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ABSTRACT
This paper gives an overview of recent research on the im-
pact of scheduling on the tail behavior of the response time
of a job. We cover preemptive and non-preemptive schedul-
ing disciplines, consider light-tailed and heavy-tailed distri-
butions, and discuss optimality properties. The focus is on
results, intuition and insight rather than methods and tech-
niques.

1. INTRODUCTION
The response time (a.k.a. sojourn time) of a job is the

time from when the job arrives until it departs. While mean
response time is a very common metric of study, the tail
of response time is equally important, as it gives insight
into the occurrence of unusually long delays. This insight
can be helpful in designing systems such that the impact of
long delays is limited. The recent surge of activity in this
area is further stimulated by the growing awareness that
job sizes in computer and communication networks can be
extremely variable, leading to undesirable properties such as
long-range dependence and heavy-tailed response times; see
[44] for a survey volume on this topic. Additional motivation
is the fact that unusually long delays have significant impact
on the performance of the system as perceived by a user.
Users that wait for a long time may abandon the system
which negatively impacts the performance.

In this paper we focus on the impact of scheduling of the
jobs on response time tail behavior. An important goal
of scheduling is to prevent extreme delays, and we give an
overview of results in the queueing literature to indicate how
a specific scheduling discipline affects long delays. The pa-
per is not methodologically oriented (we refer to [9] for this).
Our emphasis is on results, intuition and insight. We try to
explain how long delays occur most likely, and how these de-
lays depend on the load and on the statistical assumptions
underlying the model.

Throughout the paper we distinguish between light-tailed
and heavy-tailed service requirements (also in some places
called job sizes), as the methods, results and insights in
these two cases are completely different. Queueing models
with light-tailed service requirement distributions, like the
exponential distribution and more generally phase-type dis-
tributions, typically also have light-tailed sojourn time dis-
tributions. Queueing models with heavy-tailed service dis-
tributions, like the Pareto distribution, typically also have
heavy-tailed sojourn time distributions. We give several ex-
amples in which the service requirement tail follows a power

law (x−α), yielding a sojourn time tail that also follows a
power law, often also x−α or the even heavier x1−α. These
are in fact the best and worst possible cases for a large class
of scheduling policies. This will follow from the observation
that a sojourn time is always bounded from below by its
own service time, and from above by the remainder of the
busy period in which the tagged customer arrived.

The impact of scheduling on the tail behavior of job re-
sponse times is a topic with many aspects – too many to
cover in this brief survey. We shall pay some attention to
preemptive and non-preemptive policies, and to optimality
issues. But we shall not discuss the case of multiple customer
classes, with scheduling disciplines that assign priorities to
classes; see the contribution of Aalto et al. in this volume.
Neither shall we explicitly discuss fairness of scheduling dis-
ciplines; see the contribution of Wierman in this volume.

The paper is organized as follows. Section 2 contains a
description of the model under consideration, and a discus-
sion of tail behavior with a distinction between light and
heavy tails. We also present some definitions of optimality
of scheduling disciplines, in the context of tail behavior. Sec-
tions 3 and 4 are devoted to tail asymptotics for two funda-
mental service disciplines: First Come First Served (FCFS)
and Processor Sharing (PS). In the light-tailed case, FCFS
turns out to be optimal in some asymptotic sense; in the
heavy-tailed case, FCFS performs very poorly (since many
customers may have to spend a long time in the system
because of one very large customer ahead of them). In con-
trast, PS performs in some sense optimally in the heavy-
tailed case. Several other disciplines are briefly touched
upon in Section 5. Section 6 contains some concluding
remarks. Technical details on a new optimality result for
FCFS can be found in the appendix.

2. PRELIMINARIES
The goal of this section is to introduce some background

on tail analysis and some notation. We introduce our model
in Section 2.1, review the concepts of light tails and heavy
tails in Section 2.2, and introduce new optimality notions in
Section 2.3.

2.1 Model description
We consider a system where jobs, numbered by i ≥ 1,

arrive at a server one by one. The size (i.e. amount of work
that needs to be processed) of job i is denoted by Bi. The
sequence Bi, i ≥ 1 is assumed to consist of independent and
identically distributed (i.i.d.) random variables. The time
between the arrivals of job i−1 and job i is given by Ai. The



sequence Ai, i ≥ 1 is i.i.d., independent of the sequence of
job sizes. The mean amount of work offered per unit of time
by this arrival stream is denoted by ρ = E[B]/E[A], with
B a generic job size, and A a generic inter-arrival time. We
assume that this work is processed by a server, which works
at speed 1 whenever there is work in the system; therefore we
call ρ the server utilization. We assume that ρ < 1. Under
this condition, the system reaches steady state under weak
assumptions. By V , we denote the steady-state response
time of a job, i.e. the time that elapses between arrival and
departure of a job; we will also use the terms system time
and sojourn time.

