥1
x2e

1
2
γ log[nG(tn/2)]x

exp
(
− tn

4hn
x
)

nG(tn/2)

≤ C sup
x≥1

x2e−x
exp

(
− tn

4hn

)
nG(tn/2)

≤ C
(
nG(tn/2)

)γ/2−1 = o(1).

Similar ideas are used to prove the local case, but now we also need the concentration result of Propo-
sition 8.1. Since hn � an, we use this proposition in conjunction with Lemma 8.1(ii) to conclude that

sup
z≥x

P{Sn ∈ z + ∆, ξ1 ≤ hn, . . . , ξn ≤ hn} ≤ Ca−1
n exp(−x/hn).

To prove the proposition, by (25) it therefore suffices to show that for some γ > 0,(
nF (tn/2)

)γ = o(nanF (tn/2 + ∆)).

The assumption on F (x + ∆) is equivalent with F (x) � xF (x + ∆) by Corollary 2.6.4 of [3]. Therefore,
it is enough to prove the above equality with F (tn/2 + ∆) replaced by t−1

n F (tn/2).
Upon combining the assumption on F (x + ∆) with (25), we obtain G(x) � F (x) � xF (x + ∆).

Hence, G has bounded decrease, which implies (see Proposition 2.2.1 of [3]) that there exists some η > 0
such that

tn
an

[
nF (tn/2)

]γ−1 ≤ tn
an

[
nG(tn/2)

]γ−1 ≤ C
tn
an

([
tn
an

]−η

nG(an)

)γ−1

≤ C
tn
an

([
tn
an

]−η

nQ(an)

)γ−1

.

This upper bound vanishes if we choose γ > 1 + 1/η. 2

Let us now define bn ≡ hn. Since {Sn/an} is tight under the assumptions of the preceding proposition
(see, e.g., [23, Prop. 1.2]), and since we have shown in its proof that bn � an, we immediately conclude
that Sn/bn converges in distribution to zero. In particular, {bn} is a natural-scale sequence.

It remains to choose a corresponding insensitivity sequence. This can immediately be done under
the assumption that x 7→ F (x + ∆) is intermediate regularly varying (see Appendix A). Indeed, since
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bn � tn/2, we may set In = tn/2 and conclude with Corollary 2.2I of [7] that {In} is an insensitivity
sequence.

We have proved that the next theorem follows from Theorem 2.1. The theorem has a long history. In
the global regularly-varying case, it is due to Heyde [20]; S. Nagaev [32] ascribes it to Tkachuk. For a
recent account, see Borovkov and Boxma [6]. Heyde [19] studies the non-regularly varying case, but only
proves the right order of P{Sn > x}; related results have been obtained by Cline and Hsing [8]. In the
local case, only the regularly varying case has been investigated. Our theorem then reproduces the large-
deviation theorem in Doney [11] in the infinite-mean case, while significantly improving upon the results
in Doney [10] in the complementary case.

Theorem 10.1. Let the assumptions of Proposition 10.1 hold, and suppose that x 7→ F (x + ∆) is interme-
diate regularly varying at infinity.

For any {xn} with nF (xn) = o(1), we have P{Sn ∈ x + ∆} ∼ nF (x + ∆) uniformly for x ≥ xn.

10.2 Finite mean, infinite variance, and a heavy left tail

In this subsection, we investigate the case when the left tail is heavier than the right tail, and this tail causes
ξ to be integrable but also to have an infinite second moment. It is our aim to recover the big-jump result
derived by Rozovskii [37] in this context, and to extend it to the local case.

More precisely, we assume that

• x 7→ F (−x) is regularly varying at infinity with index −α for some α ∈ (1, 2),

• x 7→ F (x) is regularly varying at infinity with index −β for some β > α, and

• E{ξ} = 0.