We allow for all non-anticipating scheduling disciplines
(any information on jobs currently in the system may be
used). In particular, we allow scheduling disciplines to be
preemptive. We allow the server to work on several jobs
simultaneously, and allow scheduling disciplines to be based
on the sizes of jobs that are currently in the system. Let Π be
the class of all such scheduling disciplines and write π for a
particular scheduling discipline π ∈ Π. If we wish to express
the dependence of V on a specific scheduling discipline π,
then we write V = Vπ.

2.2 Tails
We are interested in the tail behavior of V , i.e. in the

behavior of P (V > x) as x grows large. Examining such be-
havior is important in assessing how well a system is capable
of preventing huge sojourn times. The concept of ”huge” or
”large” is not very well defined. One could think of the
smallest value which is not acceptable in a particular appli-
cation. In terms of probabilities, one can think of values of
x for which P (V > x) is of the order 10−3 or smaller.

There exist several techniques to obtain the tail behavior
of V . These can be divided into analytic techniques and
probabilistic techniques, and are documented elsewhere (see
e.g. [9, 10, 26] and references therein). This set of techniques
is often called large deviations techniques and the associated
performance analysis is typically called rare event analysis.
The goals of rare event analysis are twofold. The first goal
is to obtain an accurate approximation of P (V > x) which
is valid for large x; this approximation gives insight into the
frequency of long delays and is usually difficult to obtain by
simulation. The second goal is to obtain insight into the
way rare events occur, if they occur.

Since we only focus on results and insights, we merely
point out that, given the context of the present paper, the
solutions to these problems critically depend on the nature
of the job size distribution. We distinguish between two
different classes of job size distribution, namely light-tailed
and heavy-tailed distributions. Both are defined below.

2.2.1 Light tails
Job sizes are said to have a light tail if there exists an ε > 0

such that E[eεB ] < ∞. Important examples of light-tailed
distributions are all distributions with bounded support and
all phase-type distributions. Systems where all input distri-
butions are light-tailed are typically well-behaved, since the
convergence towards steady state is typically exponentially
fast, as is the decay of correlations between successive re-
sponse times. Moreover, generally all performance indica-
tors, such as the response time, are light-tailed as well.

2.2.2 Heavy tails

We shall simply say that a random variable is heavy-
tailed if it is not light-tailed, i.e. job sizes are heavy-tailed
if E[eεB ] = ∞ for every ε > 0. Quantities such as file
sizes are typically heavy-tailed [17]. An important class of
heavy-tailed distributions which is intuitively appealing is
the class of sub-exponential distributions. We say that B
has a sub-exponential distribution (or simply that B is sub-
exponential) if

P (B1 + . . . + Bn > x) ∼ P ( max
i=1,...,n

Bi > x),

where f(x) ∼ g(x) means that the ratio of f and g tends to
1 as x →∞. This class of distributions is appealing since it
reflects that if the total amount of work delivered by a num-
ber of jobs is large, this is most likely due to a single large
job. This intuition is completely different from the light-
tailed case, where all job sizes are statistically larger than
usual if the sum is larger than some large x, see for exam-
ple [26]. Important examples of heavy-tailed distributions
are the log-normal distribution, some Weibull distributions

(with tails of the form e−xβ

for some β ∈ (0, 1)) and the
following sub-classes of sub-exponential distributions:

• B is said to be regularly varying of index α > 0 if
P (B > x) = L(x)x−α, the function L being slowly
varying, i.e. L(ax)/L(x) → 1 for any a > 0. L(x) can
converge to a constant (leading to pure power tails)
but can also be proportional to a power of log x.

• B is said to be of intermediate regular variation if
P (B > x + o(x)) ∼ P (B > x) for any function o(x)
which is of the small order of x. This is not the stan-
dard definition, but a characterization due to D. Kor-
shunov (personal communication). The standard def-
inition is not very insightful and will therefore not be
mentioned here.

Background on heavy tails, as well as their implications in
areas like insurance and finance, can be found in [22].

2.3 Optimality
There is no well-established definition of optimality of a

scheduling discipline in the context of tail behavior, and
therefore we take the opportunity to propose one here.

Assume that the inter-arrival time and job size distribu-
tion are fixed. We say that a scheduling discipline π∗ is
strongly tail optimal (if the context is tails, we shall simply
say strongly optimal), if

lim sup
x→∞

P (Vπ∗ > x)

P (Vπ > x)
≤ 1, (1)

for any scheduling discipline π ∈ Π. As we shall see below,
this is a rather strong property which is difficult to establish.
Therefore, we propose two other definitions of optimality.
We say that a scheduling discipline π∗ is weakly tail optimal
if there exists a finite constant M such that

lim sup
x→∞

P (Vπ∗ > x)

P (Vπ > x)
≤ M, (2)

for any scheduling discipline π. Finally, we define an even
weaker notion of optimality. We say that a scheduling dis-
cipline π∗ is logarithmically tail optimal if

lim inf
x→∞

log P (Vπ∗ > x)

log P (Vπ > x)
≥ 1. (3)



It is clear that any strongly optimal scheduling discipline
is weakly optimal, and that every weakly optimal schedul-
ing discipline is logarithmically optimal. Optimality of a
scheduling discipline will generally depend on the distribu-
tion of the service times, and also on the load of the system;
examples are given throughout the remainder of this paper.

3. FIRST COME FIRST SERVED
In this section we treat the most basic scheduling disci-

pline, which is FCFS. We shall focus on both light-tailed
and heavy-tailed service times. The qualitative tail behav-
ior, as well as the intuition, completely differs between both
cases. It turns out that both the tail estimate and the intu-
ition are easier to describe in the heavy-tailed setting. This
section is organized as follows. Light-tailed service times
are discussed in Section 3.1, and heavy-tailed service times
in Section 3.2. We close the section with a discussion of
optimality properties of FCFS in Section 3.3.

To connect with existing literature, we present all results
for FCFS for the waiting time W rather than the response
time V . Since V = W + B and W dominates B, it is easy
to extend the results to response times.

3.1 Light-tailed service times
For light-tailed service times, the tail of the response time

can be shown to be exponential under mild assumptions.
Assume that there exists a constant γ(:= γFCFS) > 0 such

that E[eγ(B−A)] = 1 and E[BeγB ] < ∞. Then there exists
a constant CFCFS such that

P (W > x) ∼ CFCFSe−γx. (4)

The constant γ is known as the decay rate, or adjustment
coefficient, and must be computed numerically in general.
For the M/M/1 queue, γ = µ− λ. The constant CFCFS is
explicit for M/G/1, but hard to compute in general. How-
ever, it has the appealing property that it is bounded from
above by 1. In fact, a stronger, non-asymptotic result can
be obtained:

P (W > x) ≤ e−γx for all x ≥ 0. (5)

Both results are attributed to Cramér & Lundberg, but the
second result has independently been obtained by Kingman;
see Chapter XIII of [4] for an overview of the literature.
The approximation P (W > x) ≈ CFCFSe−γx is in general
excellent for moderate values of x; see [1] for an illustration.

Apart from obtaining insight into the order of magni-
tude of W , it is also useful to understand what the most
likely cause of the event {W > x} is, given that it hap-
pens. Anantharam [2] has investigated this problem for the
workload process of the GI/G/1 queue and established that
the workload most likely becomes large by conspiracy: for
a long time, all inter-arrival times are statistically smaller
than usual, and all service times are statistically larger than
usual.

More precisely, the density of the inter-arrival time dis-
tribution, if it exists, will not equal a(t), but (up to a nor-
malizing constant) equals e−γta(t). Similarly, the density
of the service time distribution changes from b(t) to (a nor-
malizing constant times) eγtb(t). This makes the load of the
system grow from ρ to a quantity which is bigger than 1.
Consequently, the workload of the system grows at linear
rate, leading to the event {W > x}. This type of change of

density is called exponential twisting or exponential tilting.
In the special case of the M/M/1 queue, this exponential
twisting leads to the situation where the inter-arrival times
are exponentially distributed with rate µ (instead of λ), and
the service times are exponentially distributed with rate λ
(instead of µ), resulting in a load of 1/ρ instead of ρ. This
follows from the fact that γ = µ−λ in this special case. We
refer to [4] and [26] for more background.