Under these assumptions, F belongs to the domain of attraction of the α-stable law with a Lévy measure that
vanishes on the positive halfline. The theory on domains of attraction (e.g., [16, Sec. XVII.5]) immediately
implies that {bn} determined by Γ(3− α)nµ2(bn) = (α− 1)b2

n is a natural-scale sequence. Note that this
sequence is regularly varying with index 1/α, and that nG(bn) tends to a constant. The next proposition
shows how {hn} and {Jn} can be chosen under a technical condition, which should be compared with [37,
Eq. (1.19)].

Proposition 10.2. Suppose that the above three assumptions hold, and that

lim sup
n→∞

F (−bn/[log n]1/α)
(log n)F (−bn)

≤ 1. (27)

Furthermore, if T < ∞, suppose that F (x + ∆) is regularly varying.
The sequence {hn ≡ (β−α

α−1 log n)−1/αbn} is a truncation sequence. Moreover, given some t > 1, if we
set

Jn = t

(
β − α

α− 1
log n

)(α−1)/α

bn,

then {Jn} is an h-small-steps sequence.

Proof. To see that {hn} is a truncation sequence, we use Lemma 7.2 and the elementary bounds

nF (hn) ≤ nh−3β/4−α/4
n ≤ h−(β−α)/2

n h−β/4−3α/4
n ≤ h−(β−α)/2

n nF (−hn)

≤ 2(log n)h−(β−α)/2
n nF (−bn) ≤ 4(log n)h−(β−α)/2

n ,
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where we have used (27). Since {hn} is regularly varying with index 1/α, this upper bound tends to zero.
We next concentrate on {Jn}, for which we use Lemma 8.1(iii). Choose 0 < 4ε < t − 1. If∫∞

0 u2F (du) = ∞, application of Karamata’s theorem (on the right tail) shows that

h−2
n

∫ hn

0
u2F (du) = (1 + o(1))F (hn) = o(F (−hn)).

In the complementary case
∫∞
0 u2F (du) < ∞, we immediately conclude that h−2

n

∫ hn

0 u2F (du) = o(F (−hn)).
Using (27) we obtain that, for large n,

n

h2
n

∫ hn

0
u2F (du) + (1 + ε)

Γ(2− α)
α− 1

nF (−hn) ≤ (1 + 2ε)
Γ(2− α)

α− 1
nF (−hn)

≤ (1 + 3ε)
1
α

F (−hn)
F (−bn)

≤ t
β − α

α(α− 1)
log n. (28)

We now have all the prerequisites to prove the claim in the global case, i.e., for T = ∞. Indeed, we need
to show that, for the {hn} and {Jn} given above,

sup
x≥Jn

[
− x

hn
+ t

β − α

α(α− 1)
log n− log n− log F (x)

]
→ −∞.

Fix some 0 < η < (t − 1)(β − α). The elementary estimate F (x) ≥ x−β−η (for large x) yields an upper
bound for which the supremum is attained at Jn for large n. We conclude that the left-hand side of the
preceding display is bounded from above by

−Jn

hn
+ t

β − α

α(α− 1)
log n− log n +

(
β + η

α

)
log n = −(t− 1)

β − α

α
log n +

η

α
log n → −∞.

It remains to treat the local case T < ∞, for which we use similar arguments based on Chebyshev’s
inequality. The bound (28), in conjunction with Proposition 8.1(ii) and the fact that hn ≤ bn, shows that it
suffices to prove

sup
x≥Jn

[
− x

hn
+ t

β − α

α(α− 1)
log n− log n− log F (x + ∆)− log hn

]
→ −∞.

The index of regular variation of x 7→ F (x + ∆) is necessarily −β − 1 by Karamata’s theorem. We can
now repeat the reasoning for the global case, observing that − log hn + log Jn = o(log Jn). 2

To gain some intuition for the above proposition, it is instructive to see how {hn} and {Jn} arise as
a result of an optimization procedure similar to the finite-variance heuristic given at the end of Section 8.
Suppose for simplicity that F (−x) = x−α and that 1 + o(1) may be read as 1. The one but last bound in
(28) shows that Jn must exceed bα

nh−α+1
n −hn log n+β/αhn log n. Now optimize this bound with respect

to hn to find the sequences of the proposition.
We also remark that our reasoning immediately allows for a relaxation of the assumptions on the right

tail, for instance in terms of O-regular variation. In fact, the proof shows that Karamata-assumptions on
the right tail can be avoided altogether by assuming that

∫∞
0 u2F (du) < ∞, and then replacing β in the

statement by inf{γ : lim infx→∞ xγF (x) > 0}. Still, regular variation of the left tail is essential in order
to apply Lemma 8.1(iii), which relies on a Tauberian argument.