3.2 Heavy-tailed service times
The first heavy-tailed result for the GI/G/1 queue with

the FCFS discipline is due to Borovkov [7] and Cohen [15].
Cohen proved that the waiting time distribution is regularly
varying of index α− 1 if and only if the service time distri-
bution is regularly varying of index α, α > 1. The if part
was already proven in [7]. The proof in [15] exploits a re-
lation between the waiting time in the GI/G/1 queue and
a renewal function. The renewals in this function represent
idle periods in the ”dual” unstable GI/G/1 queue (a queue
with A and B interchanged). In addition the proof exploits
a lemma on regular variation of a transient renewal function
[14].

Pakes [42] extended this result to the case of sub-exponential
residual service times; see also Veraverbeke [48] and the nice
proof in [52]. We present the result in a slightly more gen-
eral form due to Korshunov [33]. The following statements
are equivalent: The waiting time tail in GI/G/1 FCFS is
sub-exponential; the tail of the residual service time is sub-
exponential; and

P (W > x) ∼ ρ

1− ρ
P (Br > x). (6)

Here Br denotes a residual service time, with distribution
P (Br > x) = 1

EB

∫∞
x

P (B > u)du. In the M/G/1 case (6)
easily follows from the well-known representation of W as
a geometric sum of residual service times. If, e.g., B has a
Pareto distribution, asymptotically behaving like x−α, then
the waiting time tail asymptotically behaves like x1−α.

It is interesting to observe that the tail of W is as heavy as
the tail of the residual service time, which is the integrated
tail of the service time, and hence heavier than the tail of
the service time.

Formula (6) can be heuristically explained, cf. Figure 1.
Consider for ease of exposition the case of Poisson arrivals.
Suppose that the workload is larger than a large value x at
time 0. We claim that this is most likely due to the arrival of
a single customer with a large service time B at some time
−v ≤ 0 (one catastrophe, in stark contrast with the con-
spiracy in the light-tailed setting). Just before that time,
the workload was O(1), and after that time nothing excep-
tional happened, either; hence the workload drifts down to
B − (1 − ρ)v at time 0. The intensity of the occurrence of
the event that this exceeds x is λP (B > x + (1 − ρ)v). In-
tegrating over all v yields the righthand side of (6). These
heuristics actually form the basis for a rigorous proof, cf.
[52] and p. 30 of [54]. Related insights are discussed in [2]
and [5]. The principle described here is sometimes called the
principle of a single big jump, cf. [25].

3.3 Optimality properties of FCFS
A general folk theorem for FCFS scheduling is that it is an

efficient scheduling discipline for job sizes with low variabil-
ity. Since low variability is typically associated with light
tails it may not come as a surprise that FCFS has some tail
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Figure 1: The principle of a single big jump

optimality properties for light tails. Stolyar & Ramanan
[47] have shown that FCFS is logarithmically optimal for
light-tailed job sizes. Their result applies in a more general
setting than the GI/G/1 system. For the GI/G/1 system
itself, it can actually be shown that FCFS is weakly opti-
mal for light tails: See Appendix A. Whether FCFS is also
strongly optimal is an open problem.

For heavy-tailed service times, FCFS is far from opti-
mal: many jobs can have a huge response time by getting
stuck behind a single large job. In a fundamental paper,
Anantharam [3] shows that FCFS, as well as any other non-
preemptive service discipline, is not effective in dealing with
heavy-tailed job sizes. It can easily be shown that FCFS
fails to be optimal for regularly varying job sizes. Even
logarithmic optimality does not hold: in the next section
we will identify a preemptive service discipline for which
the response time distribution has tail behavior of the order
x−α rather than x1−α, implying that the limit in (3) equals
(α− 1)/α. This behavior is actually the worst one can get,
since the time it takes to empty a system, if the system is in
equilibrium at time 0, also has tail behavior of order x1−α

(for the case of regularly varying service times this follows
from [55]).

4. PROCESSOR SHARING
Under the processor sharing (PS) service discipline, the

total available service rate is equally shared among all users
present: When n ≥ 1 users are present, each of them receives
service at rate 1/n. PS was introduced to model round-
robin scheduling mechanisms in time-shared computer sys-
tems [32], and is presently being used to model the flow level
performance of bandwidth-sharing protocols [28, 37].

It is notoriously difficult to derive the distribution of the
sojourn time under PS; see [51] for a survey concerning
the M/G/1 case. Recent studies have focused on asymp-
totics. In our discussion we again distinguish between light-
tailed and heavy-tailed service requirements. See [10] for a
methodologically oriented survey on PS asymptotics.

4.1 Light-tailed service requirements
Obtaining asymptotic estimates of the tail of the response

time in PS systems with light-tailed job sizes is much more
difficult than in the heavy-tailed case. The reason (as ex-

plained in [36, 10]) is that a large response time can be
affected by any of the following three types of events: (i)
the arrival has a large service requirement, (ii) the arrival
sees a large number of customers present, and (iii) many new
jobs arrive during the arrival’s sojourn time. Usually, only
a single event determines the tail behavior of the response
time distribution: In Section 4.2 we shall see that for PS
with heavy-tailed job sizes event (i) is the dominating cause
of a large response time. In FCFS, event (ii) is the most
likely cause of a large response time for both light-tailed
and heavy-tailed job sizes (although the way this particular
event occurs is completely different in these cases). Events
of type (i) and (iii) can be ignored in FCFS. In PS with
light-tailed job sizes, all three events can play a significant
role - sometimes simultaneously. This leads to a more chal-
lenging analysis and more complicated results. For example,
for the M/M/1 PS system, the following remarkable asymp-
totic expansion holds:

P (V > x) ∼ C1x
−5/6e−C2x1/3

e−γBP x. (7)

C1 and C2 are some complicated constants, and γBP is the
decay rate of a busy period, and equals (

√
µ−

√
λ)2 in this

case (recall that λ is the arrival rate and µ the service rate).
This result has been derived in [8], exploiting a link be-
tween M/M/1 PS and M/M/1 Random Order of Service; a
detailed analytic study of the latter model can be found in
[23].

This result, as well as its proof, does not offer much insight
into how large response times occur. Motivated by this, [36]
considers the more general setting of the GI/G/1 queue.
The following estimate is the main result of that work:

log P (V > x) ∼ −γBP x. (8)

The method used to prove this result is that of large devia-
tions, and shows that the event {V > x} is primarily caused
by an event of type (iii): After time 0, the load of the system
increases from ρ to 1. The system becomes critically loaded,
causing the number of customers to grow, and the service
rate per customer to drop. The number of customers at time
0 and the service requirement of the job itself are both of
o(x), and do not contribute to the logarithmic asymptotics
(8). We conjecture that these quantities do play a (compli-
cated) role when considering asymptotics of the type (7).

This intuition is only valid if the tail of the job size dis-
tribution is not too light, which is surprising since such a
distinction was not necessary in the FCFS system. The
M/D/1 PS queue has been considered in [21]. Using a rela-
tion with Yule processes and geometric random sums, it is
shown there that

P (V > x) ∼ C3e
−γM/D/1−P Sx, (9)

for constants C3 and γM/D/1−PS . It can be shown that
γM/D/1−PS is strictly larger than the decay rate γM/D/1−BP

of the busy period in the M/D/1 PS queue, and strictly
smaller than γM/D/1−FCFS . It can also be shown that the
way the event {V > x} occurs is by a combination of events
(ii) and (iii). Specifically, the number of customers at time
0 is proportional to x. The result (9) has been extended
in [20] to the conditional response time in the M/G/1 PS
queue. Another recent paper on light-tailed asymptotics in
PS systems is [19], where the result (8) has been extended
to a multiclass system with discriminatory processor sharing
and a possibly fluctuating service rate.



4.2 Heavy-tailed service requirements
In the heavy-tailed case the following asymptotic equiva-

lence has been established for various PS models:

P (V > x) ∼ P (B > κx), (10)

for some constant κ, which equals 1− ρ in work-conserving
PS systems. Thus, if B has a power tail x−α, V also has
a power tail of the form x−α (with different constant). In
simple terms: the tail of V is just as heavy as the tail of B.

For M/G/1 with regularly varying service requirements,
[56] proves this result with κ = 1 − ρ; [38] extends it to
the intermediately regularly varying case, and [31] to sub-
exponential concave service distributions.

Van Ooteghem et al. [41] develop a probabilistic sample-
path approach that avoids the explicit use of queue length
information, and that yields (10) with κ = 1 − ρ for the
processor sharing queue with general renewal (non-Poisson)
arrival process, and also for the queue with discriminatory
processor sharing – at the price of assuming that the service
times are regularly varying of index α > 2 (instead of α > 1).
In [27], (10) is proven for model extensions which allow for
admission control, impatience and multiple servers; κ may
now differ from 1− ρ. See also the survey [10].