The next theorem is a corollary of the preceding proposition in conjunction with Theorem 2.1. In the
global case it has been obtained by Rozovskii [37, Cor. 2A].

Theorem 10.2. Let the assumptions of Proposition 10.2 hold. For any t > 1, we have P{Sn ∈ x + ∆} ∼
nF (x + ∆) uniformly for x ≥ t(β−α

α−1 log n)(α−1)/αbn.
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10.3 Infinite mean and a heavy left tail

In this subsection we consider the case when the left tail is heavier than the right tail, and when ξ is not
integrable. This situation has recently been studied by Borovkov [5]; we include it here to show an inter-
esting contrast with the preceding subsection, which is perhaps surprising in view of the unified treatment
in Section 10.1 for balanced tails.

We assume that

• x 7→ F (−x) is regularly varying at infinity with index −α for some α ∈ (0, 1), and

• x 7→ F (x) is regularly varying at infinity with index −β for some β > α.

Under these assumptions, F is in the domain of attraction of the unbalanced α-stable law, and {bn} with
bn = inf{x : F (−x) < 1/n} is a natural-scale sequence.

The following proposition shows that, under the present circumstances, one can take a small-steps
sequence which is fundamentally different from the one in Section 10.2.

Proposition 10.3. Suppose that the above two assumptions hold. If T < ∞, also suppose that F (x + ∆)
is regularly varying.

The sequence {hn ≡ n1/β} is a truncation sequence. Moreover, for any given ε > 0, the sequence
{Jn ≡ n1/β+ε} is an h-small-steps sequence.

Proof. The proof is modeled after the proof of Proposition 10.2. It becomes clear with Lemma 7.2 that
{hn} is a natural-scale sequence.

We next apply Lemma 8.1(iv). If
∫∞
0 uF (du) = ∞, we apply Karamata’s theorem and see that

nh−1
n

∫ hn

0 uF (du) is o(nF (−hn)); otherwise we conclude this immediately. Similarly, nh−2
n

∫ hn

0 u2F (du)
is always o(nF (−hn)). This shows that, for sufficiently large n, n log

∫ hn

−∞ eu/hnF (du) ≤ 0. Therefore, if
T = ∞, it suffices to observe that hn, Jn satisfy

lim
n→∞

sup
x≥Jn

exp
(
− x

hn

)
nx−β−ε

= 0.

The local case is similar. 2

The next theorem, which is new in the local case, immediately follows from the preceding proposition
in conjunction with Theorem 2.1.

Theorem 10.3. Let the assumptions of Proposition 10.3 hold. For any {xn} with nF (−xn) = o(1), we
have P{Sn ∈ x + ∆} ∼ nF (x + ∆) uniformly for x ≥ xn.
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A Some notions from Karamata theory

We recall some useful notions from Karamata theory for the reader’s convenience. A positive, measurable
function f defined on some neighborhood of infinity is O-regularly varying (at infinity) if

0 < lim inf
x→∞

f(xy)
f(x)

≤ lim sup
x→∞

f(xy)
f(x)

< ∞.

This is equivalent to the existence of some (finite) αf , βf with the following properties. For any α >

αf , there exists some C = C(α) such that for any Y > 1, f(xy)/f(x) ≤ C(1 + o(1))yα uniformly
in y ∈ [1, Y ]. Similarly, for any β < βf , there exists some D = D(β) such that for any Y > 1,
f(xy)/f(x) ≥ D(1 + o(1))yβ uniformly in y ∈ [1, Y ]. The numbers αf and βf are called the upper and
lower Matuszewska indices respectively. We refer to [3, Ch. 2] for more details.