A heuristic explanation of (10) is the following. For the
heavy-tailed service distributions which are considered in
[31, 38, 56], the most likely way to have a very large so-
journ time is that the tagged customer itself has a very
large service requirement. Its sojourn time consists of that
service requirement plus the amount of service provided to
other customers during V . V is so long that ”steady state is
reached” in an early stage of the tagged customer’s presence.
Hence on average the server allocates a fraction ρ of its ca-
pacity to other work, so that V ≈ B+ρV , or V ≈ B/(1−ρ):
the tagged customer on average experiences service at rate
1− ρ. Equation (10) is therefore sometimes called a reduced
service rate approximation, cf. Figure 2. It also shows that
the most likely way a job experiences a large response time,
is that its own service time is large, which is event (i) men-
tioned above. An informal way to summarize this is: If you
stay in the system for a long time, it’s your own fault.

r
1

Figure 2: Reduced service rate approximation

A different way to arrive at (10) is as follows. Consider
a customer with infinitely large job size (i.e. a permanent
customer) that arrives in the system at time 0. Let R(x)
be the total amount of service obtained by that customer
up to time x. We can write P (V > x) = P (B > R(x)),
and the central limit theorem for renewal reward processes
yields R(x) ≈ (1−ρ)x+O(

√
x). Consequently, P (V > x) =

P (B > (1−ρ)x+O(
√

x)). The equivalence P (B > (1−ρ)x+
O(
√

x)) ∼ P (B > (1 − ρ)x), which is required to conclude
(10), is called square root insensitivity. Regularly varying

tails and log-normal tails are both square root insensitive.

The Weibull tail e−xβ

is square root insensitive if and only if
β < 1/2. The seminal work [31] makes the above heuristics
rigorous, and also shows that the result (10) does not hold
for sub-exponential distributions which are not square root
insensitive.

In the case of an M/G/1 PS queue with multiple customer
classes, (10) also holds for each individual class that has a
regularly varying service requirement distribution – even if
some other classes are ”heavier”. In more general models,
the intuition behind (10) remains the same, but the results
get harder to prove. We refer to [10] for (i) a discussion of
various other extensions of (10) to multiclass generalizations
of PS like DPS (Discriminatory Processor Sharing), (ii) an
overview of the various methods via which results like (10)
have been proven, and (iii) a discussion of the intimate re-
lationship between (10) and a geometrically bounded queue
length distribution. See also the paper by Aalto et al. in
this volume.

4.3 Optimality properties of PS
Since the sojourn time for any service discipline is bounded

from below by the job size, and since

lim sup
x→∞

P (VPS > x)

P (B > x)
= lim sup

x→∞

P (B > κx)

P (B > x)
< ∞,

if the tail of B is of (intermediate) regular variation, it fol-
lows that PS is weakly optimal for job size distributions of
which the tail is (intermediate) regularly varying. Our con-
jecture is that PS is strongly optimal as well; it seems hard
to improve upon κ = 1 − ρ in the GI/G/1 queue. Proving
this conjecture is a subject of current research.

For light-tailed service times, it can be shown from the
above results that PS is not even logarithmically optimal.
The reason is that the decay rate γBP is strictly smaller
than the decay rate γFCFS for FCFS.

5. OTHER SERVICE DISCIPLINES
In this section we give an overview of existing results for

other service disciplines. Size-based disciplines are consid-
ered in Section 5.1. Section 5.2 focuses on results for systems
with multiple servers. Finally, we consider Random Order
of Service and Last Come First Served in Sections 5.3 and
5.4. The results in the first two subsections are related to
the subject of other surveys (on fairness and multi-server
scheduling) in this special issue.

5.1 Size-based scheduling disciplines
Size-based scheduling disciplines make scheduling deci-

sions based on the size of a job. A well-known example
is Shortest Remaining Processing Time (SRPT). A related
example is Foreground Background (FB) Processor Sharing,
which serves (with preemption and according to PS) the jobs
with the least attained service. The tail behavior of the re-
sponse time for these scheduling disciplines has been derived
for the GI/G/1 queue, both in the case of light-tailed and
heavy-tailed job sizes [39]. The following two results which
are proven in [39], covering light-tailed and heavy-tailed job
sizes, are not only valid for FB and SRPT, but also for the
class of SMART disciplines [50] discussed by Wierman in
this volume.

Result 1. For light-tailed job sizes, the following holds if
the distribution of B has no mass in its right endpoint (that



is, if P (B = xB) = 0, with xB = sup{x : P (B > x) > 0}):

log P (V > x) ∼ −γBP x. (11)

We see that the decay rate is the same as the decay rate
for the busy period, suggesting that size-based scheduling
policies are not effective in preventing large sojourn times
when job sizes are light-tailed. The intuition behind this
result is that the sojourn time of a job is upper bounded by
a residual busy period, and is lower bounded by a residual
busy period of jobs with size smaller than y, if the job size
B = y. This also forms the basis of the proof.

If P (B = xB) > 0, this result is not valid. An example
is the M/D/1 queue, where SRPT coincides with FCFS. In
[40] it is shown that the decay rate of V is strictly between
γBP and γFCFS in this case.

These results can be refined to obtain the decay rate of
V (τ), the sojourn time of a job with fixed service time τ . If
P (B = τ) = 0, then

log P (V (τ) > x) ∼ −γ(τ)x, (12)

for some function γ(τ). Under weak regularity assumptions,
this function is continuous, strictly decreasing, converging
to ∞ if τ ↓ 0 and converging to γBP if τ →∞. There exists
a critical τ∗ for which γ(τ∗) = γFCFS . The interpretation
of τ∗, which is called the critical job size, is that jobs with
size smaller than τ∗ benefit from switching from FCFS to
SRPT. For the M/M/1 queue, it is shown numerically in
[40] that the percentage of such customers exceeds 85 for all
values of the system load.

Result 2. Another appealing property of the class of size-
based policies considered in [39] is that, for heavy-tailed job
sizes, the performance is as good as for PS. The following
is valid for (intermediately) regularly varying job size distri-
butions:

P (V > x) ∼ P (B > (1− ρ)x). (13)

The intuition behind this result is similar as for PS, with
a small variation: The tagged job essentially receives the
lowest priority, and only gets served when it is alone in the
system, i.e. during the idle periods of the server. The frac-
tion of time the server is idle in the interval [0, x] is approx-
imately 1 − ρ, hence the event {V > x} can be related to
{B > (1− ρ)x}.

5.2 Multiple servers
The GI/G/s queue can be seen as a special case of the

model described in Section 1, if we relax the assumption that
work is processed at speed 1 whenever there is work in the
system. The total capacity of ”the server” is divided by s,
and each server works at fixed rate 1/s, independently of the
other servers. Note however that this scheduling discipline
is not work-conserving. For light-tailed job sizes, the tail
behavior of the waiting time distribution is derived in [45].

For heavy-tailed job sizes, the tail behavior is only known
for the case of two servers, see [24] for two identical servers
and [11] for one general server and one exponential server.
The results in those papers show that the tail of the waiting
time distribution crucially depends on the value of the load
ρ. If ρ ∈ (1/2, 1), then a single large job is sufficient to
destabilize the system. For regularly varying job sizes, it
can be shown that there exists a constant C4 such that

P (W > x) ∼ C4P (Br > x). (14)

In the case ρ ∈ (0, 1/2), the behavior is different, since two
huge jobs are necessary to cause a long delay: In that case,
it follows for the GI/G/2 queue (see [24]) that there exists
a constant C5 such that

P (W > x) ∼ C5P (Br > x)2. (15)

This set of results is consistent with finite moment condi-
tions for W , which are derived in [46]. What is clear is the
benefit of a spare server. With a spare server the impact of
a single large job can be eliminated. If ρ < 1/2, the tail of
W is even lighter than the tail of B. This implies that, if
ρ < 1/2, P (V > x) ∼ P (B > x/2) (since each server works
at rate 1/2). Thus in this special case, two-server schedul-
ing is weakly optimal. It is not strongly optimal, since the
constant 1/2 is not as good as the constant 1 − ρ appear-
ing in the sojourn time asymptotics for PS. More results on
multi-server scheduling can be found in the contribution of
Squillante in this volume.

5.3 Random Order of Service
For exponential service time distributions, the results for

Random Order of Service coincide with PS, as described in
Section 4.1. This equivalence might be asymptotically true
for more general light-tailed distributions, but we are not
aware of any result in this domain. In [13] the waiting time
tail is studied for the GI/G/1 queue with heavy-tailed job
sizes. In the M/G/1 case, with regularly varying service
times, the results take a simple form:

P (W > x) ∼ ρ

1− ρ
h(ρ)P (Br > x), (16)

with h(ρ) ≤ 1; this should be compared with (6).

5.4 Last Come First Served
The preemptive version of Last Come First Served (LCFS)

yields response times with distribution identical to that of
the length of the GI/G/1 busy period. For light-tailed ser-
vice times, it is shown in [43] that, under weak regularity
conditions,

P (V > x) ∼ C6x
−1/2e−γBP x. (17)

The weaker result log P (V > x) ∼ −γBP x has been proven
(without regularity conditions) in [40]. The logarithmic tail
estimate also holds for the preemptive version of LCFS.