A positive, measurable function f defined on some neighborhood of infinity is intermediate regularly
varying (at infinity) if

lim
y↓1

lim inf
x→∞

f(xy)
f(x)

= lim
y↓1

lim sup
x→∞

f(xy)
f(x)

= 1.

Intermediate regular variation has been introduced by Cline [7]. Cline also shows that an intermediate reg-
ularly varying function is necessarily O-regularly varying. Note that regular variation implies intermediate
regular variation.

B The class Sd of subexponential densities

We say that a function H : R → R+ belongs to the class Sd if H ∈ L and

lim
x→∞

∫ x/2
0 H(y)H(x− y)dy

H(x)
=
∫ ∞

0
H(y)dy < ∞.

It is important to realize that it is possible to determine whether H belongs to Sd by considering its
restriction to the positive halfline. Under the extra assumptions that H be monotone and supported on the
positive halfline, the requirement H ∈ L is redundant and the class is usually referred to as S∗.

It is the aim of this appendix to present criteria in order to assess whether a function H ∈ L of the form

H(x) = p(x)e−R(x) (29)

belongs to Sd, where p is O-regularly varying.

Lemma B.1. Consider H ∈ L of the form (29), where p is O-regularly varying. Suppose that there exists
an eventually concave function z ≥ 0 such that lim supxz′(x)/z(x) < 1 and the function R(x)/z(x) is
eventually nonincreasing. If moreover R(x) � log x, then we have H ∈ Sd.

Proof. It follows from H ∈ L that there is some h with h(x) ≤ x/2 and H(x− y) ∼ H(x) uniformly for
y ≤ h(x). Therefore, we have∫ h(x)

0
H(y)H(x− y)dy ∼ H(x)

∫ h(x)

0
H(y)dy ∼ H(x)

∫ ∞

0
H(y)dy.

It therefore suffices to show that the integral over the interval (h(x), x/2] is o(H(x)).
Exploiting the assumptions on R and z, the proof of Theorem 2 of Shneer [39] in conjunction with

Property 2 in [38] shows that there exists an α ∈ (0, 1) such that R(x) − R(x − y) ≤ αyR(x)/x for 0 ≤
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y ≤ x/2. Moreover, since x 7→ R(x)/x is ultimately nonincreasing, we have R(x)−R(x− y)−R(y) ≤
(α−1)R(y) for h(x) ≤ y ≤ x/2. The imposed O-regular variation of p implies supu∈[1/2,1] p(ux)/p(x) =
O(1) and p(x) ≤ xη for some η < ∞ and large enough x, showing that∫ x/2

h(x) H(y)H(x− y)dy

H(x)
≤

∫ x/2

h(x)

p(y)p(x− y)
p(x)

e−(1−α)R(y)dy

≤ O(1)
∫ x/2

h(x)
p(y)e−(1−α)R(y)dy ≤ O(1)

∫ x/2

h(x)
y−2dy,

where we have also used R(x) � log x to obtain the last inequality. 2

The next lemma is inspired by Theorem 3.6(b) of Klüppelberg [25]. We provide a proof here since the
framework is slightly different.

Lemma B.2. Consider H ∈ L of the form (29), where p is O-regularly varying. Suppose that R is
differentiable and that R′ is ultimately nonincreasing. If

∫∞
M eyR′(y)H(y)dy < ∞ for some M < ∞, then

H ∈ Sd.

Proof. As in the proof of the previous lemma, it suffices to bound H(y)H(x−y)/H(x) for y ∈ (h(x), x/2].
We have x− y ≥ y for y ≤ x/2, implying that

R(x)−R(x− y) ≤ yR′(x− y) ≤ yR′(y).

Note that p(x − y)/p(x) = O(1) uniformly for y ≤ x/2 by our assumption that p is O-regular varying.
This yields∫ x/2

h(x) H(y)H(x− y)dy

H(x)
≤ O(1)

∫ ∞

h(x)
eyR′(y)H(y)dy,

which vanishes by assumption. 2
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