For heavy-tailed service times, a similar tail equivalence
of W and Br as for Random Order of Service above is seen
to hold for Last Come First Served Non-Preemptive, and
in fact also for other disciplines for which an arriving cus-
tomer may have to wait a residual service time before its
service begins. For the preemptive version, the following
result holds:

P (V > x) ∼ E[N ]P (B > x(1− ρ)). (18)

The constant E[N ] is the expected number of customers
served during a busy period. This result has been shown
in [34] for regularly varying service times, and Poisson ar-
rivals. In this special case, E[N ] = 1/(1 − ρ). This result
has been extended in [55] to intermediate regular variation
and renewal arrivals. In that paper, it is also shown that a
large busy period is strongly related to a large cycle max-
imum. This has been generalized further to several classes
of square root insensitive and sub-exponential service time
distributions in [6, 30, 18].



6. OUTLOOK
In the case of a regularly varying service requirement dis-

tribution of index α, we have seen that some service disci-
plines give rise to waiting time tails that are regularly vary-
ing with the same index α, whereas for other service disci-
plines the index becomes α−1. We have also argued that it
cannot get worse than α−1, as this is also the index for the
residual busy period. This leaves the question whether any
value between α− 1 and α can be assumed. In [12] we show
that this is indeed the case. E.g., one could split a job of
size x > 1 into x1−β pieces of size xβ , 0 < β < 1, and when
one piece of a job is served, the remainder of the job moves
back to the end of the queue. Any value ζ of the index of
the waiting time tail between α− 1 and α may be obtained
by choosing β = α/(1 + ζ). The intuition behind this is the
following. The most likely way to experience a long delay is
to arrive during a long service piece. Each piece follows a
power law with exponent −α/β, and the residual of a piece
follows a power law with exponent −ζ = 1 − α/β. Taking
β = 1 yields ζ = α − 1, and β = α/(1 + α) would yield
ζ = α, but for smaller values of β the length of the arriving
job itself becomes the dominating tail factor.

A topic for future research is to better understand op-
timality properties w.r.t. tail behavior of scheduling disci-
plines. Several open problems have been mentioned in this
survey. Another open problem in this setting is the existence
and construction of a ”universally good” scheduling disci-
pline: a scheduling discipline which is, in some sense, opti-
mal for both light tails and heavy tails. Such a scheduling
discipline may be implemented when no information about
the exact tail behavior of the service distribution is available.

APPENDIX

A. WEAK OPTIMALITY OF FCFS
We give a proof sketch of the weak optimality property of

FCFS, which is based on a result for the tail behavior of the
maximum amount of work Q in the system during a busy
cycle. This quantity is the same for all work-conserving
disciplines. Under the assumption (4), it is shown in [29]
that P (Q > x) ∼ CQe−γF CF Sx for a constant CQ > 0.
Let π be an arbitrary work-conserving discipline; N be the
number of customers served in a busy cycle; Vπ,i, i ≥ 1 be
the response time of the ith job in the system; and I(A) be
the indicator function of the event A. Observe that

P (Vπ > x) =
1

E[N ]
E[#{i ≤ N : Vi > x}]

≥ 1

E[N ]
E[#{i ≤ N : Vi > x}I(Q > x)]

≥ 1

E[N ]
P (Q > x).

The last inequality is valid since, if the amount of work in
the system is larger than x, at least one of the customers in
the system at that time will have a response time exceeding
x, implying #{i ≤ N : Vi > x} ≥ 1. Finally, we note that it
can be shown that P (VFCFS > x) ∼ E[eγB ]P (WFCFS > x).
Putting all pieces together, we obtain

lim sup
x→∞

P (VFCFS > x)

P (Vπ > x)
≤ E[N ] lim sup

x→∞

P (VFCFS > x)

P (Q > x)

= E[N ]
E[eγB ]CFCFS

CQ
.

We conclude that the weak optimality criterion (2) is sat-
isfied with M = E[N ]E[eγB ]CFCFS/CQ. It can be verified
that this constant is strictly larger than 1, leaving strong
optimality as an open problem.
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[37] Massoulié, L., Roberts, J.W. (1999). Bandwidth
sharing: Objectives and algorithms. In: Proc. IEEE
Infocom ’99, 1395–1403.
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